SlideShare uma empresa Scribd logo
1 de 34
La Regla de Cramer es un método utilizado para resolver
sistemas de ecuaciones por determinantes.
Ejemplo:
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
Para resolver un sistema utilizando la Regla
de Cramer:
Paso 1:
Hallar la determinante del sistema la cual
denominaremos
Una determinante es una expresión numérica en
la que se toman los coeficientes de x, y y de z, las
cuales se escriben dentro de dos barras de la
siguiente manera:
De esta manera la determinante del sistema
nos quedaría así:
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
2 3 4
= 2 6 8
4 9 -4
Vemos que los números
dentro de las barras son
los coeficientes
correspondientes a x, y y
z.
Esta expresión es una
determinante de tercer
orden porque tiene tres
filas y tres columnas.
Paso 2 :
Resolver la determinante del sistema ( )
El valor de una determinante de tercer orden
se halla aplicando la Regla de Sarrus.
2 3 4
= 2 6 8
4 9 -4
2 3 4
2 6 8
Debajo de la tercera fila
horizontal se repiten las
dos primeras filas
horizontales.
Se multiplican entre si los tres números por que
pasan las diagonales principales y secundarias
2 3 4
= 2 6 8
4 9 -4
2 3 4
2 6 8
2 3 4
= 2 6 8
4 9 -4
2 3 4
2 6 8
Diagonales Principales Diagonales
Se multiplican los términos de las diagonales
principales.
2 3 4
= 2 6 8 = - 48 + 72 + 96
4 9 -4
2 3 4
2 6 8
Los productos de los
números que hay en las
diagonales principales
se escriben con su
propio signo.
Se multiplican los términos de las diagonales
secundarias.
2 3 4
= 2 6 8 = - 48+72+96-96-144+24
4 9 -4
2 3 4
2 6 8
Los productos de los
números que hay en las
diagonales secundarias
se escriben con el signo
cambiado.
2 3 4
= 2 6 8 = - 48+72+96-96-144+24
4 9 -4
2 3 4
2 6 8
Finalmente se efectúa la operación
correspondiente.
24 -120
-96
Siendo éste el valor de la
determinante de todo el
sistema.
Paso 3 :
Hallar la
determinante de x
la cual
denominaremos
La determinante de
x equivale a
colocar en la
columna de los
coeficientes de x
los términos
independientes de
las ecuaciones.
De esta manera nos quedaría así:
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
3 3 4
= 5 6 8
4 9 -4
En este caso los coeficientes de
x fueron sustituidos por los
términos independientes de las
ecuaciones.
Paso 4 :
Resolver
3 3 4
= 5 6 8 = - 72 + 180 + 96
4 9 -4
3 3 4
5 6 8
Se multiplican los
términos de las
diagonales
principales.
3 3 4
= 5 6 8 = -72+180+96-96-216+60
4 9 -4
3 3 4
5 6 8
Luego se multiplican
los términos de las
diagonales
secundarias y al
resultado se le cambia
el signo.
3 3 4
= 5 6 8 = -72+180+96-96-216+60
4 9 -4
3 3 4
5 6 8
108 - 156
- 48
Se realiza la operación
la cual dio como
resultado -48 que será el
valor de la determinante
de x.
Paso 5 :
Hallar la
determinante de y
la cual
denominaremos
La determinante de
y equivale a colocar
en la columna de los
coeficientes de y los
términos
independientes de
las ecuaciones.
De esta manera nos quedaría así:
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
2 3 4
= 2 5 8
4 4 -4
Aquí los coeficientes de y
fueron sustituidos por los
términos independientes de las
ecuaciones.
Paso 6 :
Resolver
2 3 4
