SlideShare uma empresa Scribd logo
1 de 45
BASIC ELECTROCHEMISTRY
THE CHARGE AND CURRENT
•Electrochemistry studies the processes which involve charge
•The charge is a source of electric field
Element of charge: 1.602·10-19 C
The energy change is ±1.602·10-19 J if we move the charge across the potential
drop of 1V
If we do the same with 1 mol of charges, we obtain…
A
+

B

1V

-

-

The current is the change of charge per time

I=

dQ
dt
FARADAY’S LAWs (1834)
“The chemical power of a current of electricity is in
direct proportion to the absolute quantity of electricity
which passes”
“Electrochemical Equivalents coincide, and are the
same, with ordinary chemical equivalents”

m
Q
=
M zF
MIt
m=
zF

t

M
m=

∫ Idt

t =0

zF

Area under current-time curve (and freqently the currentpotential curve also) is the charge!! This way can be deduced
how much material was transformed.
CONDUCTIVITY
R≈
l
A

l
(Ω)
A

E
R = (Ohmś law)
I

+

+
-

Electrolytes: same principle, but
conductivity is preferred

A
G=χ
l

The unit for conductivity is
Siemens, what is the unit
of specific conductivity?

For species KXAY:
Migration velocities can be different
Stokes force is balanced by force induced by electric field
Only the cations distant from the plane by vA or nearer will
cross the plane. In unit field (1V) and unit area will cross the
boundary xcαFz cat ucat cations

χ = xcαFzcat ucat + ycαFz anuan
CONDUCTIVITY
V

A
Solutions can have different concentrations:

χ  S m3
2
−1 
Λ=
 m mol = Sm mol 
c 

Λ ΟΟ

This is used for measurements of
dissociation constants:
AB
c (1 -α)

Λ
α=
Λ∞

C

A

+

cα

+

B

-

cα

 Λ 
c
Λ 

2 2
cα
KD =
=  ∞
c (1 − α ) 1 − Λ
Λ∞

2
HOW AND WHERE THE POTENTIAL
DIFFERENCE DEVELOPS

s o lu tio n 1

s o lu tio n 2

Junction potential
(Henderson)
Donnan potential

m e m b ra n e

Potential difference develops where a charge
separation in space occurs
THE NERNST EQUATION
The combination of two basic physical chemistry
equations:

− ∆G = zFE
and

− ∆G = RT ln K
All processes in which charge separation occurs go
to equilibrium

…but what is K?
DANIEL CELL
Zn | ZnSO4 | | CuSO4 | Cu
Zn+CuSO4→ Cu+ZnSO4

[ Cu ][ ZnSO4 ]
zFEMN = RT ln
[ Zn][ CuSO4 ]
…is it OK?
BACK TO NERNST EQUATION
RT aox
E=E +
ln
zF ared
0

RT ared
E=E −
ln
zF
aox
0

aox
2.303RT
E=E +
log
zF
ared
0

2.303RT
= 0.059 V
F
(at 25°C )
ELECTRODES OF THE FIRST KIND
The term electrode is here used in a sense of a half-cell.
Metal immersed into the solution of its own soluble salt. The potential is
controlled by the concentration of the salt.

E=E

0
Me / Me +

RT
+
ln aMe+
zF

Zn in ZnCl2, Ag in AgNO3, Cu in CuSO4 etc.

Non-metallic electrodes – gas electrodes (hydrogen and chlorine electrode)
THE HYDROGEN ELECTRODE
THE HYDROGEN ELECTRODE
Pt
Pt

E = E 0 at / H + −
H

H
H

[ ]

RT
RT
ln KK H p H 2 +
ln H +
F
F
ELECTRODES OF THE SECOND KIND
Argentochloride Ag | AgCl | KCl | |
Calomel Hg | Hg2Cl2 | KCl | |
Mercurysulphate Hg | Hg2SO4 | K2SO4 | |
0

SHE

197 m V 244 m V

640 m V

SCE
. A
g /A
gC
l

s a t. H g /H g 2S O

sat

4

REDOX ELECTRODES
F e 2+

e-

F e 3+
e-

Fe

3+

The electrode serves as an electron sink
Redox combo

F e 2+
P t e le c tr o d e
ELECTRODES OF THE THIRD KIND
..just a curiosity
Zn | Zn2C2O4 | CaC2O4 | CaCl2 | |

We can measure the concentration of Ca2+, but
there’s a better device to do this…
THE ABSOLUTE SCALE OF POTENTIALS
R E D (v a c u u m )
-∆ G

s o lv

∆G

IO N

O X (v a c u u m )
-∆ G

(R E D )

zF∆E

s o lv

(O X )

Reference to vacuum
(instead of hydrogen electrode)

ABS

R E D (s o lu tio n )

O X (s o lu tio n )

H

Thermodynamic cycle for hydrogen

-∆ G

H

0

-∆ G

(v a c u u m )

H

.

(v a c u u m )
-∆ G

s o lv

+

-F ∆ E
(s o lu tio n )

d is s

/2

0
ABS

1 /2 H

2

4420 m V
0

Vacuum

IO N

SHE

197 m V 244 m V

SC

sa
t.

The most commonly accepted
value is 4.42V, but values
around 4.8V are also reported

+

E

640 m V

s a t. H g /H g 2S O

4

Ag
/A
gC
l
ION SELECTIVE ELECTRODES
Membrane potential reflects the
gradient of activity of the analyte ion in
the inner and outer (sample) solutions.

