SlideShare uma empresa Scribd logo
1 de 16
Baixar para ler offline
*=srE

ART

208

1989 02/2

Chemicals

:HNICAL INFOMATION

F.RMATT.N

TEKN$F*ED.T

POIYETHYLENE,*,o*ro}3[i[H,::X??llH',?[r*o*

DIMENSIONING PRINCIPLES AND LAYING
INSTRUCTIONS FOR BURIEDPLASTIC PIPES
GENERAL
Plaslic pipes have specific properties and therebyotherdemandson dimensioning calculations and

laying instructions than lor example concrete and steel pipes. ln general the plastic pipes are
flexibte, that is they are deformed under load. This is positive in the rleaning that lhe pipe has the
abilily together with the back-{illing material to cause a horisontal earthpressure lowards lhe side
wall of the pipe, which increase the ability of the pipe to carry the load.

VERTICAL LOAD ON A BURIED PIPE
The important dimensions for a buried pipe are explained in Figure 1. The total vertical load, O, on
the buried pipe is the sum o{ 3 different loads.

O
O
Os
Qr

=Qs+Qr+O",MPa

O,v

= Total vertical load
= Soil load, see Figure 2
= Tralfic load, see Figure 3
= Water load, see Figure 4

The first step is to calculate lhe total vertical load, O, on the pipe. This can be done using the
diagrams in Figure 2 - 4.
Example

1

Consider a llexible pipe ol PEHD that is to be layed at a depth of 6.0 meter. The ground water level
is 4.0 meter below ground level. Determine the totalvertical load on lhe pipe.
Figure 2 gives:
Figure 3 gives:
Figure 4 gives:

Qs = 0.021 + 0.075 = 0.096 MPa
Or= 0
Q* = 0.020 MPa

That is:

Q = 0.096 + 0.020 = 0.1 16 MPa

Neste Chemicals lnt SA/NV

Neste Oy Chemicals

l, Avenue de Bile/Bazellaan,

Neste Polyeten AB

Pr 320

I

PoRVoo

B.I I40 BRUSTLS

sF-06101

Belgium

Finland

Tel. +32 22 44 42 ll
Telex 62270 NCC B

Tel. +358 !5 lB712
Telex l72l neste sf

5-444 86 STENUNGSUND
Sweden
Tei. +45 303 86 000
Telex 2402 nestepe s
DEFORMATION OF A BURIED PIPE
by the lollowing lormula:
a buried pipe can be calculated
The vertical deformation, 8", o{

o

,6v
D
-=

-a

0.083

Es s+uue

mm
= Vertical PiPe delormation'

&,

mm
= Original PiPe diameter,
load, MPa
= Total vertical
supporting soit' MPa' see Figure 5
= S.*nr todulus ol

D

o
Es

,S = Stiffnessfactor =
:t@

T

.

E" 

D

/

see Figure 6
Modulus ol elasticity o{ lhe pipe, MPa'
Wallthickness' mm

E

e

is assumed to be
the verticalpipe deformation'
to roSit iiiri''gi' Deiermine
aiproximatety 80 % t*ni"n-.orr.sponds
taved under *,u

,"rnr-.oniition,

i,

e*"ttipiti' frtu-1*i"i" ol compaction

in

6v.

Es = 1.25 MPa

Figure 5 gives:
Figure 6 gives:

at 50 years
E = tgO MPa for Neste NCPE 2467'BL

Now the stiflness laclor, S, can be calculated:

s: 2 .1so (:!':o.oo56
3 1.2s 110 /
6v, can be calculated'
Finally the verlical pipe delormation,

LG

o = 0'1 16 MPa' the Same agin Example

1.

^o
Ov:-

0.116..110.0.083

0.083

D

s+0.122

Eg

1.25.(0.0056+0122)

=

6.6 mm

pipe diameter is then:
The pipe delormation ino/ool originally
6.6
'110

=

60/o

ThedeformationoflhepipeafterbackfillingisrecommendednottoexceedB%,

fi

fi ;'i;;;
-i.oia
HsTH;'il,.,$ :*:HiH i":J'.fl:#:ffxilliil? n.autori'e en aucure hgon 1.68e qN *.o.
*-p.-

tr
La

pr€*ote dcurcnE!@
ori*nte d(uftn6l'@

I"l-it"i

a", ai"*n
Erfrndung

n en84t
n.en8a8e

"-fr. "toietio
eng"xn t'"'t"'t *

:uletie

Pd,Tj::ilri:g::.e!
;
!ir'iei,i.*,fit c".i"

or

a

" -Y

custmer'

ou'.."^."

d.inYentioro

?:'"11i::"'9:

*9a3j15' ]'''

brevete:::::':",'::".":;:H;::;;.::::.