= 2 5 8 = - 40 + 32 + 96
4 4 -4
2 3 4
2 5 8
Se multiplican los
términos de las
diagonales
principales.
2 3 4
= 2 5 8 = - 40+32+96-80-64+24
4 4 -4
2 3 4
2 5 8
Se multiplican los
términos de las
diagonales
secundarias y al
resultado se le cambia
el signo.
2 3 4
= 2 5 8 = - 40+32+96-80-64+24
4 4 -4
2 3 4
2 5 8
- 8 +16 - 40
8 - 40
- 32
Se realiza la operación la cual dio
como resultado – 32 el cual será
el valor de la determinante de y.
Paso 7:
Hallar la
determinante de z
la cual
denominaremos
La determinante de z
equivale a colocar
en la columna de los
coeficientes de z los
términos
independientes de
las ecuaciones.
De esta manera nos quedaría así:
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
2 3 3
= 2 6 5
4 9 4
Aquí los coeficientes de z
fueron sustituidos por los
términos independientes de las
ecuaciones.
Paso 8 :
Resolver
2 3 3
= 2 6 5 = 48 + 54 + 60
4 9 4
2 3 3
2 6 5
Se multiplican los
términos de las
diagonales
principales.
2 3 3
= 2 6 5 = 48+54+60-72-90-24
4 9 4
2 3 3
2 6 5
Se multiplican los
términos de las
diagonales
secundarias y al
resultado se le cambia
el signo.
2 3 3
= 2 6 5 = 48+54+60-72-90-24
4 9 4
2 3 3
2 6 5
102 -12 - 114
102 - 126
- 24
Se realiza la operación la cual dio
como resultado –24 el cual será el
valor de la determinante de z.
Paso 9:
Hallar el valor de x.
El valor de x se obtiene dividendo el valor de
la determinante de x ( ) entre el valor de la
determinante del sistema ( ).
Es decir
De esta manera
=
Se reemplazan y
por sus valores
correspondientes y
se simplifican los
términos.
= Siendo éste el valor
de x.
Paso 10:
Hallar el valor de y.
El valor de y se obtiene dividendo el valor de
la determinante de y ( ) entre el valor de la
determinante del sistema ( ).
Es decir
De esta manera
=
Se reemplazan y
por sus valores
correspondientes y
se simplifican los
términos.
= Siendo éste el valor
de y.
Paso 11:
Hallar el valor de z.
El valor de z se obtiene dividendo el valor de
la determinante de z ( ) entre el valor de la
determinante del sistema ( ).
Es decir
De esta manera
=
Se reemplazan y
por sus valores
correspondientes y
se simplifican los
términos.
=
Siendo éste el valor
de z.
Paso 12:
Reemplazar los valores de x,y y z en la
primera ecuación del sistema.
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
2( )+3( )+4( )
1 + 1 + 1 = 3
Luego de reemplazar los
valores de x,y y z resolver la
ecuación, vemos que el
resultado es el mismo.
Paso 13:
Reemplazar los valores de x,y y z en la
segunda ecuación del sistema.
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
2( )+6( )+8( )
1 + 2 + 2 = 5
Luego de reemplazar los valores de
x,y y z resolver la ecuación, vemos
que el resultado es el mismo.
Paso 14:
Reemplazar los valores de x,y y z en la
tercera ecuación del sistema.
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4 4( )+9( )-4( )
2 + 3 - 1= 4
Luego de reemplazar los valores de
x,y y z resolver la ecuación, vemos
que el resultado es el mismo.
Luego de comprobar vemos que los valores
hallados para x, y y z satisfacen todas las
ecuaciones
Por lo tanto para el
sistema
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
La solución es:
x =
y =
z =

