SlideShare uma empresa Scribd logo
1 de 41
An agent-based model of payment systems Marco Galbiati Bank of England Kimmo Soramäki ECB, www.soramaki.net ECB-BoE Conference Payments and Monetary and Financial Stability 12-13 November 2007
Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Liquidity in payment systems Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Liquidity in payment systems Deferred Net Settlement  vs   Real Time Gross Settlement Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Liquidity in payment systems Deferred Net Settlement  vs   Real Time Gross Settlement Liquidity risk (and operational risk) Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Liquidity in payment systems Deferred Net Settlement  vs   Real Time Gross Settlement Liquidity risk (and operational risk) Liquidity as a common good Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Liquidity is costly: tradeoff cost-of-liquidity / cost-of-delay Liquidity in payment systems Deferred Net Settlement  vs   Real Time Gross Settlement Liquidity risk (and operational risk) Liquidity as a common good Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Related literature Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Related literature ,[object Object],[object Object],[object Object],[object Object],[object Object],Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Related literature ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Model overview RTGS  á  la  UK CHAPS: banks choose an opening balance at the beginning of each day, used to settle payments during the day. Banks face a random stream of payment orders, to be settled out of their liquidity. Beside funding costs, banks (may) experience delay costs Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Model overview RTGS  á  la  UK CHAPS: banks choose an opening balance at the beginning of each day, used to settle payments during the day. Banks face a random stream of payment orders, to be settled out of their liquidity. Beside funding costs, banks (may) experience delay costs Banks adapt their opening balances over time, learning from experience, until equilibrium is reached We look at properties of equilibrium liquidity Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Model overview We consider two scenarios: “ normal  conditions” and “operational failures” RTGS  á  la  UK CHAPS: banks choose an opening balance at the beginning of each day, used to settle payments during the day. Banks face a random stream of payment orders, to be settled out of their liquidity. Beside funding costs, banks (may) experience delay costs Banks adapt their opening balances over time, learning from experience, until equilibrium is reached We look at properties of equilibrium liquidity Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm i  receives order to pay to  i time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm i  receives order to pay to  i if  i  has funds the order is settled :  j  receives funds else, the order is queued time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm i  receives order to pay to  i if  i  has funds the order is settled :  j  receives funds if  j  has queued payments,  the first one (say to  k ) is settled else, the order is queued time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm i  receives order to pay to  i if  i  has funds the order is settled : j receives funds if  j  has queued payments,  the first one (say to  k ) is settled if  k  has queued payments,  the first one (to ...) is settled else, the order is queued time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm i  receives order to pay to  i if  i  has funds the order is settled : j receives funds if  j  has queued payments,  the first one (say to  k ) is settled if  k  has queued payments,  the first one (to ...) is settled ...  cascade  ends when the recipient of the payment has no queued payments else, the order is queued time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm i  receives order to pay to  i if  i  has funds the order is settled : j receives funds if  j  has queued payments,  the first one (say to  k ) is settled if  k  has queued payments,  the first one (to ...) is settled ...  cascade  ends when the recipient of the payment has no queued payments else, the order is queued the algorithm is run 30 million times, for different liquidity levels k  receives order to pay to  z time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm i  receives order to pay to  i if  i  has funds the order is settled : j receives funds if  j  has queued payments,  the first one (say to  k ) is settled if  k  has queued payments,  the first one (to ...) is settled ...  cascade  ends when the recipient of the payment has no queued payments else, the order is queued the algorithm is run 30 million times, for different liquidity levels k  receives order to pay to  z Payment orders arrive according to a Poisson process. Each bank equally likely as sender/ recipient   complete symmetric network time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm ,[object Object],Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm ,[object Object],funds committed by  i Delays Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Settlement algorithm ,[object Object],funds committed by  i Delays Costs Costs funds committed by  i Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
The liquidity game ,[object Object],Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
The liquidity game ,[object Object],Best reply ,[object Object],[object Object],[object Object],funds committed by others Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Learning the equilibrium Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Learning the equilibrium ,[object Object],[object Object],[object Object],Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Learning the equilibrium ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Learning the equilibrium ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Total costs price of delays = 1 price of delays = 2 price of delays = 5 price of delays = 20 cost,  i cost,  i cost,  i cost,  i funds committed by  i funds committed by  i funds committed by  i funds committed by  i funds committed by <j> funds committed by others funds committed by others funds committed by others funds committed by others Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Base case results (15 banks) ,[object Object],[object Object],[object Object],[object Object],price of delays funds committed delays funds committed by  i 10-fold decrease for each ~20 units of liquidity Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Efficiency ,[object Object],[object Object],price of delays price of delays liquidity costs orange  = best non-equilibrium common action Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
System size, fixed turnover by bank ,[object Object],[object Object],Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
System size, fixed total turnover ,[object Object],[object Object],Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],increase in delays example of changed behavior cost, i funds committed by i funds committed by <j> funds committed by i increase in delays for i (0,1) Operational incident 1 Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
Operational incident 2 ,[object Object],[object Object],[object Object],price of delays funds committed by  i Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Conclusions Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1

