SlideShare uma empresa Scribd logo
1 de 24
Updated New Syllabus
UNIT III
๏‚ง CLASS NO: 7
๏‚ง DATE:19-03-2024
First Order System & its Response
Fig 1 : Block diagram of a 1st order system
Input Output Relationship:
๐‘ช ๐’”
๐‘น(๐’”)
=
๐Ÿ
๐‘ป๐’” + ๐Ÿ
Objective:
To analyse the system responses to
such inputs as the
๏‚ง unit-step
๏‚ง unit-ramp
๏‚ง unit-impulse functions
The initial conditions are assumed to
be zero.
Unit Step Response of First Order System
Input Output Relationship:
๐‘ช ๐’”
๐‘น(๐’”)
=
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐‘ช(๐’”) =
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐‘น(๐’”)
Laplace Transform of Input S
Here it is ๐“› ๐’– ๐’• =
๐Ÿ
๐’”
๐‘ช ๐’” =
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐Ÿ
๐’”
๐‘ช ๐’” =
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐Ÿ
๐’”
Using Partial Fraction
Technique:
๐‘ช ๐’” =
๐Ÿ
๐’”
โˆ’
๐‘ป
๐‘ป๐’” + ๐Ÿ
=
๐Ÿ
๐’”
โˆ’
๐Ÿ
๐’” +
๐Ÿ
๐‘ป
๐“›โˆ’๐Ÿ
๐‘ช(๐’”)
๐’„ ๐’• = ๐Ÿ โˆ’ ๐’†โˆ’
๐’•
๐‘ป, for ๐’• โ‰ฅ ๐ŸŽ
Time (๐’•)
๐’„(๐’•)
๐‘ข ๐‘ก = 1, ๐‘ก โ‰ฅ 0
๐‘ข ๐‘ก = 0, ๐‘ก < 0
๏ถ Interesting
Observations:
โ€ข ๐’„ ๐’• ๐’•=๐ŸŽ = ๐’„ ๐ŸŽ = ๐ŸŽ and ๐’„ ๐’• ๐’•=โˆž = ๐’„ โˆž =
๐Ÿ
โ€ข The curve behaviour is
exponential
โ€ข At ๐’• = ๐‘ป, ๐’„ ๐‘ป = ๐Ÿ โˆ’ ๐’†โˆ’๐Ÿ = ๐ŸŽ. ๐Ÿ”๐Ÿ‘๐Ÿ
โ€ข The smaller the Time-Constant ๐‘ป ,
the faster the system response.
โ€ข The Slope of the Tangent Line at
๐’• = ๐ŸŽ is
๐Ÿ
๐‘ป
since
๐’…๐’„(๐’•)
๐’…๐’• ๐’•=๐ŸŽ =
๐Ÿ
๐‘ป
๐’†โˆ’
๐’•
๐‘ป
๐’•=๐ŸŽ =
๐Ÿ
๐‘ป
?
Unit-Ramp Response of First Order System
Input Output Relationship:
๐‘ช ๐’”
๐‘น(๐’”)
=
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐‘ช(๐’”) =
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐‘น(๐’”)
Laplace Transform of Input Si
Here it is ๐“› ๐’“ ๐’• =
๐Ÿ
๐’”๐Ÿ
๐‘ช ๐’” =
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐Ÿ
๐’”๐Ÿ
๐‘ช ๐’” =
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐Ÿ
๐’”๐Ÿ
Using Partial Fraction
Technique:
๐‘ช ๐’” =
๐Ÿ
๐’”๐Ÿ โˆ’
๐‘ป
๐’”
+
๐‘ป๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐“›โˆ’๐Ÿ ๐‘ช(๐’”)
๐’„ ๐’• = ๐’• โˆ’ ๐‘ป + ๐‘ป๐’†โˆ’
๐’•
๐‘ป, for ๐’• โ‰ฅ
๐ŸŽ
Time (๐’•)
๐’„(๐’•)
๏ถ Interesting
Observations:
The error
signal ๐’† ๐’•
๐’† ๐’• = ๐’“ ๐’• โˆ’ ๐’„ ๐’• = ๐‘ป ๐Ÿ โˆ’ ๐’†โˆ’
๐’•
๐‘ป
๐’† โˆž = ๐‘ป ๐Ÿ โˆ’ ๐’†โˆ’
โˆž
๐‘ป = ๐‘ป
*** The error signal ๐’† ๐’• approaches to ๐‘ป
at steady state
Unit-Impulse Response of First Order System
Input Output Relationship:
๐‘ช ๐’”
๐‘น(๐’”)
=
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐‘ช(๐’”) =
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐‘น(๐’”)
Laplace Transform of Input Si
Here it is ๐“› ๐œน ๐’• = ๐Ÿ
๐‘ช ๐’” =
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐‘ช ๐’” =
๐Ÿ
๐‘ป๐’” + ๐Ÿ
๐“›โˆ’๐Ÿ
๐‘ช(๐’”)
๐’„ ๐’• =
๐Ÿ
๐‘ป
๐’†โˆ’
๐’•
๐‘ป for ๐’• โ‰ฅ ๐ŸŽ
Time (๐’•)
๐’„(๐’•)
๐Ÿ
๐‘ป
= ๐Ÿ
An Important Property of Linear Time-
Invariant (LTI) Systems
๐’„ ๐’• = ๐’• โˆ’ ๐‘ป + ๐‘ป๐’†โˆ’
๐’•
๐‘ป, for ๐’• โ‰ฅ
๐ŸŽ
๐’„ ๐’• = ๐Ÿ โˆ’ ๐’†โˆ’
๐’•
๐‘ป, for ๐’• โ‰ฅ ๐ŸŽ
๐’„ ๐’• =
๐Ÿ
๐‘ป
๐’†โˆ’
๐’•
๐‘ป for ๐’• โ‰ฅ ๐ŸŽ
Unit-Ramp
Response
Unit-Step
Response
Unit-Impulse
Response
๏ถ Interesting
Observations:
d (Unit-Ramp Response) / dt = Unit-Step
Response
d (Unit-Step Response ) / dt = Unit-Impulse
Response
๏ƒผ The response to the integral of the original signal can be obtained by
integrating the response of the system to the original signal and by determining
the integration constant from the zero-output initial condition. This is a
property of LTI systems.