Erraubnii oder Emplehlunt. 'rtendeift Pa(en(rede
einertrlNil..ffdll";;$'il".".""n mrt x,nat"
H:f(un! i,hernehmn.
^ u-r,.,^d irbernehftn' ndh um eine
vq Venr:€en --ii r
De6(etunt. fijr die wrr e'ne rechllichp
uod 5rnd n:ch Beondterr
unceruchuns Xiiji"ft^'r'"i'u"rmi(tcrt

'tq'-*ry;ffi.o^""Tlt:".a'*',iljf,ilii,;f;;in;;'t**un6
ohre Uzenr uszuwenen u

u'*r'r*' *r' -i";;;;;;';*'""::":.::.-i,"*

with

:;: liilf fill),T-io*'-'" '''o"'"
, - .^^,-^ ili.aat.ni {i orodorli Nesre e re roro possibir
,.;.;5";:***;;$$:**ru;.i1":X"ffi::;:".::::tr::i:li"ll;;";i;0,.**cenzae,nlendonoromireindi@ionisiProdo'(liNes'ieer'

Uppgirter i daobr:d,
NESTE

STRAIN IN THE PIPE WALL
lollowing lormulas:
The strain in the pipe wall can be calculated by the

8=6,(#'(+)
is to be used when lhe stitlness lactor,

e
e
D
6,
'w

r=

18

s, is less or equal to 0.012:

= Strain in the PiPe wall
E Wallthickness, mm
= OriginalPiPe diameter' mm
= VerticalPiPe deformalion, mm

e) (?) (+)'(025's+ooo3)

istobeusedwhenthestiflnessfactor,s,isgreaterthan0.0l2:

Es=Secantmodulusofsupportingsoil,MPa,seeFigure5

E
S

pipe, MPa' see Figure 6
= Modulus ol elasticity ol the
factor, see Page 2
= Stiflness

o/o lor HDPE and 2.0 % lor
Allowed initial strain in the pipe wall is 1 .5

M

DPE'

OF BUCK'
ALLOWED PRESSURE ON THE PIPE CONCERNING THE RISK
LING
pipe_lrom collapsing due to buckling' The
The pipe wall must have suflicienl stif{ness to prevent lhe
lormula:
allowed pressure on a flexible pipe can be calculated by the lollowing

,r'

o":
vqOa
F
Er

E

e
D

4 '/-1'E'" /:-*
o/
F  3 /
= Allowed Pressure on the PiPe, MPa

= Factor ol salety
MPa, see Figure 7
= Tangent moduius of supportinO soila
pipe, MPa, see Figure 6
= Modilus of elasticity ol the
= Walllhickness, mm
= Originalpipe diameter' mm

Example 3
ol 6'0 meter' The ground
consider a llexible pipe of NCPE 2467-8L that is to be layed at a depth
is.assumed to be
waler level is 4.0 meter below ground level. The degree of compaction
{illing). Determine the lowest required value of the ratio
io*iratu ty B0 %(correspondinf to loose
"jf and calculate the pipe deformltion 6u/D and the Strain in the pipe wall'
e/D
level is at
when the ground water
by the risk o{ buckring
is determined
The required wartthict(ness
it's highest Point'

t;=
at 50 vears
Fisure
ilFi Neste NCPE 2467'BL
gives:
Figure 6
t-sl f= 2.0
as in Example 1 '
b"!'o.t't 6 MPa, the same

1s:":::

i;i

",

Formula 1 gives:

0116=

+

F5'1'g0-)'"'

(J

+

=28o/o

(tJ; (#)"=oo28

0'03' This
should no be p'etow
recommended that e/d
example'
rigu" al iu to oL used in this

itis
handring or the pipe
As a security due to
ic-orresponding
means thar pipe crass
2
is calculated as in Example
The pipe delormation

,;5-;;';;;

ii

. = L.
3
6v

4"

=
D

190

(0.031)3

=

o'oo3o

1.25

0.116

1.rs

0.083

=

0.062

=

6.20/o

o.oo3o+o'122

since the stiflness ractor,
wa, c11 be carcurated.
strain in the pipe
Now linary the
page 3'
t"t"'t'i" itio Ot used' see
0.012 the lollowing

t = 6'0.031 '0'062 = 0'0115 =

1'15%

pipe wall'
initial strain in the
This is below the allowed

s' is ress

rhan
NESTE

Figure
Ground level

Ground water level

D:
UV:

ft=
O:
H=

Original pipe diameter, mm
Vertical piPe deformation, mm
Distance between the ground water level and
the pipe center, rn
Total vertical load, MPa
Height of fill above the PiPe, m