Mais conteúdo relacionado

Mais de Kimmo Soramaki

Global Network of Payment Flows - Presentation at Commerzbank Cash Forum
Global Network of Payment Flows - Presentation at Commerzbank Cash ForumGlobal Network of Payment Flows - Presentation at Commerzbank Cash Forum
Global Network of Payment Flows - Presentation at Commerzbank Cash ForumKimmo Soramaki
 
Visualizing Financial Stress - Talk at European Central Bank
Visualizing Financial Stress - Talk at European Central BankVisualizing Financial Stress - Talk at European Central Bank
Visualizing Financial Stress - Talk at European Central BankKimmo Soramaki
 
Financial Cartography at Bogazici University
Financial Cartography at Bogazici UniversityFinancial Cartography at Bogazici University
Financial Cartography at Bogazici UniversityKimmo Soramaki
 
Network Simulations for Business Continuity
Network Simulations for Business ContinuityNetwork Simulations for Business Continuity
Network Simulations for Business ContinuityKimmo Soramaki
 
Financial Cartography for Payments and Markets
Financial Cartography for Payments and MarketsFinancial Cartography for Payments and Markets
Financial Cartography for Payments and MarketsKimmo Soramaki
 
Quantitative Oversight of Financial Market Infrastructures
Quantitative Oversight of Financial Market InfrastructuresQuantitative Oversight of Financial Market Infrastructures
Quantitative Oversight of Financial Market InfrastructuresKimmo Soramaki
 
Emerging Stress Scenarios
Emerging Stress ScenariosEmerging Stress Scenarios
Emerging Stress ScenariosKimmo Soramaki
 
Network Approaches for Interbank Markets
Network Approaches for Interbank MarketsNetwork Approaches for Interbank Markets
Network Approaches for Interbank MarketsKimmo Soramaki
 
System shock analysis and complex network effects
System shock analysis and complex network effectsSystem shock analysis and complex network effects
System shock analysis and complex network effectsKimmo Soramaki
 
Adaptive Stress Testing
Adaptive Stress TestingAdaptive Stress Testing
Adaptive Stress TestingKimmo Soramaki
 
Illuminating Interconnectedness and Contagion
Illuminating Interconnectedness and ContagionIlluminating Interconnectedness and Contagion
Illuminating Interconnectedness and ContagionKimmo Soramaki
 
Financial Networks and Cartography
Financial Networks and CartographyFinancial Networks and Cartography
Financial Networks and CartographyKimmo Soramaki
 
Financial Networks VI - Correlation Networks
Financial Networks VI - Correlation NetworksFinancial Networks VI - Correlation Networks
Financial Networks VI - Correlation NetworksKimmo Soramaki
 
Financial Networks V - Inferring Links
Financial Networks V - Inferring LinksFinancial Networks V - Inferring Links
Financial Networks V - Inferring LinksKimmo Soramaki
 
Financial Cartography - PRMIA Webinar
Financial Cartography - PRMIA WebinarFinancial Cartography - PRMIA Webinar
Financial Cartography - PRMIA WebinarKimmo Soramaki
 
Financial Networks IV. Analyzing and Visualizing Exposures
Financial Networks IV. Analyzing and Visualizing ExposuresFinancial Networks IV. Analyzing and Visualizing Exposures
Financial Networks IV. Analyzing and Visualizing ExposuresKimmo Soramaki
 
Financial Networks III. Centrality and Systemic Importance
Financial Networks III. Centrality and Systemic ImportanceFinancial Networks III. Centrality and Systemic Importance
Financial Networks III. Centrality and Systemic ImportanceKimmo Soramaki
 
Financial Cartography - Center for Financial Research
Financial Cartography - Center for Financial ResearchFinancial Cartography - Center for Financial Research
Financial Cartography - Center for Financial ResearchKimmo Soramaki
 
