SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
Rev. Int. Contam. Ambie. 30 (2) 191-199, 2014
EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA EN
SUELOS AGRÍCOLAS
Luis Carlos GONZÁLEZ-MÁRQUEZ1 y Anne M. HANSEN2*
1	Departamento de Ingeniería y Tecnología, Universidad de Occidente, Unidad Guasave, Sinaloa, México
2	Coordinación de Hidrología Subcoordinación de Hidrología Subterránea, Instituto Mexicano de Tecnología
del Agua
*	Autora responsable; ahansen@tlaloc.imta.mx
(Recibido octubre 2013, aceptado abril 2014)
Palabras clave: atrazina, cloruro de sodio, cloruro de calcio, adsorción, desorción, atenuación natural
RESUMEN
Para entender el efecto de la salinidad sobre la adsorción del herbicida atrazina en
suelo, se determinó la influencia de las concentraciones de cloruros de sodio y de
calcio en este proceso en dos suelos de una zona agrícola de México. Los experimen-
tos de adsorción se realizaron con muestras de suelo del Distrito de Riego 063 (DR
063), Guasave, Sinaloa, México, suspendidas en 10 mM de CaCl2, en presencia de
varias concentraciones de diferentes electrolitos y atrazina (0.01, 0.05, 0.1, 0.5 y 1.0
mg/L) con trazador radiactivo (347.4 Bq U-ring-14C, Sigma Chemical Company, San
Luis, MO, EUA). Se encontró que para todos los electrolitos el tiempo requerido para
alcanzar el equilibrio de adsorción de atrazina fue menor a 24 h y las isotermas de
adsorción se ajustaron al modelo de Freundlich. La presencia de sodio en la solución
acuosa favoreció la adsorción e inhibió la desorción de atrazina en los suelos. El
incremento de las concentraciones de sodio y de calcio a aproximadamente 40 mM
y 60 mM, respectivamente, no afectó significativamente (P < 0.05) la adsorción de
atrazina. Sin embargo, sí se presentaron diferencias en la desadsorción del herbicida
con el incremento de las sales. Los resultados de este estudio indican que el incremento
de la salinidad, principalmente por el aumento de sodio en el sistema agua-suelo, tiene
efectos importantes en el destino final de la atrazina, dado que la salinización de los
suelos favorece la adsorción de este compuesto e inhibe su desadsorción. Es importante
considerar estas propiedades cuando se analizan las opciones de aplicación y en el
manejo del saneamiento de suelos contaminados con atrazina.
Key words: atrazine, sodium chloride, calcium chloride, adsorption, desorption, natural attenuation
ABSTRACT
To understand the effect of salinity on the adsorption of the herbicide atrazine in two soils
from a Mexican agricultural area, the influence of sodium and calcium chloride concentra-
tions were determined. Adsorption experiments were performed with soil samples from
Irrigation District 063 (DR 063), Guasave, Sinaloa, Mexico, suspended in 10 mM CaCl2,
in the presence of several concentrations of different electrolytes and atrazine (0.01, 0.05,
0.1, 0.5 and 1.0 mg/L) with radioactive tracer (347.4 Bq U-ring-14C, Sigma Chemical
L.C. González-Márquez y A.M. Hansen192
Company, St. Louis, MO, USA). It was found that for all the electrolytes, the time re-
quired to reach equilibrium adsorption of atrazine was less than 24 h and the adsorption
isotherms were adjusted to Freundlich model. The presence of sodium in the aqueous
solution favored the adsorption and inhibited desorption of atrazine in soils. Increasing
the concentrations of sodium and calcium to about 40 mM and 60 mM, respectively,
did not significantly affect (P <0.05) the adsorption of atrazine. However, there were
differences in desorption of the herbicide with the increase of salts concentrations. The
results of this study indicate that increased salinity, mainly caused by increased sodium
concentrations in the soil-water system, has important effects on the fate of atrazine, due
to salinization of soils favors the adsorption of atrazine, and inhibits its desorption. It is
important to consider these properties when application options are analyzed as well as
in the management and remediation of soils contaminated with atrazine.
INTRODUCCIÓN
Como consecuencia del proceso de adsorción,
los herbicidas se retienen sobre superficies de par-
tículas minerales y orgánicas del suelo, provocando
un comportamiento diferente de las moléculas di-
sueltas en el agua del suelo. Por su menor tamaño
y consecuente mayor área de superficie, la fracción
coloidal del suelo tiende a retener las moléculas de
los herbicidas. Por consiguiente, la adsorción de los
herbicidas por la fracción coloidal del suelo actúa
modificando los procesos de degradación y transpor-
te de herbicidas en el suelo, así como la actividad de
estas sustancias para combatir a las plagas a los que
son destinados. Estos procesos tienen importantes
repercusiones para el destino final de los herbicidas
y sobre los mecanismos de transporte en el suelo,
por lo que el conocimiento del proceso de adsorción
en la fracción coloidal del suelo es fundamental
en la descripción de la actividad herbicida y el
destino de la atrazina en el suelo (Sánchez Martín
y Sánchez Camazano 1984). La atrazina (2-cloro-
4-etilamino-6-isopropilamino-1,3,5-triazina) es un
herbicida selectivo ampliamente utilizado en las
zonas agrícolas de México para el control de ma-
lezas de hoja ancha, es absorbido principalmente
por las raíces y las hojas, provocando la inhibición
de la fotosíntesis en las malezas (Syngenta 2006).
Dado que se ha encontrado que este herbicida llega
a contaminar fuentes de abastecimiento de agua,
se asocia con riesgos para la salud (Van Leewen
et al. 1999, Tappe et al. 2002, Gilliom et al. 2006,
Hernández-Antonio y Hansen 2011).
La adsorción de atrazina se puede favorecer o
inhibir por la influencia de diferentes componentes
del suelo (Blume et al. 2004, Ling et al. 2005,
González-Márquez y Hansen 2009a), mientras que
por efecto de envejecimiento se incrementa la re-
sistencia para que el herbicida sea desadsorbido del
suelo (Mersie et al. 1998, Gao et al. 1998, Lesan y
Bhandari 2003). Dependiendo del tipo de suelo y
de la concentración de materia orgánica (M.O.), se
ha reportado histéresis en las curvas de adsorción-
desadsorción de la atrazina en función del tiempo
(Ma et al. 1993, Lesan y Bhandari 2003), donde
la tasa de desadsorción es menor que la de adsor-
ción. Entre las posibles causas de esta histéresis se
encuentra la incapacidad del herbicida de alcanzar
el equilibrio durante la adsorción o desadsorción
(Altfelder et al. 2000), interacciones irreversibles
del herbicida con la M.O. o los minerales arcillosos
del suelo (Bhandari et al. 1996) y a la retención de
moléculas adsorbidas en meso y micro poros dentro
de las estructuras minerales y de la M.O. (Farrell y
Reinhard 1994, Weber et al. 1998).
La concentración de sales en el suelo también pue-
de afectar la adsorción de plaguicidas, dependiendo
de la composición y concentración de la sal y de las
características del plaguicida y del suelo adsorbente
(Alva y Singh 1991, De Jonge y De Jonge 1999, Kah
2007). Clausen et al. (2001) reportaron un incremento
en la capacidad de adsorción de mesocrop y de 2,4-D
en caolinita, con el aumento en la concentración de
CaCl2 en sistemas agua-suelo.Asimismo, Kah (2007)
reportó resultados similares sobre la adsorción de
2,4-D y flupirsulfurón-metil en suelos franco arcillo
arenosos. Sin embargo, Hyun y Lee (2004) reporta-
ron que el incremento en la concentración de CaCl2
disminuyó la adsorción de prosulfurón en un suelo
con alta capacidad de intercambio catiónico.
La influencia positiva de las sales en la adsorción
de la atrazina se debe en parte a que los cationes que
componen las sales sustituyen los protones en las
superficies minerales y orgánicas del suelo, causando
una ligera disminución en el pH y aumentando la
carga positiva del suelo, favoreciendo así la adsorción
del herbicida (De Jonge y De Jonge 1999). Las sales
también ocasionan la compresión de la capa difusa de
EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA 193
los componentes del suelo, favoreciendo la formación
de complejos entre cationes multivalentes en el suelo
y plaguicidas como atrazina y glifosato (Laird et al.
1992, De Jonge y De Jonge 1999, Mao y Ren 2010).
De Jonge y De Jonge (1999) encontraron que la es-
tabilidad de los coloides en un suelo franco arenoso
también influye en la adsorción de plaguicidas, ya que
estos sólidos, igual que la M.O. del suelo, tienden a
aglomerarse e incrementar su masa específica con
el aumento de la salinidad, logrando así favorecer
la adsorción. Sin embargo, resultados reportados
por González-Márquez y Hansen (2009b) indican
que la adsorción de atrazina en la materia orgánica
(ácido húmico Aldrich) se inhibe con el incremento
de la salinidad, aun cuando la masa específica del
adsorbente aumenta.
Debido a lo anterior, no se puede generalizar el
efecto de la concentración de sales en la adsorción
de plaguicidas en suelos, ya que las interacciones o
mecanismos de adsorción son complejos y dependen
tanto de la naturaleza del plaguicida como del suelo
como medio adsorbente. Es por ello que en la lite-
ratura se han reportado tanto efectos positivos como
negativos de la salinidad del suelo en la adsorción
de plaguicidas. En este trabajo se investiga el efecto
del incremento de la concentración de sales de sodio
y de calcio en las cinéticas e isotermas de adsorción
y desadsorción de atrazina, en suelos agrícolas del
noroeste de México, con el fin de contribuir al en-
tendimiento de la migración del herbicida en suelos
salinos.
MATERIALES Y MÉTODOS
Caracterización de muestras de suelo
Se caracterizaron dos muestras de suelo obtenidas
de parcelas agrícolas del noroeste del país (Cuadro I).
La muestra de suelo I fue caracterizada por González-
Márquez y Hansen (2009a). La muestra II se colectó
en marzo de 2007, de una parcela donde el principal
cultivo sembrado fue maíz. La muestra se obtuvo de
los primeros 20 cm de la superficie del suelo con una
barrenadora manual, obteniendo 2 kg de suelo que se
colocaron en bolsas de plástico y bajo refrigeración
en hielo durante el transporte al laboratorio. El sue-
lo fue secado a temperatura ambiente, disgregado,
tamizado (≤ 2 mm) y almacenado en refrigeración
a 4 ºC. En las muestras de suelo se evaluó el pH
(Eckert y Sims 1995) y la conductividad eléctrica
(C.E.) (Gartley 1995) en suspensiones de suelo:agua
(relación 1:2). La M.O. se evaluó acorde al método
D 2974-00 (ASTM 2000), el cual consiste en la
calcinación de la muestra de suelo a 440 ºC y por
diferencia de pesos se determina el contenido de
M.O. El contenido de arena, limo y arcilla se evaluó
por el método D42-63 (ASTM 1998); la distribución
de partículas de tamaño mayor a 0.074 mm se deter-
minó por tamizado, mientras que las partículas de
tamaño menor se evaluaron mediante un proceso de
sedimentación. Sodio, nitratos y amonio se evaluaron
con un electrodo ion selectivo; el sodio se evaluó en
una suspensión suelo:agua (relación 1:2) (Instrulab
5771101); los nitratos y el amonio en una suspensión
suelo:2MKCl (relación 1:2.5) (Griffin et al. 1995). La
concentración de calcio se evaluó fotométricamente
en una suspensión suelo:agua (relación 1:2) (Merck
2006).
Evaluación de la adsorción y desadsorción de
atrazina
La metodología para evaluar las cinéticas e
isotermas de adsorción y desadsorción de atrazina
fue acorde con la guía TG 106 de la Organización
para la Cooperación y el Desarrollo Económico
(OCDE 2000) y a una modificación de la misma.
La modificación consistió en el uso de diferentes
concentraciones salinas como electrolito de fondo y
diferentes concentraciones de atrazina de las descritas
en la guía. En recipientes de Teflon® de 50 mL, a
25±1ºC,sepusieronencontacto2gdesuelocon9mL
de solución salina (preparada con agua MilliQ, Milli-
pore®, Billerica, MA., resistividad de 18.2 MΩ cm).
En el cuadro II se presentan las características de
