SlideShare uma empresa Scribd logo
1 de 17
Chromatography
-- what does it mean?
It means ―to write with colors‖ -- literally translated from its Greek roots chroma and graphein.
Chroma means color and graphein means to write.
--Definition:
―A physical separation method in which the components of a mixture are separated by differences
in their distribution between two phases, one of which is stationary (stationary phase) while the
other (mobile phase) moves through it in a definite direction. The substances must interact with the
stationary phase to be retained and separated by it.‖ (McGraw-Hill Science & Technology Encyclopedia)
―A technique for separating and analysing the components of a mixture of liquids or gases.
Chromatography depends on the selective absorption of the different components in a column of
powder (column chromatography) or on a strip of paper (paper chromatography). Chromatography
is one of the techniques used to identify specific drugs in a urine sample.‖ (Oxford Dictionary of Sports
Science & Medicine)
―Any of various techniques for the separation of complex mixtures that rely on the differential
affinities of substances for a gas or liquid mobile medium and for a stationary adsorbing medium
through which they pass, such as paper, gelatin, or magnesia.‖ (American Heritage Dictionary)
Chromatography can be defined as: that technique for the separation of mixture of solutes in
separation is brought about by the differential movement of the individual solutes through a
porous medium under the influence of a moving solvent. OR
Chromatography is a separation technique which involves the differential migration of a multi-
component sample through a packed bed. The degree of retardation of one component relative to
another is an indication of this differential. This differential is a result of a number of interactions
that may occur between the components and the system. These interactions include----- Partition,
Adsorption, Ion exchange and Gel filtration.
In biological, chemical, phytochemical and pharmaceutical sciences it is frequently necessary to
separate, isolate, purify and identify the components of complex mixtures. These complex mixtures
are not easily resolved by simple physical and chemical means such as distillation, fractional
distillation, crystallization and fractional crystallization etc. It is possible, however, to achieve
such a separation rapidly by the process of CHROMATOGRAPHY.
Why use chromatography? The key here is separation. But what
is the importance of separation in the lab?
Separation of chemical components is vital in any type of chemical analysis. When trying to
identify an unknown substance, the sample must first be simplified as much as possible into its
constituent compounds. The unknown can then be characterized by individual identification of its
parts. This does not imply that the separated chemical components are recovered after the
separation and analyzed. Usually, the analytes are irretrievable. Separated compounds are
compared to known standards. As with most chemical exploration, it is important to have an idea
of what compounds are being searched for in the first place.
History:
The history of chromatography begins during the mid-19th century. Chromatography, literally
"color writing", was used—and named— in the first decade of the 20th century, primarily for the
separation of plant pigments such as chlorophyll. Chromatography was first developed by the
Russian botanist Mikhail Tswett 1872-1919. In 1903 as he produced a colorful separation of
plant pigments through a column of calcium carbonate. He called the new technique
chromatography because the result of analysis was written in colors along the length of adsorbent
column.
New types of chromatography developed during the 1930s and 1940s made the technique useful
for many types of separation process. Chromatography became developed substantially as a result
of the work of Archer John Porter Martin and Richard Laurence Millington Synge during the
1940s and 1950s. They established the principles and basic techniques of partition
chromatography, and their work encouraged the rapid development of several types of
chromatography method: paper chromatography, gas chromatography, and what would become
known as high performance liquid chromatography. Since then, the technology has advanced
rapidly. Researchers found that the main principles of Tswett's chromatography could be applied in
many different ways, resulting in the different varieties of chromatography. Simultaneously,
advances continually improved the technical performance of chromatography, allowing the
separation of increasingly similar molecules. Chromatography has since developed into an
invaluable laboratory tool for the separation and identification of compounds. Although color
usually no longer plays a role in the process, the same principles of chromatography still
apply.
The principle behind Chromatography is:
The rate of migration of the solute depends upon the rate of interaction of the solute with the two
phases, one being the mobile phase and the other stationary phase as the compounds travel through
the supporting medium. Chromatography can separate a mixture into its components with great
precision. In fact, it can be used to distinguish between two very similar components, such as
proteins that may be different only by a single amino acid. The conditions under which the
separation process takes place are also not severe, allowing the use of chromatography on delicate
products. With the right materials and operating conditions, chromatography is capable of
purifying any soluble or volatile substance.
Uses of Chromatography:
Chromatography is extensively used in the semiconductor industry, especially in the identification
of contaminants that cause yield, quality, and reliability problems. Chromatography is used to
separate particles and contaminates in chemical plants. For example, in the chemical industries,
pesticides and insecticides like DDT in the groundwater and PCBs (Polychlorinated biphenyls) are
removed by the process of chromatography. As a major testing tool, chromatography is used by
government agencies to separate toxic materials from the drinking water and also to monitor air
quality.
One of the significant chromatography uses is made in pharmaceutical companies, who specialize
in making medicines. Chromatography is used by pharmaceutical companies to prepare large
amounts of pure materials that are further required in making medicines. Also, it is used to check
the presence of any contamination in the manufactured compounds.
In the field of organic chemistry and pharmacy, chiral compounds are very close to each other in
terms of atomic or molecular weight, element composition, and the physical properties. However,
they exist in two different forms, called as the enantiomers and optical isomers. Both these
compounds though may appear to be same, have very different chemical properties. So, in
pharmacy, chromatography becomes crucial to analyze the exact chiral compound so that correct
medicines can be manufactured. For instance, a compound called as thalidomide has two optical
isomers and one of the isomers can cause birth defect if a pregnant woman consumes it in early
stages of pregnancy. So, it is important to carefully separate the isomers.
Other important chromatography uses are in the food industry where proper food maintenance is
necessary to ensure quality. Chromatography is used as a technique to separate the additives,
vitamins, preservatives, proteins and amino acids. Some other chromatography uses are in the
detection of drugs or medications in the urine and the separation of traces of chemicals in the case
of fire in houses or buildings. It is also very popular in forensic science for investigative purposes.
Chromatography technology has gained immense industrial popularity in the past few decades as it
can separate chemicals that just differ even in their atomic orientations in space. These were some
of the chromatography uses that are used in various technological pursuits in chemical industries.
THIN LAYER CHROMATOGRAPHY (TLC)
TLC is universal analytical technique in chemical analysis for organic and inorganic matter.
HISTORY-
In 1938 Izmailov and Shraiber describe basic principle used it for separation of plant extract.
In 1958 Stahl mainly created with bringing out the work on preparing plates and separation of
wide variety of compound.
TLC is simple and rapid method carrying out using thin layer of adsorbent on plates.
ADVANTAGES:
 Low cost
 Simple and rapid
 Short analysis time
 All spots can be visualized
 Adaptable to most pharmaceuticals
 Uses small quantities of solvents
 Requires minimal training
 Reliable and quick
 Minimal amount of equipment is needed
 Densitometers can be used to increase accuracy of spot concentration
PRINCIPLE:
 TLC is included under both adsorption and partition chromatographs.
 Separation of component may result due to adsorption or partition or both phenomenons