1
Figure 2

05, MPa
0.15

0.10

Ground water level
belo-w the PiPe.

r-v
-r--1
ll

0.05

/t

-/
Ground r ater level
above th pipe

I

I
I

g

B

H,M
Soil pressure vs height of backfilling
NESTE

Figure 3

Traffic load from 14 ton distributed
on 2 wheels with a distance of 1.g m
14 ton

Q1, MPa

0.04

1-

jQ,

0.03

4tF

I

ii

I
:

I

0.01

,

I
I

H,m

Traffic pressure vs height of backfilling.
With a height of backfilling above 3 m the contribution
from traffic load to the totalvertical load on the pipe

normally negligeabel.

is
Figure 4

1 bulo-j g',-^"1

l"uol'

Ground water pressure vs head of ground water
for ground water level above the pipe.
NESTE

Chemicals

Figure 5
E5, MPa

//
-t'

5:i,"J-ffi
---

--+-€

012345

67
H,M

Secant modulus of supporting soil vs height of backfilling
for non-cohesive filling material i.e' sand and grave!

r - -.

Ground water levelat ground level
Ground water levelbelow pipe

% Filling from ground levelwith shovel
80 % Corresponds loose filling and almost no compaction (dumping from truck)
75

85 oh Corresponds soft comPaction
90 % corresponds hard compaction (under areas with heavy traffic
done with a machine)

9
Flgure 6

MODULUS OF ELASTICITY, E, FOR DIFFERENT
NESTE PIPE GRADES

NCPE

210 MPa (50 year value)

NCPE

2467-BL

190 MPa (50 year value)

NCPE

10

2467
2418

185 MPa (50 year value)
NESTE

Chemicals

Figure

7

E,, MPa
7

I

^"."-

_L^"{:]_
'oo'
qQ
qo'

/-t---

I

I
I

^ro(

. ?(o:-

Jr-.'

lno*ff

6

H,m

Tangent modulus of supporting soil vs height of backfilling
for non-cohesive filling material i.e. sand and gravel
Ground water level at ground level

r orQ;ound water level below pipe
- oh Filling
ground level with shovel
from

75

80 o/o Corresponds loose filling and almost no compaction
(dumping from truck)

%

Corr:asponds soft compaction
90 o/o Corresponds hard compaction (under areas with heavy traffic done with a machine)
85

11
Flgure 8

RECOMMENDED DIMENSIONS FOR BURIED HDPE PIPES
Ref. Swedish Slandard SS 3403

ISO PIPE SERIES
Swedsh designation
OUTER DIAMETER

s-16
L-2

s-12.5

s-10

T:4

E-16
W.ALL

,

WALL

WALL

40

3.0

3.0

50

3.0

3.0

75

3.0

3.0

90

3.0

3.5

110/ -

3.4

4.2

160

4.9

6.2

9.5

20.0

6.2

7.7

11.9

250

7.7

9.6

14.8

2<tr

9.7

12,1

18.7

404

12.3

15.3

oe -,

500

15.3

19.1

29.6

630

19.3

24.1

37.2

/

6.6

ln lhis Swedish Standard "Pipes and f itlings ot PE for buried sewers and discharge systems inside
buildings" the minimum wall thickness is 3.0 mm, due to handling of the pipe during the laying

operation.

12
NESTE

HDPE PIPES IN SANDYSOIL
Recommended pipe class under different
laying depths and traffic load
Local Streets
Sporadic heavy
traffic

Open areas
Carparks

Height of
backfilling
(m)

'-a

s12.

s12.5

1.0

2.0

Main roads
lntensiv heavy
tratfic

s10

s-16

3.0
s12.5
4.0

s12.5
5.0

6.0

s10

"

s10

s10

Backfilling with rnacadam, 4-16 mm
Backfillinng with excavations

lf no sand or macadam is available make the trench broader at least 2D on each
side of the pipe.