CUADRO I. COORDENADAS DE LAS ESTACIONES DE MUESTREO Y CARACTERÍSTICAS DE LOS SUELOS
Suelo Coordenadas
(Grados)
Na
(mmol/kg)
Ca
(mmol/kg)
pH C.E.
(mS/cm)
NO3
–
(mg/kg)
NH4
+
(mg/kg)
M.O.
(%)
Arena
(%)
Limo
(%)
Arcilla
(%)
I 25.60887 O
108.31118 N
0.8 1.43 7.92 0.432 46.02 11.02 3.52 12.82 44.72 42.52
II 25.54338 O
108.43837 N
0.4 0.5 7.5 0.40 26.0 2.0 1.2 0.6 74.4 25
2González-Márquez y Hansen (2009a)
L.C. González-Márquez y A.M. Hansen194
las soluciones salinas utilizadas. Los experimentos
realizados con la solución con clave ”Ia” fueron
experimentos testigo. Se agitaron los recipientes a
80 rpm en un rotador (Cole Palmer, modelo 7637)
durante al menos 20 h, con el fin de hidratar el suelo
y homogeneizar el sistema agua-suelo. Posterior-
mente, se agregó 1 mL de una solución de atrazina
10 mg/L a cada recipiente; la solución se preparó
a partir de un estándar analítico de atrazina (grado
cromatográfico; Chem service, West Chester, PA,
EUA) y atrazina marcada isotópicamente (334 Bq
U-ring-14C, Sigma Chemical Company, San Luis,
MO, EUA). La concentración final de atrazina en los
recipientes fue de 1 mg/L. Se preparó un recipiente
adicional sin suelo (blanco) para evaluar la posible
adsorción de atrazina en las paredes, y un recipiente
sin trazador radiactivo para cuantificar la radiacti-
vidad “de fondo”. Los recipientes se agitaron a 80
rpm durante 1, 7, 15, 24, 48 y 72 h y posteriormente,
se centrifugaron a 12 000 rpm durante 15 min. Se
homogeneizó 1 mL de sobrenadante con 9 mL de
coctel de centelleo (BSC® Amersham Biosciences)
y se cuantificaron las emisiones beta de 14C-atrazina
en un equipo de centelleo líquido (LS 6500 Beckman
Coulter). La eficiencia del equipo fue del 96.5 %,
con base en el conteo de 104 decaimientos por mi-
nuto de un estándar de 14C (Beckman Coulter, lote
S312102). La concentración de atrazina adsorbida se
calculó con base en la diferencia entre la atrazina total
aplicada y la concentración disuelta, cuantificada en
el sobrenadante con el equipo de centelleo líquido.
Con base en los resultados del blanco se encontró
que la adsorción del herbicida en los recipientes fue
despreciable (P < 0.05).
Las cinéticas de desadsorción de la atrazina se
evaluaron en suelos donde previamente el herbici-
da había alcanzado el equilibrio de adsorción. Se
retiraron 8.8 mL de la solución salina con atrazina
disuelta y se adicionó la misma cantidad de solución
salina, sin atrazina. Los recipientes se agitaron a 80
rpm durante 1, 7, 15, 24, 48 y 72 h, se centrifugaron
a 12 000 rpm durante 15 min y se midieron las ac-
tividades de atrazina en el sobrenadante. Todos los
experimentos se realizaron a temperatura ambiente
(25 ± 1ºC) y la reproducibilidad de los resultados se
confirmó a través de al menos 10 % de duplicados
experimentales.
Se obtuvieron las isotermas de adsorción y desad-
sorción de la atrazina con un procedimiento similar
al que se llevó a cabo para evaluación de la cinética,
con concentraciones de atrazina de 0.01, 0.05, 0.1,
0.5 y 1.0 mg/L. De acuerdo con los resultados de
cinética, los tiempos para alcanzar el equilibrio de
adsorción y desadsorción de atrazina, fueron de 24
h. Se realizó una segunda etapa de desadsorción de
manera similar a la primera etapa; consistió en re-
mover de cada recipiente 8.8 mL de sobrenadante y
adicionar el mismo volumen de solución salina. Los
resultados experimentales se ajustaron a los modelos
de Langmuir y de Freundlich, encontrando un mejor
ajuste con el modelo de Freundlich (Ec. 1):
n
efs CKC = 	(1)
Donde Cs (mg/kg) es la concentración de atrazina
adsorbida en el suelo, Ce (mg/L) es la concentración
del herbicida en la solución acuosa, Kf (mg1-n Ln/kg)
es la constante de Freundlich y n es un parámetro
relacionado a la curvatura de la isoterma que indica la
heterogeneidad de los sitios de adsorción. En adelan-
te, Kf y n representan los parámetros de adsorción y
Kfd y nd, los parámetros de desadsorción. Se evaluó la
normalidad de los datos de adsorción y desadsorción
a través de la prueba de Shapiro-Wilk. Las diferen-
cias en adsorción y desadsorción fueron evaluadas
estadísticamente por análisis de varianza; mientras
que la diferencia de medias se realizó a través de la
prueba deTukey, con un nivel de significancia de 5 %,
utilizando el programa estadístico SAS versión 9.0
(SAS Institute 2002).
El coeficiente de histéresis, H, de la desorción
de atrazina, fue calculado acorde con la ecuación 2
(Barriuso et al. 1994):
n
n
H d
= 	(2)
donde n y nd son los parámetros de la ecuación de
Freundlich, de las isotermas de adsorción y desor-
ción, respectivamente.
CUADRO II.	CONCENTRACIONES DE SODIO Y DE
CALCIO EN LAS SOLUCIONES SALINAS
UTILIZADAS EN LOS EXPERIMENTOS DE
ADSORCIÓN DEATRAZINAEN MUESTRAS
DE SUELO
Suelo Clave de
solución salina
Na
(mM)
Ca
(mM)
I Ia* - 10.0
Ib 8.0 11.0
Ic 38.7 57.5
II IIa* - 10.0
IIb 9.1 13.9
IIc 39.9 60.5
* Soluciones acorde con lo recomendado en la Guía TG 106
(OCDE 2000)
EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA 195
RESULTADOS Y DISCUSIÓN
Los resultados de la caracterización de las mues-
tras de suelo se presentan en el cuadro I. El suelo I
es arcillo limoso y el suelo II es franco limoso, ambos
con pH ligeramente alcalino. El contenido de M.O.
está en el rango de 1.2 a 3.5 %, valores típicos para
suelos minerales (Tinsley 2004). Tanto la muestra
del suelo I, como la muestra del suelo II fueron
ligeramente salinas.
El tiempo requerido para alcanzar el equilibrio
de adsorción y desadsorción de la atrazina en las
muestras de suelo fue menor o igual a 24 h (Fig. 1).
El incremento de las concentraciones de sodio y de
calcio no afectó el tiempo requerido para alcanzar el
equilibrio de adsorción y desadsorción del herbicida
en los suelos.
Las isotermas de adsorción y desadsorción de la
atrazina en el suelo se presentan en la figura 2. Los
valores de Kf y Kfd se presentan en el cuadro III,
donde se observa que los valores de Kf son acorde con
los reportados en la literatura para suelos agrícolas
(Socías-Viciana et al. 1999, Coquet 2003, Drori et al.
2005, González-Márquez y Hansen 2009a). Los coe-
ficientes de adsorción entre 0.83 y 1.84 mg1-n Ln/kg
indican baja adsorción de atrazina, respecto a estudios
reportadosparaglifosatoyDDT,queseadsorbenfuer-
temente con coeficientes entre 17 y 280 mg1-n Ln/kg
(Al-Rajab et al. 2008, Lalah et al. 2009).
El promedio de atrazina adsorbida varió entre 24
y 29 % (Cuadro III). Las isotermas de adsorción
fueron no lineales, con valores de n entre 0.90 y 0.96,
con curvaturas cóncavas a la abscisa, indicando que la
adsorción del herbicida se desfavorece al incrementar
su concentración inicial en la solución.
Las concentraciones bajas de sodio (aproximada-
mente 9 mM) y de calcio (aproximadamente 10 mM),
favorecieron la adsorción de atrazina en los suelos
(Fig. 2a y Fig. 2c). Se han reportado resultados
similares por Li et al. (2006), quienes investigaron
el efecto del potasio y el calcio en la adsorción de
atrazina en K- y Ca-esmectita, donde la adsorción
del herbicida en K-esmectita se favoreció al incre-
mentar la concentración de KCl en la solución del
suelo, mientras que la adsorción en Ca-esmectita
permaneció casi constante en presencia de diferentes
concentraciones de CaCl2. Estos autores concluyeron
que la formación de cuasi cristales mejor ordenados
de la esmectita y la reducción de la distancia entre las
capas de la arcilla, debido al incremento de la concen-
tración de KCl, facilitó la retención de atrazina y, por
lo tanto, su adsorción. Nuestros resultados indican
que el incremento de la concentración de sodio tuvo
un efecto similar sobre la adsorción de atrazina en la
parte inorgánica de los suelos. El incremento en las
concentraciones de sodio y de calcio (a aproximada-
mente 40 y 60 mM, respectivamente) en la solución
acuosa no afectó significativamente (P < 0.05) la
adsorción de atrazina. Sin embargo, se presentaron
diferencias en la desadsorción del herbicida con el
incremento de la salinidad (Fig. 2b y Fig. 2d). El pro-
medio de atrazina desadsorbida varió entre 34 y 44 %
(Cuadro III). El suelo que adsorbió más atrazina
(suelo II) fue el que presentó menor desorción del
herbicida; indicando que la naturaleza de las interac-
ciones entre la atrazina y el suelo cambiaron, durante
o después de la adsorción del herbicida.
Los resultados indican que el proceso de adsor-
ción no es controlado por la fracción orgánica del
suelo, ya que si fuese controlado por la M.O. las
isotermas de adsorción se ajustarían mejor al modelo
de adsorción lineal (Barriuso et al. 1994, Yang et al.
2009) y la adsorción del herbicida disminuiría con
el incremento de la concentración de calcio, como
ha sido reportado por González-Márquez y Hansen
(2009b), quienes indican que la adsorción de atrazina
en la M.O. se inhibe con el incremento de la salinidad,
debido a la oclusión de sitios de adsorción, producto
0
20
40
60
80
0 10 20 30 40 50
Atrazinaadsorbida(%)
Tiempo (h)
Ib Ic Ib Ic
(a)
0
20
40
60
80
0 20 40 60 80
Atrazinaadsorbida(%)
Tiempo (hr)
IIb IIc IIb IIc
(b)
Fig. 1.	 Cinéticas de adsorción (símbolos con relleno) y desadsor-
ción (símbolos sin relleno) de atrazina en suelos tratados
con soluciones salinas (a) ♦Ib (8.0 mM Na + 11.0 mM
Ca); ●Ic (38.7 mM Na + 57.5 mM Ca); (b) ♦IIb (9.1 mM
Na + 13.9 mM Ca); ●IIc (39.9 mM Na + 60.5 mM Ca)
L.C. González-Márquez y A.M. Hansen196
de cambios en la conformación de la estructura de la
M.O. Sin embargo, es más irreversible la adsorción de
atrazina en la M.O. de los suelos (Yang et al. 2009).
En el cuadro III se presentan los valores del coe-
ficiente de histéresis, H, de las isotermas de adsorción
y desadsorción de atrazina en los suelos estudiados.
Tras una etapa de desadsorción, los valores de H
fueron cercanos a 1, indicando que la histéresis es mí-
nima (Tang et al. 2009). Mientras que en el suelo II,
tras una segunda etapa de desadsorción (Fig. 3), el
valor de H fue menor a 1, indicando que la tasa de
desadsorción es menor que la de adsorción, por lo
que se presenta mayor histéresis. A medida que la
atrazina es desadsorbida del suelo, el proceso se hace
más difícil, lo que incrementa la histéresis (Fig. 3).
En la literatura se ha reportado que el proceso de
desadsorción de compuestos orgánicos en suelo y
sedimentos suele ser bifásico; uno regido por cinéti-
cas lentas de adsorción/desadsorción y otro por atra-
pamiento físico (Pignatello y Xing 1996, Alexander
2000). Yang et al. (2009) estudiaron la adsorción y
desadsorción de atrazina en suelos y concluyen que
debido a que los equilibrios entre estos procesos
fueron relativamente cortos (tres días), la difusión
0.001
0.010
0.100
1.000
10.000
0.0001 0.0010 0.0100 0.1000 1.0000 10.0000
Ia Ib Ib (a)
0.001
0.010
0.100
1.000
10.000
0.0001 0.0010 0.0100 0.1000 1.0000
Atrazina(mg/kg)
Ic Ic (b)
0.001
0.010
0.100
1.000
10.000
0.0001 0.0010 0.0100 0.1000 1.0000
Atrazina(mg/kg)Atrazina(mg/kg)
Atrazina (mg/L)
IIa IIa IIb IIb
(c)
0.001
0.010
0.100
1.000
10.000
0.0001 0.0010 0.0100 0.1000 1.0000
Atrazina(mg/kg)
Atrazina (mg/L)
Atrazina (mg/L) Atrazina (mg/L)
IIc IIc
(d)
Fig. 2.	 Isotermas de adsorción (símbolos con relleno) y de desadsorción (símbolos sin relleno) de atrazina en suelos tratados con
soluciones salinas (a) ▲Ia (10.0 mM Ca); ♦Ib (8.0 mM Na + 11.0 mM Ca); (b) ●Ic (38.7 mM Na + 57.5 mM Ca); (c)
▲IIa (10.0 mM Ca); ♦IIb (9.1 mM Na + 13.9 mM Ca); (d) ●IIc (39.9 mM Na + 60.5 mM Ca)
CUADRO III. COEFICIENTES DE ADSORCIÓN, DESADSORCIÓN Y DE HISTÉRESIS
Suelo Clave de
solución salina
Adsorción (%) Kf
(mg1-n Ln/kg)
n r2 Desadsorción
(%)
Kfd
(mg1-n Ln/kg)
nd r2 H
I Ia 16.4 0.83 0.94 0.9996 - - - - -
Ib 24.4 1.41 0.94 0.9998 44.1 5.62 0.97 0.9984 1.02
Ic 24.0 1.41 0.95 0.9983 43.4 6.30 0.99 0.9953 1.04
II IIa 22.8 1.14 0.90 0.9936 47.9 3.33 0.89 0.9677 0.99
IIa* - - - - 20.2 10.76* 0.88* 0.9834 0.98*
IIb 29.1 1.79 0.95 0.9940 34.2 9.85 1.00 0.9851 1.06
IIc 29.2 1.84 0.96 0.9957 35.4 8.79 0.99 0.9889 1.03