๏ƒผ Linear time-varying (LTV) systems and nonlinear systems do not possess this
Remark
Second Order System and Its Response
Fig 2 : Servo system
Simplified Block Diagram
Plant
Relevant Equations related to Servo system ||Transfer
Function of Servo system
The equation for the load
elements is
๐‘ฑ๐’„ + ๐‘ฉ๐’„ = ๐‘ป โ€ข ๐‘ฑ & ๐‘ฉ are inertia and viscous-
friction elements
โ€ข ๐‘ป denotes the Torque produced by
the proportional controller whose
gain is ๐‘ฒ
Taking Laplace Transform of both side and
considering initial conditions to be
zero:
๐‘ฑ๐’”๐Ÿ๐‘ช(๐’”) + ๐‘ฉ๐’”๐‘ช(๐’”) = ๐‘ป(๐’”)
๐‘ช ๐’”
๐‘ป(๐’”)
=
๐Ÿ
๐’”(๐‘ฑ๐’” + ๐‘ฉ)
๐‘ช ๐’”
๐‘น(๐’”)
=
๐‘ฒ
๐‘ฑ๐’”๐Ÿ + ๐‘ฉ๐’” + ๐‘ฒ
=
๐‘ฒ
๐‘ฑ
๐’”๐Ÿ +
๐‘ฉ
๐‘ฑ
๐’” +
๐‘ฒ
๐‘ฑ
2nd Order system
Closed-Loop Transfer Function
โˆƒ 2 Closed-Loop
Poles
Step Response of Second Order System
๐‘ช ๐’”
๐‘น(๐’”)
=
๐‘ฒ
๐‘ฑ๐’”๐Ÿ + ๐‘ฉ๐’” + ๐‘ฒ
=
๐‘ฒ
๐‘ฑ
๐’”๐Ÿ +
๐‘ฉ
๐‘ฑ
๐’” +
๐‘ฒ
๐‘ฑ
Closed-Loop TF
=
๐‘ฒ
๐‘ฑ
๐’” +
๐‘ฉ
๐Ÿ๐‘ฑ
+
๐‘ฉ
๐Ÿ๐‘ฑ
๐Ÿ
โˆ’
๐‘ฒ
๐‘ฑ
๐’” +
๐‘ฉ
๐Ÿ๐‘ฑ
โˆ’
๐‘ฉ
๐Ÿ๐‘ฑ
๐Ÿ
โˆ’
๐‘ฒ
๐‘ฑ
Closed-Loop Poles will be COMPLEX CONJUGATES if ๐‘ฉ๐Ÿ
โˆ’ ๐Ÿ’๐‘ฑ๐‘ฒ
Closed-Loop Poles will be REAL if ๐‘ฉ๐Ÿ โˆ’ ๐Ÿ’๐‘ฑ๐‘ฒ โ‰ฅ ๐ŸŽ
Remark:
For Transient Response analysis, it is convenient to write
๐‘ฒ
๐‘ฑ
= ๐’˜๐’
๐Ÿ
๐‘ฉ
๐‘ฑ
= ๐Ÿ๐œป๐’˜๐’ = ๐Ÿ๐ˆ
Key Terms
๏‚ง ๐ˆ : Attenuation
๏‚ง ๐’˜๐’ : Undamped Natural
Frequency
๏‚ง ๐œป : Damping Ratio
๏‚ง ๐‘ฉ : Actual Damping
๏‚ง ๐‘ฉ๐’„ : Critical Ratio
๏‚ง ๐œป =
๐‘ฉ
๐‘ฉ๐’„
=
๐‘ฉ
๐Ÿ ๐‘ฑ๐‘ฒ
๐‘ฎ ๐’” =
๐’˜๐’
๐Ÿ
๐’”(๐’” + ๐Ÿ๐œป๐’˜๐’)
๐ถ(๐‘ )
๐‘…(๐‘ )
Fig 3 : Standard Second-order feedback system
Open Loop Transfer Function
๐ธ ๐‘  = ๐‘… ๐‘  โˆ’ ๐ถ(๐‘ )
๐‘ช ๐’”
๐‘น(๐’”)
=
๐’˜๐’
๐Ÿ
๐’”๐Ÿ + ๐Ÿ๐œป๐’˜๐’ + ๐’˜๐’
๐Ÿ
3 Important Cases To
Study
Case 1: Underdamped || ๐ŸŽ <
๐œป < ๐Ÿ
Case 2: Critically Damped
|| ๐œป = ๐Ÿ
Case 3: Overdamped ||
๐œป > ๐Ÿ
๐‘ช ๐’”
๐‘น(๐’”)
=
๐’˜๐’
๐Ÿ
(๐’” + ๐œป๐’˜๐’ + ๐’‹๐’˜๐’…)(๐’” + ๐œป๐’˜๐’ โˆ’ ๐’‹๐’˜๐’…)
Where, ๐‘ค๐‘‘ = ๐‘ค๐‘› 1 โˆ’ ๐œ2
๐‘ช(๐’”) =
๐’˜๐’
๐Ÿ
๐’” + ๐œป๐’˜๐’ + ๐’‹๐’˜๐’… ๐’” + ๐œป๐’˜๐’ โˆ’ ๐’‹๐’˜๐’…
๐Ÿ
๐ฌ
๐‘น ๐’” =
๐Ÿ
๐’”
Unit Step
Function
๐‘ช ๐’”
๐‘น(๐’”)
=
๐’˜๐’
๐Ÿ
๐’” + ๐’˜๐’
๐Ÿ
Where, ๐‘ค๐‘‘ = ๐‘ค๐‘› 1 โˆ’ ๐œ2 = 0
๐‘ช(๐’”) =
๐’˜๐’
๐Ÿ
๐’” + ๐’˜๐’
๐Ÿ
๐Ÿ
๐ฌ
๐‘น ๐’” =
๐Ÿ
๐’”
Unit Step
Function
๐‘ช ๐’”
๐‘น(๐’”)
=
๐’˜๐’
๐Ÿ
(๐’” + ๐œป๐’˜๐’ + ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)(๐’” + ๐œป๐’˜๐’ โˆ’ ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)
๐‘น ๐’” =
๐Ÿ
๐’”
Unit Step
Function
๐‘ช(๐’”) =
๐’˜๐’
๐Ÿ
๐’”(๐’” + ๐œป๐’˜๐’ + ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)(๐’” + ๐œป๐’˜๐’ โˆ’ ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)