13
HDPE PIPES IN CTAYSOIL
Recommended pipe ctass under different
laying depths and traffic load
Height of
backfilling

Open areas
Carparks

Local streets
sporadic heavy
traffic

(m)

Main roads
lntensive heavy
traffic

'!
1.0

s10

2.0

3.0

tr,

..1

l

4.0

sl0

"ll.*
s1o

I

I

sro

5.0

6.0

-'-

'
*r



Backfiiling with macadam, 4-16 mm
Backfilling with excavations

Backfillingwithsandandgravel, 0_16mm

-,-

"

lf no sand or macadam is avairabre make the trench
broader
at least 2 D on each side of the pipe.

t4



-'-
NESTE

HDPE PIPES IN LOOSE CLAYSOIL
Recommended pipe class under different
laying depths and traffic load
Height of

backfilling

Open areas
carparks

(m)

Localstreets
sporadic heavy
traffic

Main roads
lntensiv heavy
traffic

s10
1.0

2.0

sl0

s10--

s10

3.0

4.0

5.0

6.0

'
*.
"'

Backfilling with macadam,4-16 mm
Backfilling with excavations
Backfilling with sand an gravel, 0-16 mm

lf no sand or macadam is available make the trench broader
at least 2-D on each side of the pipe.

15
LAYING OF PE SEWAGE PIPES

1.

Preparation of narrow trench'

2.

Sand or gravel bedding

3.

Firm bottom supporting

4.

lnilial backlilling around sides

5.

Protective backfilling. No hard compacling above the pipe

6.

Final backfilling with compacting

Proper laying is lhe last step in making a reliable sewage system.

lf no sand or gravel is available as backfilling material make the trench broader at least 2 D
on each side of the pipe

i6

Mais conteúdo relacionado

Destaque (13)

Popular Cement and concrete products b2b Marketplace
Popular  Cement and concrete products b2b MarketplacePopular  Cement and concrete products b2b Marketplace
Popular Cement and concrete products b2b Marketplace
 
Metacognition During the Lesson
Metacognition During the LessonMetacognition During the Lesson
Metacognition During the Lesson
 
Anthonym
AnthonymAnthonym
Anthonym
 
Mgt last assignment
Mgt last assignmentMgt last assignment
Mgt last assignment
 
Etapas del niño
Etapas del niñoEtapas del niño
Etapas del niño
 
ภพ20และหนังสือรับรอง
ภพ20และหนังสือรับรองภพ20และหนังสือรับรอง
ภพ20และหนังสือรับรอง
 
Assistive technology
Assistive technologyAssistive technology
Assistive technology
 
Evaluation Question 2
Evaluation Question 2Evaluation Question 2
Evaluation Question 2
 
Presentation1
Presentation1Presentation1
Presentation1
 
Support structure for hdpe
Support structure for hdpeSupport structure for hdpe
Support structure for hdpe
 
Your finance center webinar
Your finance center webinarYour finance center webinar
Your finance center webinar
 
Products cataloque tap
Products cataloque tapProducts cataloque tap
Products cataloque tap
 
Pääsiäisvaellus 2014
Pääsiäisvaellus 2014Pääsiäisvaellus 2014
Pääsiäisvaellus 2014
 

Semelhante a Buried pipe design by neste

Semelhante a Buried pipe design by neste (20)

Pipeline b
Pipeline bPipeline b
Pipeline b
 
1 resistance
1 resistance1 resistance
1 resistance
 
120731 332263-1-sm
120731 332263-1-sm120731 332263-1-sm
120731 332263-1-sm
 
Seepage through an earth dam
Seepage through an earth damSeepage through an earth dam
Seepage through an earth dam
 
Flow around a bent duct theory
Flow around a bent duct theoryFlow around a bent duct theory
Flow around a bent duct theory
 
5th Semester Mechanical Engineering (Dec-2015; Jan-2016) Question Papers
5th Semester Mechanical  Engineering (Dec-2015; Jan-2016) Question Papers5th Semester Mechanical  Engineering (Dec-2015; Jan-2016) Question Papers
5th Semester Mechanical Engineering (Dec-2015; Jan-2016) Question Papers
 
Ch08 10 combined loads transformations
Ch08 10 combined loads   transformationsCh08 10 combined loads   transformations
Ch08 10 combined loads transformations
 
Ch08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformationsCh08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformations
 
Ch 3-c.pdf
Ch 3-c.pdfCh 3-c.pdf
Ch 3-c.pdf
 
Problema 4
Problema 4Problema 4
Problema 4
 
Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.
 
Diseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptxDiseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptx
 
Cutting tool tech
Cutting tool techCutting tool tech
Cutting tool tech
 
Design of fasteners and welded joints
Design of fasteners and welded jointsDesign of fasteners and welded joints
Design of fasteners and welded joints
 
PROBLEMA 3
PROBLEMA 3 PROBLEMA 3
PROBLEMA 3
 
A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1
 
008
008008
008
 
6th Semester (Dec-2015; Jan-2016) Civil Engineering Question Paper
6th Semester (Dec-2015; Jan-2016) Civil Engineering Question Paper6th Semester (Dec-2015; Jan-2016) Civil Engineering Question Paper
6th Semester (Dec-2015; Jan-2016) Civil Engineering Question Paper
 
Pipeline Design Project
Pipeline Design ProjectPipeline Design Project
Pipeline Design Project
 
EJERCICIO 2
EJERCICIO 2EJERCICIO 2
EJERCICIO 2
 

Mais de ไทยเอเชีย บริหารขาย

Mais de ไทยเอเชีย บริหารขาย (20)

เลขที่บัญชีไทยเอเซีย
เลขที่บัญชีไทยเอเซียเลขที่บัญชีไทยเอเซีย
เลขที่บัญชีไทยเอเซีย
 
เลขที่บัญชี ไทย เอเซียฯ
เลขที่บัญชี ไทย เอเซียฯเลขที่บัญชี ไทย เอเซียฯ
เลขที่บัญชี ไทย เอเซียฯ
 
แค๊ทตาล๊อค Approve ท่อน้ำ v2
แค๊ทตาล๊อค Approve ท่อน้ำ v2แค๊ทตาล๊อค Approve ท่อน้ำ v2
แค๊ทตาล๊อค Approve ท่อน้ำ v2
 
ค่าแรงเชื่อมท่อและสตับเอ็น
ค่าแรงเชื่อมท่อและสตับเอ็นค่าแรงเชื่อมท่อและสตับเอ็น
ค่าแรงเชื่อมท่อและสตับเอ็น
 
ข้อกำหนด มอก.982 2548 ตัวต้นฉบับ
ข้อกำหนด มอก.982 2548 ตัวต้นฉบับข้อกำหนด มอก.982 2548 ตัวต้นฉบับ
ข้อกำหนด มอก.982 2548 ตัวต้นฉบับ
 
Weilding machine by tap
Weilding machine by tapWeilding machine by tap
Weilding machine by tap
 
Technical information
Technical informationTechnical information
Technical information
 
Tap welding guideline_english
Tap welding guideline_englishTap welding guideline_english
Tap welding guideline_english
 
Standard sfs for site test butt fusion welding
Standard sfs for site test butt fusion weldingStandard sfs for site test butt fusion welding
Standard sfs for site test butt fusion welding
 
Standard dvs for butt fusion welding 2
Standard dvs for butt fusion welding 2Standard dvs for butt fusion welding 2
Standard dvs for butt fusion welding 2
 
Standard dvs for butt fusion welding
Standard dvs for butt fusion weldingStandard dvs for butt fusion welding
Standard dvs for butt fusion welding
 
Safetyfactor pe80
Safetyfactor pe80Safetyfactor pe80
Safetyfactor pe80
 
Safety factor pe100
Safety factor pe100Safety factor pe100
Safety factor pe100
 
Safety factor pe80
Safety factor pe80Safety factor pe80
Safety factor pe80
 
Quality control by tap
Quality control by tapQuality control by tap
Quality control by tap
 
Pipe friction nomogram (loss)
Pipe friction nomogram (loss)Pipe friction nomogram (loss)
Pipe friction nomogram (loss)
 
Iso 9001 new
Iso 9001 newIso 9001 new
Iso 9001 new
 
Install tapkorr
Install tapkorrInstall tapkorr
Install tapkorr
 
Hdpe pipe laying วิธีฝักกลบท่อ hdpe
Hdpe pipe laying  วิธีฝักกลบท่อ hdpeHdpe pipe laying  วิธีฝักกลบท่อ hdpe
Hdpe pipe laying วิธีฝักกลบท่อ hdpe
 
Certificate iso18000
Certificate iso18000Certificate iso18000
Certificate iso18000
 