depend upon nature of adsorbent used on plate and solvent system used for development.
TLC SUPERIOR OVER OTHER METHOD:
 It requires little equipment
 Require little time for separation
 It is more sensitive
 Very small quantity of sample require for analysis
 The method use for adsorption, partition, ion exchange chromatography
 Components which are separated can be recovered easily.
 Quantitative separation of spot and zone are possible.
 For identification is permitted spraying of corrosive agent
Supporting Surfaces:
In this type a thin layer of a solid coating material is spread on a suitable supporting surface.
Types of Supporting Surfaces:
1. Glass Plates
2. Plastic sheets
3. Aluminum sheets.
Stationary phase (coating material):
A plate of TLC is coated by a solid matter as a stationary phase. The coated material has 0.1-
0.3mm in thickness. TLC plates are usually commercially available, with standard particle size
ranges to improve reproducibility. They are prepared by mixing the adsorbent with a small amount
of inert binder. This mixture is spread as thick slurry on an unreactive carrier sheet. The resultant
plate is dried and activated by heating in an oven for thirty minutes at 110 °C. Stationary phase
has two components:
1. Additive
2. Adsorbent
1. ADDITIVES:
These include binders and indicators.
i. Binder:
These are materials used to hold the thin layer of the coating material into the surface of the
supporting plates.
Types of binders:
a. CaSO4 (Plaster of Paris) or Gypsum (10-15%)
b. Silicon dioxide
c. Starch (1-3 %)
d. Organic polymers e.g. polyvinyl alcohol.
ii. Indicator:
These are materials mixed with the coating material and binder to help locating the spots on the
TLC. Fluorescent indicator will make it florescence during the UV light exposure. The most
common used indicator is the fluorescent materials (silica gel 60 F254).
2. ADSORBENTS:
Adsorbent used such as silica gel, alumina, kieselguhr. The thickness of the adsorbent layer is
typically around 0.1 – 0.25 mm for analytical purposes and around 0.5 – 2.0 mm for preparative
TLC.
 Silica gel:
Silica gel is a form of silicon dioxide (silica). The silicon atoms are joined via oxygen atoms in a
giant covalent structure. However, at the surface of the silica gel, the silicon atoms are attached to
-OH groups. So, at the surface of the silica gel you have Si-O-H bonds instead of Si-O-Si bonds.
The diagram shows a small part of the silica surface.
The surface of the silica gel is very polar and, because of the -OH groups, can form
hydrogen bonds with suitable compounds around it as well as van der Waals dispersion
forces and dipole-dipole attractions. Some modified silica is also used in certain purposes.
Silica gel G
Silica gel with average particle size 15µm containing 13% calcium sulfate binding agent.
Used in wide range pharmacopoeial test
Silica gel G254, i.e., Silica gel G with fluorescence added has same application with Silica
gel G where visualization is to be carried out under UV light.
 Alumina:
The other commonly used stationary phase is alumina - aluminium oxide. The aluminium atoms on
the surface of this also have -OH groups attached. Anything we say about silica gel therefore
applies equally to alumina.
 Kieselguhr:
 Cellulose
Cellulose powder of less than 30µm particle size.
Factors consider for adsorbent:
1. Characteristic of compound to be separated
2. Solubility of compound
3. Nature of substance to be separated
4. To see whether compound is liable to react chemically with adsorbent.
5. Adsorbent particle size
6. Adsorbent do not adhere to glass plate.
i. Inorganic adsorbents:
 Silica
 Silica gel
 Alumina
 Calcium phosphate
 Glass powder
 Kieselguhr
 Magnesium silicate
 Calcium silicate
 Phosphate
 Ferric & Chromic oxides
 Zinc carbonate & zinc Ferro cyanides
 Bentonites
ii. Organic adsorbents:
Normal cellulose powder
Charcoal & activated carbon
Starch
Sucrose
Mannitol
Dextrin gel
Mobile phase (solvent system):
The ability of mobile phase to move up
is depend on the polarity itself
Volatile organic solvents are preferably used as
mobile phase.
Choice of mobile phase depends on nature of
substance to be separated.
And also depend on adsorbent material to be used.
Polarity of solvent and substance to be separated
plays important role in selection.
Purity of solvent also important.
Factor affecting mobile phase-
 Nature of the substance to be separated.
 Nature of the stationary phase used.
 Mode of chromatography.
 Nature of separation.
 Suitable eluents are usually selected by trial and error method, literature review
 The solvent used should be of high purity.
 Other factor which are taken into consideration while selecting solvents include polarity,
solubility etc.
 Combination of two solvents gives better separation than with a single solvent
Solvent used –
1. Petroleum ether
2. Benzene
3. Carbon tetrachloride
4. Chloroform
5. Diethyl ether
6. Ethanol
7. Methanol
8. Acetone
9. Dichloromethane
10. Diethyl form amide
Preparation of chromatographic plate:
1. Size:
Heksana 0
Butanol 3.9
Chloroform 4.1
Methanol 5.1
Ethanol 5.1
Acetonitrile 5.8
Air 9.0
 Glass plate or plastic plate used to sprayed adsorbent.
 Standard size of plate is 20 X 5cm, 20 X 10 cm, 20 X 20cm.
 Plate surface is flat and regular.
 Standard film thickness is 250 um.
 Thicker layer 0.5to 2 mm used for preparative separation.
2. Method for application of adsorbent on the plate-
1. Pouring- adsorbent of homogeneous particle size made in slurry and pour on plate.
2. Dipping- it used for small plate by dipping two plate back to back in slurry of adsorbent in
chloroform or other volatile solvent.
3. Spraying- simply by spraying slurry on plate
4. Spreading- slurry spread by using spatula or glass rod
3. Activation of plate:
 After spreading plate allowed to dry and activated by heating about 1000 cfor 30 min.
 Plate made with volatile organic solvent may not require further drying
 For activation plate is placed in hot oven at temperature 120-150 for one hour. This will
eliminate the extra water which occupy in silica gel.
Silica gel is a form of silicon dioxide (silica). The silicon atoms are joined via oxygen atoms in a
giant covalent structure. However, at the surface of the silica gel, the silicon atoms are attached to
-OH groups.
4. Sample application (spotting):
 Given sample should dissolve in any volatile substance and polarity of that solvent should
low.
 The apparatus used is capillary tube, micropipette or calibrated glass syringes for
application of sample on TLC.
PRECAUTION: NOT TOUCH THE SURFACE OF STATIONARY PHASE. This causes the
distraction of stationary phase and retard the movement of moving phase on stationary phase.
How does thin layer chromatography work?
The stationary phase - silica gel
 The area of application is kept as small as possible for sharper and greater resolution of
sample.
 For preparative work sample applied in narrow band
 The pipette, loop or syringe use for applying sample.
 The spot should be within 2-5 mm diameter.
 For preparative work sample up to 4 mg is applied on starting line.
 The spots must be about 1-1.5cm away from the bottom of the plate and 0.5 cm away from
the plate sides and 0.5 cm away from each other.
5. Development:
 Chromatographic Jars (Tanks) made of Glass with air-tight lids of different sizes
containing the mobile phase are used for developments. The solvent must be left in the Jars
enough time before developing the plates for saturation.
 TLC plate placed vertically in rectangular chromatography tank or chamber.
 Glass and stainless steel is suitable chamber.
 If tank is not saturated, solvent will evaporate and affect the RF value.
 Development should be carried out at room temp. by covering chamber with glass plate.
Producing the chromatogram
We'll start with a very simple case - just trying to show that a particular dye is in fact a mixture of simpler
dyes.
A pencil line is drawn near the bottom of the plate and a small drop of a solution of the dye mixture is placed
on it. Any labeling on the plate to show the original position of the drop must also be in pencil. If any of this
was done in ink, dyes from the ink would also move as the chromatogram developed.
When the spot of mixture is dry, the plate is stood in a shallow layer of solvent in a covered beaker. It is
important that the solvent level is below the line with the spot on it.
The reason for covering the beaker is to make sure that the atmosphere in the beaker is saturated with solvent
vapour. To help this, the beaker is often lined with some filter paper soaked in solvent. Saturating the
atmosphere in the beaker with vapour stops the solvent from evaporating as it rises up the plate.
As the solvent slowly travels up the plate, the different components of the dye mixture travel at different
rates and the mixture is separated into different coloured spots.
The diagram shows the plate after the solvent has moved about half way up it.
The solvent is allowed to rise until it almost reaches the top of the plate. That will give the maximum