) STABILITY OF A MASS-SPRING-DAMPER System
B) STABILITY OF A MASS-SPRING System
Expression of ๐’„ ๐’• in all
the cases
Case 1: Underdamped || ๐ŸŽ <
๐œป < ๐Ÿ
๐‘ช(๐’”) =
๐’˜๐’
๐Ÿ
๐’” + ๐œป๐’˜๐’ + ๐’‹๐’˜๐’… ๐’” + ๐œป๐’˜๐’ โˆ’ ๐’‹๐’˜๐’…
๐Ÿ
๐ฌ
Using Partial Fraction
๐‘ช ๐’” =
๐Ÿ
๐’”
โˆ’
๐’” + ๐Ÿ๐œป๐’˜๐’
๐’”๐Ÿ + ๐Ÿ๐œป๐’˜๐’๐’” + ๐’˜๐’
๐Ÿ
=
๐Ÿ
๐ฌ
โˆ’
๐ฌ + ๐œป๐’˜๐’
๐’” + ๐œป๐’˜๐’
๐Ÿ + ๐’˜๐’…
๐Ÿ
โˆ’
๐œป๐’˜๐’
๐’” + ๐œป๐’˜๐’
๐Ÿ + ๐’˜๐’…
๐Ÿ
Important Observations of
Case 2
Case 2: Critically Damped
|| ๐œป = ๐Ÿ
๐‘ช(๐’”) =
๐’˜๐’
๐Ÿ
๐’” + ๐’˜๐’
๐Ÿ
๐Ÿ
๐ฌ
Case 3: Overdamped ||
๐œป > ๐Ÿ
๐‘ช(๐’”) =
๐’˜๐’
๐Ÿ
๐’”(๐’” + ๐œป๐’˜๐’ + ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)(๐’” + ๐œป๐’˜๐’ โˆ’ ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)
Fig.: Unit-step response curves of the
system
A family of unit-step response curves ๐’„(๐’•) with various values of
๐œป w.r.t. ๐’˜๐’๐’•
Second Order System and Its Transient Response Specifications
Salient Features:
๏‚ง Frequently, the performance characteristics of a control system are specified in
terms of the transient response to a unit-step input, since it is easy to
generate and is sufficiently drastic.
๏‚ง The transient response of a system to a unit-step input depends on the initial
conditions. For convenience in comparing transient responses of various systems,
it is a common practice to use the standard initial condition that the system is
at rest initially with the output and all-time derivatives thereof zero.
๏‚ง Then the response characteristics of many systems can be easily compared. The
transient response of a practical control system often exhibits damped
oscillations before reaching steady state.
๏‚ง In specifying the transient-response characteristics of a control system to a
unit-step input, it is common to specify the following:
1) Delay Time ๐’•๐’…
2) Rise Time (๐’•๐’“)
3) Peak Time ๐’•๐’‘
4) Maximum Overshoot ๐‘ด๐’‘
5) Settling Time (๐’•๐’”)
Definitions:
1) Delay Time ๐’•๐’… The delay time is the time required for the response to reach half
the final value the very first time.
๐‘ ๐‘ก๐‘‘ =
1
2
๐‘ โˆž =
1
2
1
2
= 1 โˆ’
๐‘’โˆ’๐œ๐‘ค๐‘›๐‘ก๐‘‘
1 โˆ’ ๐œ2
sin ๐‘ค๐‘‘๐‘ก๐‘‘ + tanโˆ’1
1 โˆ’ ๐œ2
๐œ
Example: For underdamped second-order
system:
2) Rise Time ๐’•๐’“
โ€ข The rise time is the time required for the response to rise from
10% to 90%, 5% to 95%, or 0% to 100% of its final value.
โ€ข For underdamped second-order systems, the 0% to 100% rise time
is normally used.
โ€ข For overdamped systems, the 10% to 90% rise time is commonly
used.
