SlideShare uma empresa Scribd logo
1 de 58
+
Forces and the Laws of Motion
Chapter 4
Pg. 118-143
+
4.1Changes in Motion
+
What do you think?
What is a force?
Are any forces acting on your book as it rests on
your desk?
 If so, describe them.
 Make a sketch showing any forces on the book.
What units are used to measure force?
Can forces exist without contact between objects?
Explain.
+
Forces
Forces can change motion.
An action exerted on an object which may
change the object’s state of rest or motion
Start movement, stop movement, or change
the direction of movement
Cause an object in motion to speed up or slow
down
+
Forces
Contact forces
 Pushes or pulls requiring
physical contact between the
objects
 Baseball and bat
Field forces
 Objects create force fields that
act on other objects.
 Gravity, static electricity,
magnetism
+
Units of Force
The SI unit of force is the newton (N).
Named for Sir Isaac Newton
Defined as the force required to accelerate
a 1 kg mass at a rate of 1 m/s2
Other units are shown below.
+ Force Diagrams
Force diagram (a)
Shows all forces
acting during an
interaction
 On the car and on
the wall
Free-body diagram
(b)
Shows only forces
acting on the
object of interest
 On the car
Forces are vectors (magnitude and
direction).
+
Free-Body Diagrams
Three forces are
shown on the car.
 Describe each force
by explaining the
source of the force
and where it acts on
the car.
 Is each force a
contact force or a field
force?
+
Now what do you think?
What is a force?
What forces act on your book as it rests on your
desk?
 Make a sketch showing any forces on the book.
 Are they contact forces or field forces?
What SI unit is used to measure force?
 What equivalent basic SI units measure force?
+
4.2 Newton’s First Law
+
What do you think?
 Imagine the following two situations:
 Pushing a puck across an air hockey table
 Pushing a book across a lab table
 What should your finger do in each case to maintain a
constant speed for the object as it moves across the table
or desk? (Choose from below.)
 A quick push or force, then release the object
 Maintain a constant force as you push the object
 Increase or decrease the force as you push the object
 Explain your choice for the puck and the book.
+
Newton’s First Law
Experimentation led Galileo to the idea that
objects maintain their state of motion or rest.
Newton developed the idea further, in what is
now known as Newton’s first law of motion:
+
Newton’s First Law
Called the law of inertia
Inertia
Tendency of an object not to accelerate
Mass is a measure of inertia
More mass produces more resistance to a
change in velocity
+
Newton’s First Law
Which object in each pair has more inertia?
 A baseball at rest or a tennis ball at rest
 Answer: the baseball
 A tennis ball moving at 125 mi/h or a baseball at
rest
 Answer: the baseball
+
Net Force - the Sum of the Forces
This car is moving with a
constant velocity.
 Fforward = road pushing the tires
 Fresistance = force caused by
friction and air
 Forces are balanced
Velocity is constant because
the net force (Fnet) is zero.
+
Net Force - the Sum of the Forces
Fnormal- normal force
working on objects
Fgravity- force of gravity
pulling it down
Ffriction- friction acting on
object to pull it back
Facceleration- force of
acceleration pulling it
forward
F normal
F acceleration
F gravity
F friction
+
Net Force - the Sum of the Forces
X-axis
Fnet = Fa + Ff
Y- axis
Fnet = Fn + Fg
F normal
F acceleration
F gravity
F friction
+
4.3 Newton’s Second and Third
Laws
+
What do you think?
If a net force acts on an object, what type of
motion will be observed?
Why?
How would this motion be affected by the
amount of force?
Are there any other factors that might affect
this motion?
+
Newton’s Second Law
 Increasing the force will increase the acceleration.
 Which produces a greater acceleration on a 3-kg model airplane, a
force of 5 N or a force of 7 N?
 Answer: the 7 N force
 Increasing the mass will decrease the acceleration.
 A force of 5 N is exerted on two model airplanes, one with a mass
of 3 kg and one with a mass of 4 kg. Which has a greater
acceleration?
 Answer: the 3 kg airplane
+
Newton’s Second Law (Equation Form)
F represents the vector sum of all forces
acting on an object.
F = Fnet
Units for force: mass units (kg)  acceleration
units (m/s2)