separation of the dye components for this particular combination of solvent and stationary phase.
Measuring Rf values
If all you wanted to know is how many different dyes made up the mixture, you could just stop there.
However, measurements are often taken from the plate in order to help identify the compounds present. These
measurements are the distance travelled by the solvent, and the distance travelled by individual spots.
When the solvent front gets close to the top of the plate, the plate is removed from the beaker and the
position of the solvent is marked with another line before it has a chance to evaporate.
These measurements are then taken:
6. Development of chromatogram:
a) Ascending development-
Plate after spotting placed in chamber and flow of solvent from bottom to top.
b) Descending –
In this flow of solvent from reservoir to plate is by means of filter paper strip. Solvent moved from
top to bottom.
The Rf value for each dye is then worked out using the formula:
For example, if the red component travelled 1.7 cm from the base line while the solvent had travelled 5.0 cm,
then the Rf value for the red dye is:
If you could repeat this experiment under exactly the same conditions, then the Rf values for each dye would
always be the same. For example, the Rf value for the red dye would always be 0.34. However, if anything
changes (the temperature, the exact composition of the solvent, and so on), that is no longer true. You have to
bear this in mind if you want to use this technique to identify a particular dye.
APPLICATION:
1- Qualitative:
 Identification through comparison of the Rf value with that of Reference material.
 Determination of Complexity of mixtures. That will be indicated from number of spots.
 Determination the purity of materials.
 Monitoring the progress of Chemical reactions.
 Monitoring of column chromatography.
 Development of finger print TLC for extracts volatile oils or pharmaceutical preparation
for future identification and comparison.
In this application plates 5×5, 5×10 cm with thin film of coating material are usually used.
2- Quantitative:
In this case an accurate volume of samples are applied using syringes. The dimensions of
plates range from 5x10 to 20x20 according to the number pf spots used. The plates are developed
as usual in the chromatographic tanks. After development the concentration of material can be
determined by:
 Spot area measurement: Which is directly proportional to the conc. of materials?
 Photodensitometry: Measure transmittance, reflection or fluorescence of spots.
 Radioactivity: For radioactive material.
These measurements are done using TLC Scanner connected to computer that performs all
calculations.
3- Preparative TLC:
In preparative application 20×20 plates with thick layer of adsorbent 0,25m are used. The
mixture is applied as bands and a pilot or guide spots may be used in one side of the plate to enable
the detection of the spots location.
Problems commonly occur in TLC and how to solve
a. The spot shape
Is too broad
Diameter is supposed to be < 1-2mm
b. The movement of solvent
Should be straight up
Unproportionality in stationary phase surface will inhibit the movement of solvent
c. streaking formation
- caused by too concentrated sample
What if the substances you are interested in are colourless?
There are two simple ways of getting around this problem.
Using fluorescence
You may remember that I mentioned that the stationary phase on a thin layer plate often has a substance
added to it which will fluoresce when exposed to UV light. That means that if you shine UV light on it, it
will glow.
That glow is masked at the position where the spots are on the final chromatogram - even if those spots are
invisible to the eye. That means that if you shine UV light on the plate, it will all glow apart from where the
spots are. The spots show up as darker patches.
While the UV is still shining on the plate, you obviously have to mark the
positions of the spots by drawing a pencil circle around them. As soon as you switch off the UV source, the
spots will disappear again.
Showing the spots up chemically
In some cases, it may be possible to make the spots visible by reacting them with something which produces a
coloured product. A good example of this is in chromatograms produced from amino acid mixtures.
The chromatogram is allowed to dry and is then sprayed with a solution of ninhydrin. Ninhydrin reacts with
amino acids to give coloured compounds, mainly brown or purple.
In another method, the chromatogram is again allowed to dry and then placed in an enclosed container (such
as another beaker covered with a watch glass) along with a few iodine crystals.
The iodine vapour in the container may either react
with the spots on the chromatogram, or simply stick more to the spots than to the rest of the plate. Either
way, the substances you are interested in may show up as brownish spots.
Using thin layer chromatography to identify compounds
Suppose you had a mixture of amino acids and wanted to find out which particular amino acids the mixture
contained. For simplicity we'll assume that you know the mixture can only possibly contain five of the
common amino acids.
A small drop of the mixture is placed on the base line of the thin layer plate, and similar small spots of the
known amino acids are placed alongside it. The plate is then stood in a suitable solvent and left to develop as
before. In the diagram, the mixture is M, and the known amino acids are labelled 1 to 5.
The left-hand diagram shows the plate after the solvent front has almost reached the top. The spots are still
invisible. The second diagram shows what it might look like after spraying with ninhydrin.
There is no need to measure the Rf values
because you can easily compare the spots in the mixture with those of the known amino acids - both from
their positions and their colours. In this example, the mixture contains the amino acids labelled as 1, 4 and 5.
What separates the compounds as a chromatogram develops?
As the solvent begins to soak up the plate, it first dissolves the compounds in the spot that you
have put on the base line. The compounds present will then tend to get carried up the
chromatography plate as the solvent continues to move upwards.
How fast the compounds get carried up the plate depends on two things:
How soluble the compound is in the solvent. This will depend on how much attraction
there is between the molecules of the compound and those of the solvent.
How much the compound sticks to the stationary phase - the silica get, for example. This
will depend on how much attraction there is between the molecules of the compound and
the silica gel.
Suppose the original spot contained two compounds - one of which can form hydrogen bonds, and
one of which can only take part in weaker van der Waals interactions.
The one which can hydrogen bond will stick to the surface of the silica gel more firmly than the
other one. We say that one is adsorbed more strongly than the other. Adsorption is the name given
to one substance forming some sort of bonds to the surface of another one.
Adsorption isn't permanent - there is a constant movement of a molecule between being adsorbed
onto the silica gel surface and going back into solution in the solvent.
Obviously the compound can only travel up the plate during the time that it is dissolved in the
solvent. While it is adsorbed on the silica gel, it is temporarily stopped - the solvent is moving on
without it. That means that the more strongly a compound is adsorbed, the less distance it can
travel up the plate.
In the example we started with, the compound which can hydrogen bond will adsorb more strongly
than the one dependent on van der Waals interactions, and so won't travel so far up the plate.
What if both components of the mixture can hydrogen bond?
It is very unlikely that both will hydrogen bond to exactly the same extent, and be soluble in the
solvent to exactly the same extent. It isn't just the attraction of the compound for the silica gel
which matters. Attractions between the compound and the solvent are also important - they will
affect how easily the compound is pulled back into solution away from the surface of the silica
And what if the mixture contained amino acids other than the ones we have used for comparison? There
would be spots in the mixture which didn't match those from the known amino acids. You would have to re-
run the experiment using other amino acids for comparison.
However, it may be that the compounds don't separate out very well when you make the
chromatogram. In that case, changing the solvent may well help - including perhaps changing the
pH of the solvent.
This is to some extent just a matter of trial and error - if one solvent or solvent mixture doesn't
work very well, you try another one. (Or, more likely, given the level you are probably working at,
someone else has already done all the hard work for you, and you just use the solvent mixture you
are given and everything will work perfectly!)