๐‘ ๐‘ก๐‘Ÿ = 100% ๐‘ โˆž = 1
1 = 1 โˆ’
๐‘’โˆ’๐œ๐‘ค๐‘›๐‘ก๐‘Ÿ
1 โˆ’ ๐œ2
sin ๐‘ค๐‘‘๐‘ก๐‘Ÿ + tanโˆ’1
1 โˆ’ ๐œ2
๐œ
Example: For underdamped second-order
system:
Where;
๐‘ค๐‘‘ = ๐‘ค๐‘› 1 โˆ’ ๐œ2, ๐œ๐‘ค๐‘› = ๐œŽ
And ๐›ฝ is shown here
3) Peak Time
๐’•๐’‘
The peak time is the time required for the response to reach the
first peak of the overshoot.
Example: For underdamped second-
order system:
4) Maximum % Overshoot
๐‘ด๐’‘
The maximum overshoot is the maximum peak value of the
response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common
to use the maximum percent overshoot.
Example: For underdamped second-
order system:
(A)
4) Settling Time (๐’•๐’”)
The settling time is the time required for the response curve to
reach and stay within a range about the final value of size
specified by absolute percentage of the final value (usually 2% or
5%).
โ€ข The settling time is related to the largest time constant of the
control system. Which percentage error criterion to use may be
determined from the objectives of the system design in question.
Example: For underdamped second-
order system:
๏ถ The relative dominance of closed-loop poles is determined by the ratio of the real
parts of the closed-loop poles, as well as by the relative magnitudes of the
residues evaluated at the closed-loop poles.
๏ถ The magnitudes of the residues depend on both the closed-loop poles and zeros.
๏ถ If the ratios of the real parts of the closed-loop poles exceed 5 and there are no
zeros nearby, then the closed-loop poles nearest the ๐’‹๐’˜ axis will dominate in the
transient-response behaviour because these poles correspond to transient-response
terms that decay slowly.
Those closed-loop poles that have dominant effects on the transient-response
behaviour are called dominant closed-loop poles.
๏ƒผ Quite often the dominant closed-loop poles occur in the form of a complex-
conjugate pair. The dominant closed-loop poles are most important among all
closed-loop poles.
๏ƒผ Note that the gain of a higher-order system is often adjusted so that there will
exist a pair of dominant complex-conjugate closed-loop poles. The presence of such
poles in a stable system reduces the effects of such nonlinearities as dead zone,
DOMINANT CLOSED LOOP POLES

Mais conteรบdo relacionado

Semelhante a 14th_Class_19-03-2024 Control systems.pptx

lecture1 (5).ppt
lecture1 (5).pptlecture1 (5).ppt
lecture1 (5).ppt
HebaEng
ย 
Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
mkazree
ย 
Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
Hattori Sidek
ย 

Semelhante a 14th_Class_19-03-2024 Control systems.pptx (20)

KEC-602 Control System Unit-3 gandgfdghhg
KEC-602 Control System Unit-3 gandgfdghhgKEC-602 Control System Unit-3 gandgfdghhg
KEC-602 Control System Unit-3 gandgfdghhg
ย 
Chapter 3-Dynamic Behavior of First and Second Order Processes-1.pptx
Chapter 3-Dynamic Behavior of First and Second Order Processes-1.pptxChapter 3-Dynamic Behavior of First and Second Order Processes-1.pptx
Chapter 3-Dynamic Behavior of First and Second Order Processes-1.pptx
ย 
lecture1 (5).ppt
lecture1 (5).pptlecture1 (5).ppt
lecture1 (5).ppt
ย 
Time response analysis
Time response analysisTime response analysis
Time response analysis
ย 
Linear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop SystemsLinear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop Systems
ย 
Me314 week08-stability and steady state errors
Me314 week08-stability and steady state errorsMe314 week08-stability and steady state errors
Me314 week08-stability and steady state errors
ย 
Time response of discrete systems 4th lecture
Time response of discrete systems 4th lectureTime response of discrete systems 4th lecture
Time response of discrete systems 4th lecture
ย 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...
ย 
ุชุทุจูŠู‚ุงุช ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ
ุชุทุจูŠู‚ุงุช ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉุชุทุจูŠู‚ุงุช ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ
ุชุทุจูŠู‚ุงุช ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ
ย 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
ย 
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systemsLecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
ย 
Kalman filter for Beginners
Kalman filter for BeginnersKalman filter for Beginners
Kalman filter for Beginners
ย 
Lecture 5 backpropagation
Lecture 5 backpropagationLecture 5 backpropagation
Lecture 5 backpropagation
ย 
Me314 week 06-07-Time Response
Me314 week 06-07-Time ResponseMe314 week 06-07-Time Response
Me314 week 06-07-Time Response
ย 
Time domain analysis
Time domain analysisTime domain analysis
Time domain analysis
ย 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
ย 
Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
ย 
Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
ย 
Order of instruments.ppt
Order of instruments.pptOrder of instruments.ppt
Order of instruments.ppt
ย 
Crash course in control theory for neuroscientists and biologists
Crash course in control theory for neuroscientists and biologistsCrash course in control theory for neuroscientists and biologists
Crash course in control theory for neuroscientists and biologists
ย 

รšltimo

School management system project report.pdf
School management system project report.pdfSchool management system project report.pdf
School management system project report.pdf
Kamal Acharya
ย 
Teachers record management system project report..pdf
Teachers record management system project report..pdfTeachers record management system project report..pdf
Teachers record management system project report..pdf
Kamal Acharya
ย 
Lecture_8-Digital implementation of analog controller design.pdf
Lecture_8-Digital implementation of analog controller design.pdfLecture_8-Digital implementation of analog controller design.pdf
Lecture_8-Digital implementation of analog controller design.pdf
mohamedsamy9878
ย 
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
MohammadAliNayeem
ย 
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdfDR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
DrGurudutt
ย 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
Kamal Acharya
ย 
Paint shop management system project report.pdf
Paint shop management system project report.pdfPaint shop management system project report.pdf
Paint shop management system project report.pdf
Kamal Acharya
ย 

รšltimo (20)

School management system project report.pdf
School management system project report.pdfSchool management system project report.pdf
School management system project report.pdf
ย 
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
ย 
Electrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission lineElectrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission line
ย 
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and VisualizationKIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
ย 
Teachers record management system project report..pdf
Teachers record management system project report..pdfTeachers record management system project report..pdf
Teachers record management system project report..pdf
ย 
An improvement in the safety of big data using blockchain technology
An improvement in the safety of big data using blockchain technologyAn improvement in the safety of big data using blockchain technology
An improvement in the safety of big data using blockchain technology
ย 
"United Nations Park" Site Visit Report.