*segunda etapa de desadsorción
EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA 197
no fue el principal mecanismo que controló la resis-
tencia a la desadsorción de la atrazina; el mecanismo
dominante fue el atrapamiento físico del herbicida.
Los resultados presentados en este trabajo indican un
comportamiento similar, con equilibrios de adsorción
y desadsorción de un día, por lo que asumimos que
el atrapamiento físico es el mecanismo que controla
la resistencia a la desadsorción de la atrazina en los
suelos estudiados. El mecanismo de atrapamiento fí-
sico en la M.O. es explicado por Weber et al. (1998) y
Yang et al. (2009), quienes sugieren que la adsorción
de grandes cantidades de un adsorbato puede ocasio-
nar que el adsorbente se vuelva más flexible y que a
medida que el adsorbato se desadsorbe la flexibilidad
disminuye, pudiendo ocasionar el atrapamiento físico
del adsorbato; tal conjetura también explica por qué
el suelo que adsorbe más herbicida es el que presenta
menor desadsorción.
CONCLUSIONES
El incremento de la salinidad no afectó el tiempo
requerido para alcanzar el equilibrio de adsorción y
desadsorción de la atrazina en los suelos estudiados;
sin embargo, sí favoreció la adsorción de atrazina
en los suelos y desfavoreció su desadsorción (a con-
centraciones de sodio de aproximadamente 9 mM).
El incremento de la concentración de sodio y de
calcio a 40 y 60 mM, respectivamente, no afectó
significativamente (P < 0.05) la adsorción de atrazina.
Esto pudo deberse a que inicialmente los iones de
sodio alteraron la configuración de los componentes
del suelo y la capa difusa de los mismos, hasta un
valor límite, el cual favoreció la interacción de la
atrazina con las superficies adsorbentes; por lo que
el incremento en la concentración de este electrolito
no siguió favoreciendo la adsorción del herbicida.
Los resultados de este estudio indican que el incre-
mento de la salinidad, principalmente por el aumento
de sodio en el suelo, tiene efectos importantes en el
destino final de la atrazina; dado que la salinización
de los suelos favorece la adsorción de atrazina e
inhibe la desadsorción, por lo que es importante con-
siderar tal efecto en su destino ambiental; así como
en el manejo y remediación de suelos contaminados
con atrazina.
AGRADECIMIENTOS
Se agradece al Consejo Nacional de Ciencia y
Tecnología por la beca de Doctorado otorgada al
primer autor y al Instituto Mexicano de Tecnología
del Agua por el apoyo para la realización de este
estudio (números de proyecto TH-0803 y TH-0709).
REFERENCIAS
Alexander M. (2000).Aging, bioavailability, and overesti-
mation of risk from environmental pollutants. Environ.
Sci. Technol. 34, 4259-4265.
Al-RajabA.J.,Amellal S. y Schiavon M. (2008). Sorption
and leaching of 14C-glyphosate in agricultural soils.
Agron. Sustain. Dev. 28, 419-428.
Altfelder S., Streck T. y Richter J. (2000). Nonsingular
sorption of organic compounds in soil: the role of slow
kinetics. J. Environ. Qual. 29, 917-925.
Alva A.K. y Singh M. (1991). Sorption desorption of her-
bicides in soil as influenced by electrolyte cations and
ionic strength. J. Environ. Sci. Heal. B. 26, 147-163.
ASTM (1998). D422-63 Standard test method for particle-
size analysis of soils.American Society for Testing and
Materials. West Conshohocken, PA, EUA, pp. 1-8.
ASTM (2000). D2974-00 Standard test methods for mois-
ture, ash, and organic matter or peat and other organic
soils. American Society for Testing and Materials.
Philadelphia, PA, EUA, 04.08, pp. 31-33.
Barriuso E., Baer U. y Calvet R. (1992). Dissolved or-
ganic matter and adsorption-desorption of dimefuron,
atrazine and carbetamide by soils. J. Environ. Qual.
21, 359-367.
Barriuso E., Laird D. A., Koskinen W.C. y Dowdy R.H.
(1994). Atrazine desorption from smectites. Soil Sci.
Soc. Am. J. 58, 1632-1638.
Bhandari A., Novak J.T. y Berry D.F. (1996). Binding of
4-monochlorophenol to soil. Environ. Sci. Technol.
30, 2305-2311.
Fig. 3. 	Isotermas de desadsorción de atrazina en el suelo II,
tratado con 10 mM CaCl2
*una etapa de desadsorción
**dos etapas de desadsorción
0.001
0.010
0.100
1.000
10.000
0.0001 0.0010 0.0100 0.1000 1.0000
Atrazina(mg/kg)
Atrazina (mg/L)
IIa* IIa**
L.C. González-Márquez y A.M. Hansen198
Blume E., Bischoff M., Moorman T.B. y Turco R.F.
(2004). Degradation and binding of atrazine in sur-
face and subsurface soils. J. Agr. Food Chem. 52,
7382-7388.
Clausen L., Fabricius I. y Madsen L. (2001). Adsorption
of pesticides onto quartz, calcite, kaolinite, and alpha-
alumina. J. Environ. Qual. 30, 846-857.
Coquet Y. (2003). Sorption of pesticides atrazine, iso-
proturon, and metamitron in the vadose zone. Vadose
Zone J. 2, 40-51.
De Jonge H. y De Jonge L.W. (1999). Influence of pH and
solution composition on the sorption of glyphosate
and prochloraz to a sandy loam soil. Chemosphere
39, 753-763.
Drori Y., Izenshtat Z. y Chefetz B. (2005). Sorption-
desorption behavior of atrazine in soils irrigated
with reclaimed wastewater. Soil Sci. Soc. Am. J. 69,
1703-1710.
Eckert D. y Sims J.T. (1995). Recommended soil pH and
lime requirement tests. Recommended soil testing
procedures for the Northeastern United States. 3a ed.
Northeastern Regional Publication No. 493. [en línea].
http://extension.udel.edu/lawngarden/files/2012/10/
CHAP3.pdf 31/08/2013.
Farrell J. y Reinhard M. (1994). Desorption of halogenated
organics from model solids, sediments, and soil under
unsaturated conditions. 2. Kinetics. Environ. Sci.
Technol. 28, 63-72.
Gao J.P., Maguhn J., Spitzauer P. y Kettrup A. (1998).
Sorption of pesticides in the sediment of the Teufels-
weiher pond (Southern Germany). II: Competitive
adsorption, desorption of aged residues and effect of
dissolved organic carbon. Water Res. 32, 2089-2094.
Gartley K.L. (1995). Recommended soluble salts tests.
Recommended soil testing procedures for the North-
eastern United States. 3a ed. Northeastern Regional
Publication No. 493. [en línea]. http://extension.
udel.edu/lawngarden/files/2012/10/CHAP10.pdf
31/08/2013.
Gilliom R.J., Barbash J.E., Crawford C.G., Hamilton P.A.,
Martin J.D., Nakagaki N., Nowell L.H., Scott J.C.,
Stackelberg P.E., Thelin P.G. y Wolock D.M. (2006).
The quality of our nation’s waters - Pesticides in the
nation’s streams and ground water, 1992-2001. U.S.
Geological Survey, Circular 1291. [en línea]. http://
pubs.usgs.gov/circ/2005/1291/ 29/09/2009.
González-Márquez L.C. y Hansen A.M. (2009a). Ads-
orción y mineralización de atrazina y relación con
parámetros de suelos del DR 063 Guasave, Sinaloa.
Rev. Mex. Cienc. Geol. 26, 587-599.
González-Márquez L.C. y Hansen A.M. (2009b). Ef-
fects of salinity on the aggregation, composition, and
sorption capacity of humic acid. 237th ACS National
Meeting, Division of Geochemistry. Salt Lake City
UT, marzo 22-26, 2009. [en línea]. http://oasys2.
confex.com/acs/237nm/techprogram/P1255431.HTM
29/09/2012.
Griffin G., Jokela W. y Ross D. (1995). Recommended
soil nitrate-N Tests. En: Recommended soil testing
procedures for the Northeastern United States. (T.
Sims y A. Wolf, Eds.). U. Delaware Agric. Exp. Stn.
Bull. 493, 22-29.
Guillén-Garcés R.A., Hansen A.M. y Afferden van M.
(2007). Mineralization of atrazine in agricultural soil:
Inhibition by nitrogen. Environ. Toxicol. Chem. 26,
844-850.
Hernández-Antonio A. y Hansen A.M. (2011). Uso de
plaguicidas en dos zonas agrícolas de México y evalu-
ación de la contaminación de agua y sedimentos. Rev.
Int. Contam. Ambie. 27, 115-127.
Hyun S. y Lee L.S. (2004). Factors controlling sorption
of prosulfuron by variable charge soils and model
sorbents. J. Environ. Qual. 33, 1354-1361.
Kah M. (2007). Behaviour of ionisable pesticides in
soils. Tesis de Doctorado. Environment Department.
University of York, 228 pp. [en línea]. http://tel.
archives-ouvertes.fr/docs/00/18/54/85/PDF/PhD_the-
sis_Melanie_Kah.pdf 21/04/2014.
Laird D.A., Barriuso E., Dowdy R.H. y Koskinen W.C.
(1992). Adsorption of atrazine on smectites. Soil Sci.
Soc. Am. J. 56, 62-67.
Lalah J.O., Njogu S.N. y Wandiga S.O. (2009). The ef-
fects of Mn2+, Ni2+, Cu2+, Co2+ and Zn2+ ions on
pesticide adsorption and mobility in a tropical soil. B.
Environ. Contam. Tox. 83, 352-358.
Lesan H.M. y Bhandari A. (2003). Atrazine sorption
on surface soils: time-dependent phase distribution
and apparent desorption hysteresis. Water Res. 37,
1644-1654.
Li H., Teppen B.J., Laird D.A., Johnston C.T. y Boyd S.A.
(2006). Effects of increasing potassium chloride and
calcium chloride ionic strength on pesticide sorption
by potassium- and calcium-smectite. Soil Sci. Soc.
Am. J. 70, 1889-1895.
Ling W.T., Wang H.Z, Xu J.M. y Gao Y.Z. (2005). Sorp-
tion of dissolved organic matter and its effects on the
atrazine sorption on soils. J. Environ. Sci. 17, 478-48.
Ma L., Southwick L.M., Willis G.H. y Selim H.M.
(1993). Hysteretic characteristics of atrazine adsorp-
tion–desorption by a Sharkey soil. Weed Sci. 41,
627-633.
Mao M. y Ren L. (2010). Effects of ionic strength and
temperature on adsorption of atrazine, deethylatrazine
and deisopropyatrazine in an alkaline sandy loam. 19th
World Congress of Soil Science. Soil Solutions for a
Changing World. Brisbane, Australia 1 al 6 de agosto,
EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA 199
2010. [en línea]. http://www.iuss.org/19th%20WCSS/
Symposium/pdf/0308.pdf 02/02/2013.
Merck (2006). Calcium Test. [en línea]. http://www.mer-
ckmillipore.com/chemicals/test-calcio/MDA_CHEM-
114815/spanish/p_4heb.s1LpCYAAAEWNuIfVhTl?a
ttachments=brochure 26/04/2007.
Mersie W., Liu J., Seybold C. y Tierney D. (1998). Ex-
tractability and degradation of atrazine in submerged
sediment. Weed Sci. 46, 480-486.
OECD (2000). Test No. 106. Adsorption-Desorption us-
ing a batch equilibrium method. OECD Guidelines
for the Testing of Chemicals. Organización para la
Cooperación y el Desarrollo Económico. [en línea].
http://www.oecd-ilibrary.org/environment/oecd-guide-
lines-for-the-testing-of-chemicals-section-1-physical-
chemical-properties_20745753 06/04/2013.
Pignatello J.J. y Xing B. (1996). Mechanisms of slow sorp-
tion of organic chemicals to natural particles. Environ.
Sci. Technol. 30, 1-11.
Sánchez Martín M.J. y Sánchez Camazano M. (1984).
Los plaguicidas: adsorción y evolución en el suelo. [en
línea]. http://digital.csic.es/bitstream/10261/12919/1/
plaguicidas.pdf 06/04/2013.
SAS Institute (2002). The SAS system for Windows, ver.
9.0. SAS Institute Inc., Cary NC, EUA.
Socías-Viciana M.M., Fernández-Pérez M., Villafranca-
Sánchez M., González-Pradas E. y Flores-Céspedes F.
(1999). Sorption and leaching of atrazine and MCPAin
natural and peat-amended calcareous soils from Spain.
J. Agr. Food Chem. 47, 1236-1241.
Syngenta (2006). Gesaprim 90 WG. [en línea]. http://
www.syngenta.com/country/cl/cl/soluciones/protec-
cioncultivos/Documents/Etiquetas/Gesaprim90WG.
pdf 12/12/2013.
Tang Z., Zhang W. y Chen Y. (2009). Adsorption and
desorption characteristics of monosulfuron in Chinese
soils. J. Hazard. Mater. 166, 1351-1356.
Tappe W., Groeneweg J. y Jantsch B. (2002). Diffuse
atrazine pollution in German aquifers. Biodegrada-
tion 13, 3-10.
Tinsley I.J. (2004). Chemical concepts in pollutant behav-
ior. 2a ed. Wiley, Hoboken, NJ, EUA, 402 pp.
Van Leewen J.A., Waltner-Toews D., Abernathy T.,
Smith B. y Shokri M. (1999). Associations be-
tween stomach cancer incidence and drinking water
contamination with atrazine and nitrate in Ontario
(Canada) agroecosystems, 1987-1991. Int. J. Epide-
miol. 28, 836-890.
Weber Jr. W.J., Huang W.L. y Yu H. (1998). Hysteresis
in the sorption and desorption of hydrophobic organic
contaminants by soils and sediments: II. Effect of soil
organic matter heterogeneity. J. Contam. Hydrol. 31,
149-165.
Yang W., Zhang J., Zhang C., Zhu L. y Chen W. (2009).
Sorption and resistant desorption of atrazine in typical
Chinese Soils. J. Environ. Qual. 38, 171-179.