•The trick is to find a membrane material, to
which an analyte is selectively bound. The
membrane must be conductive (a little bit, at
least), but it should not leak
Liquid junction for
reference electrode
(sometimes is high)

Li

Li

+

H
Si

Li

O

h y d r a te d H a u g a a r d la y e r s

+

L i io n s p a r tia lly fr e e
+

400 M Ω

+

Si

Nikolski eq.

E = Eassym +

RT
RT
ln aH O + + X ⋅
ln a Na +
3
F
F
MEMBRANES FOR ISEs
•Glass membranes (H+, for other cations change in the composition of glass
membrane (Al2O3 or B2O3 in glass to enhance binding for ions other than H + (Na+,
Li+, NH4+, K+, Rb+, Cs+ and Ag+)
•Crystalline Membranes (single crystal of or homogeneous mixture of ionic
compounds cast under high P, d~10 mm, thickness: 1-2 mm. Conductivity: doping or
nonstechiometry, Ag+ in AgCl or Ag2S, Cu+ in Cu2S. Fluoride electrode: determines
F-, LaF3 crystal doped with EuF2).
•Liquid membranes (organic, immiscible liquid held by porous (PVC) membrane
with ion exchange properties or neutral macrocyclic compouds selectively binding
the analyte in their cavities)
POTENTIOMETRY
Cell and voltmeter behaves as a
voltage divider circuit
E(cell)
Ri

RM

V

E(measured)

R2
E2 = E1
R1 + R2
R1

E1

Emeasured = Ecell
R2

E2

RM
RM + Ri
POTENTIOMETRY AND PHYSICAL CHEMISTRY
1. Activity coefficients determination
2. Solubility products determination
3. Ion product of water determination

Pt | H2 | HCl | AgCl |Ag
Ag | AgNO3 | |KNO3 | | KX, AgX | Ag
Pt | H2 | KOH | |KCl | AgCl |Ag
Ionic product of water: 1.008·10-14 (25°C) – good agreement with
conductivity measurement
3-ELECTRODE CELLS AND
POTENTIOSTATS

Polarizable and nonpolarizable
ELECTRODE MATERIALS
Inert metals (Hg, Pt, Au)
•Polycrystalline
•Monocrystals
Carbon electrodes
•Glassy carbon
•reticulated
•Pyrrolytic graphite
•Highly oriented (edge plane, )
•Wax impregnated
•Carbon paste
•Carbon fiber
•Diamond (boron doped)
Potential window available for experiments
is determined by destruction of electrode
Semiconductor electrodes (ITO)
material or by decomposition of solvent (or
Modified electrodes
dissolved electrolyte)
ELECTRON TRANSFER PHENOMENON
1-10 nm

1-10 nm in thickness

↓

↓
↓

↓ ↓ ↓

↓

~1 volt is dropped across this region…
Which means fields of order 107-8 V/m

↓

↓

↓

↓

↓
↓

l

↓

+
+
↓
↓

↓
+
+
↓
↓

l

↓

Where the truncation of the metal’s
Electronic structure is compensated for
in the electrolyte.

+
+
↓
↓

↓

l
↓ ↓

Solvated
ions

↓

↓
↓

l

↓ ↓ ↓

Electrode
surface

↓

The double-layer region is:

↓
↓

↓

↓ ↓ ↓

+
+
↓
↓
l

↓

“The effect of this enormous field at the electrodeelectrolyte interface is, in a sense, the essence of
electrochemistry.” [1]

l
IHL

OHL

[1] Bockris, Fundamentals of Electrodics, 2000
BUTLER-VOLMER AND TAFEL EQUATIONS

-

ne

+

ox

=

re d

E
∆G
E

#
-

2

zF ∆E
E

αzF ∆E

(E 2)

∆G

#
-

(E 1)

∆G

#
+

(E 1)

∆G

#
+

(E 2)

1

E 2< E

1

r e a c tio n c o o r d in a te
BUTLER-VOLMER AND TAFEL EQUATIONS
i

i0 , α = 0 .7

i0 , α = 0 .5

Exchange current density
Depends
on
the
species
undergoing redox transformation
and on the electrode material

i0 . α = 0 .3

0

i0 ' < i0 , α = 0 .5

η



 exp  (1−α ) nF ( E − E ° )  − exp  αnF ( E − E ° )  




0
 RT

 RT



i=i

In fact, large overpotential for
hydrogen evolution on Hg
surfaces enables us to observe
reductions in aqueous solutions

Also, the development of modern
modified electrodes is based on
finding the modifying layer
which increase the exchange
current density on the electrode
surface
BUTLER-VOLMER AND TAFEL EQUATIONS
i

lo g (a b s ( i0 ) )

η
i0
η





α
i = i0  exp  (1−RT) zF ( E − E ° )  −exp  αzF ( E − E ° )  





RT










 2.303αzF

log( i ) = log( i0 ) − 
(E − E ° ) 
RT


MASS TRANSFER

•Migration
•Convection
•Diffusion

We try to avoid migration by the addition excess
supporting electrolyte
TRANSPORT BY DIFFUSION
t1

C

t2

t3

t= 0

1st Fick Law

j = − D ∂C
∂x

C s

0

x ... d is ta n c e fr o m th e e le c tr o d e

C

t= 0

Nernst diffusion layer

c0 − cs
i = zFD
δN

Cs

ilim
0

δN

x

 ∂c 
i = zFD 
 ∂x  x =0

c0
= zFD
δN

η D = E − E′ =
η D = E − E′ =

RT cS
ln
zF c0

RT 
i 
ln1 −
 i 

zF 
lim 
THE COTTRELL EQUATION
t1

C

t2

t3

t= 0

E

C s

t= 0

0

x ... d is ta n c e fr o m th e e le c tr o d e

t

∂c
∂ 2c
=D 2
∂t
∂x

Mathematical solution for boundary conditions of CA
experiment is very complicated, but the result is
simple:

Second Fickś law

i

c0 − cs
i = zFD
πDt

This is how Nernst layer thickness changes over time

t
TRANSPORT BY CONVECTION
Rotating disk electrode (RDE)

Rotating ring disk electrode
(RRDE)

c u rre n t ta k e -o ff
r o ta tin g c y lin d e r

s o lu tio n

" ro ta tin g d is k "
A c tiv e a re a o f
th e e le c tro d e

IL = (0,620)∙z∙F∙A∙D2/3∙ω1/2∙ν–1/6∙c Levich Equation
ω speed of rotation (rad∙s-1),
ν kinematic viscosity of the solution (cm2∙s-1),
kinematic viscosity is the ratio between solution viscosity and its specific weight.
For pure water: ν = 0,0100 cm2∙s-1, For 1.0 mol∙dm-3 KNO3 is ν = 0,00916 cm2∙s-1
(at 20°C).
c concentration of electroactive species (in mol.cm-3, note unusual unit)
D diffúsion coefficient (cm2∙s-1), A electrode area in cm2
POLAROGRAPHY

Halfwave potential
Limiting diffusion current (Ilkovic equation)
CYCLIC VOLTAMMETRY
CV – the most important electrochemical method

One or more cycles …CV
Half cycle … LSV

0 ≤ t ≤ t r : E = Ei + vt

t r ≤ t ≤ 2t r : E = Ei + v( t − t r )
v… the scan rate
REVERSIBLE CYCLIC VOLTAMMOGRAM
Electroactive species attached
to the electrode, both redox
forms stable

I

(

)

 F

exp 
E − E0 
F
 RT

I = FAΓ0 v
2
RT  

F

E − E 0 
1 + exp
RT

 

(

E

0

E

)
REVERSIBLE CYCLIC VOLTAMMOGRAM
4.0×10 -6

B

O

fo rw a rd
scan

0

-2.0×10 -6
-0.50

Electroactive species in
solution, both stable

C

2.0×10 -6

I/A

R

A

re ve rs e
scan

R

IUPAC convention

O

D

-0.25

0.00

0.25

E/V vs. reference electrode

Randles-Sevcik equation:

0.50

Peak separation is 59 /z mV

Ipc = Ipa = 2,69.105 ∙ A ∙ z3/2 ∙ D1/2 ∙ c ∙ v1/2
A in cm2, D in cm2s-1/2, c in molcm-3, v in V/s
QUASI AND IRREVERSIBLE
VOLTAMMOGRAMS
4.0×10 -6

Black: k=1cmsec-1
Blue: k=0.001
Red: k=0.00001

0

Black: alpha=0.5
Blue: alpha=0.3
Red: alpha=0.7

-2.0×10 -6
-0.50

-0.25

0.00

0.25

0.50

E/V vs. reference electrode

3.0×10 -6

I/A

I/A

2.0×10 -6

1.0×10 -6

-1.0×10 -6

-3.0×10 -6
-0.5

0.0

E/V vs. reference electrode

0.5
BASIC MECHANISMS IN CV
E, C notation
(E… electron transfer,
C… coupled chemical reaction)

E, EE, CE, EC, ECcat etc.
Mechanisms can be very complex
even for simple systems
Two electron-two proton system =
„square scheme“
THE EE MECHANISM
7.0×10 -6

7.0×10 -6

∆E= 400 mV

5.0×10 -6

3.0×10 -6

I/A

I/A

3.0×10 -6
1.0×10 -6

1.0×10 -6

-1.0×10 -6

-1.0×10 -6

-3.0×10 -6

-3.0×10 -6

-5.0×10 -6
-1.0

-0.5

0.0

0.5

-5.0×10 -6
-1.0

1.0

E/V vs. reference electrode

0.0

0.5

1.0

1.0×10 -5

5.0×10 -6

∆E= 50mV

∆E= -100mV

5.0×10 -6

I/A

3.0×10 -6
1.0×10 -6
-1.0×10 -6

0
-5.0×10 -6

-3.0×10 -6
-5.0×10 -6
-1.0

-0.5

E/V vs. reference electrode

7.0×10 -6

I/A

∆E= 200 mV

5.0×10 -6

-0.5

0.0

0.5

E/V vs. reference electrode

1.0

-1.0×10 -5
-1.0

-0.5

0.0

0.5

E/V vs. reference electrode

1.0
THE EC MECHANISM

I/A

3.0×10 -6

O X
RED

Black: kf=0 cm.s-1
Blue: 0.2
Red: 0.5
Orange: 1
Green: 10

RED
Z

1.0×10 -6

-1.0×10 -6

-3.0×10 -6
-0.5

0.0

0.5

E/V vs. reference electrode

There are many variations of this mechanism:
Reaction with solvent
Dimerization
Radical substrate reaction
EC catalytic … etc.
EC catalytic
3.5×10 -5

I/A

2.5×10 -5

O X
R ED
RED + A

O X + Z

1.5×10 -5

Black : no A
Blue: A (c=1)
Red: A (c=10)
Green: A (c=100)

5.0×10 -6
-5.0×10 -6
-0.5

0.0

E/V vs. reference electrode

0.5
THE CE MECHANISM
4.0×10 -06
1.0×10 -07

3.0×10 -06

1.0×10

-1.4×10 -14

-06

I/A

I/A

2.0×10 -06

-2.3×10 -13
-1.0×10 -06
-2.0×10

-2.0×10 -07

-06

-3.0×10 -06
-0.5

-1.0×10 -07

0.0

E/V vs. reference electrode

0.5

-3.0×10 -07
-0.5

0.0

E/V vs. reference electrode

0.5
MICROELECTRODES
Microelectrode: at least one dimension must be comparable to diffusion layer
thickness (sub μm upto ca. 25 μm). Produce steady state voltammograms.