"United Nations Park" Site  Visit Report."United Nations Park" Site  Visit Report.
"United Nations Park" Site Visit Report.
ย 
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWINGBRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
BRAKING SYSTEM IN INDIAN RAILWAY AutoCAD DRAWING
ย 
Lecture_8-Digital implementation of analog controller design.pdf
Lecture_8-Digital implementation of analog controller design.pdfLecture_8-Digital implementation of analog controller design.pdf
Lecture_8-Digital implementation of analog controller design.pdf
ย 
Electrical shop management system project report.pdf
Electrical shop management system project report.pdfElectrical shop management system project report.pdf
Electrical shop management system project report.pdf
ย 
Lect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptxLect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptx
ย 
Supermarket billing system project report..pdf
Supermarket billing system project report..pdfSupermarket billing system project report..pdf
Supermarket billing system project report..pdf
ย 
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
Complex plane, Modulus, Argument, Graphical representation of a complex numbe...
ย 
E-Commerce Shopping for developing a shopping ecommerce site
E-Commerce Shopping for developing a shopping ecommerce siteE-Commerce Shopping for developing a shopping ecommerce site
E-Commerce Shopping for developing a shopping ecommerce site
ย 
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdfDR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
DR PROF ING GURUDUTT SAHNI WIKIPEDIA.pdf
ย 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
ย 
Paint shop management system project report.pdf
Paint shop management system project report.pdfPaint shop management system project report.pdf
Paint shop management system project report.pdf
ย 
A CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdf
A CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdfA CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdf
A CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdf
ย 
Attraction and Repulsion type Moving Iron Instruments.pptx
Attraction and Repulsion type Moving Iron Instruments.pptxAttraction and Repulsion type Moving Iron Instruments.pptx
Attraction and Repulsion type Moving Iron Instruments.pptx
ย 
Roushan Kumar Java oracle certificate
Roushan Kumar Java oracle certificate Roushan Kumar Java oracle certificate
Roushan Kumar Java oracle certificate
ย 

14th_Class_19-03-2024 Control systems.pptx

  • 1. Updated New Syllabus UNIT III ๏‚ง CLASS NO: 7 ๏‚ง DATE:19-03-2024
  • 2. First Order System & its Response Fig 1 : Block diagram of a 1st order system Input Output Relationship: ๐‘ช ๐’” ๐‘น(๐’”) = ๐Ÿ ๐‘ป๐’” + ๐Ÿ Objective: To analyse the system responses to such inputs as the ๏‚ง unit-step ๏‚ง unit-ramp ๏‚ง unit-impulse functions The initial conditions are assumed to be zero.
  • 3. Unit Step Response of First Order System Input Output Relationship: ๐‘ช ๐’” ๐‘น(๐’”) = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐‘ช(๐’”) = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐‘น(๐’”) Laplace Transform of Input S Here it is ๐“› ๐’– ๐’• = ๐Ÿ ๐’” ๐‘ช ๐’” = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐Ÿ ๐’” ๐‘ช ๐’” = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐Ÿ ๐’” Using Partial Fraction Technique: ๐‘ช ๐’” = ๐Ÿ ๐’” โˆ’ ๐‘ป ๐‘ป๐’” + ๐Ÿ = ๐Ÿ ๐’” โˆ’ ๐Ÿ ๐’” + ๐Ÿ ๐‘ป ๐“›โˆ’๐Ÿ ๐‘ช(๐’”) ๐’„ ๐’• = ๐Ÿ โˆ’ ๐’†โˆ’ ๐’• ๐‘ป, for ๐’• โ‰ฅ ๐ŸŽ Time (๐’•) ๐’„(๐’•) ๐‘ข ๐‘ก = 1, ๐‘ก โ‰ฅ 0 ๐‘ข ๐‘ก = 0, ๐‘ก < 0
  • 4. ๏ถ Interesting Observations: โ€ข ๐’„ ๐’• ๐’•=๐ŸŽ = ๐’„ ๐ŸŽ = ๐ŸŽ and ๐’„ ๐’• ๐’•=โˆž = ๐’„ โˆž = ๐Ÿ โ€ข The curve behaviour is exponential โ€ข At ๐’• = ๐‘ป, ๐’„ ๐‘ป = ๐Ÿ โˆ’ ๐’†โˆ’๐Ÿ = ๐ŸŽ. ๐Ÿ”๐Ÿ‘๐Ÿ โ€ข The smaller the Time-Constant ๐‘ป , the faster the system response. โ€ข The Slope of the Tangent Line at ๐’• = ๐ŸŽ is ๐Ÿ ๐‘ป since ๐’…๐’„(๐’•) ๐’…๐’• ๐’•=๐ŸŽ = ๐Ÿ ๐‘ป ๐’†โˆ’ ๐’• ๐‘ป ๐’•=๐ŸŽ = ๐Ÿ ๐‘ป ?