Más contenido relacionado

La actualidad más candente

Recuperacion de vertedero mediante fitoencapsulacion
Recuperacion de vertedero mediante fitoencapsulacionRecuperacion de vertedero mediante fitoencapsulacion
Recuperacion de vertedero mediante fitoencapsulacionBasoinsa
 
Sales (Manejo Uba)
Sales (Manejo Uba)Sales (Manejo Uba)
Sales (Manejo Uba)UNLU2008
 
Propiedades quimicas del suelo
Propiedades quimicas del sueloPropiedades quimicas del suelo
Propiedades quimicas del sueloBryan Bone
 
Edafo propiedades quimicas
Edafo propiedades quimicas Edafo propiedades quimicas
Edafo propiedades quimicas MatiasRa
 
Salinización y sodificación
Salinización y sodificaciónSalinización y sodificación
Salinización y sodificaciónPaula Castañeda
 
C Salinos, Salino Sodicos Sodicos
C Salinos, Salino Sodicos SodicosC Salinos, Salino Sodicos Sodicos
C Salinos, Salino Sodicos SodicosManejo de SUELOS
 
Propiedades Físicas, Químicas y Biológicas del Suelo
Propiedades Físicas, Químicas y Biológicas del SueloPropiedades Físicas, Químicas y Biológicas del Suelo
Propiedades Físicas, Químicas y Biológicas del SueloRolando Aguero Cordones
 
Presentacion de manejo y conser. d agua y suelo
Presentacion de manejo y conser. d agua y sueloPresentacion de manejo y conser. d agua y suelo
Presentacion de manejo y conser. d agua y sueloedsomu
 
El pH en la Agricultura
El pH en la AgriculturaEl pH en la Agricultura
El pH en la AgriculturaPedroMolina79
 
Susceptibilidad de los suelos de Colombia a salinización
Susceptibilidad de los suelos de Colombia a salinización Susceptibilidad de los suelos de Colombia a salinización
Susceptibilidad de los suelos de Colombia a salinización Fredy Neira
 
Metodos muestreo suelos y Fertilidad
Metodos muestreo suelos y FertilidadMetodos muestreo suelos y Fertilidad
Metodos muestreo suelos y FertilidadMANEJO y FERTILIDAD
 

La actualidad más candente (20)

Suelo salino (1)
Suelo salino (1)Suelo salino (1)
Suelo salino (1)
 
Recuperacion de vertedero mediante fitoencapsulacion
Recuperacion de vertedero mediante fitoencapsulacionRecuperacion de vertedero mediante fitoencapsulacion
Recuperacion de vertedero mediante fitoencapsulacion
 
Manejo de suelos salinos y sódicos pps
Manejo de suelos salinos y sódicos ppsManejo de suelos salinos y sódicos pps
Manejo de suelos salinos y sódicos pps
 
Propiedades del suelo
Propiedades del sueloPropiedades del suelo
Propiedades del suelo
 
Sales (Manejo Uba)
Sales (Manejo Uba)Sales (Manejo Uba)
Sales (Manejo Uba)
 
Propiedades quimicas del suelo
Propiedades quimicas del sueloPropiedades quimicas del suelo
Propiedades quimicas del suelo
 
Edafo propiedades quimicas
Edafo propiedades quimicas Edafo propiedades quimicas
Edafo propiedades quimicas
 
Salinización y sodificación
Salinización y sodificaciónSalinización y sodificación
Salinización y sodificación
 
C Salinos, Salino Sodicos Sodicos
C Salinos, Salino Sodicos SodicosC Salinos, Salino Sodicos Sodicos
C Salinos, Salino Sodicos Sodicos
 
Propiedades Físicas, Químicas y Biológicas del Suelo
Propiedades Físicas, Químicas y Biológicas del SueloPropiedades Físicas, Químicas y Biológicas del Suelo
Propiedades Físicas, Químicas y Biológicas del Suelo
 
Capitulo 4 A
Capitulo 4 ACapitulo 4 A
Capitulo 4 A
 
Manejo de suelo salinos y sodicos
Manejo de suelo salinos y sodicosManejo de suelo salinos y sodicos
Manejo de suelo salinos y sodicos
 
Presentacion de manejo y conser. d agua y suelo
Presentacion de manejo y conser. d agua y sueloPresentacion de manejo y conser. d agua y suelo
Presentacion de manejo y conser. d agua y suelo
 
Salinizacion
SalinizacionSalinizacion
Salinizacion
 
Suelo salino
Suelo salinoSuelo salino
Suelo salino
 
Ph del suelo
Ph del sueloPh del suelo
Ph del suelo
 
El pH en la Agricultura
El pH en la AgriculturaEl pH en la Agricultura
El pH en la Agricultura
 
Susceptibilidad de los suelos de Colombia a salinización
Susceptibilidad de los suelos de Colombia a salinización Susceptibilidad de los suelos de Colombia a salinización
Susceptibilidad de los suelos de Colombia a salinización
 
El ph del suelo
El ph del sueloEl ph del suelo
El ph del suelo
 
Metodos muestreo suelos y Fertilidad
Metodos muestreo suelos y FertilidadMetodos muestreo suelos y Fertilidad
Metodos muestreo suelos y Fertilidad
 

Similar a Efecto de la salinidad en las adsorción de un herbicida en suelos agrícolas

Efecto de los residuos de una industria expo ambiental
Efecto de los residuos de una industria expo ambientalEfecto de los residuos de una industria expo ambiental
Efecto de los residuos de una industria expo ambiental3137660301
 
práctica 4_ Informe_ Efecto de las condiciones de suelo sobre la germinación...
práctica 4_ Informe_  Efecto de las condiciones de suelo sobre la germinación...práctica 4_ Informe_  Efecto de las condiciones de suelo sobre la germinación...
práctica 4_ Informe_ Efecto de las condiciones de suelo sobre la germinación...jhonnymendoza18
 
Expo final del suelo
Expo final del sueloExpo final del suelo
Expo final del sueloULADECH
 
INTERACCIÓN DE LOS CONTAMINANTES CON LOS COMPONENTES DEL SUELO.pdf
INTERACCIÓN DE LOS CONTAMINANTES CON LOS COMPONENTES DEL SUELO.pdfINTERACCIÓN DE LOS CONTAMINANTES CON LOS COMPONENTES DEL SUELO.pdf
INTERACCIÓN DE LOS CONTAMINANTES CON LOS COMPONENTES DEL SUELO.pdfdiego12358
 
Ensayo -manejo del suelo--
Ensayo  -manejo del suelo--Ensayo  -manejo del suelo--
Ensayo -manejo del suelo--javieryequipo1
 
ARITUCULO CIENTIFICO
ARITUCULO CIENTIFICO ARITUCULO CIENTIFICO
ARITUCULO CIENTIFICO Sarita
 
Manejo de suelos de zonas aridas en cultivos de exportacion
Manejo de suelos de zonas aridas en cultivos de exportacionManejo de suelos de zonas aridas en cultivos de exportacion
Manejo de suelos de zonas aridas en cultivos de exportacionInveracero Sac
 
Metales
MetalesMetales
Metalesefrej4
 
contaminacion de suelos por residuos solidos y aguas residuales
contaminacion de suelos por residuos solidos y aguas residualescontaminacion de suelos por residuos solidos y aguas residuales
contaminacion de suelos por residuos solidos y aguas residualeshector huaman campos
 
Dialnet efecto delasalinidaddelsuelosobrelagerminaciondesem-5002442 (3)
Dialnet efecto delasalinidaddelsuelosobrelagerminaciondesem-5002442 (3)Dialnet efecto delasalinidaddelsuelosobrelagerminaciondesem-5002442 (3)
Dialnet efecto delasalinidaddelsuelosobrelagerminaciondesem-5002442 (3)DAYANPILARLEDESMACHA
 
TEMA 11-1. SUELOS SALINOS Y ALCALINOS.pdf
TEMA 11-1. SUELOS SALINOS Y ALCALINOS.pdfTEMA 11-1. SUELOS SALINOS Y ALCALINOS.pdf
TEMA 11-1. SUELOS SALINOS Y ALCALINOS.pdfManuelaSanchez50
 
Suelos Salinos y sódicos 2019.pdf
Suelos Salinos y sódicos 2019.pdfSuelos Salinos y sódicos 2019.pdf
Suelos Salinos y sódicos 2019.pdfLuisMiguelYD
 
Suelos salinos y sódicos 2019
Suelos salinos y sódicos 2019Suelos salinos y sódicos 2019
Suelos salinos y sódicos 2019RafaelMendoza121
 
Remediacion con polimeros
Remediacion con polimerosRemediacion con polimeros
Remediacion con polimerosTahis Vilain
 
Trabajo colaborativo suelos 1 (autoguardado)
Trabajo colaborativo suelos 1 (autoguardado)Trabajo colaborativo suelos 1 (autoguardado)
Trabajo colaborativo suelos 1 (autoguardado)sharon esteban
 

Similar a Efecto de la salinidad en las adsorción de un herbicida en suelos agrícolas (20)

Efecto de los residuos de una industria expo ambiental
Efecto de los residuos de una industria expo ambientalEfecto de los residuos de una industria expo ambiental
Efecto de los residuos de una industria expo ambiental
 
práctica 4_ Informe_ Efecto de las condiciones de suelo sobre la germinación...
práctica 4_ Informe_  Efecto de las condiciones de suelo sobre la germinación...práctica 4_ Informe_  Efecto de las condiciones de suelo sobre la germinación...
práctica 4_ Informe_ Efecto de las condiciones de suelo sobre la germinación...
 