Financial Networks: II. Fundamentals of Network Theory and FNA
Financial Networks: II. Fundamentals of Network Theory and FNAFinancial Networks: II. Fundamentals of Network Theory and FNA
Financial Networks: II. Fundamentals of Network Theory and FNAKimmo Soramaki
 

Mais de Kimmo Soramaki (20)

Global Network of Payment Flows - Presentation at Commerzbank Cash Forum
Global Network of Payment Flows - Presentation at Commerzbank Cash ForumGlobal Network of Payment Flows - Presentation at Commerzbank Cash Forum
Global Network of Payment Flows - Presentation at Commerzbank Cash Forum
 
Visualizing Financial Stress - Talk at European Central Bank
Visualizing Financial Stress - Talk at European Central BankVisualizing Financial Stress - Talk at European Central Bank
Visualizing Financial Stress - Talk at European Central Bank
 
Financial Cartography
Financial CartographyFinancial Cartography
Financial Cartography
 
Financial Cartography at Bogazici University
Financial Cartography at Bogazici UniversityFinancial Cartography at Bogazici University
Financial Cartography at Bogazici University
 
Network Simulations for Business Continuity
Network Simulations for Business ContinuityNetwork Simulations for Business Continuity
Network Simulations for Business Continuity
 
Financial Cartography for Payments and Markets
Financial Cartography for Payments and MarketsFinancial Cartography for Payments and Markets
Financial Cartography for Payments and Markets
 
Quantitative Oversight of Financial Market Infrastructures
Quantitative Oversight of Financial Market InfrastructuresQuantitative Oversight of Financial Market Infrastructures
Quantitative Oversight of Financial Market Infrastructures
 
Emerging Stress Scenarios
Emerging Stress ScenariosEmerging Stress Scenarios
Emerging Stress Scenarios
 
Network Approaches for Interbank Markets
Network Approaches for Interbank MarketsNetwork Approaches for Interbank Markets
Network Approaches for Interbank Markets
 
System shock analysis and complex network effects
System shock analysis and complex network effectsSystem shock analysis and complex network effects
System shock analysis and complex network effects
 
Adaptive Stress Testing
Adaptive Stress TestingAdaptive Stress Testing
Adaptive Stress Testing
 
Illuminating Interconnectedness and Contagion
Illuminating Interconnectedness and ContagionIlluminating Interconnectedness and Contagion
Illuminating Interconnectedness and Contagion
 
Financial Networks and Cartography
Financial Networks and CartographyFinancial Networks and Cartography
Financial Networks and Cartography
 
Financial Networks VI - Correlation Networks
Financial Networks VI - Correlation NetworksFinancial Networks VI - Correlation Networks
Financial Networks VI - Correlation Networks
 
Financial Networks V - Inferring Links
Financial Networks V - Inferring LinksFinancial Networks V - Inferring Links
Financial Networks V - Inferring Links
 
Financial Cartography - PRMIA Webinar
Financial Cartography - PRMIA WebinarFinancial Cartography - PRMIA Webinar
Financial Cartography - PRMIA Webinar
 
Financial Networks IV. Analyzing and Visualizing Exposures
Financial Networks IV. Analyzing and Visualizing ExposuresFinancial Networks IV. Analyzing and Visualizing Exposures
Financial Networks IV. Analyzing and Visualizing Exposures
 
Financial Networks III. Centrality and Systemic Importance
Financial Networks III. Centrality and Systemic ImportanceFinancial Networks III. Centrality and Systemic Importance
Financial Networks III. Centrality and Systemic Importance
 
Financial Cartography - Center for Financial Research
Financial Cartography - Center for Financial ResearchFinancial Cartography - Center for Financial Research
Financial Cartography - Center for Financial Research
 
Financial Networks: II. Fundamentals of Network Theory and FNA
Financial Networks: II. Fundamentals of Network Theory and FNAFinancial Networks: II. Fundamentals of Network Theory and FNA
Financial Networks: II. Fundamentals of Network Theory and FNA
 

Último

Collecting banker, Capacity of collecting Banker, conditions under section 13...
Collecting banker, Capacity of collecting Banker, conditions under section 13...Collecting banker, Capacity of collecting Banker, conditions under section 13...
Collecting banker, Capacity of collecting Banker, conditions under section 13...RaniT11
 