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

HPTLC
HPTLCHPTLC
HPTLC
 
Partition chromatography &amp; partition paper chromatography
Partition chromatography &amp; partition paper chromatographyPartition chromatography &amp; partition paper chromatography
Partition chromatography &amp; partition paper chromatography
 
Rate theory
Rate theoryRate theory
Rate theory
 
Chiral chromatography &amp; ion pair chromatography
Chiral chromatography &amp; ion pair chromatographyChiral chromatography &amp; ion pair chromatography
Chiral chromatography &amp; ion pair chromatography
 
AFFINITY CHROMATOGRAPHY
AFFINITY CHROMATOGRAPHYAFFINITY CHROMATOGRAPHY
AFFINITY CHROMATOGRAPHY
 
Chromatography
Chromatography Chromatography
Chromatography
 
Mobile phase in chromatography
Mobile phase in chromatographyMobile phase in chromatography
Mobile phase in chromatography
 
HPTLC
HPTLCHPTLC
HPTLC
 
Column chromatography mahendra
Column chromatography mahendraColumn chromatography mahendra
Column chromatography mahendra
 
Chromatography 2020
Chromatography 2020Chromatography 2020
Chromatography 2020
 
HPTLC
HPTLCHPTLC
HPTLC
 
Types of chromatographic methods
Types of chromatographic methodsTypes of chromatographic methods
Types of chromatographic methods
 
Thin layer Chromatography (TLC)
Thin layer Chromatography (TLC)Thin layer Chromatography (TLC)
Thin layer Chromatography (TLC)
 
high performance thin layer chromatography
high performance thin layer chromatographyhigh performance thin layer chromatography
high performance thin layer chromatography
 
Paper chromatography
Paper chromatography Paper chromatography
Paper chromatography
 
Colum chromatography
Colum chromatographyColum chromatography
Colum chromatography
 
Column chromatography
Column chromatographyColumn chromatography
Column chromatography
 
Column chromatography
Column chromatographyColumn chromatography
Column chromatography
 
HPLC
HPLCHPLC
HPLC
 
HPLC AND ITS APPLICATIONS
HPLC AND ITS APPLICATIONS HPLC AND ITS APPLICATIONS
HPLC AND ITS APPLICATIONS
 

Semelhante a What is Chromatography? A Concise Guide to Separation Techniques

Application of column chromatography in pharmacy
Application of column chromatography in pharmacyApplication of column chromatography in pharmacy
Application of column chromatography in pharmacyActivated Alumina Balls
 
CHROMATOGRAPHIC TECHNIQUES.pptx
CHROMATOGRAPHIC TECHNIQUES.pptxCHROMATOGRAPHIC TECHNIQUES.pptx
CHROMATOGRAPHIC TECHNIQUES.pptxVibhaSharma350990
 
Basics of Chromatography.ppt
Basics of Chromatography.pptBasics of Chromatography.ppt
Basics of Chromatography.pptFarrukhArsalan1
 
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.PiyashiDas
 
Chromatography by narayan sarkar and simi baruah
Chromatography by  narayan sarkar and simi baruahChromatography by  narayan sarkar and simi baruah
Chromatography by narayan sarkar and simi baruahNarayanSarkar6
 
Chromatography Material
Chromatography  MaterialChromatography  Material
Chromatography Materialshabir dar
 
BASICS OF CHROMATOGRAPHY AND THEIR FORENSIC APPLICATION.pptx
BASICS OF CHROMATOGRAPHY AND THEIR FORENSIC APPLICATION.pptxBASICS OF CHROMATOGRAPHY AND THEIR FORENSIC APPLICATION.pptx
BASICS OF CHROMATOGRAPHY AND THEIR FORENSIC APPLICATION.pptxPallaviKumari112
 