The units kg•m/s2 are also called newtons (N).
+
Example
2 people are studying at a large table. The
one student pushes a 2.2 kg book across
the table to the other with a force of 1.6N.
What is the acceleration?
F= ma
Given:
F= 1.6N m= 2.2 Kg a=??
+
Example
F=ma
a= F/m
a= 1.6/2.2
a= 0.73 m/s2
+
Classroom Practice Problem
Space-shuttle astronauts experience
accelerations of about 35 m/s2 during takeoff.
What force does a 75 kg astronaut
experience during an acceleration of this
magnitude?
Answer: 2600 kg•m/s2 or 2600 N
+
What do you think?
 Two football players, Alex and Jason, collide head-on. They have the
same mass and the same speed before the collision. How does the
force on Alex compare to the force on Jason? Why do you think so?
 Sketch each player as a stick figure.
 Place a velocity vector above each player.
 Draw the force vector on each and label it (i.e. FJA is the force of Jason on
Alex).
+
What do you think?
 Suppose Alex has twice the mass of Jason. How would the forces
compare?
 Why do you think so?
 Sketch as before.
 Suppose Alex has twice the mass and Jason is at rest. How would the
forces compare?
 Why do you think so?
 Sketch as before.
+
Newton’s Third Law
Forces always exist in pairs.
You push down on the chair, the chair
pushes up on you
Called the action force and reaction force
Occur simultaneously so either force is the
action force
+
Newton’s Third Law
3rd Law states:
 For every action force there is an equal and
opposite reaction force.
The forces act on different objects.
 Therefore, they do not balance or cancel each
other.
 The motion of each object depends on the net
force on that object.
+
Hammer Striking a Nail
 What are the action/reaction pairs for a hammer
striking a nail into wood?
 Force of hammer on nail = force of nail on hammer
 Force of wood on nail = force of nail on wood
 Which of the action/reaction forces above act on
the nail?
 Force of hammer on nail (downward)
 Force of wood on nail (upward)
 Does the nail move? If so, how?
 Fhammer-on-nail>Fwood-on-nail so the nail
accelerates downward
+
Action-Reaction: A Book on a Desk
 Earth pulls down on the
book (force of gravity).
Reaction Force
 The book pushes down on
the desk.
Action Force
 The desk pushes up on
the book.
 The book pulls up on
Earth.
+
Action-Reaction: A Falling Book
Action
Earth pulls down on the
book (force of gravity).
What is the result of the
action force (if this is the
only force on the book)?
 Unbalanced force
produces an acceleration
of -9.81 m/s2.
Reaction
• The book pulls up on
Earth.
• What is the result of
the reaction force?
• Unbalanced force
produces a very small
upward acceleration
(because the mass of
Earth is so large).
+
Now what do you think?
 If a net force acts on an object, what type of motion will
be observed?
 Why?
 How would this motion be affected by the amount of
force?
 Are there any other factors that might affect this motion?
+
Now what do you think?
Two football players, Alex and Jason, collide head-on. For
each scenario below, do the following:
 Sketch each player as a stick figure.
 Place a velocity vector above each player.
 Draw the force vector on each and label it.
 Draw the acceleration vector above each player.
 Scenario 1: Alex and Jason have the same mass and the
same speed before the collision.
 Scenario 2: Alex has twice the mass of Jason, and they
both have the same speed before the collision.
 Scenario 3: Alex has twice the mass and Jason is at rest.
+
DON’T DO FROM HERE
+
4.4 Everyday Forces
+
What do you think?
How do the quantities weight and mass differ
from each other?
Which of the following terms is most closely
related to the term friction?
 Heat, energy, force, velocity
Explain the relationship.
+
Weight and Mass
Mass is the amount of matter in an object.
 Kilograms, slugs
Weight is a measure of the gravitational force on
an object.
 Newtons, pounds
 Depends on the acceleration of gravity
Weight = mass  acceleration of gravity
 W = mag where ag = 9.81 m/s2 on Earth
 Depends on location
 ag varies slightly with location on Earth.
 ag is different on other planets.
Normal Force
Force on an object
perpendicular to the surface
(Fn)
It may equal the weight (Fg),
as it does here.
It does not always equal the
weight (Fg), as in the second
example.
Fn = mg cos
+