Converging diffusional flux

E le c tro d e

M e ta l c o n ta c t
C o n d u c tiv e jo in t

 1 1
I = nFADc0  + 
δ r 

E le c tro d e b o d y
F ib e r
A )

In s u la to r
B)

C)

δ = 2πDt

Advantages of microelectrodes:
• fast mass flux - short response time (e.g. faster CV)
• significantly enhanced S/N (IF / IC) ratio
• high temporal and spatial resolution
• measurements in extremely small environments
• measurements in highly resistive media
PULSED TECHNIQUES
TAST POLAROGRAPHY
SAMPLED DC POLAROGRAPHY
NORMAL PULSE VOLTAMMETRY
DIFFERENTIAL PULSE VOLTAMMETRY
SQUARE WAVE VOLTAMMETRY
AC voltammetry
E

I

tim e

E

Mais conteúdo relacionado

Mais procurados

Chapter 03-group-theory (1)
Chapter 03-group-theory (1)Chapter 03-group-theory (1)
Chapter 03-group-theory (1)
한석 나
 

Mais procurados (20)

Term symbols
Term symbolsTerm symbols
Term symbols
 
Validation of debye huckel law onsager equation
Validation of debye huckel law onsager equationValidation of debye huckel law onsager equation
Validation of debye huckel law onsager equation
 
Shielding effect,effect of chemical exchange,hydrogen bonding
Shielding effect,effect of chemical exchange,hydrogen bondingShielding effect,effect of chemical exchange,hydrogen bonding
Shielding effect,effect of chemical exchange,hydrogen bonding
 
Hyperfine splitting
Hyperfine splittingHyperfine splitting
Hyperfine splitting
 
Cyclic voltammetry
Cyclic voltammetryCyclic voltammetry
Cyclic voltammetry
 
Cyclic Voltammetry: Principle, Instrumentation & Applications
Cyclic Voltammetry: Principle, Instrumentation & ApplicationsCyclic Voltammetry: Principle, Instrumentation & Applications
Cyclic Voltammetry: Principle, Instrumentation & Applications
 
ELECTROCHEMISTRY - ELECTRICAL DOUBLE LAYER
ELECTROCHEMISTRY - ELECTRICAL DOUBLE LAYERELECTROCHEMISTRY - ELECTRICAL DOUBLE LAYER
ELECTROCHEMISTRY - ELECTRICAL DOUBLE LAYER
 
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reactionREDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
 
Electrochemistry chapter 1
Electrochemistry chapter 1Electrochemistry chapter 1
Electrochemistry chapter 1
 
Cyclic Voltametery
Cyclic VoltameteryCyclic Voltametery
Cyclic Voltametery
 
Chapter 3 ppt
Chapter 3 pptChapter 3 ppt
Chapter 3 ppt
 
Photoelectron spectroscopy
Photoelectron spectroscopyPhotoelectron spectroscopy
Photoelectron spectroscopy
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 
Microwave spectra
Microwave spectraMicrowave spectra
Microwave spectra
 
Electroanalytical Methods of analysis
Electroanalytical Methods of analysisElectroanalytical Methods of analysis
Electroanalytical Methods of analysis
 
Alpha axial haloketone rule and octant rule
Alpha axial haloketone rule and octant ruleAlpha axial haloketone rule and octant rule
Alpha axial haloketone rule and octant rule
 
Electron diffraction and Neutron diffraction
Electron diffraction and Neutron diffractionElectron diffraction and Neutron diffraction
Electron diffraction and Neutron diffraction
 
Electronic spectra of metal complexes-1
Electronic spectra of metal complexes-1Electronic spectra of metal complexes-1
Electronic spectra of metal complexes-1
 
Electronic spectra problems
Electronic spectra problemsElectronic spectra problems
Electronic spectra problems
 
Chapter 03-group-theory (1)
Chapter 03-group-theory (1)Chapter 03-group-theory (1)
Chapter 03-group-theory (1)
 

Destaque

2014-Summer-REU-Program_Project2-Energy_Final-Presentation
2014-Summer-REU-Program_Project2-Energy_Final-Presentation2014-Summer-REU-Program_Project2-Energy_Final-Presentation
2014-Summer-REU-Program_Project2-Energy_Final-Presentation
Trevor Yates
 
An Optimal Design of Electrode Surface Morphology to Improve Water Electrolys...
An Optimal Design of Electrode Surface Morphology to Improve Water Electrolys...An Optimal Design of Electrode Surface Morphology to Improve Water Electrolys...
An Optimal Design of Electrode Surface Morphology to Improve Water Electrolys...
Jaehyeong Lee
 
PEM Water Electrolysis
PEM Water ElectrolysisPEM Water Electrolysis
PEM Water Electrolysis
Richard Smith
 
Advances in Ion Selective Electrodes(ISE)
Advances in Ion Selective Electrodes(ISE) Advances in Ion Selective Electrodes(ISE)
Advances in Ion Selective Electrodes(ISE)
Nur Fatihah
 