  • 5. Unit-Ramp Response of First Order System Input Output Relationship: ๐‘ช ๐’” ๐‘น(๐’”) = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐‘ช(๐’”) = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐‘น(๐’”) Laplace Transform of Input Si Here it is ๐“› ๐’“ ๐’• = ๐Ÿ ๐’”๐Ÿ ๐‘ช ๐’” = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐Ÿ ๐’”๐Ÿ ๐‘ช ๐’” = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐Ÿ ๐’”๐Ÿ Using Partial Fraction Technique: ๐‘ช ๐’” = ๐Ÿ ๐’”๐Ÿ โˆ’ ๐‘ป ๐’” + ๐‘ป๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐“›โˆ’๐Ÿ ๐‘ช(๐’”) ๐’„ ๐’• = ๐’• โˆ’ ๐‘ป + ๐‘ป๐’†โˆ’ ๐’• ๐‘ป, for ๐’• โ‰ฅ ๐ŸŽ Time (๐’•) ๐’„(๐’•)
  • 6. ๏ถ Interesting Observations: The error signal ๐’† ๐’• ๐’† ๐’• = ๐’“ ๐’• โˆ’ ๐’„ ๐’• = ๐‘ป ๐Ÿ โˆ’ ๐’†โˆ’ ๐’• ๐‘ป ๐’† โˆž = ๐‘ป ๐Ÿ โˆ’ ๐’†โˆ’ โˆž ๐‘ป = ๐‘ป *** The error signal ๐’† ๐’• approaches to ๐‘ป at steady state
  • 7. Unit-Impulse Response of First Order System Input Output Relationship: ๐‘ช ๐’” ๐‘น(๐’”) = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐‘ช(๐’”) = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐‘น(๐’”) Laplace Transform of Input Si Here it is ๐“› ๐œน ๐’• = ๐Ÿ ๐‘ช ๐’” = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐‘ช ๐’” = ๐Ÿ ๐‘ป๐’” + ๐Ÿ ๐“›โˆ’๐Ÿ ๐‘ช(๐’”) ๐’„ ๐’• = ๐Ÿ ๐‘ป ๐’†โˆ’ ๐’• ๐‘ป for ๐’• โ‰ฅ ๐ŸŽ Time (๐’•) ๐’„(๐’•) ๐Ÿ ๐‘ป = ๐Ÿ
  • 8. An Important Property of Linear Time- Invariant (LTI) Systems ๐’„ ๐’• = ๐’• โˆ’ ๐‘ป + ๐‘ป๐’†โˆ’ ๐’• ๐‘ป, for ๐’• โ‰ฅ ๐ŸŽ ๐’„ ๐’• = ๐Ÿ โˆ’ ๐’†โˆ’ ๐’• ๐‘ป, for ๐’• โ‰ฅ ๐ŸŽ ๐’„ ๐’• = ๐Ÿ ๐‘ป ๐’†โˆ’ ๐’• ๐‘ป for ๐’• โ‰ฅ ๐ŸŽ Unit-Ramp Response Unit-Step Response Unit-Impulse Response ๏ถ Interesting Observations: d (Unit-Ramp Response) / dt = Unit-Step Response d (Unit-Step Response ) / dt = Unit-Impulse Response ๏ƒผ The response to the integral of the original signal can be obtained by integrating the response of the system to the original signal and by determining the integration constant from the zero-output initial condition. This is a property of LTI systems. ๏ƒผ Linear time-varying (LTV) systems and nonlinear systems do not possess this Remark
  • 9. Second Order System and Its Response Fig 2 : Servo system Simplified Block Diagram Plant
  • 10. Relevant Equations related to Servo system ||Transfer Function of Servo system The equation for the load elements is ๐‘ฑ๐’„ + ๐‘ฉ๐’„ = ๐‘ป โ€ข ๐‘ฑ & ๐‘ฉ are inertia and viscous- friction elements โ€ข ๐‘ป denotes the Torque produced by the proportional controller whose gain is ๐‘ฒ Taking Laplace Transform of both side and considering initial conditions to be zero: ๐‘ฑ๐’”๐Ÿ๐‘ช(๐’”) + ๐‘ฉ๐’”๐‘ช(๐’”) = ๐‘ป(๐’”) ๐‘ช ๐’” ๐‘ป(๐’”) = ๐Ÿ ๐’”(๐‘ฑ๐’” + ๐‘ฉ) ๐‘ช ๐’” ๐‘น(๐’”) = ๐‘ฒ ๐‘ฑ๐’”๐Ÿ + ๐‘ฉ๐’” + ๐‘ฒ = ๐‘ฒ ๐‘ฑ ๐’”๐Ÿ + ๐‘ฉ ๐‘ฑ ๐’” + ๐‘ฒ ๐‘ฑ 2nd Order system Closed-Loop Transfer Function โˆƒ 2 Closed-Loop Poles
  • 11. Step Response of Second Order System ๐‘ช ๐’” ๐‘น(๐’”) = ๐‘ฒ ๐‘ฑ๐’”๐Ÿ + ๐‘ฉ๐’” + ๐‘ฒ = ๐‘ฒ ๐‘ฑ ๐’”๐Ÿ + ๐‘ฉ ๐‘ฑ ๐’” + ๐‘ฒ ๐‘ฑ Closed-Loop TF = ๐‘ฒ ๐‘ฑ ๐’” + ๐‘ฉ ๐Ÿ๐‘ฑ + ๐‘ฉ ๐Ÿ๐‘ฑ ๐Ÿ โˆ’ ๐‘ฒ ๐‘ฑ ๐’” + ๐‘ฉ ๐Ÿ๐‘ฑ โˆ’ ๐‘ฉ ๐Ÿ๐‘ฑ ๐Ÿ โˆ’ ๐‘ฒ ๐‘ฑ Closed-Loop Poles will be COMPLEX CONJUGATES if ๐‘ฉ๐Ÿ โˆ’ ๐Ÿ’๐‘ฑ๐‘ฒ Closed-Loop Poles will be REAL if ๐‘ฉ๐Ÿ โˆ’ ๐Ÿ’๐‘ฑ๐‘ฒ โ‰ฅ ๐ŸŽ Remark: For Transient Response analysis, it is convenient to write ๐‘ฒ ๐‘ฑ = ๐’˜๐’ ๐Ÿ ๐‘ฉ ๐‘ฑ = ๐Ÿ๐œป๐’˜๐’ = ๐Ÿ๐ˆ Key Terms ๏‚ง ๐ˆ : Attenuation ๏‚ง ๐’˜๐’ : Undamped Natural Frequency ๏‚ง ๐œป : Damping Ratio ๏‚ง ๐‘ฉ : Actual Damping ๏‚ง ๐‘ฉ๐’„ : Critical Ratio ๏‚ง ๐œป = ๐‘ฉ ๐‘ฉ๐’„ = ๐‘ฉ ๐Ÿ ๐‘ฑ๐‘ฒ