Mais conteúdo relacionado

Mais procurados

Ecuaciones con 3 variables
Ecuaciones con 3 variablesEcuaciones con 3 variables
Ecuaciones con 3 variables
lancaster_1000
 
Ejercicios resueltos metodo de cramer
Ejercicios resueltos metodo de cramerEjercicios resueltos metodo de cramer
Ejercicios resueltos metodo de cramer
algebra
 
Resolución de un sistema de ecuaciones por determinantes
Resolución de un sistema de ecuaciones por determinantesResolución de un sistema de ecuaciones por determinantes
Resolución de un sistema de ecuaciones por determinantes
Elideth Nolasco
 
La ley de_la_jerarquia_de_operaciones_1
La ley de_la_jerarquia_de_operaciones_1La ley de_la_jerarquia_de_operaciones_1
La ley de_la_jerarquia_de_operaciones_1
Diego Arturo
 
TUTORIAL: COMO RESOLVER ECUACIONES CON 3 INCÓGNITAS POR EL MÉTODO DE ELIMINAC...
TUTORIAL: COMO RESOLVER ECUACIONES CON 3 INCÓGNITAS POR EL MÉTODO DE ELIMINAC...TUTORIAL: COMO RESOLVER ECUACIONES CON 3 INCÓGNITAS POR EL MÉTODO DE ELIMINAC...
TUTORIAL: COMO RESOLVER ECUACIONES CON 3 INCÓGNITAS POR EL MÉTODO DE ELIMINAC...
Joaquina Jordán Hernandez
 
Inecuaciones cuadráticas
Inecuaciones cuadráticasInecuaciones cuadráticas
Inecuaciones cuadráticas
franmorav
 
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NOCUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
enrique0975
 
Soluciones enteras en un problema de programación lineal
Soluciones enteras en un problema de programación linealSoluciones enteras en un problema de programación lineal
Soluciones enteras en un problema de programación lineal
Diego Gomez
 
Ejercicios De Sistemas De Ecuaciones 3 X3
Ejercicios De Sistemas De Ecuaciones 3 X3Ejercicios De Sistemas De Ecuaciones 3 X3
Ejercicios De Sistemas De Ecuaciones 3 X3
titimartinez07
 
Metodo de cramer
Metodo de cramerMetodo de cramer
Metodo de cramer
Lina Sarria
 

Mais procurados (19)

Ecuaciones de 3 incógnitas
Ecuaciones de 3 incógnitasEcuaciones de 3 incógnitas
Ecuaciones de 3 incógnitas
 
Resolución por determinantes de un sistema 3x3
Resolución por determinantes de un sistema 3x3Resolución por determinantes de un sistema 3x3
Resolución por determinantes de un sistema 3x3
 
Ecuaciones simultaneas 2x2 metodo de reduccion
Ecuaciones simultaneas 2x2   metodo de reduccionEcuaciones simultaneas 2x2   metodo de reduccion
Ecuaciones simultaneas 2x2 metodo de reduccion
 
Ecuaciones con 3 variables
Ecuaciones con 3 variablesEcuaciones con 3 variables
Ecuaciones con 3 variables
 
Ejercicios resueltos metodo de cramer
Ejercicios resueltos metodo de cramerEjercicios resueltos metodo de cramer
Ejercicios resueltos metodo de cramer
 
Act 15 Mendez 611 V
Act 15 Mendez 611 VAct 15 Mendez 611 V
Act 15 Mendez 611 V
 
Resolución de un sistema de ecuaciones por determinantes
Resolución de un sistema de ecuaciones por determinantesResolución de un sistema de ecuaciones por determinantes
Resolución de un sistema de ecuaciones por determinantes
 
Metodo de Gauss
Metodo de GaussMetodo de Gauss
Metodo de Gauss
 
La ley de_la_jerarquia_de_operaciones_1
La ley de_la_jerarquia_de_operaciones_1La ley de_la_jerarquia_de_operaciones_1
La ley de_la_jerarquia_de_operaciones_1
 
TUTORIAL: COMO RESOLVER ECUACIONES CON 3 INCÓGNITAS POR EL MÉTODO DE ELIMINAC...
TUTORIAL: COMO RESOLVER ECUACIONES CON 3 INCÓGNITAS POR EL MÉTODO DE ELIMINAC...TUTORIAL: COMO RESOLVER ECUACIONES CON 3 INCÓGNITAS POR EL MÉTODO DE ELIMINAC...
TUTORIAL: COMO RESOLVER ECUACIONES CON 3 INCÓGNITAS POR EL MÉTODO DE ELIMINAC...
 