Buried pipe design by neste

  • 1. *=srE ART 208 1989 02/2 Chemicals :HNICAL INFOMATION F.RMATT.N TEKN$F*ED.T POIYETHYLENE,*,o*ro}3[i[H,::X??llH',?[r*o* DIMENSIONING PRINCIPLES AND LAYING INSTRUCTIONS FOR BURIEDPLASTIC PIPES GENERAL Plaslic pipes have specific properties and therebyotherdemandson dimensioning calculations and laying instructions than lor example concrete and steel pipes. ln general the plastic pipes are flexibte, that is they are deformed under load. This is positive in the rleaning that lhe pipe has the abilily together with the back-{illing material to cause a horisontal earthpressure lowards lhe side wall of the pipe, which increase the ability of the pipe to carry the load. VERTICAL LOAD ON A BURIED PIPE The important dimensions for a buried pipe are explained in Figure 1. The total vertical load, O, on the buried pipe is the sum o{ 3 different loads. O O Os Qr =Qs+Qr+O",MPa O,v = Total vertical load = Soil load, see Figure 2 = Tralfic load, see Figure 3 = Water load, see Figure 4 The first step is to calculate lhe total vertical load, O, on the pipe. This can be done using the diagrams in Figure 2 - 4. Example 1 Consider a llexible pipe ol PEHD that is to be layed at a depth of 6.0 meter. The ground water level is 4.0 meter below ground level. Determine the totalvertical load on lhe pipe. Figure 2 gives: Figure 3 gives: Figure 4 gives: Qs = 0.021 + 0.075 = 0.096 MPa Or= 0 Q* = 0.020 MPa That is: Q = 0.096 + 0.020 = 0.1 16 MPa Neste Chemicals lnt SA/NV Neste Oy Chemicals l, Avenue de Bile/Bazellaan, Neste Polyeten AB Pr 320 I PoRVoo B.I I40 BRUSTLS sF-06101 Belgium Finland Tel. +32 22 44 42 ll Telex 62270 NCC B Tel. +358 !5 lB712 Telex l72l neste sf 5-444 86 STENUNGSUND Sweden Tei. +45 303 86 000 Telex 2402 nestepe s
  • 2. DEFORMATION OF A BURIED PIPE by the lollowing lormula: a buried pipe can be calculated The vertical deformation, 8", o{ o ,6v D -= -a 0.083 Es s+uue mm = Vertical PiPe delormation' &, mm = Original PiPe diameter, load, MPa = Total vertical supporting soit' MPa' see Figure 5 = S.*nr todulus ol D o Es ,S = Stiffnessfactor = :t@ T . E" D / see Figure 6 Modulus ol elasticity o{ lhe pipe, MPa' Wallthickness' mm E e is assumed to be the verticalpipe deformation' to roSit iiiri''gi' Deiermine aiproximatety 80 % t*ni"n-.orr.sponds taved under *,u ,"rnr-.oniition, i, e*"ttipiti' frtu-1*i"i" ol compaction in 6v. Es = 1.25 MPa Figure 5 gives: Figure 6 gives: at 50 years E = tgO MPa for Neste NCPE 2467'BL Now the stiflness laclor, S, can be calculated: s: 2 .1so (:!':o.oo56 3 1.2s 110 / 6v, can be calculated' Finally the verlical pipe delormation, LG o = 0'1 16 MPa' the Same agin Example 1. ^o Ov:- 0.116..110.0.083 0.083 D s+0.122 Eg 1.25.(0.0056+0122) = 6.6 mm pipe diameter is then: The pipe delormation ino/ool originally 6.6 '110 = 60/o ThedeformationoflhepipeafterbackfillingisrecommendednottoexceedB%, fi fi ;'i;;; -i.oia HsTH;'il,.,$ :*:HiH i":J'.fl:#:ffxilliil? n.autori'e en aucure hgon 1.68e qN *.o. *-p.- tr La pr€*ote dcurcnE!@ ori*nte d(uftn6l'@ I"l-it"i a", ai"*n Erfrndung n en84t n.en8a8e "-fr. "toietio eng"xn t'"'t"'t * :uletie Pd,Tj::ilri:g::.e! ; !ir'iei,i.*,fit c".i" or a " -Y custmer' ou'.."^." d.inYentioro ?:'"11i::"'9: *9a3j15' ]''' brevete:::::':",'::".":;:H;::;;.::::. Erraubnii oder Emplehlunt. 'rtendeift Pa(en(rede einertrlNil..ffdll";;$'il".".""n mrt x,nat" H:f(un! i,hernehmn. ^ u-r,.,^d irbernehftn' ndh um eine vq Venr:€en --ii r De6(etunt. fijr die wrr e'ne rechllichp uod 5rnd n:ch Beondterr unceruchuns Xiiji"ft^'r'"i'u"rmi(tcrt 'tq'-*ry;ffi.o^""Tlt:".a'*',iljf,ilii,;f;;in;;'t**un6 ohre Uzenr uszuwenen u u'*r'r*' *r' -i";;;;;;';*'""::":.::.-i,"* with :;: liilf fill),T-io*'-'" '''o"'" , - .^^,-^ ili.aat.ni {i orodorli Nesre e re roro possibir ,.;.;5";:***;;$$:**ru;.i1":X"ffi::;:".::::tr::i:li"ll;;";i;0,.**cenzae,nlendonoromireindi@ionisiProdo'(liNes'ieer' Uppgirter i daobr:d,