FITOREMEDIACIÓN.pptx
FITOREMEDIACIÓN.pptxFITOREMEDIACIÓN.pptx
FITOREMEDIACIÓN.pptx
 
Expo final del suelo
Expo final del sueloExpo final del suelo
Expo final del suelo
 
INTERACCIÓN DE LOS CONTAMINANTES CON LOS COMPONENTES DEL SUELO.pdf
INTERACCIÓN DE LOS CONTAMINANTES CON LOS COMPONENTES DEL SUELO.pdfINTERACCIÓN DE LOS CONTAMINANTES CON LOS COMPONENTES DEL SUELO.pdf
INTERACCIÓN DE LOS CONTAMINANTES CON LOS COMPONENTES DEL SUELO.pdf
 
Ensayo -manejo del suelo--
Ensayo  -manejo del suelo--Ensayo  -manejo del suelo--
Ensayo -manejo del suelo--
 
ARITUCULO CIENTIFICO
ARITUCULO CIENTIFICO ARITUCULO CIENTIFICO
ARITUCULO CIENTIFICO
 
Manejo de suelos de zonas aridas en cultivos de exportacion
Manejo de suelos de zonas aridas en cultivos de exportacionManejo de suelos de zonas aridas en cultivos de exportacion
Manejo de suelos de zonas aridas en cultivos de exportacion
 
Impacto mejicorrectio ca
Impacto mejicorrectio caImpacto mejicorrectio ca
Impacto mejicorrectio ca
 
Metales
MetalesMetales
Metales
 
contaminacion de suelos por residuos solidos y aguas residuales
contaminacion de suelos por residuos solidos y aguas residualescontaminacion de suelos por residuos solidos y aguas residuales
contaminacion de suelos por residuos solidos y aguas residuales
 
Dialnet efecto delasalinidaddelsuelosobrelagerminaciondesem-5002442 (3)
Dialnet efecto delasalinidaddelsuelosobrelagerminaciondesem-5002442 (3)Dialnet efecto delasalinidaddelsuelosobrelagerminaciondesem-5002442 (3)
Dialnet efecto delasalinidaddelsuelosobrelagerminaciondesem-5002442 (3)
 
Lodos residuales
Lodos residualesLodos residuales
Lodos residuales
 
TEMA 11-1. SUELOS SALINOS Y ALCALINOS.pdf
TEMA 11-1. SUELOS SALINOS Y ALCALINOS.pdfTEMA 11-1. SUELOS SALINOS Y ALCALINOS.pdf
TEMA 11-1. SUELOS SALINOS Y ALCALINOS.pdf
 
Suelos Salinos y sódicos 2019.pdf
Suelos Salinos y sódicos 2019.pdfSuelos Salinos y sódicos 2019.pdf
Suelos Salinos y sódicos 2019.pdf
 
Suelos salinos y sódicos 2019
Suelos salinos y sódicos 2019Suelos salinos y sódicos 2019
Suelos salinos y sódicos 2019
 
Fertirrig..sifuentes
Fertirrig..sifuentesFertirrig..sifuentes
Fertirrig..sifuentes
 
Remediacion con polimeros
Remediacion con polimerosRemediacion con polimeros
Remediacion con polimeros
 
Trabajo colaborativo suelos 1 (autoguardado)
Trabajo colaborativo suelos 1 (autoguardado)Trabajo colaborativo suelos 1 (autoguardado)
Trabajo colaborativo suelos 1 (autoguardado)
 
Diagnostico de suelo
Diagnostico de sueloDiagnostico de suelo
Diagnostico de suelo
 

Más de Luciano Renteria

GACETA DE ARTICULOS CIENTIFICOS TEBAM
GACETA DE ARTICULOS CIENTIFICOS TEBAMGACETA DE ARTICULOS CIENTIFICOS TEBAM
GACETA DE ARTICULOS CIENTIFICOS TEBAMLuciano Renteria
 
ORGANISMOS GENÉTICAMENTE MODIFICADOS
ORGANISMOS GENÉTICAMENTE MODIFICADOSORGANISMOS GENÉTICAMENTE MODIFICADOS
ORGANISMOS GENÉTICAMENTE MODIFICADOSLuciano Renteria
 
EPIDEMIAS Y POBLACIONES HUMANAS
EPIDEMIAS Y POBLACIONES HUMANASEPIDEMIAS Y POBLACIONES HUMANAS
EPIDEMIAS Y POBLACIONES HUMANASLuciano Renteria
 
LINEAMIENTOS DE OPERACIÓN PARA TUTORÍAS Y ASESORÍAS
LINEAMIENTOS DE OPERACIÓN PARA TUTORÍAS Y ASESORÍASLINEAMIENTOS DE OPERACIÓN PARA TUTORÍAS Y ASESORÍAS
LINEAMIENTOS DE OPERACIÓN PARA TUTORÍAS Y ASESORÍASLuciano Renteria
 
EBOLA: RIO DE COLOR PURPURA
EBOLA: RIO DE COLOR PURPURAEBOLA: RIO DE COLOR PURPURA
EBOLA: RIO DE COLOR PURPURALuciano Renteria
 
CONVOCATORIA PROFESOR DE TIEMPO COMPLETO 2014
CONVOCATORIA PROFESOR DE TIEMPO COMPLETO 2014CONVOCATORIA PROFESOR DE TIEMPO COMPLETO 2014
CONVOCATORIA PROFESOR DE TIEMPO COMPLETO 2014Luciano Renteria
 
CONVOCATORIA XX CONGRESO DE DIVULGACION
CONVOCATORIA XX CONGRESO DE DIVULGACIONCONVOCATORIA XX CONGRESO DE DIVULGACION
CONVOCATORIA XX CONGRESO DE DIVULGACIONLuciano Renteria
 
REVISTA UNAM, BULLYING: VIOLENCIA HUMANA
REVISTA UNAM, BULLYING: VIOLENCIA HUMANAREVISTA UNAM, BULLYING: VIOLENCIA HUMANA
REVISTA UNAM, BULLYING: VIOLENCIA HUMANALuciano Renteria
 
REVISTA FÍSICA MODERNA, HOYOS NEGROS
REVISTA FÍSICA MODERNA, HOYOS NEGROSREVISTA FÍSICA MODERNA, HOYOS NEGROS
REVISTA FÍSICA MODERNA, HOYOS NEGROSLuciano Renteria
 
1 er CONGRESO DIMENSIÓN AMBIENTAL Y CURRICULUM UNIVERSITARIO
1 er CONGRESO DIMENSIÓN AMBIENTAL Y CURRICULUM UNIVERSITARIO1 er CONGRESO DIMENSIÓN AMBIENTAL Y CURRICULUM UNIVERSITARIO
1 er CONGRESO DIMENSIÓN AMBIENTAL Y CURRICULUM UNIVERSITARIOLuciano Renteria
 
CONVOCATORIA ROMPE CON EL CAMBIO CLIMÁTICO
CONVOCATORIA ROMPE CON EL CAMBIO CLIMÁTICOCONVOCATORIA ROMPE CON EL CAMBIO CLIMÁTICO
CONVOCATORIA ROMPE CON EL CAMBIO CLIMÁTICOLuciano Renteria
 
PROGRAMA DE FOMENTO A LA LECTURA
PROGRAMA DE FOMENTO A LA LECTURAPROGRAMA DE FOMENTO A LA LECTURA
PROGRAMA DE FOMENTO A LA LECTURALuciano Renteria
 
Estrategias lúdico-experimentales para la enseñanza-aprendizaje de tem...
Estrategias lúdico-experimentales para la enseñanza-aprendizaje        de tem...Estrategias lúdico-experimentales para la enseñanza-aprendizaje        de tem...
Estrategias lúdico-experimentales para la enseñanza-aprendizaje de tem...Luciano Renteria
 

Más de Luciano Renteria (20)

GACETA DE ARTICULOS CIENTIFICOS TEBAM
GACETA DE ARTICULOS CIENTIFICOS TEBAMGACETA DE ARTICULOS CIENTIFICOS TEBAM
GACETA DE ARTICULOS CIENTIFICOS TEBAM
 
ORGANISMOS GENÉTICAMENTE MODIFICADOS
ORGANISMOS GENÉTICAMENTE MODIFICADOSORGANISMOS GENÉTICAMENTE MODIFICADOS
ORGANISMOS GENÉTICAMENTE MODIFICADOS
 
EPIDEMIAS Y POBLACIONES HUMANAS
EPIDEMIAS Y POBLACIONES HUMANASEPIDEMIAS Y POBLACIONES HUMANAS
EPIDEMIAS Y POBLACIONES HUMANAS
 
ORIGEN DE LA RAZA HUMANA
ORIGEN DE LA RAZA HUMANAORIGEN DE LA RAZA HUMANA
ORIGEN DE LA RAZA HUMANA
 
ORIGEN DEL VIH
ORIGEN DEL VIHORIGEN DEL VIH
ORIGEN DEL VIH
 
LINEAMIENTOS DE OPERACIÓN PARA TUTORÍAS Y ASESORÍAS
LINEAMIENTOS DE OPERACIÓN PARA TUTORÍAS Y ASESORÍASLINEAMIENTOS DE OPERACIÓN PARA TUTORÍAS Y ASESORÍAS
LINEAMIENTOS DE OPERACIÓN PARA TUTORÍAS Y ASESORÍAS
 
EL VIRUS DEL EBOLA
EL VIRUS DEL EBOLAEL VIRUS DEL EBOLA
EL VIRUS DEL EBOLA
 
EBOLA: RIO DE COLOR PURPURA
EBOLA: RIO DE COLOR PURPURAEBOLA: RIO DE COLOR PURPURA
EBOLA: RIO DE COLOR PURPURA
 
REVISTA SABER MAS
REVISTA SABER MASREVISTA SABER MAS
REVISTA SABER MAS
 
CONVOCATORIA MUNICIPAL
CONVOCATORIA MUNICIPALCONVOCATORIA MUNICIPAL
CONVOCATORIA MUNICIPAL
 
ENCUENTRO DE MEZCALEROS
ENCUENTRO DE MEZCALEROSENCUENTRO DE MEZCALEROS
ENCUENTRO DE MEZCALEROS
 
CONVOCATORIA PROFESOR DE TIEMPO COMPLETO 2014
CONVOCATORIA PROFESOR DE TIEMPO COMPLETO 2014CONVOCATORIA PROFESOR DE TIEMPO COMPLETO 2014
CONVOCATORIA PROFESOR DE TIEMPO COMPLETO 2014
 
CONVOCATORIA XX CONGRESO DE DIVULGACION
CONVOCATORIA XX CONGRESO DE DIVULGACIONCONVOCATORIA XX CONGRESO DE DIVULGACION
CONVOCATORIA XX CONGRESO DE DIVULGACION
 
REVISTA UNAM, BULLYING: VIOLENCIA HUMANA
REVISTA UNAM, BULLYING: VIOLENCIA HUMANAREVISTA UNAM, BULLYING: VIOLENCIA HUMANA
REVISTA UNAM, BULLYING: VIOLENCIA HUMANA
 
REVISTA FÍSICA MODERNA, HOYOS NEGROS
REVISTA FÍSICA MODERNA, HOYOS NEGROSREVISTA FÍSICA MODERNA, HOYOS NEGROS
REVISTA FÍSICA MODERNA, HOYOS NEGROS
 
1 er CONGRESO DIMENSIÓN AMBIENTAL Y CURRICULUM UNIVERSITARIO
1 er CONGRESO DIMENSIÓN AMBIENTAL Y CURRICULUM UNIVERSITARIO1 er CONGRESO DIMENSIÓN AMBIENTAL Y CURRICULUM UNIVERSITARIO
1 er CONGRESO DIMENSIÓN AMBIENTAL Y CURRICULUM UNIVERSITARIO
 
REVISTA SABER MAR
REVISTA SABER MARREVISTA SABER MAR
REVISTA SABER MAR
 
CONVOCATORIA ROMPE CON EL CAMBIO CLIMÁTICO
CONVOCATORIA ROMPE CON EL CAMBIO CLIMÁTICOCONVOCATORIA ROMPE CON EL CAMBIO CLIMÁTICO
CONVOCATORIA ROMPE CON EL CAMBIO CLIMÁTICO
 
PROGRAMA DE FOMENTO A LA LECTURA
PROGRAMA DE FOMENTO A LA LECTURAPROGRAMA DE FOMENTO A LA LECTURA
PROGRAMA DE FOMENTO A LA LECTURA
 
Estrategias lúdico-experimentales para la enseñanza-aprendizaje de tem...
Estrategias lúdico-experimentales para la enseñanza-aprendizaje        de tem...Estrategias lúdico-experimentales para la enseñanza-aprendizaje        de tem...
Estrategias lúdico-experimentales para la enseñanza-aprendizaje de tem...
 