Net Force - the Sum of the Forces
Fnormal- normal force
working on objects
Fgravity- force of gravity
pulling it down
Ffriction- friction acting on
object to pull it back
Facceleration- force of
acceleration pulling it
forward
F normal
F acceleration
F gravity
F friction
+
Net Force - the Sum of the Forces
X-axis
Fnet = Fa + Ff
Y- axis
Fnet = Fn + Fg
F normal
F acceleration
F gravity
F friction
Static Friction
• Force that prevents motion
• Abbreviated Fs
– How does the applied force (F)
compare to the frictional force
(Fs)?
– Would Fs change if F was
reduced? If so, how?
– If F is increased significantly,
will Fs change? If so, how?
– Are there any limits on the
value for Fs?
Kinetic Friction
 Using the picture, describe
the motion you would
observe.
 The jug will accelerate.
 How could the person push
the jug at a constant speed?
 Reduce F so it equals Fk.
• Force between surfaces that opposes movement
• Abbreviated Fk
• Does not depend on the speed
+
Friction
Click below to watch the Visual Concept.
Visual Concept
+
Calculating the Force of Friction (Ff)
Ff is directly proportional to Fn(normal force).
Coefficient of friction ():
 Determined by the nature of the two surfaces
 s is for static friction.
 k is for kinetic friction.
 s>k
Typical Coefficients of Friction
Values for  have no units and are approximate.
+
Click below to watch the Visual Concept.
Visual Concept
Everyday Forces
+
Classroom Practice Problem
A 24 kg crate initially at rest on a horizontal
floor requires a 75 N horizontal force to set it
in motion. Find the coefficient of static friction
between the crate and the floor.
 Draw a free-body diagram and use it to find:
 the weight
 the normal force (Fn)
 the force of friction (Ff)
 Find the coefficient of friction.
Answer: s = 0.32
Classroom Practice Problem
A student attaches a rope to a 20.0 kg box
of books. He pulls with a force of 90.0 N at
an angle of 30.0˚ with the horizontal. The
coefficient of kinetic friction between the box
and the sidewalk is 0.500. Find the
magnitude of the acceleration of the box.
– Start with a free-body diagram.
– Determine the net force.
– Find the acceleration.
• Answer: a = 0.12 m/s2
+
The Four Fundamental Forces
Electromagnetic
 Caused by
interactions between
protons and electrons
 Produces friction
Gravitational
 The weakest force
Strong nuclear force
 The strongest force
 Short range
Weak nuclear force
 Short range
+
Now what do you think?
How do the quantities weight and mass differ
from each other?
Which of the following terms is most closely
related to the term friction?
 Heat, energy, force, velocity
Explain the relationship.
+
Example
Derek Leaves his physics book on top of
a drafting table that is inclined at a 35°
angle. The free body diagram shows the
forces.
F table-on-book = 18N
F gravity-on-book = 22N
F friction= 11N
+
Example
Given:
F table-on-book = 18N
F gravity-on-book = 22N
F friction= 11N
F net =?? 18N
22N
11N
Y
X
+
Example
What can I do now??
Make a triangle!!!
Now we can figure out
vector components,
Meaning the sides and
unknown angle 
35°
θ
22N
Y
X
+
Example
θ= 180-90-35
θ= 55°
Cos θ=x
F gravity
Sinθ=y
F gravity
X = Fgcosθ
X = (22N) cos 55°
X = 13N
Y = Fg sin θ
Y = (22N) sin 55°
Y = 18N
+
Example
X- axis
Fnet = Fa + Ff
Y- axis
Fnet = Fn + Fg
+
Example
A man is pulling his dog with a force of
70N directed at an angle of 30° to the
horizontal. Find the x and y components
of this force.
As an apple falls, the gravitational force
on the apple is 2.25N down, and the force
of the wind on the apple is 1.05N right.
Find the magnitude and direction of the
net force.
Equilibrium
 The state in which the net
force is zero.
 All forces are balanced.
 Object is at rest or travels with
constant velocity
 In the diagram, the bob on
the fishing line is in
equilibrium.
 The forces cancel each other.
 If either force changes,
acceleration will occur.
+
Classroom Practice Problem
An agricultural student is designing a support
system to keep a tree upright. Two wires
have been attached to the tree and placed at
right angles to each other (parallel to the
ground). One wire exerts a force of 30.0 N
and the other exerts a force of 40.0 N.
Determine where to place a third wire and
how much force it should exert so that the
net force on the tree is zero.
Answer: 50.0 N at 143° from the 40.0 N force