  • 3. NESTE STRAIN IN THE PIPE WALL lollowing lormulas: The strain in the pipe wall can be calculated by the 8=6,(#'(+) is to be used when lhe stitlness lactor, e e D 6, 'w r= 18 s, is less or equal to 0.012: = Strain in the PiPe wall E Wallthickness, mm = OriginalPiPe diameter' mm = VerticalPiPe deformalion, mm e) (?) (+)'(025's+ooo3) istobeusedwhenthestiflnessfactor,s,isgreaterthan0.0l2: Es=Secantmodulusofsupportingsoil,MPa,seeFigure5 E S pipe, MPa' see Figure 6 = Modulus ol elasticity ol the factor, see Page 2 = Stiflness o/o lor HDPE and 2.0 % lor Allowed initial strain in the pipe wall is 1 .5 M DPE' OF BUCK' ALLOWED PRESSURE ON THE PIPE CONCERNING THE RISK LING pipe_lrom collapsing due to buckling' The The pipe wall must have suflicienl stif{ness to prevent lhe lormula: allowed pressure on a flexible pipe can be calculated by the lollowing ,r' o": vqOa F Er E e D 4 '/-1'E'" /:-* o/ F 3 / = Allowed Pressure on the PiPe, MPa = Factor ol salety MPa, see Figure 7 = Tangent moduius of supportinO soila pipe, MPa, see Figure 6 = Modilus of elasticity ol the = Walllhickness, mm = Originalpipe diameter' mm Example 3 ol 6'0 meter' The ground consider a llexible pipe of NCPE 2467-8L that is to be layed at a depth is.assumed to be waler level is 4.0 meter below ground level. The degree of compaction {illing). Determine the lowest required value of the ratio io*iratu ty B0 %(correspondinf to loose "jf and calculate the pipe deformltion 6u/D and the Strain in the pipe wall' e/D
  • 4. level is at when the ground water by the risk o{ buckring is determined The required wartthict(ness it's highest Point' t;= at 50 vears Fisure ilFi Neste NCPE 2467'BL gives: Figure 6 t-sl f= 2.0 as in Example 1 ' b"!'o.t't 6 MPa, the same 1s:"::: i;i ", Formula 1 gives: 0116= + F5'1'g0-)'"' (J + =28o/o (tJ; (#)"=oo28 0'03' This should no be p'etow recommended that e/d example' rigu" al iu to oL used in this itis handring or the pipe As a security due to ic-orresponding means thar pipe crass 2 is calculated as in Example The pipe delormation ,;5-;;';;; ii . = L. 3 6v 4" = D 190 (0.031)3 = o'oo3o 1.25 0.116 1.rs 0.083 = 0.062 = 6.20/o o.oo3o+o'122 since the stiflness ractor, wa, c11 be carcurated. strain in the pipe Now linary the page 3' t"t"'t'i" itio Ot used' see 0.012 the lollowing t = 6'0.031 '0'062 = 0'0115 = 1'15% pipe wall' initial strain in the This is below the allowed s' is ress rhan
  • 5. NESTE Figure Ground level Ground water level D: UV: ft= O: H= Original pipe diameter, mm Vertical piPe deformation, mm Distance between the ground water level and the pipe center, rn Total vertical load, MPa Height of fill above the PiPe, m 1
  • 6. Figure 2 05, MPa 0.15 0.10 Ground water level belo-w the PiPe. r-v -r--1 ll 0.05 /t -/ Ground r ater level above th pipe I I I g B H,M Soil pressure vs height of backfilling
  • 7. NESTE Figure 3 Traffic load from 14 ton distributed on 2 wheels with a distance of 1.g m 14 ton Q1, MPa 0.04 1- jQ, 0.03 4tF I ii I : I 0.01 , I I H,m Traffic pressure vs height of backfilling. With a height of backfilling above 3 m the contribution from traffic load to the totalvertical load on the pipe normally negligeabel. is
  • 8. Figure 4 1 bulo-j g',-^"1 l"uol' Ground water pressure vs head of ground water for ground water level above the pipe.