Método de gauss
Método de gaussMétodo de gauss
Método de gauss
 
Jhon alexander insuasti 902
Jhon alexander insuasti 902Jhon alexander insuasti 902
Jhon alexander insuasti 902
 
Inecuaciones cuadráticas
Inecuaciones cuadráticasInecuaciones cuadráticas
Inecuaciones cuadráticas
 
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NOCUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
 
Soluciones enteras en un problema de programación lineal
Soluciones enteras en un problema de programación linealSoluciones enteras en un problema de programación lineal
Soluciones enteras en un problema de programación lineal
 
Operaciones Algebraicas
Operaciones AlgebraicasOperaciones Algebraicas
Operaciones Algebraicas
 
Ejercicios De Sistemas De Ecuaciones 3 X3
Ejercicios De Sistemas De Ecuaciones 3 X3Ejercicios De Sistemas De Ecuaciones 3 X3
Ejercicios De Sistemas De Ecuaciones 3 X3
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Metodo de cramer
Metodo de cramerMetodo de cramer
Metodo de cramer
 

Semelhante a Cramer

Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
monica
 
REPASO - Ecuaciones y sistemas de ecuaciones- PRIMER DÍA.pptx
REPASO - Ecuaciones y sistemas de ecuaciones- PRIMER DÍA.pptxREPASO - Ecuaciones y sistemas de ecuaciones- PRIMER DÍA.pptx
REPASO - Ecuaciones y sistemas de ecuaciones- PRIMER DÍA.pptx
RodrigoErnestoVislao
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
monica
 
10 repaso metodos de solucion de los sistemas lineales 2x2
10 repaso metodos de solucion de los sistemas lineales 2x210 repaso metodos de solucion de los sistemas lineales 2x2
10 repaso metodos de solucion de los sistemas lineales 2x2
Miguel Loredo
 

Semelhante a Cramer (20)

Eduardo
EduardoEduardo
Eduardo
 
FICHA 02 - Sistema de Ecuaciones.doc
FICHA 02 - Sistema de Ecuaciones.docFICHA 02 - Sistema de Ecuaciones.doc
FICHA 02 - Sistema de Ecuaciones.doc
 
Cramer method sd2020
Cramer method sd2020Cramer method sd2020
Cramer method sd2020
 
Cramer method 2020
Cramer method 2020Cramer method 2020
Cramer method 2020
 
Cramer method 2020
Cramer method 2020Cramer method 2020
Cramer method 2020
 
Competencia 4
Competencia 4Competencia 4
Competencia 4
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
REPASO - Ecuaciones y sistemas de ecuaciones- PRIMER DÍA.pptx
REPASO - Ecuaciones y sistemas de ecuaciones- PRIMER DÍA.pptxREPASO - Ecuaciones y sistemas de ecuaciones- PRIMER DÍA.pptx
REPASO - Ecuaciones y sistemas de ecuaciones- PRIMER DÍA.pptx
 
Ecuaciones tema-4
Ecuaciones tema-4Ecuaciones tema-4
Ecuaciones tema-4
 
Adrian
AdrianAdrian
Adrian
 
Matematica
Matematica Matematica
Matematica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
10 repaso metodos de solucion de los sistemas lineales 2x2
10 repaso metodos de solucion de los sistemas lineales 2x210 repaso metodos de solucion de los sistemas lineales 2x2
10 repaso metodos de solucion de los sistemas lineales 2x2
 
Algebralineal.docx
Algebralineal.docxAlgebralineal.docx
Algebralineal.docx
 
Programacion numerica 1
Programacion numerica 1Programacion numerica 1
Programacion numerica 1
 
Cramer rule
Cramer ruleCramer rule
Cramer rule
 
Sistema de Ecuaciones de primer grado ccesa007
Sistema de Ecuaciones de primer grado ccesa007Sistema de Ecuaciones de primer grado ccesa007
Sistema de Ecuaciones de primer grado ccesa007
 
Teoría de matrices
Teoría de matricesTeoría de matrices
Teoría de matrices
 
SISTEMA DE ECUACIONES.
SISTEMA DE ECUACIONES.SISTEMA DE ECUACIONES.
SISTEMA DE ECUACIONES.
 