Spontaneous potential Log
Spontaneous potential LogSpontaneous potential Log
Spontaneous potential Log
Jam Mahmood
 
Q922+log+l05 v1
Q922+log+l05 v1Q922+log+l05 v1
Q922+log+l05 v1
AFATous
 

Destaque (20)

Cyclic Voltammetry
Cyclic VoltammetryCyclic Voltammetry
Cyclic Voltammetry
 
Formal potential analytical technique, P K MANI
Formal potential analytical technique, P K MANIFormal potential analytical technique, P K MANI
Formal potential analytical technique, P K MANI
 
2014-Summer-REU-Program_Project2-Energy_Final-Presentation
2014-Summer-REU-Program_Project2-Energy_Final-Presentation2014-Summer-REU-Program_Project2-Energy_Final-Presentation
2014-Summer-REU-Program_Project2-Energy_Final-Presentation
 
An Optimal Design of Electrode Surface Morphology to Improve Water Electrolys...
An Optimal Design of Electrode Surface Morphology to Improve Water Electrolys...An Optimal Design of Electrode Surface Morphology to Improve Water Electrolys...
An Optimal Design of Electrode Surface Morphology to Improve Water Electrolys...
 
Phd_LWJ_Final
Phd_LWJ_FinalPhd_LWJ_Final
Phd_LWJ_Final
 
PEM Water Electrolysis
PEM Water ElectrolysisPEM Water Electrolysis
PEM Water Electrolysis
 
Non - Ferrous Extraction of Metals Lecture Notes
Non - Ferrous Extraction of Metals Lecture NotesNon - Ferrous Extraction of Metals Lecture Notes
Non - Ferrous Extraction of Metals Lecture Notes
 
PECS Talk -- Batteries
PECS Talk -- BatteriesPECS Talk -- Batteries
PECS Talk -- Batteries
 
Advances in Ion Selective Electrodes(ISE)
Advances in Ion Selective Electrodes(ISE) Advances in Ion Selective Electrodes(ISE)
Advances in Ion Selective Electrodes(ISE)
 
Reference electrodes
Reference electrodesReference electrodes
Reference electrodes
 
Spontaneous potential Log
Spontaneous potential LogSpontaneous potential Log
Spontaneous potential Log
 
Analytical class potetiometry conductomtry, P K MANI
Analytical class   potetiometry conductomtry, P K MANIAnalytical class   potetiometry conductomtry, P K MANI
Analytical class potetiometry conductomtry, P K MANI
 
Potentiometry
PotentiometryPotentiometry
Potentiometry
 
Exhaust system
Exhaust systemExhaust system
Exhaust system
 
potentiometry
potentiometrypotentiometry
potentiometry
 
Concentration cells
Concentration cellsConcentration cells
Concentration cells
 
Concentration cells
Concentration cellsConcentration cells
Concentration cells
 
Q922+log+l05 v1
Q922+log+l05 v1Q922+log+l05 v1
Q922+log+l05 v1
 
Polarography
PolarographyPolarography
Polarography
 
Basics of Voltammetry and Potentiometry
Basics of Voltammetry and Potentiometry Basics of Voltammetry and Potentiometry
Basics of Voltammetry and Potentiometry
 

Semelhante a Electrochemistry Notes

electrochemistry-141128223112-conversion-gate02.pptx
electrochemistry-141128223112-conversion-gate02.pptxelectrochemistry-141128223112-conversion-gate02.pptx
electrochemistry-141128223112-conversion-gate02.pptx
pallavitripathy
 
Module 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxModule 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptx
AdittyaSenGupta
 
Voltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical AnalysisVoltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical Analysis
Sanchit Dhankhar
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
Toru Hara
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
Toru Hara
 

Semelhante a Electrochemistry Notes (20)

electrochemistry-141128223112-conversion-gate02.pptx
electrochemistry-141128223112-conversion-gate02.pptxelectrochemistry-141128223112-conversion-gate02.pptx
electrochemistry-141128223112-conversion-gate02.pptx
 
Lecture2&3.pdf
Lecture2&3.pdfLecture2&3.pdf
Lecture2&3.pdf
 
electrochemistry
 electrochemistry electrochemistry
electrochemistry
 
Vii.electrochemistry
Vii.electrochemistryVii.electrochemistry
Vii.electrochemistry
 
Electro chemistry.docx
Electro chemistry.docxElectro chemistry.docx
Electro chemistry.docx
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 
electro chemistry6676992 (1).pptx
electro chemistry6676992 (1).pptxelectro chemistry6676992 (1).pptx
electro chemistry6676992 (1).pptx
 
electrochemistry.pptx
electrochemistry.pptxelectrochemistry.pptx
electrochemistry.pptx
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Basic concepts in electrochemistry
Basic concepts in electrochemistryBasic concepts in electrochemistry
Basic concepts in electrochemistry
 
Module 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxModule 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptx
 
421-821-chapter-25.ppt
421-821-chapter-25.ppt421-821-chapter-25.ppt
421-821-chapter-25.ppt
 
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptTutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.ppt
 
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptTutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.ppt
 
Electrodes and potentiometry
Electrodes and potentiometryElectrodes and potentiometry
Electrodes and potentiometry
 
Voltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical AnalysisVoltametry- Pharmaceutical Analysis
Voltametry- Pharmaceutical Analysis
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 
Fields Lec 3
Fields Lec 3Fields Lec 3
Fields Lec 3
 

Último

Último (20)

AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 

Electrochemistry Notes

  • 2. THE CHARGE AND CURRENT •Electrochemistry studies the processes which involve charge •The charge is a source of electric field Element of charge: 1.602·10-19 C The energy change is ±1.602·10-19 J if we move the charge across the potential drop of 1V If we do the same with 1 mol of charges, we obtain… A + B 1V - - The current is the change of charge per time I= dQ dt
  • 3. FARADAY’S LAWs (1834) “The chemical power of a current of electricity is in direct proportion to the absolute quantity of electricity which passes” “Electrochemical Equivalents coincide, and are the same, with ordinary chemical equivalents” m Q = M zF MIt m= zF t M m= ∫ Idt t =0 zF Area under current-time curve (and freqently the currentpotential curve also) is the charge!! This way can be deduced how much material was transformed.
  • 4. CONDUCTIVITY R≈ l A l (Ω) A E R = (Ohmś law) I + + - Electrolytes: same principle, but conductivity is preferred A G=χ l The unit for conductivity is Siemens, what is the unit of specific conductivity? For species KXAY: Migration velocities can be different Stokes force is balanced by force induced by electric field Only the cations distant from the plane by vA or nearer will cross the plane. In unit field (1V) and unit area will cross the boundary xcαFz cat ucat cations χ = xcαFzcat ucat + ycαFz anuan
  • 5. CONDUCTIVITY V A Solutions can have different concentrations: χ  S m3 2 −1  Λ=  m mol = Sm mol  c   Λ ΟΟ This is used for measurements of dissociation constants: AB c (1 -α) Λ α= Λ∞ C A + cα + B - cα  Λ  c Λ   2 2 cα KD = =  ∞ c (1 − α ) 1 − Λ Λ∞ 2
  • 6. HOW AND WHERE THE POTENTIAL DIFFERENCE DEVELOPS s o lu tio n 1 s o lu tio n 2 Junction potential (Henderson) Donnan potential m e m b ra n e Potential difference develops where a charge separation in space occurs
  • 7. THE NERNST EQUATION The combination of two basic physical chemistry equations: − ∆G = zFE and − ∆G = RT ln K All processes in which charge separation occurs go to equilibrium …but what is K?
  • 8. DANIEL CELL Zn | ZnSO4 | | CuSO4 | Cu Zn+CuSO4→ Cu+ZnSO4 [ Cu ][ ZnSO4 ] zFEMN = RT ln [ Zn][ CuSO4 ] …is it OK?
  • 9. BACK TO NERNST EQUATION RT aox E=E + ln zF ared 0 RT ared E=E − ln zF aox 0 aox 2.303RT E=E + log zF ared 0 2.303RT = 0.059 V F (at 25°C )
  • 10. ELECTRODES OF THE FIRST KIND The term electrode is here used in a sense of a half-cell. Metal immersed into the solution of its own soluble salt. The potential is controlled by the concentration of the salt. E=E 0 Me / Me + RT + ln aMe+ zF Zn in ZnCl2, Ag in AgNO3, Cu in CuSO4 etc. Non-metallic electrodes – gas electrodes (hydrogen and chlorine electrode)
  • 12. THE HYDROGEN ELECTRODE Pt Pt E = E 0 at / H + − H H H [ ] RT RT ln KK H p H 2 + ln H + F F
  • 13. ELECTRODES OF THE SECOND KIND Argentochloride Ag | AgCl | KCl | | Calomel Hg | Hg2Cl2 | KCl | | Mercurysulphate Hg | Hg2SO4 | K2SO4 | | 0 SHE 197 m V 244 m V 640 m V SCE . A g /A gC l s a t. H g /H g 2S O sat 4 REDOX ELECTRODES F e 2+ e- F e 3+ e- Fe 3+ The electrode serves as an electron sink Redox combo F e 2+ P t e le c tr o d e
  • 14. ELECTRODES OF THE THIRD KIND ..just a curiosity Zn | Zn2C2O4 | CaC2O4 | CaCl2 | | We can measure the concentration of Ca2+, but there’s a better device to do this…
  • 15. THE ABSOLUTE SCALE OF POTENTIALS R E D (v a c u u m ) -∆ G s o lv ∆G IO N O X (v a c u u m ) -∆ G (R E D ) zF∆E s o lv (O X ) Reference to vacuum (instead of hydrogen electrode) ABS R E D (s o lu tio n ) O X (s o lu tio n ) H Thermodynamic cycle for hydrogen -∆ G H 0 -∆ G (v a c u u m ) H . (v a c u u m ) -∆ G s o lv + -F ∆ E (s o lu tio n ) d is s /2 0 ABS 1 /2 H 2 4420 m V 0 Vacuum IO N SHE 197 m V 244 m V SC sa t. The most commonly accepted value is 4.42V, but values around 4.8V are also reported + E 640 m V s a t. H g /H g 2S O 4 Ag /A gC l