Economics Presentation-2.pdf xxjshshsjsjsjwjw
Economics Presentation-2.pdf xxjshshsjsjsjwjwEconomics Presentation-2.pdf xxjshshsjsjsjwjw
Economics Presentation-2.pdf xxjshshsjsjsjwjwmordockmatt25
 
abortion pills in Riyadh Saudi Arabia (+919707899604)cytotec pills in dammam
abortion pills in Riyadh Saudi Arabia (+919707899604)cytotec pills in dammamabortion pills in Riyadh Saudi Arabia (+919707899604)cytotec pills in dammam
abortion pills in Riyadh Saudi Arabia (+919707899604)cytotec pills in dammamsamsungultra782445
 
Business Principles, Tools, and Techniques in Participating in Various Types...
Business Principles, Tools, and Techniques  in Participating in Various Types...Business Principles, Tools, and Techniques  in Participating in Various Types...
Business Principles, Tools, and Techniques in Participating in Various Types...jeffreytingson
 
Explore Dual Citizenship in Africa | Citizenship Benefits & Requirements
Explore Dual Citizenship in Africa | Citizenship Benefits & RequirementsExplore Dual Citizenship in Africa | Citizenship Benefits & Requirements
Explore Dual Citizenship in Africa | Citizenship Benefits & Requirementsmarketingkingdomofku
 
Call Girls Howrah ( 8250092165 ) Cheap rates call girls | Get low budget
Call Girls Howrah ( 8250092165 ) Cheap rates call girls | Get low budgetCall Girls Howrah ( 8250092165 ) Cheap rates call girls | Get low budget
Call Girls Howrah ( 8250092165 ) Cheap rates call girls | Get low budgetSareena Khatun
 
Strategic Resources May 2024 Corporate Presentation
Strategic Resources May 2024 Corporate PresentationStrategic Resources May 2024 Corporate Presentation
Strategic Resources May 2024 Corporate PresentationAdnet Communications
 
logistics industry development power point ppt.pdf
logistics industry development power point ppt.pdflogistics industry development power point ppt.pdf
logistics industry development power point ppt.pdfSalimullah13
 
Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...
Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...
Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...batoole333
 
Responsible Finance Principles and Implication
Responsible Finance Principles and ImplicationResponsible Finance Principles and Implication
Responsible Finance Principles and ImplicationNghiaPham100
 
cost-volume-profit analysis.ppt(managerial accounting).pptx
cost-volume-profit analysis.ppt(managerial accounting).pptxcost-volume-profit analysis.ppt(managerial accounting).pptx
cost-volume-profit analysis.ppt(managerial accounting).pptxazadalisthp2020i
 
Lion One Corporate Presentation May 2024
Lion One Corporate Presentation May 2024Lion One Corporate Presentation May 2024
Lion One Corporate Presentation May 2024Adnet Communications
 
Test bank for advanced assessment interpreting findings and formulating diffe...
Test bank for advanced assessment interpreting findings and formulating diffe...Test bank for advanced assessment interpreting findings and formulating diffe...
Test bank for advanced assessment interpreting findings and formulating diffe...robinsonayot
 
Dubai Call Girls Deira O525547819 Dubai Call Girls Bur Dubai Multiple
Dubai Call Girls Deira O525547819 Dubai Call Girls Bur Dubai MultipleDubai Call Girls Deira O525547819 Dubai Call Girls Bur Dubai Multiple
Dubai Call Girls Deira O525547819 Dubai Call Girls Bur Dubai Multiplekojalpk89
 
20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...Henry Tapper
 
Law of Demand.pptxnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Law of Demand.pptxnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnLaw of Demand.pptxnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Law of Demand.pptxnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTintoTom3
 
Stock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfStock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfMichael Silva
 
Famous Kala Jadu, Black magic expert in Faisalabad and Kala ilam specialist i...
Famous Kala Jadu, Black magic expert in Faisalabad and Kala ilam specialist i...Famous Kala Jadu, Black magic expert in Faisalabad and Kala ilam specialist i...
Famous Kala Jadu, Black magic expert in Faisalabad and Kala ilam specialist i...batoole333
 
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadhabortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadhsamsungultra782445
 

Último (20)

Collecting banker, Capacity of collecting Banker, conditions under section 13...
Collecting banker, Capacity of collecting Banker, conditions under section 13...Collecting banker, Capacity of collecting Banker, conditions under section 13...
Collecting banker, Capacity of collecting Banker, conditions under section 13...
 