  • 12. ๐‘ฎ ๐’” = ๐’˜๐’ ๐Ÿ ๐’”(๐’” + ๐Ÿ๐œป๐’˜๐’) ๐ถ(๐‘ ) ๐‘…(๐‘ ) Fig 3 : Standard Second-order feedback system Open Loop Transfer Function ๐ธ ๐‘  = ๐‘… ๐‘  โˆ’ ๐ถ(๐‘ ) ๐‘ช ๐’” ๐‘น(๐’”) = ๐’˜๐’ ๐Ÿ ๐’”๐Ÿ + ๐Ÿ๐œป๐’˜๐’ + ๐’˜๐’ ๐Ÿ 3 Important Cases To Study Case 1: Underdamped || ๐ŸŽ < ๐œป < ๐Ÿ Case 2: Critically Damped || ๐œป = ๐Ÿ Case 3: Overdamped || ๐œป > ๐Ÿ ๐‘ช ๐’” ๐‘น(๐’”) = ๐’˜๐’ ๐Ÿ (๐’” + ๐œป๐’˜๐’ + ๐’‹๐’˜๐’…)(๐’” + ๐œป๐’˜๐’ โˆ’ ๐’‹๐’˜๐’…) Where, ๐‘ค๐‘‘ = ๐‘ค๐‘› 1 โˆ’ ๐œ2 ๐‘ช(๐’”) = ๐’˜๐’ ๐Ÿ ๐’” + ๐œป๐’˜๐’ + ๐’‹๐’˜๐’… ๐’” + ๐œป๐’˜๐’ โˆ’ ๐’‹๐’˜๐’… ๐Ÿ ๐ฌ ๐‘น ๐’” = ๐Ÿ ๐’” Unit Step Function ๐‘ช ๐’” ๐‘น(๐’”) = ๐’˜๐’ ๐Ÿ ๐’” + ๐’˜๐’ ๐Ÿ Where, ๐‘ค๐‘‘ = ๐‘ค๐‘› 1 โˆ’ ๐œ2 = 0 ๐‘ช(๐’”) = ๐’˜๐’ ๐Ÿ ๐’” + ๐’˜๐’ ๐Ÿ ๐Ÿ ๐ฌ ๐‘น ๐’” = ๐Ÿ ๐’” Unit Step Function ๐‘ช ๐’” ๐‘น(๐’”) = ๐’˜๐’ ๐Ÿ (๐’” + ๐œป๐’˜๐’ + ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)(๐’” + ๐œป๐’˜๐’ โˆ’ ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ) ๐‘น ๐’” = ๐Ÿ ๐’” Unit Step Function ๐‘ช(๐’”) = ๐’˜๐’ ๐Ÿ ๐’”(๐’” + ๐œป๐’˜๐’ + ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)(๐’” + ๐œป๐’˜๐’ โˆ’ ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)
  • 13. ) STABILITY OF A MASS-SPRING-DAMPER System
  • 14. B) STABILITY OF A MASS-SPRING System
  • 15. Expression of ๐’„ ๐’• in all the cases Case 1: Underdamped || ๐ŸŽ < ๐œป < ๐Ÿ ๐‘ช(๐’”) = ๐’˜๐’ ๐Ÿ ๐’” + ๐œป๐’˜๐’ + ๐’‹๐’˜๐’… ๐’” + ๐œป๐’˜๐’ โˆ’ ๐’‹๐’˜๐’… ๐Ÿ ๐ฌ Using Partial Fraction ๐‘ช ๐’” = ๐Ÿ ๐’” โˆ’ ๐’” + ๐Ÿ๐œป๐’˜๐’ ๐’”๐Ÿ + ๐Ÿ๐œป๐’˜๐’๐’” + ๐’˜๐’ ๐Ÿ = ๐Ÿ ๐ฌ โˆ’ ๐ฌ + ๐œป๐’˜๐’ ๐’” + ๐œป๐’˜๐’ ๐Ÿ + ๐’˜๐’… ๐Ÿ โˆ’ ๐œป๐’˜๐’ ๐’” + ๐œป๐’˜๐’ ๐Ÿ + ๐’˜๐’… ๐Ÿ
  • 16. Important Observations of Case 2 Case 2: Critically Damped || ๐œป = ๐Ÿ ๐‘ช(๐’”) = ๐’˜๐’ ๐Ÿ ๐’” + ๐’˜๐’ ๐Ÿ ๐Ÿ ๐ฌ Case 3: Overdamped || ๐œป > ๐Ÿ ๐‘ช(๐’”) = ๐’˜๐’ ๐Ÿ ๐’”(๐’” + ๐œป๐’˜๐’ + ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)(๐’” + ๐œป๐’˜๐’ โˆ’ ๐’˜๐’ ๐œป๐Ÿ โˆ’ ๐Ÿ)
  • 17. Fig.: Unit-step response curves of the system A family of unit-step response curves ๐’„(๐’•) with various values of ๐œป w.r.t. ๐’˜๐’๐’•
  • 18. Second Order System and Its Transient Response Specifications Salient Features: ๏‚ง Frequently, the performance characteristics of a control system are specified in terms of the transient response to a unit-step input, since it is easy to generate and is sufficiently drastic. ๏‚ง The transient response of a system to a unit-step input depends on the initial conditions. For convenience in comparing transient responses of various systems, it is a common practice to use the standard initial condition that the system is at rest initially with the output and all-time derivatives thereof zero. ๏‚ง Then the response characteristics of many systems can be easily compared. The transient response of a practical control system often exhibits damped oscillations before reaching steady state. ๏‚ง In specifying the transient-response characteristics of a control system to a unit-step input, it is common to specify the following: 1) Delay Time ๐’•๐’… 2) Rise Time (๐’•๐’“) 3) Peak Time ๐’•๐’‘ 4) Maximum Overshoot ๐‘ด๐’‘ 5) Settling Time (๐’•๐’”)