Último

c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxMartín Ramírez
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)veganet
 
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxMonitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxJUANCARLOSAPARCANARE
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORGonella
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaLuis Minaya
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfLA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfNataliaMalky1
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadJonathanCovena1
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfcoloncopias5
 

Último (20)

TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
 
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxMonitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIOR
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfLA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la Sostenibilidad
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
 

Efecto de la salinidad en las adsorción de un herbicida en suelos agrícolas

  • 1. Rev. Int. Contam. Ambie. 30 (2) 191-199, 2014 EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA EN SUELOS AGRÍCOLAS Luis Carlos GONZÁLEZ-MÁRQUEZ1 y Anne M. HANSEN2* 1 Departamento de Ingeniería y Tecnología, Universidad de Occidente, Unidad Guasave, Sinaloa, México 2 Coordinación de Hidrología Subcoordinación de Hidrología Subterránea, Instituto Mexicano de Tecnología del Agua * Autora responsable; ahansen@tlaloc.imta.mx (Recibido octubre 2013, aceptado abril 2014) Palabras clave: atrazina, cloruro de sodio, cloruro de calcio, adsorción, desorción, atenuación natural RESUMEN Para entender el efecto de la salinidad sobre la adsorción del herbicida atrazina en suelo, se determinó la influencia de las concentraciones de cloruros de sodio y de calcio en este proceso en dos suelos de una zona agrícola de México. Los experimen- tos de adsorción se realizaron con muestras de suelo del Distrito de Riego 063 (DR 063), Guasave, Sinaloa, México, suspendidas en 10 mM de CaCl2, en presencia de varias concentraciones de diferentes electrolitos y atrazina (0.01, 0.05, 0.1, 0.5 y 1.0 mg/L) con trazador radiactivo (347.4 Bq U-ring-14C, Sigma Chemical Company, San Luis, MO, EUA). Se encontró que para todos los electrolitos el tiempo requerido para alcanzar el equilibrio de adsorción de atrazina fue menor a 24 h y las isotermas de adsorción se ajustaron al modelo de Freundlich. La presencia de sodio en la solución acuosa favoreció la adsorción e inhibió la desorción de atrazina en los suelos. El incremento de las concentraciones de sodio y de calcio a aproximadamente 40 mM y 60 mM, respectivamente, no afectó significativamente (P < 0.05) la adsorción de atrazina. Sin embargo, sí se presentaron diferencias en la desadsorción del herbicida con el incremento de las sales. Los resultados de este estudio indican que el incremento de la salinidad, principalmente por el aumento de sodio en el sistema agua-suelo, tiene efectos importantes en el destino final de la atrazina, dado que la salinización de los suelos favorece la adsorción de este compuesto e inhibe su desadsorción. Es importante considerar estas propiedades cuando se analizan las opciones de aplicación y en el manejo del saneamiento de suelos contaminados con atrazina. Key words: atrazine, sodium chloride, calcium chloride, adsorption, desorption, natural attenuation ABSTRACT To understand the effect of salinity on the adsorption of the herbicide atrazine in two soils from a Mexican agricultural area, the influence of sodium and calcium chloride concentra- tions were determined. Adsorption experiments were performed with soil samples from Irrigation District 063 (DR 063), Guasave, Sinaloa, Mexico, suspended in 10 mM CaCl2, in the presence of several concentrations of different electrolytes and atrazine (0.01, 0.05, 0.1, 0.5 and 1.0 mg/L) with radioactive tracer (347.4 Bq U-ring-14C, Sigma Chemical
  • 2. L.C. González-Márquez y A.M. Hansen192 Company, St. Louis, MO, USA). It was found that for all the electrolytes, the time re- quired to reach equilibrium adsorption of atrazine was less than 24 h and the adsorption isotherms were adjusted to Freundlich model. The presence of sodium in the aqueous solution favored the adsorption and inhibited desorption of atrazine in soils. Increasing the concentrations of sodium and calcium to about 40 mM and 60 mM, respectively, did not significantly affect (P <0.05) the adsorption of atrazine. However, there were differences in desorption of the herbicide with the increase of salts concentrations. The results of this study indicate that increased salinity, mainly caused by increased sodium concentrations in the soil-water system, has important effects on the fate of atrazine, due to salinization of soils favors the adsorption of atrazine, and inhibits its desorption. It is important to consider these properties when application options are analyzed as well as in the management and remediation of soils contaminated with atrazine. INTRODUCCIÓN Como consecuencia del proceso de adsorción, los herbicidas se retienen sobre superficies de par- tículas minerales y orgánicas del suelo, provocando un comportamiento diferente de las moléculas di- sueltas en el agua del suelo. Por su menor tamaño y consecuente mayor área de superficie, la fracción coloidal del suelo tiende a retener las moléculas de los herbicidas. Por consiguiente, la adsorción de los herbicidas por la fracción coloidal del suelo actúa modificando los procesos de degradación y transpor- te de herbicidas en el suelo, así como la actividad de estas sustancias para combatir a las plagas a los que son destinados. Estos procesos tienen importantes repercusiones para el destino final de los herbicidas y sobre los mecanismos de transporte en el suelo, por lo que el conocimiento del proceso de adsorción en la fracción coloidal del suelo es fundamental en la descripción de la actividad herbicida y el destino de la atrazina en el suelo (Sánchez Martín y Sánchez Camazano 1984). La atrazina (2-cloro- 4-etilamino-6-isopropilamino-1,3,5-triazina) es un herbicida selectivo ampliamente utilizado en las zonas agrícolas de México para el control de ma- lezas de hoja ancha, es absorbido principalmente por las raíces y las hojas, provocando la inhibición de la fotosíntesis en las malezas (Syngenta 2006). Dado que se ha encontrado que este herbicida llega a contaminar fuentes de abastecimiento de agua, se asocia con riesgos para la salud (Van Leewen et al. 1999, Tappe et al. 2002, Gilliom et al. 2006, Hernández-Antonio y Hansen 2011). La adsorción de atrazina se puede favorecer o inhibir por la influencia de diferentes componentes del suelo (Blume et al. 2004, Ling et al. 2005, González-Márquez y Hansen 2009a), mientras que por efecto de envejecimiento se incrementa la re- sistencia para que el herbicida sea desadsorbido del suelo (Mersie et al. 1998, Gao et al. 1998, Lesan y Bhandari 2003). Dependiendo del tipo de suelo y de la concentración de materia orgánica (M.O.), se ha reportado histéresis en las curvas de adsorción- desadsorción de la atrazina en función del tiempo (Ma et al. 1993, Lesan y Bhandari 2003), donde la tasa de desadsorción es menor que la de adsor- ción. Entre las posibles causas de esta histéresis se encuentra la incapacidad del herbicida de alcanzar el equilibrio durante la adsorción o desadsorción (Altfelder et al. 2000), interacciones irreversibles del herbicida con la M.O. o los minerales arcillosos del suelo (Bhandari et al. 1996) y a la retención de moléculas adsorbidas en meso y micro poros dentro de las estructuras minerales y de la M.O. (Farrell y Reinhard 1994, Weber et al. 1998). La concentración de sales en el suelo también pue- de afectar la adsorción de plaguicidas, dependiendo de la composición y concentración de la sal y de las características del plaguicida y del suelo adsorbente (Alva y Singh 1991, De Jonge y De Jonge 1999, Kah 2007). Clausen et al. (2001) reportaron un incremento en la capacidad de adsorción de mesocrop y de 2,4-D en caolinita, con el aumento en la concentración de CaCl2 en sistemas agua-suelo.Asimismo, Kah (2007) reportó resultados similares sobre la adsorción de 2,4-D y flupirsulfurón-metil en suelos franco arcillo arenosos. Sin embargo, Hyun y Lee (2004) reporta- ron que el incremento en la concentración de CaCl2 disminuyó la adsorción de prosulfurón en un suelo con alta capacidad de intercambio catiónico. La influencia positiva de las sales en la adsorción de la atrazina se debe en parte a que los cationes que componen las sales sustituyen los protones en las superficies minerales y orgánicas del suelo, causando una ligera disminución en el pH y aumentando la carga positiva del suelo, favoreciendo así la adsorción del herbicida (De Jonge y De Jonge 1999). Las sales también ocasionan la compresión de la capa difusa de
  • 3. EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA 193 los componentes del suelo, favoreciendo la formación de complejos entre cationes multivalentes en el suelo y plaguicidas como atrazina y glifosato (Laird et al. 1992, De Jonge y De Jonge 1999, Mao y Ren 2010). De Jonge y De Jonge (1999) encontraron que la es- tabilidad de los coloides en un suelo franco arenoso también influye en la adsorción de plaguicidas, ya que estos sólidos, igual que la M.O. del suelo, tienden a aglomerarse e incrementar su masa específica con el aumento de la salinidad, logrando así favorecer la adsorción. Sin embargo, resultados reportados por González-Márquez y Hansen (2009b) indican que la adsorción de atrazina en la materia orgánica (ácido húmico Aldrich) se inhibe con el incremento de la salinidad, aun cuando la masa específica del adsorbente aumenta. Debido a lo anterior, no se puede generalizar el efecto de la concentración de sales en la adsorción de plaguicidas en suelos, ya que las interacciones o mecanismos de adsorción son complejos y dependen tanto de la naturaleza del plaguicida como del suelo como medio adsorbente. Es por ello que en la lite- ratura se han reportado tanto efectos positivos como negativos de la salinidad del suelo en la adsorción de plaguicidas. En este trabajo se investiga el efecto del incremento de la concentración de sales de sodio y de calcio en las cinéticas e isotermas de adsorción y desadsorción de atrazina, en suelos agrícolas del noroeste de México, con el fin de contribuir al en- tendimiento de la migración del herbicida en suelos salinos. MATERIALES Y MÉTODOS Caracterización de muestras de suelo Se caracterizaron dos muestras de suelo obtenidas de parcelas agrícolas del noroeste del país (Cuadro I). La muestra de suelo I fue caracterizada por González- Márquez y Hansen (2009a). La muestra II se colectó en marzo de 2007, de una parcela donde el principal cultivo sembrado fue maíz. La muestra se obtuvo de los primeros 20 cm de la superficie del suelo con una barrenadora manual, obteniendo 2 kg de suelo que se colocaron en bolsas de plástico y bajo refrigeración en hielo durante el transporte al laboratorio. El sue- lo fue secado a temperatura ambiente, disgregado, tamizado (≤ 2 mm) y almacenado en refrigeración a 4 ºC. En las muestras de suelo se evaluó el pH (Eckert y Sims 1995) y la conductividad eléctrica (C.E.) (Gartley 1995) en suspensiones de suelo:agua (relación 1:2). La M.O. se evaluó acorde al método D 2974-00 (ASTM 2000), el cual consiste en la calcinación de la muestra de suelo a 440 ºC y por diferencia de pesos se determina el contenido de M.O. El contenido de arena, limo y arcilla se evaluó por el método D42-63 (ASTM 1998); la distribución de partículas de tamaño mayor a 0.074 mm se deter- minó por tamizado, mientras que las partículas de tamaño menor se evaluaron mediante un proceso de sedimentación. Sodio, nitratos y amonio se evaluaron con un electrodo ion selectivo; el sodio se evaluó en una suspensión suelo:agua (relación 1:2) (Instrulab 5771101); los nitratos y el amonio en una suspensión suelo:2MKCl (relación 1:2.5) (Griffin et al. 1995). La concentración de calcio se evaluó fotométricamente en una suspensión suelo:agua (relación 1:2) (Merck 2006). Evaluación de la adsorción y desadsorción de atrazina La metodología para evaluar las cinéticas e isotermas de adsorción y desadsorción de atrazina fue acorde con la guía TG 106 de la Organización para la Cooperación y el Desarrollo Económico (OCDE 2000) y a una modificación de la misma. La modificación consistió en el uso de diferentes concentraciones salinas como electrolito de fondo y diferentes concentraciones de atrazina de las descritas en la guía. En recipientes de Teflon® de 50 mL, a 25±1ºC,sepusieronencontacto2gdesuelocon9mL de solución salina (preparada con agua MilliQ, Milli- pore®, Billerica, MA., resistividad de 18.2 MΩ cm). En el cuadro II se presentan las características de CUADRO I. COORDENADAS DE LAS ESTACIONES DE MUESTREO Y CARACTERÍSTICAS DE LOS SUELOS Suelo Coordenadas (Grados) Na (mmol/kg) Ca (mmol/kg) pH C.E. (mS/cm) NO3 – (mg/kg) NH4 + (mg/kg) M.O. (%) Arena (%) Limo (%) Arcilla (%) I 25.60887 O 108.31118 N 0.8 1.43 7.92 0.432 46.02 11.02 3.52 12.82 44.72 42.52 II 25.54338 O 108.43837 N 0.4 0.5 7.5 0.40 26.0 2.0 1.2 0.6 74.4 25 2González-Márquez y Hansen (2009a)