Economics Presentation-2.pdf xxjshshsjsjsjwjw
Economics Presentation-2.pdf xxjshshsjsjsjwjwEconomics Presentation-2.pdf xxjshshsjsjsjwjw
Economics Presentation-2.pdf xxjshshsjsjsjwjw
 
abortion pills in Riyadh Saudi Arabia (+919707899604)cytotec pills in dammam
abortion pills in Riyadh Saudi Arabia (+919707899604)cytotec pills in dammamabortion pills in Riyadh Saudi Arabia (+919707899604)cytotec pills in dammam
abortion pills in Riyadh Saudi Arabia (+919707899604)cytotec pills in dammam
 
Business Principles, Tools, and Techniques in Participating in Various Types...
Business Principles, Tools, and Techniques  in Participating in Various Types...Business Principles, Tools, and Techniques  in Participating in Various Types...
Business Principles, Tools, and Techniques in Participating in Various Types...
 
Explore Dual Citizenship in Africa | Citizenship Benefits & Requirements
Explore Dual Citizenship in Africa | Citizenship Benefits & RequirementsExplore Dual Citizenship in Africa | Citizenship Benefits & Requirements
Explore Dual Citizenship in Africa | Citizenship Benefits & Requirements
 
Call Girls Howrah ( 8250092165 ) Cheap rates call girls | Get low budget
Call Girls Howrah ( 8250092165 ) Cheap rates call girls | Get low budgetCall Girls Howrah ( 8250092165 ) Cheap rates call girls | Get low budget
Call Girls Howrah ( 8250092165 ) Cheap rates call girls | Get low budget
 
Strategic Resources May 2024 Corporate Presentation
Strategic Resources May 2024 Corporate PresentationStrategic Resources May 2024 Corporate Presentation
Strategic Resources May 2024 Corporate Presentation
 
logistics industry development power point ppt.pdf
logistics industry development power point ppt.pdflogistics industry development power point ppt.pdf
logistics industry development power point ppt.pdf
 
W.D. Gann Theory Complete Information.pdf
W.D. Gann Theory Complete Information.pdfW.D. Gann Theory Complete Information.pdf
W.D. Gann Theory Complete Information.pdf
 
Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...
Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...
Black magic specialist in Canada (Kala ilam specialist in UK) Bangali Amil ba...
 
Responsible Finance Principles and Implication
Responsible Finance Principles and ImplicationResponsible Finance Principles and Implication
Responsible Finance Principles and Implication
 
cost-volume-profit analysis.ppt(managerial accounting).pptx
cost-volume-profit analysis.ppt(managerial accounting).pptxcost-volume-profit analysis.ppt(managerial accounting).pptx
cost-volume-profit analysis.ppt(managerial accounting).pptx
 
Lion One Corporate Presentation May 2024
Lion One Corporate Presentation May 2024Lion One Corporate Presentation May 2024
Lion One Corporate Presentation May 2024
 
Test bank for advanced assessment interpreting findings and formulating diffe...
Test bank for advanced assessment interpreting findings and formulating diffe...Test bank for advanced assessment interpreting findings and formulating diffe...
Test bank for advanced assessment interpreting findings and formulating diffe...
 
Dubai Call Girls Deira O525547819 Dubai Call Girls Bur Dubai Multiple
Dubai Call Girls Deira O525547819 Dubai Call Girls Bur Dubai MultipleDubai Call Girls Deira O525547819 Dubai Call Girls Bur Dubai Multiple
Dubai Call Girls Deira O525547819 Dubai Call Girls Bur Dubai Multiple
 
20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...
20240419-SMC-submission-Annual-Superannuation-Performance-Test-–-design-optio...
 
Law of Demand.pptxnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Law of Demand.pptxnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnLaw of Demand.pptxnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Law of Demand.pptxnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
 
Stock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdfStock Market Brief Deck (Under Pressure).pdf
Stock Market Brief Deck (Under Pressure).pdf
 
Famous Kala Jadu, Black magic expert in Faisalabad and Kala ilam specialist i...
Famous Kala Jadu, Black magic expert in Faisalabad and Kala ilam specialist i...Famous Kala Jadu, Black magic expert in Faisalabad and Kala ilam specialist i...
Famous Kala Jadu, Black magic expert in Faisalabad and Kala ilam specialist i...
 