  • 19. Definitions: 1) Delay Time ๐’•๐’… The delay time is the time required for the response to reach half the final value the very first time. ๐‘ ๐‘ก๐‘‘ = 1 2 ๐‘ โˆž = 1 2 1 2 = 1 โˆ’ ๐‘’โˆ’๐œ๐‘ค๐‘›๐‘ก๐‘‘ 1 โˆ’ ๐œ2 sin ๐‘ค๐‘‘๐‘ก๐‘‘ + tanโˆ’1 1 โˆ’ ๐œ2 ๐œ Example: For underdamped second-order system:
  • 20. 2) Rise Time ๐’•๐’“ โ€ข The rise time is the time required for the response to rise from 10% to 90%, 5% to 95%, or 0% to 100% of its final value. โ€ข For underdamped second-order systems, the 0% to 100% rise time is normally used. โ€ข For overdamped systems, the 10% to 90% rise time is commonly used. ๐‘ ๐‘ก๐‘Ÿ = 100% ๐‘ โˆž = 1 1 = 1 โˆ’ ๐‘’โˆ’๐œ๐‘ค๐‘›๐‘ก๐‘Ÿ 1 โˆ’ ๐œ2 sin ๐‘ค๐‘‘๐‘ก๐‘Ÿ + tanโˆ’1 1 โˆ’ ๐œ2 ๐œ Example: For underdamped second-order system: Where; ๐‘ค๐‘‘ = ๐‘ค๐‘› 1 โˆ’ ๐œ2, ๐œ๐‘ค๐‘› = ๐œŽ And ๐›ฝ is shown here
  • 21. 3) Peak Time ๐’•๐’‘ The peak time is the time required for the response to reach the first peak of the overshoot. Example: For underdamped second- order system:
  • 22. 4) Maximum % Overshoot ๐‘ด๐’‘ The maximum overshoot is the maximum peak value of the response curve measured from unity. If the final steady-state value of the response differs from unity, then it is common to use the maximum percent overshoot. Example: For underdamped second- order system: (A)
  • 23. 4) Settling Time (๐’•๐’”) The settling time is the time required for the response curve to reach and stay within a range about the final value of size specified by absolute percentage of the final value (usually 2% or 5%). โ€ข The settling time is related to the largest time constant of the control system. Which percentage error criterion to use may be determined from the objectives of the system design in question. Example: For underdamped second- order system:
  • 24. ๏ถ The relative dominance of closed-loop poles is determined by the ratio of the real parts of the closed-loop poles, as well as by the relative magnitudes of the residues evaluated at the closed-loop poles. ๏ถ The magnitudes of the residues depend on both the closed-loop poles and zeros. ๏ถ If the ratios of the real parts of the closed-loop poles exceed 5 and there are no zeros nearby, then the closed-loop poles nearest the ๐’‹๐’˜ axis will dominate in the transient-response behaviour because these poles correspond to transient-response terms that decay slowly. Those closed-loop poles that have dominant effects on the transient-response behaviour are called dominant closed-loop poles. ๏ƒผ Quite often the dominant closed-loop poles occur in the form of a complex- conjugate pair. The dominant closed-loop poles are most important among all closed-loop poles. ๏ƒผ Note that the gain of a higher-order system is often adjusted so that there will exist a pair of dominant complex-conjugate closed-loop poles. The presence of such poles in a stable system reduces the effects of such nonlinearities as dead zone, DOMINANT CLOSED LOOP POLES