  • 4. L.C. González-Márquez y A.M. Hansen194 las soluciones salinas utilizadas. Los experimentos realizados con la solución con clave ”Ia” fueron experimentos testigo. Se agitaron los recipientes a 80 rpm en un rotador (Cole Palmer, modelo 7637) durante al menos 20 h, con el fin de hidratar el suelo y homogeneizar el sistema agua-suelo. Posterior- mente, se agregó 1 mL de una solución de atrazina 10 mg/L a cada recipiente; la solución se preparó a partir de un estándar analítico de atrazina (grado cromatográfico; Chem service, West Chester, PA, EUA) y atrazina marcada isotópicamente (334 Bq U-ring-14C, Sigma Chemical Company, San Luis, MO, EUA). La concentración final de atrazina en los recipientes fue de 1 mg/L. Se preparó un recipiente adicional sin suelo (blanco) para evaluar la posible adsorción de atrazina en las paredes, y un recipiente sin trazador radiactivo para cuantificar la radiacti- vidad “de fondo”. Los recipientes se agitaron a 80 rpm durante 1, 7, 15, 24, 48 y 72 h y posteriormente, se centrifugaron a 12 000 rpm durante 15 min. Se homogeneizó 1 mL de sobrenadante con 9 mL de coctel de centelleo (BSC® Amersham Biosciences) y se cuantificaron las emisiones beta de 14C-atrazina en un equipo de centelleo líquido (LS 6500 Beckman Coulter). La eficiencia del equipo fue del 96.5 %, con base en el conteo de 104 decaimientos por mi- nuto de un estándar de 14C (Beckman Coulter, lote S312102). La concentración de atrazina adsorbida se calculó con base en la diferencia entre la atrazina total aplicada y la concentración disuelta, cuantificada en el sobrenadante con el equipo de centelleo líquido. Con base en los resultados del blanco se encontró que la adsorción del herbicida en los recipientes fue despreciable (P < 0.05). Las cinéticas de desadsorción de la atrazina se evaluaron en suelos donde previamente el herbici- da había alcanzado el equilibrio de adsorción. Se retiraron 8.8 mL de la solución salina con atrazina disuelta y se adicionó la misma cantidad de solución salina, sin atrazina. Los recipientes se agitaron a 80 rpm durante 1, 7, 15, 24, 48 y 72 h, se centrifugaron a 12 000 rpm durante 15 min y se midieron las ac- tividades de atrazina en el sobrenadante. Todos los experimentos se realizaron a temperatura ambiente (25 ± 1ºC) y la reproducibilidad de los resultados se confirmó a través de al menos 10 % de duplicados experimentales. Se obtuvieron las isotermas de adsorción y desad- sorción de la atrazina con un procedimiento similar al que se llevó a cabo para evaluación de la cinética, con concentraciones de atrazina de 0.01, 0.05, 0.1, 0.5 y 1.0 mg/L. De acuerdo con los resultados de cinética, los tiempos para alcanzar el equilibrio de adsorción y desadsorción de atrazina, fueron de 24 h. Se realizó una segunda etapa de desadsorción de manera similar a la primera etapa; consistió en re- mover de cada recipiente 8.8 mL de sobrenadante y adicionar el mismo volumen de solución salina. Los resultados experimentales se ajustaron a los modelos de Langmuir y de Freundlich, encontrando un mejor ajuste con el modelo de Freundlich (Ec. 1): n efs CKC = (1) Donde Cs (mg/kg) es la concentración de atrazina adsorbida en el suelo, Ce (mg/L) es la concentración del herbicida en la solución acuosa, Kf (mg1-n Ln/kg) es la constante de Freundlich y n es un parámetro relacionado a la curvatura de la isoterma que indica la heterogeneidad de los sitios de adsorción. En adelan- te, Kf y n representan los parámetros de adsorción y Kfd y nd, los parámetros de desadsorción. Se evaluó la normalidad de los datos de adsorción y desadsorción a través de la prueba de Shapiro-Wilk. Las diferen- cias en adsorción y desadsorción fueron evaluadas estadísticamente por análisis de varianza; mientras que la diferencia de medias se realizó a través de la prueba deTukey, con un nivel de significancia de 5 %, utilizando el programa estadístico SAS versión 9.0 (SAS Institute 2002). El coeficiente de histéresis, H, de la desorción de atrazina, fue calculado acorde con la ecuación 2 (Barriuso et al. 1994): n n H d = (2) donde n y nd son los parámetros de la ecuación de Freundlich, de las isotermas de adsorción y desor- ción, respectivamente. CUADRO II. CONCENTRACIONES DE SODIO Y DE CALCIO EN LAS SOLUCIONES SALINAS UTILIZADAS EN LOS EXPERIMENTOS DE ADSORCIÓN DEATRAZINAEN MUESTRAS DE SUELO Suelo Clave de solución salina Na (mM) Ca (mM) I Ia* - 10.0 Ib 8.0 11.0 Ic 38.7 57.5 II IIa* - 10.0 IIb 9.1 13.9 IIc 39.9 60.5 * Soluciones acorde con lo recomendado en la Guía TG 106 (OCDE 2000)
  • 5. EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA 195 RESULTADOS Y DISCUSIÓN Los resultados de la caracterización de las mues- tras de suelo se presentan en el cuadro I. El suelo I es arcillo limoso y el suelo II es franco limoso, ambos con pH ligeramente alcalino. El contenido de M.O. está en el rango de 1.2 a 3.5 %, valores típicos para suelos minerales (Tinsley 2004). Tanto la muestra del suelo I, como la muestra del suelo II fueron ligeramente salinas. El tiempo requerido para alcanzar el equilibrio de adsorción y desadsorción de la atrazina en las muestras de suelo fue menor o igual a 24 h (Fig. 1). El incremento de las concentraciones de sodio y de calcio no afectó el tiempo requerido para alcanzar el equilibrio de adsorción y desadsorción del herbicida en los suelos. Las isotermas de adsorción y desadsorción de la atrazina en el suelo se presentan en la figura 2. Los valores de Kf y Kfd se presentan en el cuadro III, donde se observa que los valores de Kf son acorde con los reportados en la literatura para suelos agrícolas (Socías-Viciana et al. 1999, Coquet 2003, Drori et al. 2005, González-Márquez y Hansen 2009a). Los coe- ficientes de adsorción entre 0.83 y 1.84 mg1-n Ln/kg indican baja adsorción de atrazina, respecto a estudios reportadosparaglifosatoyDDT,queseadsorbenfuer- temente con coeficientes entre 17 y 280 mg1-n Ln/kg (Al-Rajab et al. 2008, Lalah et al. 2009). El promedio de atrazina adsorbida varió entre 24 y 29 % (Cuadro III). Las isotermas de adsorción fueron no lineales, con valores de n entre 0.90 y 0.96, con curvaturas cóncavas a la abscisa, indicando que la adsorción del herbicida se desfavorece al incrementar su concentración inicial en la solución. Las concentraciones bajas de sodio (aproximada- mente 9 mM) y de calcio (aproximadamente 10 mM), favorecieron la adsorción de atrazina en los suelos (Fig. 2a y Fig. 2c). Se han reportado resultados similares por Li et al. (2006), quienes investigaron el efecto del potasio y el calcio en la adsorción de atrazina en K- y Ca-esmectita, donde la adsorción del herbicida en K-esmectita se favoreció al incre- mentar la concentración de KCl en la solución del suelo, mientras que la adsorción en Ca-esmectita permaneció casi constante en presencia de diferentes concentraciones de CaCl2. Estos autores concluyeron que la formación de cuasi cristales mejor ordenados de la esmectita y la reducción de la distancia entre las capas de la arcilla, debido al incremento de la concen- tración de KCl, facilitó la retención de atrazina y, por lo tanto, su adsorción. Nuestros resultados indican que el incremento de la concentración de sodio tuvo un efecto similar sobre la adsorción de atrazina en la parte inorgánica de los suelos. El incremento en las concentraciones de sodio y de calcio (a aproximada- mente 40 y 60 mM, respectivamente) en la solución acuosa no afectó significativamente (P < 0.05) la adsorción de atrazina. Sin embargo, se presentaron diferencias en la desadsorción del herbicida con el incremento de la salinidad (Fig. 2b y Fig. 2d). El pro- medio de atrazina desadsorbida varió entre 34 y 44 % (Cuadro III). El suelo que adsorbió más atrazina (suelo II) fue el que presentó menor desorción del herbicida; indicando que la naturaleza de las interac- ciones entre la atrazina y el suelo cambiaron, durante o después de la adsorción del herbicida. Los resultados indican que el proceso de adsor- ción no es controlado por la fracción orgánica del suelo, ya que si fuese controlado por la M.O. las isotermas de adsorción se ajustarían mejor al modelo de adsorción lineal (Barriuso et al. 1994, Yang et al. 2009) y la adsorción del herbicida disminuiría con el incremento de la concentración de calcio, como ha sido reportado por González-Márquez y Hansen (2009b), quienes indican que la adsorción de atrazina en la M.O. se inhibe con el incremento de la salinidad, debido a la oclusión de sitios de adsorción, producto 0 20 40 60 80 0 10 20 30 40 50 Atrazinaadsorbida(%) Tiempo (h) Ib Ic Ib Ic (a) 0 20 40 60 80 0 20 40 60 80 Atrazinaadsorbida(%) Tiempo (hr) IIb IIc IIb IIc (b) Fig. 1. Cinéticas de adsorción (símbolos con relleno) y desadsor- ción (símbolos sin relleno) de atrazina en suelos tratados con soluciones salinas (a) ♦Ib (8.0 mM Na + 11.0 mM Ca); ●Ic (38.7 mM Na + 57.5 mM Ca); (b) ♦IIb (9.1 mM Na + 13.9 mM Ca); ●IIc (39.9 mM Na + 60.5 mM Ca)
  • 6. L.C. González-Márquez y A.M. Hansen196 de cambios en la conformación de la estructura de la M.O. Sin embargo, es más irreversible la adsorción de atrazina en la M.O. de los suelos (Yang et al. 2009). En el cuadro III se presentan los valores del coe- ficiente de histéresis, H, de las isotermas de adsorción y desadsorción de atrazina en los suelos estudiados. Tras una etapa de desadsorción, los valores de H fueron cercanos a 1, indicando que la histéresis es mí- nima (Tang et al. 2009). Mientras que en el suelo II, tras una segunda etapa de desadsorción (Fig. 3), el valor de H fue menor a 1, indicando que la tasa de desadsorción es menor que la de adsorción, por lo que se presenta mayor histéresis. A medida que la atrazina es desadsorbida del suelo, el proceso se hace más difícil, lo que incrementa la histéresis (Fig. 3). En la literatura se ha reportado que el proceso de desadsorción de compuestos orgánicos en suelo y sedimentos suele ser bifásico; uno regido por cinéti- cas lentas de adsorción/desadsorción y otro por atra- pamiento físico (Pignatello y Xing 1996, Alexander 2000). Yang et al. (2009) estudiaron la adsorción y desadsorción de atrazina en suelos y concluyen que debido a que los equilibrios entre estos procesos fueron relativamente cortos (tres días), la difusión 0.001 0.010 0.100 1.000 10.000 0.0001 0.0010 0.0100 0.1000 1.0000 10.0000 Ia Ib Ib (a) 0.001 0.010 0.100 1.000 10.000 0.0001 0.0010 0.0100 0.1000 1.0000 Atrazina(mg/kg) Ic Ic (b) 0.001 0.010 0.100 1.000 10.000 0.0001 0.0010 0.0100 0.1000 1.0000 Atrazina(mg/kg)Atrazina(mg/kg) Atrazina (mg/L) IIa IIa IIb IIb (c) 0.001 0.010 0.100 1.000 10.000 0.0001 0.0010 0.0100 0.1000 1.0000 Atrazina(mg/kg) Atrazina (mg/L) Atrazina (mg/L) Atrazina (mg/L) IIc IIc (d) Fig. 2. Isotermas de adsorción (símbolos con relleno) y de desadsorción (símbolos sin relleno) de atrazina en suelos tratados con soluciones salinas (a) ▲Ia (10.0 mM Ca); ♦Ib (8.0 mM Na + 11.0 mM Ca); (b) ●Ic (38.7 mM Na + 57.5 mM Ca); (c) ▲IIa (10.0 mM Ca); ♦IIb (9.1 mM Na + 13.9 mM Ca); (d) ●IIc (39.9 mM Na + 60.5 mM Ca) CUADRO III. COEFICIENTES DE ADSORCIÓN, DESADSORCIÓN Y DE HISTÉRESIS Suelo Clave de solución salina Adsorción (%) Kf (mg1-n Ln/kg) n r2 Desadsorción (%) Kfd (mg1-n Ln/kg) nd r2 H I Ia 16.4 0.83 0.94 0.9996 - - - - - Ib 24.4 1.41 0.94 0.9998 44.1 5.62 0.97 0.9984 1.02 Ic 24.0 1.41 0.95 0.9983 43.4 6.30 0.99 0.9953 1.04 II IIa 22.8 1.14 0.90 0.9936 47.9 3.33 0.89 0.9677 0.99 IIa* - - - - 20.2 10.76* 0.88* 0.9834 0.98* IIb 29.1 1.79 0.95 0.9940 34.2 9.85 1.00 0.9851 1.06 IIc 29.2 1.84 0.96 0.9957 35.4 8.79 0.99 0.9889 1.03 *segunda etapa de desadsorción