  • 9. NESTE Chemicals Figure 5 E5, MPa // -t' 5:i,"J-ffi --- --+-€ 012345 67 H,M Secant modulus of supporting soil vs height of backfilling for non-cohesive filling material i.e' sand and grave! r - -. Ground water levelat ground level Ground water levelbelow pipe % Filling from ground levelwith shovel 80 % Corresponds loose filling and almost no compaction (dumping from truck) 75 85 oh Corresponds soft comPaction 90 % corresponds hard compaction (under areas with heavy traffic done with a machine) 9
  • 10. Flgure 6 MODULUS OF ELASTICITY, E, FOR DIFFERENT NESTE PIPE GRADES NCPE 210 MPa (50 year value) NCPE 2467-BL 190 MPa (50 year value) NCPE 10 2467 2418 185 MPa (50 year value)
  • 11. NESTE Chemicals Figure 7 E,, MPa 7 I ^"."- _L^"{:]_ 'oo' qQ qo' /-t--- I I I ^ro( . ?(o:- Jr-.' lno*ff 6 H,m Tangent modulus of supporting soil vs height of backfilling for non-cohesive filling material i.e. sand and gravel Ground water level at ground level r orQ;ound water level below pipe - oh Filling ground level with shovel from 75 80 o/o Corresponds loose filling and almost no compaction (dumping from truck) % Corr:asponds soft compaction 90 o/o Corresponds hard compaction (under areas with heavy traffic done with a machine) 85 11
  • 12. Flgure 8 RECOMMENDED DIMENSIONS FOR BURIED HDPE PIPES Ref. Swedish Slandard SS 3403 ISO PIPE SERIES Swedsh designation OUTER DIAMETER s-16 L-2 s-12.5 s-10 T:4 E-16 W.ALL , WALL WALL 40 3.0 3.0 50 3.0 3.0 75 3.0 3.0 90 3.0 3.5 110/ - 3.4 4.2 160 4.9 6.2 9.5 20.0 6.2 7.7 11.9 250 7.7 9.6 14.8 2<tr 9.7 12,1 18.7 404 12.3 15.3 oe -, 500 15.3 19.1 29.6 630 19.3 24.1 37.2 / 6.6 ln lhis Swedish Standard "Pipes and f itlings ot PE for buried sewers and discharge systems inside buildings" the minimum wall thickness is 3.0 mm, due to handling of the pipe during the laying operation. 12
  • 13. NESTE HDPE PIPES IN SANDYSOIL Recommended pipe class under different laying depths and traffic load Local Streets Sporadic heavy traffic Open areas Carparks Height of backfilling (m) '-a s12. s12.5 1.0 2.0 Main roads lntensiv heavy tratfic s10 s-16 3.0 s12.5 4.0 s12.5 5.0 6.0 s10 " s10 s10 Backfilling with rnacadam, 4-16 mm Backfillinng with excavations lf no sand or macadam is available make the trench broader at least 2D on each side of the pipe. 13
  • 14. HDPE PIPES IN CTAYSOIL Recommended pipe ctass under different laying depths and traffic load Height of backfilling Open areas Carparks Local streets sporadic heavy traffic (m) Main roads lntensive heavy traffic '! 1.0 s10 2.0 3.0 tr, ..1 l 4.0 sl0 "ll.* s1o I I sro 5.0 6.0 -'- ' *r Backfiiling with macadam, 4-16 mm Backfilling with excavations Backfillingwithsandandgravel, 0_16mm -,- " lf no sand or macadam is avairabre make the trench broader at least 2 D on each side of the pipe. t4 -'-
  • 15. NESTE HDPE PIPES IN LOOSE CLAYSOIL Recommended pipe class under different laying depths and traffic load Height of backfilling Open areas carparks (m) Localstreets sporadic heavy traffic Main roads lntensiv heavy traffic s10 1.0 2.0 sl0 s10-- s10 3.0 4.0 5.0 6.0 ' *. "' Backfilling with macadam,4-16 mm Backfilling with excavations Backfilling with sand an gravel, 0-16 mm lf no sand or macadam is available make the trench broader at least 2-D on each side of the pipe. 15
  • 16. LAYING OF PE SEWAGE PIPES 1. Preparation of narrow trench' 2. Sand or gravel bedding 3. Firm bottom supporting 4. lnilial backlilling around sides 5. Protective backfilling. No hard compacling above the pipe 6. Final backfilling with compacting Proper laying is lhe last step in making a reliable sewage system. lf no sand or gravel is available as backfilling material make the trench broader at least 2 D on each side of the pipe i6