Mais de Suhail Saenz (9)

7 calidad
7 calidad7 calidad
7 calidad
 
Proceso para agrupar datos
Proceso para agrupar datosProceso para agrupar datos
Proceso para agrupar datos
 
Diagrama de ishikawa
Diagrama de ishikawaDiagrama de ishikawa
Diagrama de ishikawa
 
Que es el proceso
Que es el procesoQue es el proceso
Que es el proceso
 
Que es el proceso
Que es el procesoQue es el proceso
Que es el proceso
 
Datos agrupados
Datos agrupados Datos agrupados
Datos agrupados
 
datos agrupados
datos agrupados datos agrupados
datos agrupados
 
Ejercicio 1
Ejercicio 1Ejercicio 1
Ejercicio 1
 
Ejercicio 1
Ejercicio 1Ejercicio 1
Ejercicio 1
 

Último

Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
JonathanCovena1
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
El Fortí
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
JonathanCovena1
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
zulyvero07
 

Último (20)

Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circular
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdf
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptx
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 

Cramer

  • 1.
  • 2. La Regla de Cramer es un método utilizado para resolver sistemas de ecuaciones por determinantes. Ejemplo: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4
  • 3. Para resolver un sistema utilizando la Regla de Cramer: Paso 1: Hallar la determinante del sistema la cual denominaremos Una determinante es una expresión numérica en la que se toman los coeficientes de x, y y de z, las cuales se escriben dentro de dos barras de la siguiente manera:
  • 4. De esta manera la determinante del sistema nos quedaría así: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2 3 4 = 2 6 8 4 9 -4 Vemos que los números dentro de las barras son los coeficientes correspondientes a x, y y z. Esta expresión es una determinante de tercer orden porque tiene tres filas y tres columnas.
  • 5. Paso 2 : Resolver la determinante del sistema ( ) El valor de una determinante de tercer orden se halla aplicando la Regla de Sarrus. 2 3 4 = 2 6 8 4 9 -4 2 3 4 2 6 8 Debajo de la tercera fila horizontal se repiten las dos primeras filas horizontales.
  • 6. Se multiplican entre si los tres números por que pasan las diagonales principales y secundarias 2 3 4 = 2 6 8 4 9 -4 2 3 4 2 6 8 2 3 4 = 2 6 8 4 9 -4 2 3 4 2 6 8 Diagonales Principales Diagonales
  • 7. Se multiplican los términos de las diagonales principales. 2 3 4 = 2 6 8 = - 48 + 72 + 96 4 9 -4 2 3 4 2 6 8 Los productos de los números que hay en las diagonales principales se escriben con su propio signo.
  • 8. Se multiplican los términos de las diagonales secundarias. 2 3 4 = 2 6 8 = - 48+72+96-96-144+24 4 9 -4 2 3 4 2 6 8 Los productos de los números que hay en las diagonales secundarias se escriben con el signo cambiado.
  • 9. 2 3 4 = 2 6 8 = - 48+72+96-96-144+24 4 9 -4 2 3 4 2 6 8 Finalmente se efectúa la operación correspondiente. 24 -120 -96 Siendo éste el valor de la determinante de todo el sistema.
  • 10. Paso 3 : Hallar la determinante de x la cual denominaremos La determinante de x equivale a colocar en la columna de los coeficientes de x los términos independientes de las ecuaciones.
  • 11. De esta manera nos quedaría así: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 3 3 4 = 5 6 8 4 9 -4 En este caso los coeficientes de x fueron sustituidos por los términos independientes de las ecuaciones.
  • 12. Paso 4 : Resolver 3 3 4 = 5 6 8 = - 72 + 180 + 96 4 9 -4 3 3 4 5 6 8 Se multiplican los términos de las diagonales principales.
  • 13. 3 3 4 = 5 6 8 = -72+180+96-96-216+60 4 9 -4 3 3 4 5 6 8 Luego se multiplican los términos de las diagonales secundarias y al resultado se le cambia el signo.