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadhabortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
abortion pills in Jeddah Saudi Arabia (+919707899604)cytotec pills in Riyadh
 

An agent-based model of payment systems

  • 1. An agent-based model of payment systems Marco Galbiati Bank of England Kimmo Soramäki ECB, www.soramaki.net ECB-BoE Conference Payments and Monetary and Financial Stability 12-13 November 2007
  • 2. Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 3. Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 4. Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 5. Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 6. Motivation, related work Model Results Conclusions Overview of the presentation Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 7. Liquidity in payment systems Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 8. Liquidity in payment systems Deferred Net Settlement vs Real Time Gross Settlement Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 9. Liquidity in payment systems Deferred Net Settlement vs Real Time Gross Settlement Liquidity risk (and operational risk) Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 10. Liquidity in payment systems Deferred Net Settlement vs Real Time Gross Settlement Liquidity risk (and operational risk) Liquidity as a common good Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 11. Liquidity is costly: tradeoff cost-of-liquidity / cost-of-delay Liquidity in payment systems Deferred Net Settlement vs Real Time Gross Settlement Liquidity risk (and operational risk) Liquidity as a common good Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 12. Related literature Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 13.
  • 14.
  • 15. Model overview RTGS á la UK CHAPS: banks choose an opening balance at the beginning of each day, used to settle payments during the day. Banks face a random stream of payment orders, to be settled out of their liquidity. Beside funding costs, banks (may) experience delay costs Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 16. Model overview RTGS á la UK CHAPS: banks choose an opening balance at the beginning of each day, used to settle payments during the day. Banks face a random stream of payment orders, to be settled out of their liquidity. Beside funding costs, banks (may) experience delay costs Banks adapt their opening balances over time, learning from experience, until equilibrium is reached We look at properties of equilibrium liquidity Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 17. Model overview We consider two scenarios: “ normal conditions” and “operational failures” RTGS á la UK CHAPS: banks choose an opening balance at the beginning of each day, used to settle payments during the day. Banks face a random stream of payment orders, to be settled out of their liquidity. Beside funding costs, banks (may) experience delay costs Banks adapt their opening balances over time, learning from experience, until equilibrium is reached We look at properties of equilibrium liquidity Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 18. Settlement algorithm i receives order to pay to i time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 19. Settlement algorithm i receives order to pay to i if i has funds the order is settled : j receives funds else, the order is queued time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 20. Settlement algorithm i receives order to pay to i if i has funds the order is settled : j receives funds if j has queued payments, the first one (say to k ) is settled else, the order is queued time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 21. Settlement algorithm i receives order to pay to i if i has funds the order is settled : j receives funds if j has queued payments, the first one (say to k ) is settled if k has queued payments, the first one (to ...) is settled else, the order is queued time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 22. Settlement algorithm i receives order to pay to i if i has funds the order is settled : j receives funds if j has queued payments, the first one (say to k ) is settled if k has queued payments, the first one (to ...) is settled ... cascade ends when the recipient of the payment has no queued payments else, the order is queued time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 23. Settlement algorithm i receives order to pay to i if i has funds the order is settled : j receives funds if j has queued payments, the first one (say to k ) is settled if k has queued payments, the first one (to ...) is settled ... cascade ends when the recipient of the payment has no queued payments else, the order is queued the algorithm is run 30 million times, for different liquidity levels k receives order to pay to z time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 24. Settlement algorithm i receives order to pay to i if i has funds the order is settled : j receives funds if j has queued payments, the first one (say to k ) is settled if k has queued payments, the first one (to ...) is settled ... cascade ends when the recipient of the payment has no queued payments else, the order is queued the algorithm is run 30 million times, for different liquidity levels k receives order to pay to z Payment orders arrive according to a Poisson process. Each bank equally likely as sender/ recipient  complete symmetric network time Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30. Learning the equilibrium Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 31.
  • 32.
  • 33.
  • 34. Total costs price of delays = 1 price of delays = 2 price of delays = 5 price of delays = 20 cost, i cost, i cost, i cost, i funds committed by i funds committed by i funds committed by i funds committed by i funds committed by <j> funds committed by others funds committed by others funds committed by others funds committed by others Social Optimum 11 Size I 12 Size II 13 Conclusions 16 Incident II 15 Incident I 14 Base case 10 Total costs 9 Learning 8 The game 7 Algorithm II 6 Algorithm 5 Model 4 Literature 3 Liquidity 2 Overview 1
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.