  • 16. ION SELECTIVE ELECTRODES Membrane potential reflects the gradient of activity of the analyte ion in the inner and outer (sample) solutions. •The trick is to find a membrane material, to which an analyte is selectively bound. The membrane must be conductive (a little bit, at least), but it should not leak Liquid junction for reference electrode (sometimes is high) Li Li + H Si Li O h y d r a te d H a u g a a r d la y e r s + L i io n s p a r tia lly fr e e + 400 M Ω + Si Nikolski eq. E = Eassym + RT RT ln aH O + + X ⋅ ln a Na + 3 F F
  • 17. MEMBRANES FOR ISEs •Glass membranes (H+, for other cations change in the composition of glass membrane (Al2O3 or B2O3 in glass to enhance binding for ions other than H + (Na+, Li+, NH4+, K+, Rb+, Cs+ and Ag+) •Crystalline Membranes (single crystal of or homogeneous mixture of ionic compounds cast under high P, d~10 mm, thickness: 1-2 mm. Conductivity: doping or nonstechiometry, Ag+ in AgCl or Ag2S, Cu+ in Cu2S. Fluoride electrode: determines F-, LaF3 crystal doped with EuF2). •Liquid membranes (organic, immiscible liquid held by porous (PVC) membrane with ion exchange properties or neutral macrocyclic compouds selectively binding the analyte in their cavities)
  • 18. POTENTIOMETRY Cell and voltmeter behaves as a voltage divider circuit E(cell) Ri RM V E(measured) R2 E2 = E1 R1 + R2 R1 E1 Emeasured = Ecell R2 E2 RM RM + Ri
  • 19. POTENTIOMETRY AND PHYSICAL CHEMISTRY 1. Activity coefficients determination 2. Solubility products determination 3. Ion product of water determination Pt | H2 | HCl | AgCl |Ag Ag | AgNO3 | |KNO3 | | KX, AgX | Ag Pt | H2 | KOH | |KCl | AgCl |Ag Ionic product of water: 1.008·10-14 (25°C) – good agreement with conductivity measurement
  • 21. ELECTRODE MATERIALS Inert metals (Hg, Pt, Au) •Polycrystalline •Monocrystals Carbon electrodes •Glassy carbon •reticulated •Pyrrolytic graphite •Highly oriented (edge plane, ) •Wax impregnated •Carbon paste •Carbon fiber •Diamond (boron doped) Potential window available for experiments is determined by destruction of electrode Semiconductor electrodes (ITO) material or by decomposition of solvent (or Modified electrodes dissolved electrolyte)
  • 22. ELECTRON TRANSFER PHENOMENON 1-10 nm 1-10 nm in thickness ↓ ↓ ↓ ↓ ↓ ↓ ↓ ~1 volt is dropped across this region… Which means fields of order 107-8 V/m ↓ ↓ ↓ ↓ ↓ ↓ l ↓ + + ↓ ↓ ↓ + + ↓ ↓ l ↓ Where the truncation of the metal’s Electronic structure is compensated for in the electrolyte. + + ↓ ↓ ↓ l ↓ ↓ Solvated ions ↓ ↓ ↓ l ↓ ↓ ↓ Electrode surface ↓ The double-layer region is: ↓ ↓ ↓ ↓ ↓ ↓ + + ↓ ↓ l ↓ “The effect of this enormous field at the electrodeelectrolyte interface is, in a sense, the essence of electrochemistry.” [1] l IHL OHL [1] Bockris, Fundamentals of Electrodics, 2000
  • 23. BUTLER-VOLMER AND TAFEL EQUATIONS - ne + ox = re d E ∆G E # - 2 zF ∆E E αzF ∆E (E 2) ∆G # - (E 1) ∆G # + (E 1) ∆G # + (E 2) 1 E 2< E 1 r e a c tio n c o o r d in a te
  • 24. BUTLER-VOLMER AND TAFEL EQUATIONS i i0 , α = 0 .7 i0 , α = 0 .5 Exchange current density Depends on the species undergoing redox transformation and on the electrode material i0 . α = 0 .3 0 i0 ' < i0 , α = 0 .5 η    exp  (1−α ) nF ( E − E ° )  − exp  αnF ( E − E ° )       0  RT   RT   i=i In fact, large overpotential for hydrogen evolution on Hg surfaces enables us to observe reductions in aqueous solutions Also, the development of modern modified electrodes is based on finding the modifying layer which increase the exchange current density on the electrode surface
  • 25. BUTLER-VOLMER AND TAFEL EQUATIONS i lo g (a b s ( i0 ) ) η i0 η   α i = i0  exp  (1−RT) zF ( E − E ° )  −exp  αzF ( E − E ° )        RT       2.303αzF  log( i ) = log( i0 ) −  (E − E ° )  RT  
  • 26. MASS TRANSFER •Migration •Convection •Diffusion We try to avoid migration by the addition excess supporting electrolyte
  • 27. TRANSPORT BY DIFFUSION t1 C t2 t3 t= 0 1st Fick Law j = − D ∂C ∂x C s 0 x ... d is ta n c e fr o m th e e le c tr o d e C t= 0 Nernst diffusion layer c0 − cs i = zFD δN Cs ilim 0 δN x  ∂c  i = zFD   ∂x  x =0 c0 = zFD δN η D = E − E′ = η D = E − E′ = RT cS ln zF c0 RT  i  ln1 −  i   zF  lim 