Chromatography 120726045329-phpapp02
Chromatography 120726045329-phpapp02Chromatography 120726045329-phpapp02
Chromatography 120726045329-phpapp02Syed Hanif
 
1 introduciton to analytical chemistry1
1 introduciton to analytical chemistry11 introduciton to analytical chemistry1
1 introduciton to analytical chemistry1Uday Deokate
 
Chromatography introduction
Chromatography introductionChromatography introduction
Chromatography introductionMahendra G S
 

Semelhante a What is Chromatography? A Concise Guide to Separation Techniques (20)

Chromatography presentation
Chromatography presentationChromatography presentation
Chromatography presentation
 
chromatography .pptx
chromatography .pptxchromatography .pptx
chromatography .pptx
 
Application of column chromatography in pharmacy
Application of column chromatography in pharmacyApplication of column chromatography in pharmacy
Application of column chromatography in pharmacy
 
CHROMATOGRAPHIC TECHNIQUES.pptx
CHROMATOGRAPHIC TECHNIQUES.pptxCHROMATOGRAPHIC TECHNIQUES.pptx
CHROMATOGRAPHIC TECHNIQUES.pptx
 
Chromatography.pdf
Chromatography.pdfChromatography.pdf
Chromatography.pdf
 
Basics of Chromatography.ppt
Basics of Chromatography.pptBasics of Chromatography.ppt
Basics of Chromatography.ppt
 
C.p aswathy viswanath
C.p aswathy viswanathC.p aswathy viswanath
C.p aswathy viswanath
 
Chromatography types
Chromatography types Chromatography types
Chromatography types
 
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
 
Column chromatography
Column chromatographyColumn chromatography
Column chromatography
 
Types of chromatography
Types of chromatographyTypes of chromatography
Types of chromatography
 
Chromatography by narayan sarkar and simi baruah
Chromatography by  narayan sarkar and simi baruahChromatography by  narayan sarkar and simi baruah
Chromatography by narayan sarkar and simi baruah
 
Chromatography Material
Chromatography  MaterialChromatography  Material
Chromatography Material
 
Instrumentation
InstrumentationInstrumentation
Instrumentation
 
chromatography.pptx
chromatography.pptxchromatography.pptx
chromatography.pptx
 
Thin Layer Chromatography
Thin Layer ChromatographyThin Layer Chromatography
Thin Layer Chromatography
 
BASICS OF CHROMATOGRAPHY AND THEIR FORENSIC APPLICATION.pptx
BASICS OF CHROMATOGRAPHY AND THEIR FORENSIC APPLICATION.pptxBASICS OF CHROMATOGRAPHY AND THEIR FORENSIC APPLICATION.pptx
BASICS OF CHROMATOGRAPHY AND THEIR FORENSIC APPLICATION.pptx
 
Chromatography 120726045329-phpapp02
Chromatography 120726045329-phpapp02Chromatography 120726045329-phpapp02
Chromatography 120726045329-phpapp02
 
1 introduciton to analytical chemistry1
1 introduciton to analytical chemistry11 introduciton to analytical chemistry1
1 introduciton to analytical chemistry1
 
Chromatography introduction
Chromatography introductionChromatography introduction
Chromatography introduction
 

Mais de Sn Taurus

Emergency tray
Emergency trayEmergency tray
Emergency traySn Taurus
 
Emergency management
Emergency managementEmergency management
Emergency managementSn Taurus
 
Common emergencies
Common emergenciesCommon emergencies
Common emergenciesSn Taurus
 
Prepare drug profile
Prepare drug profilePrepare drug profile
Prepare drug profileSn Taurus
 
Title page of drug profile
Title page of drug profileTitle page of drug profile
Title page of drug profileSn Taurus
 

Mais de Sn Taurus (9)

References
ReferencesReferences
References
 
Poisoning
PoisoningPoisoning
Poisoning
 
First aid
First aidFirst aid
First aid
 
Emergency tray
Emergency trayEmergency tray
Emergency tray
 
Emergency management
Emergency managementEmergency management
Emergency management
 
Common emergencies
Common emergenciesCommon emergencies
Common emergencies
 
Title
TitleTitle
Title
 
Prepare drug profile
Prepare drug profilePrepare drug profile
Prepare drug profile
 
Title page of drug profile
Title page of drug profileTitle page of drug profile
Title page of drug profile
 

Último

What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 

Último (20)