  • 14. 3 3 4 = 5 6 8 = -72+180+96-96-216+60 4 9 -4 3 3 4 5 6 8 108 - 156 - 48 Se realiza la operación la cual dio como resultado -48 que será el valor de la determinante de x.
  • 15. Paso 5 : Hallar la determinante de y la cual denominaremos La determinante de y equivale a colocar en la columna de los coeficientes de y los términos independientes de las ecuaciones.
  • 16. De esta manera nos quedaría así: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2 3 4 = 2 5 8 4 4 -4 Aquí los coeficientes de y fueron sustituidos por los términos independientes de las ecuaciones.
  • 17. Paso 6 : Resolver 2 3 4 = 2 5 8 = - 40 + 32 + 96 4 4 -4 2 3 4 2 5 8 Se multiplican los términos de las diagonales principales.
  • 18. 2 3 4 = 2 5 8 = - 40+32+96-80-64+24 4 4 -4 2 3 4 2 5 8 Se multiplican los términos de las diagonales secundarias y al resultado se le cambia el signo.
  • 19. 2 3 4 = 2 5 8 = - 40+32+96-80-64+24 4 4 -4 2 3 4 2 5 8 - 8 +16 - 40 8 - 40 - 32 Se realiza la operación la cual dio como resultado – 32 el cual será el valor de la determinante de y.
  • 20. Paso 7: Hallar la determinante de z la cual denominaremos La determinante de z equivale a colocar en la columna de los coeficientes de z los términos independientes de las ecuaciones.
  • 21. De esta manera nos quedaría así: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2 3 3 = 2 6 5 4 9 4 Aquí los coeficientes de z fueron sustituidos por los términos independientes de las ecuaciones.
  • 22. Paso 8 : Resolver 2 3 3 = 2 6 5 = 48 + 54 + 60 4 9 4 2 3 3 2 6 5 Se multiplican los términos de las diagonales principales.
  • 23. 2 3 3 = 2 6 5 = 48+54+60-72-90-24 4 9 4 2 3 3 2 6 5 Se multiplican los términos de las diagonales secundarias y al resultado se le cambia el signo.
  • 24. 2 3 3 = 2 6 5 = 48+54+60-72-90-24 4 9 4 2 3 3 2 6 5 102 -12 - 114 102 - 126 - 24 Se realiza la operación la cual dio como resultado –24 el cual será el valor de la determinante de z.
  • 25. Paso 9: Hallar el valor de x. El valor de x se obtiene dividendo el valor de la determinante de x ( ) entre el valor de la determinante del sistema ( ). Es decir
  • 26. De esta manera = Se reemplazan y por sus valores correspondientes y se simplifican los términos. = Siendo éste el valor de x.
  • 27. Paso 10: Hallar el valor de y. El valor de y se obtiene dividendo el valor de la determinante de y ( ) entre el valor de la determinante del sistema ( ). Es decir
  • 28. De esta manera = Se reemplazan y por sus valores correspondientes y se simplifican los términos. = Siendo éste el valor de y.
  • 29. Paso 11: Hallar el valor de z. El valor de z se obtiene dividendo el valor de la determinante de z ( ) entre el valor de la determinante del sistema ( ). Es decir
  • 30. De esta manera = Se reemplazan y por sus valores correspondientes y se simplifican los términos. = Siendo éste el valor de z.
  • 31. Paso 12: Reemplazar los valores de x,y y z en la primera ecuación del sistema. 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2( )+3( )+4( ) 1 + 1 + 1 = 3 Luego de reemplazar los valores de x,y y z resolver la ecuación, vemos que el resultado es el mismo.
  • 32. Paso 13: Reemplazar los valores de x,y y z en la segunda ecuación del sistema. 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2( )+6( )+8( ) 1 + 2 + 2 = 5 Luego de reemplazar los valores de x,y y z resolver la ecuación, vemos que el resultado es el mismo.
  • 33. Paso 14: Reemplazar los valores de x,y y z en la tercera ecuación del sistema. 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 4( )+9( )-4( ) 2 + 3 - 1= 4 Luego de reemplazar los valores de x,y y z resolver la ecuación, vemos que el resultado es el mismo.
  • 34. Luego de comprobar vemos que los valores hallados para x, y y z satisfacen todas las ecuaciones Por lo tanto para el sistema 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 La solución es: x = y = z =