  • 28. THE COTTRELL EQUATION t1 C t2 t3 t= 0 E C s t= 0 0 x ... d is ta n c e fr o m th e e le c tr o d e t ∂c ∂ 2c =D 2 ∂t ∂x Mathematical solution for boundary conditions of CA experiment is very complicated, but the result is simple: Second Fickś law i c0 − cs i = zFD πDt This is how Nernst layer thickness changes over time t
  • 29. TRANSPORT BY CONVECTION Rotating disk electrode (RDE) Rotating ring disk electrode (RRDE) c u rre n t ta k e -o ff r o ta tin g c y lin d e r s o lu tio n " ro ta tin g d is k " A c tiv e a re a o f th e e le c tro d e IL = (0,620)∙z∙F∙A∙D2/3∙ω1/2∙ν–1/6∙c Levich Equation ω speed of rotation (rad∙s-1), ν kinematic viscosity of the solution (cm2∙s-1), kinematic viscosity is the ratio between solution viscosity and its specific weight. For pure water: ν = 0,0100 cm2∙s-1, For 1.0 mol∙dm-3 KNO3 is ν = 0,00916 cm2∙s-1 (at 20°C). c concentration of electroactive species (in mol.cm-3, note unusual unit) D diffúsion coefficient (cm2∙s-1), A electrode area in cm2
  • 31. CYCLIC VOLTAMMETRY CV – the most important electrochemical method One or more cycles …CV Half cycle … LSV 0 ≤ t ≤ t r : E = Ei + vt t r ≤ t ≤ 2t r : E = Ei + v( t − t r ) v… the scan rate
  • 32. REVERSIBLE CYCLIC VOLTAMMOGRAM Electroactive species attached to the electrode, both redox forms stable I ( )  F  exp  E − E0  F  RT  I = FAΓ0 v 2 RT    F  E − E 0  1 + exp RT    ( E 0 E )
  • 33. REVERSIBLE CYCLIC VOLTAMMOGRAM 4.0×10 -6 B O fo rw a rd scan 0 -2.0×10 -6 -0.50 Electroactive species in solution, both stable C 2.0×10 -6 I/A R A re ve rs e scan R IUPAC convention O D -0.25 0.00 0.25 E/V vs. reference electrode Randles-Sevcik equation: 0.50 Peak separation is 59 /z mV Ipc = Ipa = 2,69.105 ∙ A ∙ z3/2 ∙ D1/2 ∙ c ∙ v1/2 A in cm2, D in cm2s-1/2, c in molcm-3, v in V/s
  • 34. QUASI AND IRREVERSIBLE VOLTAMMOGRAMS 4.0×10 -6 Black: k=1cmsec-1 Blue: k=0.001 Red: k=0.00001 0 Black: alpha=0.5 Blue: alpha=0.3 Red: alpha=0.7 -2.0×10 -6 -0.50 -0.25 0.00 0.25 0.50 E/V vs. reference electrode 3.0×10 -6 I/A I/A 2.0×10 -6 1.0×10 -6 -1.0×10 -6 -3.0×10 -6 -0.5 0.0 E/V vs. reference electrode 0.5
  • 35. BASIC MECHANISMS IN CV E, C notation (E… electron transfer, C… coupled chemical reaction) E, EE, CE, EC, ECcat etc. Mechanisms can be very complex even for simple systems Two electron-two proton system = „square scheme“
  • 36. THE EE MECHANISM 7.0×10 -6 7.0×10 -6 ∆E= 400 mV 5.0×10 -6 3.0×10 -6 I/A I/A 3.0×10 -6 1.0×10 -6 1.0×10 -6 -1.0×10 -6 -1.0×10 -6 -3.0×10 -6 -3.0×10 -6 -5.0×10 -6 -1.0 -0.5 0.0 0.5 -5.0×10 -6 -1.0 1.0 E/V vs. reference electrode 0.0 0.5 1.0 1.0×10 -5 5.0×10 -6 ∆E= 50mV ∆E= -100mV 5.0×10 -6 I/A 3.0×10 -6 1.0×10 -6 -1.0×10 -6 0 -5.0×10 -6 -3.0×10 -6 -5.0×10 -6 -1.0 -0.5 E/V vs. reference electrode 7.0×10 -6 I/A ∆E= 200 mV 5.0×10 -6 -0.5 0.0 0.5 E/V vs. reference electrode 1.0 -1.0×10 -5 -1.0 -0.5 0.0 0.5 E/V vs. reference electrode 1.0
  • 37. THE EC MECHANISM I/A 3.0×10 -6 O X RED Black: kf=0 cm.s-1 Blue: 0.2 Red: 0.5 Orange: 1 Green: 10 RED Z 1.0×10 -6 -1.0×10 -6 -3.0×10 -6 -0.5 0.0 0.5 E/V vs. reference electrode There are many variations of this mechanism: Reaction with solvent Dimerization Radical substrate reaction EC catalytic … etc.
  • 38. EC catalytic 3.5×10 -5 I/A 2.5×10 -5 O X R ED RED + A O X + Z 1.5×10 -5 Black : no A Blue: A (c=1) Red: A (c=10) Green: A (c=100) 5.0×10 -6 -5.0×10 -6 -0.5 0.0 E/V vs. reference electrode 0.5
  • 39. THE CE MECHANISM 4.0×10 -06 1.0×10 -07 3.0×10 -06 1.0×10 -1.4×10 -14 -06 I/A I/A 2.0×10 -06 -2.3×10 -13 -1.0×10 -06 -2.0×10 -2.0×10 -07 -06 -3.0×10 -06 -0.5 -1.0×10 -07 0.0 E/V vs. reference electrode 0.5 -3.0×10 -07 -0.5 0.0 E/V vs. reference electrode 0.5
  • 40. MICROELECTRODES Microelectrode: at least one dimension must be comparable to diffusion layer thickness (sub μm upto ca. 25 μm). Produce steady state voltammograms. Converging diffusional flux E le c tro d e M e ta l c o n ta c t C o n d u c tiv e jo in t  1 1 I = nFADc0  +  δ r  E le c tro d e b o d y F ib e r A ) In s u la to r B) C) δ = 2πDt Advantages of microelectrodes: • fast mass flux - short response time (e.g. faster CV) • significantly enhanced S/N (IF / IC) ratio • high temporal and spatial resolution • measurements in extremely small environments • measurements in highly resistive media