What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 

What is Chromatography? A Concise Guide to Separation Techniques

  • 1. Chromatography -- what does it mean? It means ―to write with colors‖ -- literally translated from its Greek roots chroma and graphein. Chroma means color and graphein means to write. --Definition: ―A physical separation method in which the components of a mixture are separated by differences in their distribution between two phases, one of which is stationary (stationary phase) while the other (mobile phase) moves through it in a definite direction. The substances must interact with the stationary phase to be retained and separated by it.‖ (McGraw-Hill Science & Technology Encyclopedia) ―A technique for separating and analysing the components of a mixture of liquids or gases. Chromatography depends on the selective absorption of the different components in a column of powder (column chromatography) or on a strip of paper (paper chromatography). Chromatography is one of the techniques used to identify specific drugs in a urine sample.‖ (Oxford Dictionary of Sports Science & Medicine) ―Any of various techniques for the separation of complex mixtures that rely on the differential affinities of substances for a gas or liquid mobile medium and for a stationary adsorbing medium through which they pass, such as paper, gelatin, or magnesia.‖ (American Heritage Dictionary) Chromatography can be defined as: that technique for the separation of mixture of solutes in separation is brought about by the differential movement of the individual solutes through a porous medium under the influence of a moving solvent. OR Chromatography is a separation technique which involves the differential migration of a multi- component sample through a packed bed. The degree of retardation of one component relative to another is an indication of this differential. This differential is a result of a number of interactions that may occur between the components and the system. These interactions include----- Partition, Adsorption, Ion exchange and Gel filtration. In biological, chemical, phytochemical and pharmaceutical sciences it is frequently necessary to separate, isolate, purify and identify the components of complex mixtures. These complex mixtures are not easily resolved by simple physical and chemical means such as distillation, fractional distillation, crystallization and fractional crystallization etc. It is possible, however, to achieve such a separation rapidly by the process of CHROMATOGRAPHY.
  • 2. Why use chromatography? The key here is separation. But what is the importance of separation in the lab? Separation of chemical components is vital in any type of chemical analysis. When trying to identify an unknown substance, the sample must first be simplified as much as possible into its constituent compounds. The unknown can then be characterized by individual identification of its parts. This does not imply that the separated chemical components are recovered after the separation and analyzed. Usually, the analytes are irretrievable. Separated compounds are compared to known standards. As with most chemical exploration, it is important to have an idea of what compounds are being searched for in the first place. History: The history of chromatography begins during the mid-19th century. Chromatography, literally "color writing", was used—and named— in the first decade of the 20th century, primarily for the separation of plant pigments such as chlorophyll. Chromatography was first developed by the Russian botanist Mikhail Tswett 1872-1919. In 1903 as he produced a colorful separation of plant pigments through a column of calcium carbonate. He called the new technique chromatography because the result of analysis was written in colors along the length of adsorbent column. New types of chromatography developed during the 1930s and 1940s made the technique useful for many types of separation process. Chromatography became developed substantially as a result of the work of Archer John Porter Martin and Richard Laurence Millington Synge during the 1940s and 1950s. They established the principles and basic techniques of partition chromatography, and their work encouraged the rapid development of several types of chromatography method: paper chromatography, gas chromatography, and what would become known as high performance liquid chromatography. Since then, the technology has advanced rapidly. Researchers found that the main principles of Tswett's chromatography could be applied in many different ways, resulting in the different varieties of chromatography. Simultaneously, advances continually improved the technical performance of chromatography, allowing the separation of increasingly similar molecules. Chromatography has since developed into an invaluable laboratory tool for the separation and identification of compounds. Although color usually no longer plays a role in the process, the same principles of chromatography still apply. The principle behind Chromatography is: The rate of migration of the solute depends upon the rate of interaction of the solute with the two phases, one being the mobile phase and the other stationary phase as the compounds travel through
  • 3. the supporting medium. Chromatography can separate a mixture into its components with great precision. In fact, it can be used to distinguish between two very similar components, such as proteins that may be different only by a single amino acid. The conditions under which the separation process takes place are also not severe, allowing the use of chromatography on delicate products. With the right materials and operating conditions, chromatography is capable of purifying any soluble or volatile substance. Uses of Chromatography: Chromatography is extensively used in the semiconductor industry, especially in the identification of contaminants that cause yield, quality, and reliability problems. Chromatography is used to separate particles and contaminates in chemical plants. For example, in the chemical industries, pesticides and insecticides like DDT in the groundwater and PCBs (Polychlorinated biphenyls) are removed by the process of chromatography. As a major testing tool, chromatography is used by government agencies to separate toxic materials from the drinking water and also to monitor air quality. One of the significant chromatography uses is made in pharmaceutical companies, who specialize in making medicines. Chromatography is used by pharmaceutical companies to prepare large amounts of pure materials that are further required in making medicines. Also, it is used to check the presence of any contamination in the manufactured compounds. In the field of organic chemistry and pharmacy, chiral compounds are very close to each other in terms of atomic or molecular weight, element composition, and the physical properties. However, they exist in two different forms, called as the enantiomers and optical isomers. Both these compounds though may appear to be same, have very different chemical properties. So, in pharmacy, chromatography becomes crucial to analyze the exact chiral compound so that correct medicines can be manufactured. For instance, a compound called as thalidomide has two optical isomers and one of the isomers can cause birth defect if a pregnant woman consumes it in early stages of pregnancy. So, it is important to carefully separate the isomers. Other important chromatography uses are in the food industry where proper food maintenance is necessary to ensure quality. Chromatography is used as a technique to separate the additives, vitamins, preservatives, proteins and amino acids. Some other chromatography uses are in the detection of drugs or medications in the urine and the separation of traces of chemicals in the case of fire in houses or buildings. It is also very popular in forensic science for investigative purposes. Chromatography technology has gained immense industrial popularity in the past few decades as it can separate chemicals that just differ even in their atomic orientations in space. These were some of the chromatography uses that are used in various technological pursuits in chemical industries.
  • 4. THIN LAYER CHROMATOGRAPHY (TLC) TLC is universal analytical technique in chemical analysis for organic and inorganic matter. HISTORY- In 1938 Izmailov and Shraiber describe basic principle used it for separation of plant extract. In 1958 Stahl mainly created with bringing out the work on preparing plates and separation of wide variety of compound. TLC is simple and rapid method carrying out using thin layer of adsorbent on plates. ADVANTAGES:  Low cost  Simple and rapid  Short analysis time  All spots can be visualized  Adaptable to most pharmaceuticals  Uses small quantities of solvents  Requires minimal training  Reliable and quick  Minimal amount of equipment is needed  Densitometers can be used to increase accuracy of spot concentration PRINCIPLE:  TLC is included under both adsorption and partition chromatographs.  Separation of component may result due to adsorption or partition or both phenomenons depend upon nature of adsorbent used on plate and solvent system used for development. TLC SUPERIOR OVER OTHER METHOD:  It requires little equipment  Require little time for separation  It is more sensitive  Very small quantity of sample require for analysis  The method use for adsorption, partition, ion exchange chromatography  Components which are separated can be recovered easily.  Quantitative separation of spot and zone are possible.  For identification is permitted spraying of corrosive agent Supporting Surfaces:
  • 5. In this type a thin layer of a solid coating material is spread on a suitable supporting surface. Types of Supporting Surfaces: 1. Glass Plates 2. Plastic sheets 3. Aluminum sheets. Stationary phase (coating material): A plate of TLC is coated by a solid matter as a stationary phase. The coated material has 0.1- 0.3mm in thickness. TLC plates are usually commercially available, with standard particle size ranges to improve reproducibility. They are prepared by mixing the adsorbent with a small amount of inert binder. This mixture is spread as thick slurry on an unreactive carrier sheet. The resultant plate is dried and activated by heating in an oven for thirty minutes at 110 °C. Stationary phase has two components: 1. Additive 2. Adsorbent 1. ADDITIVES: These include binders and indicators. i. Binder: These are materials used to hold the thin layer of the coating material into the surface of the supporting plates. Types of binders: a. CaSO4 (Plaster of Paris) or Gypsum (10-15%) b. Silicon dioxide c. Starch (1-3 %) d. Organic polymers e.g. polyvinyl alcohol. ii. Indicator: These are materials mixed with the coating material and binder to help locating the spots on the TLC. Fluorescent indicator will make it florescence during the UV light exposure. The most common used indicator is the fluorescent materials (silica gel 60 F254). 2. ADSORBENTS:
  • 6. Adsorbent used such as silica gel, alumina, kieselguhr. The thickness of the adsorbent layer is typically around 0.1 – 0.25 mm for analytical purposes and around 0.5 – 2.0 mm for preparative TLC.  Silica gel: Silica gel is a form of silicon dioxide (silica). The silicon atoms are joined via oxygen atoms in a giant covalent structure. However, at the surface of the silica gel, the silicon atoms are attached to -OH groups. So, at the surface of the silica gel you have Si-O-H bonds instead of Si-O-Si bonds. The diagram shows a small part of the silica surface. The surface of the silica gel is very polar and, because of the -OH groups, can form hydrogen bonds with suitable compounds around it as well as van der Waals dispersion forces and dipole-dipole attractions. Some modified silica is also used in certain purposes. Silica gel G Silica gel with average particle size 15µm containing 13% calcium sulfate binding agent. Used in wide range pharmacopoeial test Silica gel G254, i.e., Silica gel G with fluorescence added has same application with Silica gel G where visualization is to be carried out under UV light.  Alumina: The other commonly used stationary phase is alumina - aluminium oxide. The aluminium atoms on the surface of this also have -OH groups attached. Anything we say about silica gel therefore applies equally to alumina.
  • 7.  Kieselguhr:  Cellulose Cellulose powder of less than 30µm particle size. Factors consider for adsorbent: 1. Characteristic of compound to be separated 2. Solubility of compound 3. Nature of substance to be separated 4. To see whether compound is liable to react chemically with adsorbent. 5. Adsorbent particle size 6. Adsorbent do not adhere to glass plate. i. Inorganic adsorbents:  Silica  Silica gel  Alumina  Calcium phosphate  Glass powder  Kieselguhr  Magnesium silicate  Calcium silicate  Phosphate  Ferric & Chromic oxides  Zinc carbonate & zinc Ferro cyanides  Bentonites ii. Organic adsorbents: Normal cellulose powder Charcoal & activated carbon Starch Sucrose Mannitol Dextrin gel
  • 8. Mobile phase (solvent system): The ability of mobile phase to move up is depend on the polarity itself Volatile organic solvents are preferably used as mobile phase. Choice of mobile phase depends on nature of substance to be separated. And also depend on adsorbent material to be used. Polarity of solvent and substance to be separated plays important role in selection. Purity of solvent also important. Factor affecting mobile phase-  Nature of the substance to be separated.  Nature of the stationary phase used.  Mode of chromatography.  Nature of separation.  Suitable eluents are usually selected by trial and error method, literature review  The solvent used should be of high purity.  Other factor which are taken into consideration while selecting solvents include polarity, solubility etc.  Combination of two solvents gives better separation than with a single solvent Solvent used – 1. Petroleum ether 2. Benzene 3. Carbon tetrachloride 4. Chloroform 5. Diethyl ether 6. Ethanol 7. Methanol 8. Acetone 9. Dichloromethane 10. Diethyl form amide Preparation of chromatographic plate: 1. Size: Heksana 0 Butanol 3.9 Chloroform 4.1 Methanol 5.1 Ethanol 5.1 Acetonitrile 5.8 Air 9.0
  • 9.  Glass plate or plastic plate used to sprayed adsorbent.  Standard size of plate is 20 X 5cm, 20 X 10 cm, 20 X 20cm.  Plate surface is flat and regular.  Standard film thickness is 250 um.  Thicker layer 0.5to 2 mm used for preparative separation. 2. Method for application of adsorbent on the plate- 1. Pouring- adsorbent of homogeneous particle size made in slurry and pour on plate. 2. Dipping- it used for small plate by dipping two plate back to back in slurry of adsorbent in chloroform or other volatile solvent. 3. Spraying- simply by spraying slurry on plate 4. Spreading- slurry spread by using spatula or glass rod 3. Activation of plate:  After spreading plate allowed to dry and activated by heating about 1000 cfor 30 min.  Plate made with volatile organic solvent may not require further drying  For activation plate is placed in hot oven at temperature 120-150 for one hour. This will eliminate the extra water which occupy in silica gel. Silica gel is a form of silicon dioxide (silica). The silicon atoms are joined via oxygen atoms in a giant covalent structure. However, at the surface of the silica gel, the silicon atoms are attached to -OH groups. 4. Sample application (spotting):  Given sample should dissolve in any volatile substance and polarity of that solvent should low.  The apparatus used is capillary tube, micropipette or calibrated glass syringes for application of sample on TLC. PRECAUTION: NOT TOUCH THE SURFACE OF STATIONARY PHASE. This causes the distraction of stationary phase and retard the movement of moving phase on stationary phase. How does thin layer chromatography work? The stationary phase - silica gel
  • 10.  The area of application is kept as small as possible for sharper and greater resolution of sample.  For preparative work sample applied in narrow band  The pipette, loop or syringe use for applying sample.  The spot should be within 2-5 mm diameter.  For preparative work sample up to 4 mg is applied on starting line.  The spots must be about 1-1.5cm away from the bottom of the plate and 0.5 cm away from the plate sides and 0.5 cm away from each other. 5. Development:  Chromatographic Jars (Tanks) made of Glass with air-tight lids of different sizes containing the mobile phase are used for developments. The solvent must be left in the Jars enough time before developing the plates for saturation.  TLC plate placed vertically in rectangular chromatography tank or chamber.  Glass and stainless steel is suitable chamber.  If tank is not saturated, solvent will evaporate and affect the RF value.  Development should be carried out at room temp. by covering chamber with glass plate. Producing the chromatogram We'll start with a very simple case - just trying to show that a particular dye is in fact a mixture of simpler dyes.
  • 11. A pencil line is drawn near the bottom of the plate and a small drop of a solution of the dye mixture is placed on it. Any labeling on the plate to show the original position of the drop must also be in pencil. If any of this was done in ink, dyes from the ink would also move as the chromatogram developed. When the spot of mixture is dry, the plate is stood in a shallow layer of solvent in a covered beaker. It is important that the solvent level is below the line with the spot on it. The reason for covering the beaker is to make sure that the atmosphere in the beaker is saturated with solvent vapour. To help this, the beaker is often lined with some filter paper soaked in solvent. Saturating the atmosphere in the beaker with vapour stops the solvent from evaporating as it rises up the plate. As the solvent slowly travels up the plate, the different components of the dye mixture travel at different rates and the mixture is separated into different coloured spots. The diagram shows the plate after the solvent has moved about half way up it. The solvent is allowed to rise until it almost reaches the top of the plate. That will give the maximum separation of the dye components for this particular combination of solvent and stationary phase. Measuring Rf values If all you wanted to know is how many different dyes made up the mixture, you could just stop there. However, measurements are often taken from the plate in order to help identify the compounds present. These measurements are the distance travelled by the solvent, and the distance travelled by individual spots. When the solvent front gets close to the top of the plate, the plate is removed from the beaker and the position of the solvent is marked with another line before it has a chance to evaporate. These measurements are then taken:
  • 12. 6. Development of chromatogram: a) Ascending development- Plate after spotting placed in chamber and flow of solvent from bottom to top. b) Descending – In this flow of solvent from reservoir to plate is by means of filter paper strip. Solvent moved from top to bottom. The Rf value for each dye is then worked out using the formula: For example, if the red component travelled 1.7 cm from the base line while the solvent had travelled 5.0 cm, then the Rf value for the red dye is: If you could repeat this experiment under exactly the same conditions, then the Rf values for each dye would always be the same. For example, the Rf value for the red dye would always be 0.34. However, if anything changes (the temperature, the exact composition of the solvent, and so on), that is no longer true. You have to bear this in mind if you want to use this technique to identify a particular dye.
  • 13. APPLICATION: 1- Qualitative:  Identification through comparison of the Rf value with that of Reference material.  Determination of Complexity of mixtures. That will be indicated from number of spots.  Determination the purity of materials.  Monitoring the progress of Chemical reactions.  Monitoring of column chromatography.  Development of finger print TLC for extracts volatile oils or pharmaceutical preparation for future identification and comparison. In this application plates 5×5, 5×10 cm with thin film of coating material are usually used. 2- Quantitative: In this case an accurate volume of samples are applied using syringes. The dimensions of plates range from 5x10 to 20x20 according to the number pf spots used. The plates are developed as usual in the chromatographic tanks. After development the concentration of material can be determined by:  Spot area measurement: Which is directly proportional to the conc. of materials?  Photodensitometry: Measure transmittance, reflection or fluorescence of spots.  Radioactivity: For radioactive material. These measurements are done using TLC Scanner connected to computer that performs all calculations. 3- Preparative TLC: In preparative application 20×20 plates with thick layer of adsorbent 0,25m are used. The mixture is applied as bands and a pilot or guide spots may be used in one side of the plate to enable the detection of the spots location. Problems commonly occur in TLC and how to solve a. The spot shape Is too broad
  • 14. Diameter is supposed to be < 1-2mm b. The movement of solvent Should be straight up Unproportionality in stationary phase surface will inhibit the movement of solvent c. streaking formation - caused by too concentrated sample What if the substances you are interested in are colourless? There are two simple ways of getting around this problem. Using fluorescence You may remember that I mentioned that the stationary phase on a thin layer plate often has a substance added to it which will fluoresce when exposed to UV light. That means that if you shine UV light on it, it will glow. That glow is masked at the position where the spots are on the final chromatogram - even if those spots are invisible to the eye. That means that if you shine UV light on the plate, it will all glow apart from where the spots are. The spots show up as darker patches. While the UV is still shining on the plate, you obviously have to mark the positions of the spots by drawing a pencil circle around them. As soon as you switch off the UV source, the spots will disappear again. Showing the spots up chemically In some cases, it may be possible to make the spots visible by reacting them with something which produces a coloured product. A good example of this is in chromatograms produced from amino acid mixtures. The chromatogram is allowed to dry and is then sprayed with a solution of ninhydrin. Ninhydrin reacts with
  • 15. amino acids to give coloured compounds, mainly brown or purple. In another method, the chromatogram is again allowed to dry and then placed in an enclosed container (such as another beaker covered with a watch glass) along with a few iodine crystals. The iodine vapour in the container may either react with the spots on the chromatogram, or simply stick more to the spots than to the rest of the plate. Either way, the substances you are interested in may show up as brownish spots. Using thin layer chromatography to identify compounds Suppose you had a mixture of amino acids and wanted to find out which particular amino acids the mixture contained. For simplicity we'll assume that you know the mixture can only possibly contain five of the common amino acids. A small drop of the mixture is placed on the base line of the thin layer plate, and similar small spots of the known amino acids are placed alongside it. The plate is then stood in a suitable solvent and left to develop as before. In the diagram, the mixture is M, and the known amino acids are labelled 1 to 5. The left-hand diagram shows the plate after the solvent front has almost reached the top. The spots are still invisible. The second diagram shows what it might look like after spraying with ninhydrin. There is no need to measure the Rf values because you can easily compare the spots in the mixture with those of the known amino acids - both from their positions and their colours. In this example, the mixture contains the amino acids labelled as 1, 4 and 5.
  • 16. What separates the compounds as a chromatogram develops? As the solvent begins to soak up the plate, it first dissolves the compounds in the spot that you have put on the base line. The compounds present will then tend to get carried up the chromatography plate as the solvent continues to move upwards. How fast the compounds get carried up the plate depends on two things: How soluble the compound is in the solvent. This will depend on how much attraction there is between the molecules of the compound and those of the solvent. How much the compound sticks to the stationary phase - the silica get, for example. This will depend on how much attraction there is between the molecules of the compound and the silica gel. Suppose the original spot contained two compounds - one of which can form hydrogen bonds, and one of which can only take part in weaker van der Waals interactions. The one which can hydrogen bond will stick to the surface of the silica gel more firmly than the other one. We say that one is adsorbed more strongly than the other. Adsorption is the name given to one substance forming some sort of bonds to the surface of another one. Adsorption isn't permanent - there is a constant movement of a molecule between being adsorbed onto the silica gel surface and going back into solution in the solvent. Obviously the compound can only travel up the plate during the time that it is dissolved in the solvent. While it is adsorbed on the silica gel, it is temporarily stopped - the solvent is moving on without it. That means that the more strongly a compound is adsorbed, the less distance it can travel up the plate. In the example we started with, the compound which can hydrogen bond will adsorb more strongly than the one dependent on van der Waals interactions, and so won't travel so far up the plate. What if both components of the mixture can hydrogen bond? It is very unlikely that both will hydrogen bond to exactly the same extent, and be soluble in the solvent to exactly the same extent. It isn't just the attraction of the compound for the silica gel which matters. Attractions between the compound and the solvent are also important - they will affect how easily the compound is pulled back into solution away from the surface of the silica And what if the mixture contained amino acids other than the ones we have used for comparison? There would be spots in the mixture which didn't match those from the known amino acids. You would have to re- run the experiment using other amino acids for comparison.
  • 17. However, it may be that the compounds don't separate out very well when you make the chromatogram. In that case, changing the solvent may well help - including perhaps changing the pH of the solvent. This is to some extent just a matter of trial and error - if one solvent or solvent mixture doesn't work very well, you try another one. (Or, more likely, given the level you are probably working at, someone else has already done all the hard work for you, and you just use the solvent mixture you are given and everything will work perfectly!)