  • 7. EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA 197 no fue el principal mecanismo que controló la resis- tencia a la desadsorción de la atrazina; el mecanismo dominante fue el atrapamiento físico del herbicida. Los resultados presentados en este trabajo indican un comportamiento similar, con equilibrios de adsorción y desadsorción de un día, por lo que asumimos que el atrapamiento físico es el mecanismo que controla la resistencia a la desadsorción de la atrazina en los suelos estudiados. El mecanismo de atrapamiento fí- sico en la M.O. es explicado por Weber et al. (1998) y Yang et al. (2009), quienes sugieren que la adsorción de grandes cantidades de un adsorbato puede ocasio- nar que el adsorbente se vuelva más flexible y que a medida que el adsorbato se desadsorbe la flexibilidad disminuye, pudiendo ocasionar el atrapamiento físico del adsorbato; tal conjetura también explica por qué el suelo que adsorbe más herbicida es el que presenta menor desadsorción. CONCLUSIONES El incremento de la salinidad no afectó el tiempo requerido para alcanzar el equilibrio de adsorción y desadsorción de la atrazina en los suelos estudiados; sin embargo, sí favoreció la adsorción de atrazina en los suelos y desfavoreció su desadsorción (a con- centraciones de sodio de aproximadamente 9 mM). El incremento de la concentración de sodio y de calcio a 40 y 60 mM, respectivamente, no afectó significativamente (P < 0.05) la adsorción de atrazina. Esto pudo deberse a que inicialmente los iones de sodio alteraron la configuración de los componentes del suelo y la capa difusa de los mismos, hasta un valor límite, el cual favoreció la interacción de la atrazina con las superficies adsorbentes; por lo que el incremento en la concentración de este electrolito no siguió favoreciendo la adsorción del herbicida. Los resultados de este estudio indican que el incre- mento de la salinidad, principalmente por el aumento de sodio en el suelo, tiene efectos importantes en el destino final de la atrazina; dado que la salinización de los suelos favorece la adsorción de atrazina e inhibe la desadsorción, por lo que es importante con- siderar tal efecto en su destino ambiental; así como en el manejo y remediación de suelos contaminados con atrazina. AGRADECIMIENTOS Se agradece al Consejo Nacional de Ciencia y Tecnología por la beca de Doctorado otorgada al primer autor y al Instituto Mexicano de Tecnología del Agua por el apoyo para la realización de este estudio (números de proyecto TH-0803 y TH-0709). REFERENCIAS Alexander M. (2000).Aging, bioavailability, and overesti- mation of risk from environmental pollutants. Environ. Sci. Technol. 34, 4259-4265. Al-RajabA.J.,Amellal S. y Schiavon M. (2008). Sorption and leaching of 14C-glyphosate in agricultural soils. Agron. Sustain. Dev. 28, 419-428. Altfelder S., Streck T. y Richter J. (2000). Nonsingular sorption of organic compounds in soil: the role of slow kinetics. J. Environ. Qual. 29, 917-925. Alva A.K. y Singh M. (1991). Sorption desorption of her- bicides in soil as influenced by electrolyte cations and ionic strength. J. Environ. Sci. Heal. B. 26, 147-163. ASTM (1998). D422-63 Standard test method for particle- size analysis of soils.American Society for Testing and Materials. West Conshohocken, PA, EUA, pp. 1-8. ASTM (2000). D2974-00 Standard test methods for mois- ture, ash, and organic matter or peat and other organic soils. American Society for Testing and Materials. Philadelphia, PA, EUA, 04.08, pp. 31-33. Barriuso E., Baer U. y Calvet R. (1992). Dissolved or- ganic matter and adsorption-desorption of dimefuron, atrazine and carbetamide by soils. J. Environ. Qual. 21, 359-367. Barriuso E., Laird D. A., Koskinen W.C. y Dowdy R.H. (1994). Atrazine desorption from smectites. Soil Sci. Soc. Am. J. 58, 1632-1638. Bhandari A., Novak J.T. y Berry D.F. (1996). Binding of 4-monochlorophenol to soil. Environ. Sci. Technol. 30, 2305-2311. Fig. 3. Isotermas de desadsorción de atrazina en el suelo II, tratado con 10 mM CaCl2 *una etapa de desadsorción **dos etapas de desadsorción 0.001 0.010 0.100 1.000 10.000 0.0001 0.0010 0.0100 0.1000 1.0000 Atrazina(mg/kg) Atrazina (mg/L) IIa* IIa**
  • 8. L.C. González-Márquez y A.M. Hansen198 Blume E., Bischoff M., Moorman T.B. y Turco R.F. (2004). Degradation and binding of atrazine in sur- face and subsurface soils. J. Agr. Food Chem. 52, 7382-7388. Clausen L., Fabricius I. y Madsen L. (2001). Adsorption of pesticides onto quartz, calcite, kaolinite, and alpha- alumina. J. Environ. Qual. 30, 846-857. Coquet Y. (2003). Sorption of pesticides atrazine, iso- proturon, and metamitron in the vadose zone. Vadose Zone J. 2, 40-51. De Jonge H. y De Jonge L.W. (1999). Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil. Chemosphere 39, 753-763. Drori Y., Izenshtat Z. y Chefetz B. (2005). Sorption- desorption behavior of atrazine in soils irrigated with reclaimed wastewater. Soil Sci. Soc. Am. J. 69, 1703-1710. Eckert D. y Sims J.T. (1995). Recommended soil pH and lime requirement tests. Recommended soil testing procedures for the Northeastern United States. 3a ed. Northeastern Regional Publication No. 493. [en línea]. http://extension.udel.edu/lawngarden/files/2012/10/ CHAP3.pdf 31/08/2013. Farrell J. y Reinhard M. (1994). Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 2. Kinetics. Environ. Sci. Technol. 28, 63-72. Gao J.P., Maguhn J., Spitzauer P. y Kettrup A. (1998). Sorption of pesticides in the sediment of the Teufels- weiher pond (Southern Germany). II: Competitive adsorption, desorption of aged residues and effect of dissolved organic carbon. Water Res. 32, 2089-2094. Gartley K.L. (1995). Recommended soluble salts tests. Recommended soil testing procedures for the North- eastern United States. 3a ed. Northeastern Regional Publication No. 493. [en línea]. http://extension. udel.edu/lawngarden/files/2012/10/CHAP10.pdf 31/08/2013. Gilliom R.J., Barbash J.E., Crawford C.G., Hamilton P.A., Martin J.D., Nakagaki N., Nowell L.H., Scott J.C., Stackelberg P.E., Thelin P.G. y Wolock D.M. (2006). The quality of our nation’s waters - Pesticides in the nation’s streams and ground water, 1992-2001. U.S. Geological Survey, Circular 1291. [en línea]. http:// pubs.usgs.gov/circ/2005/1291/ 29/09/2009. González-Márquez L.C. y Hansen A.M. (2009a). Ads- orción y mineralización de atrazina y relación con parámetros de suelos del DR 063 Guasave, Sinaloa. Rev. Mex. Cienc. Geol. 26, 587-599. González-Márquez L.C. y Hansen A.M. (2009b). Ef- fects of salinity on the aggregation, composition, and sorption capacity of humic acid. 237th ACS National Meeting, Division of Geochemistry. Salt Lake City UT, marzo 22-26, 2009. [en línea]. http://oasys2. confex.com/acs/237nm/techprogram/P1255431.HTM 29/09/2012. Griffin G., Jokela W. y Ross D. (1995). Recommended soil nitrate-N Tests. En: Recommended soil testing procedures for the Northeastern United States. (T. Sims y A. Wolf, Eds.). U. Delaware Agric. Exp. Stn. Bull. 493, 22-29. Guillén-Garcés R.A., Hansen A.M. y Afferden van M. (2007). Mineralization of atrazine in agricultural soil: Inhibition by nitrogen. Environ. Toxicol. Chem. 26, 844-850. Hernández-Antonio A. y Hansen A.M. (2011). Uso de plaguicidas en dos zonas agrícolas de México y evalu- ación de la contaminación de agua y sedimentos. Rev. Int. Contam. Ambie. 27, 115-127. Hyun S. y Lee L.S. (2004). Factors controlling sorption of prosulfuron by variable charge soils and model sorbents. J. Environ. Qual. 33, 1354-1361. Kah M. (2007). Behaviour of ionisable pesticides in soils. Tesis de Doctorado. Environment Department. University of York, 228 pp. [en línea]. http://tel. archives-ouvertes.fr/docs/00/18/54/85/PDF/PhD_the- sis_Melanie_Kah.pdf 21/04/2014. Laird D.A., Barriuso E., Dowdy R.H. y Koskinen W.C. (1992). Adsorption of atrazine on smectites. Soil Sci. Soc. Am. J. 56, 62-67. Lalah J.O., Njogu S.N. y Wandiga S.O. (2009). The ef- fects of Mn2+, Ni2+, Cu2+, Co2+ and Zn2+ ions on pesticide adsorption and mobility in a tropical soil. B. Environ. Contam. Tox. 83, 352-358. Lesan H.M. y Bhandari A. (2003). Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis. Water Res. 37, 1644-1654. Li H., Teppen B.J., Laird D.A., Johnston C.T. y Boyd S.A. (2006). Effects of increasing potassium chloride and calcium chloride ionic strength on pesticide sorption by potassium- and calcium-smectite. Soil Sci. Soc. Am. J. 70, 1889-1895. Ling W.T., Wang H.Z, Xu J.M. y Gao Y.Z. (2005). Sorp- tion of dissolved organic matter and its effects on the atrazine sorption on soils. J. Environ. Sci. 17, 478-48. Ma L., Southwick L.M., Willis G.H. y Selim H.M. (1993). Hysteretic characteristics of atrazine adsorp- tion–desorption by a Sharkey soil. Weed Sci. 41, 627-633. Mao M. y Ren L. (2010). Effects of ionic strength and temperature on adsorption of atrazine, deethylatrazine and deisopropyatrazine in an alkaline sandy loam. 19th World Congress of Soil Science. Soil Solutions for a Changing World. Brisbane, Australia 1 al 6 de agosto,
  • 9. EFECTO DE LA SALINIDAD EN LAADSORCIÓN DE UN HERBICIDA 199 2010. [en línea]. http://www.iuss.org/19th%20WCSS/ Symposium/pdf/0308.pdf 02/02/2013. Merck (2006). Calcium Test. [en línea]. http://www.mer- ckmillipore.com/chemicals/test-calcio/MDA_CHEM- 114815/spanish/p_4heb.s1LpCYAAAEWNuIfVhTl?a ttachments=brochure 26/04/2007. Mersie W., Liu J., Seybold C. y Tierney D. (1998). Ex- tractability and degradation of atrazine in submerged sediment. Weed Sci. 46, 480-486. OECD (2000). Test No. 106. Adsorption-Desorption us- ing a batch equilibrium method. OECD Guidelines for the Testing of Chemicals. Organización para la Cooperación y el Desarrollo Económico. [en línea]. http://www.oecd-ilibrary.org/environment/oecd-guide- lines-for-the-testing-of-chemicals-section-1-physical- chemical-properties_20745753 06/04/2013. Pignatello J.J. y Xing B. (1996). Mechanisms of slow sorp- tion of organic chemicals to natural particles. Environ. Sci. Technol. 30, 1-11. Sánchez Martín M.J. y Sánchez Camazano M. (1984). Los plaguicidas: adsorción y evolución en el suelo. [en línea]. http://digital.csic.es/bitstream/10261/12919/1/ plaguicidas.pdf 06/04/2013. SAS Institute (2002). The SAS system for Windows, ver. 9.0. SAS Institute Inc., Cary NC, EUA. Socías-Viciana M.M., Fernández-Pérez M., Villafranca- Sánchez M., González-Pradas E. y Flores-Céspedes F. (1999). Sorption and leaching of atrazine and MCPAin natural and peat-amended calcareous soils from Spain. J. Agr. Food Chem. 47, 1236-1241. Syngenta (2006). Gesaprim 90 WG. [en línea]. http:// www.syngenta.com/country/cl/cl/soluciones/protec- cioncultivos/Documents/Etiquetas/Gesaprim90WG. pdf 12/12/2013. Tang Z., Zhang W. y Chen Y. (2009). Adsorption and desorption characteristics of monosulfuron in Chinese soils. J. Hazard. Mater. 166, 1351-1356. Tappe W., Groeneweg J. y Jantsch B. (2002). Diffuse atrazine pollution in German aquifers. Biodegrada- tion 13, 3-10. Tinsley I.J. (2004). Chemical concepts in pollutant behav- ior. 2a ed. Wiley, Hoboken, NJ, EUA, 402 pp. Van Leewen J.A., Waltner-Toews D., Abernathy T., Smith B. y Shokri M. (1999). Associations be- tween stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987-1991. Int. J. Epide- miol. 28, 836-890. Weber Jr. W.J., Huang W.L. y Yu H. (1998). Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments: II. Effect of soil organic matter heterogeneity. J. Contam. Hydrol. 31, 149-165. Yang W., Zhang J., Zhang C., Zhu L. y Chen W. (2009). Sorption and resistant desorption of atrazine in typical Chinese Soils. J. Environ. Qual. 38, 171-179.