Mais conteúdo relacionado

Mais procurados (20)

WEEK_7_WORKPOWER_AND_ENERGY_PPT.pptx
WEEK_7_WORKPOWER_AND_ENERGY_PPT.pptxWEEK_7_WORKPOWER_AND_ENERGY_PPT.pptx
WEEK_7_WORKPOWER_AND_ENERGY_PPT.pptx
 
Newtons laws
Newtons lawsNewtons laws
Newtons laws
 
Newton's laws of motion
Newton's laws of motionNewton's laws of motion
Newton's laws of motion
 
Newton's law of gravitation
Newton's law of gravitationNewton's law of gravitation
Newton's law of gravitation
 
Motion in Two Dimensions
Motion in Two DimensionsMotion in Two Dimensions
Motion in Two Dimensions
 
Projectiles Fired Horizontally
Projectiles Fired HorizontallyProjectiles Fired Horizontally
Projectiles Fired Horizontally
 
AP Physics - Chapter 4 Powerpoint
AP Physics - Chapter 4 PowerpointAP Physics - Chapter 4 Powerpoint
AP Physics - Chapter 4 Powerpoint
 
Chapter 11 Powerpoint
Chapter 11 PowerpointChapter 11 Powerpoint
Chapter 11 Powerpoint
 
Force & motion
Force & motionForce & motion
Force & motion
 
laws of motion
laws of motionlaws of motion
laws of motion
 
La segunda ley de newton
La  segunda ley de newtonLa  segunda ley de newton
La segunda ley de newton
 
Gravitation
GravitationGravitation
Gravitation
 
Newton's laws of motion
Newton's laws of motionNewton's laws of motion
Newton's laws of motion
 
Gravity
GravityGravity
Gravity
 
Laws Of Motion
Laws Of MotionLaws Of Motion
Laws Of Motion
 
AP Physics C Gravitation
AP Physics C GravitationAP Physics C Gravitation
AP Physics C Gravitation
 
Momentum & Collisions
Momentum & CollisionsMomentum & Collisions
Momentum & Collisions
 
Gravitation ppt
Gravitation pptGravitation ppt
Gravitation ppt
 
GRAVITY
GRAVITYGRAVITY
GRAVITY
 
Gravitation
GravitationGravitation
Gravitation
 

Destaque

Temperature
TemperatureTemperature
TemperatureZBTHS
 
Work and Energy
Work and EnergyWork and Energy
Work and EnergyZBTHS
 
Universal Gravitation
Universal GravitationUniversal Gravitation
Universal GravitationZBTHS
 
Work and energy
Work and energyWork and energy
Work and energyZBTHS
 
Moisture and Atmospheric Stability
Moisture and Atmospheric StabilityMoisture and Atmospheric Stability
Moisture and Atmospheric StabilityZBTHS
 
Electric Forces and Fields
Electric Forces and FieldsElectric Forces and Fields
Electric Forces and FieldsZBTHS
 
Electric Circuits
Electric CircuitsElectric Circuits
Electric CircuitsZBTHS
 
Air Pressure and Winds
Air Pressure and WindsAir Pressure and Winds
Air Pressure and WindsZBTHS
 
Heating Earth's Surface and The Atmosphere
Heating Earth's Surface and The AtmosphereHeating Earth's Surface and The Atmosphere
Heating Earth's Surface and The AtmosphereZBTHS
 
Waves Intro
Waves IntroWaves Intro
Waves IntroZBTHS
 
Introduction to the Atmosphere
Introduction to the AtmosphereIntroduction to the Atmosphere
Introduction to the AtmosphereZBTHS
 
Forms of Condensation and Precipitation
Forms of Condensation and PrecipitationForms of Condensation and Precipitation
Forms of Condensation and PrecipitationZBTHS
 
Circulation of the Atmosphere
Circulation of the AtmosphereCirculation of the Atmosphere
Circulation of the AtmosphereZBTHS
 
Thunderstorms, Tornadoes, Hurricanes Oh My!
Thunderstorms, Tornadoes, Hurricanes Oh My!Thunderstorms, Tornadoes, Hurricanes Oh My!
Thunderstorms, Tornadoes, Hurricanes Oh My!ZBTHS
 
Chapter 6
Chapter 6Chapter 6
Chapter 6ZBTHS
 
Physics - Chapter 4
Physics - Chapter 4Physics - Chapter 4
Physics - Chapter 4Mrreynon
 
Chapter 2
Chapter 2Chapter 2
Chapter 2ZBTHS
 
Webinar - Immigration Legislation in 2011 and 2012
Webinar - Immigration Legislation in 2011 and 2012Webinar - Immigration Legislation in 2011 and 2012
Webinar - Immigration Legislation in 2011 and 2012mbashyam
 
The AMAZING Success of Indian Immigrants in America!
The AMAZING Success of Indian Immigrants in America!The AMAZING Success of Indian Immigrants in America!
The AMAZING Success of Indian Immigrants in America!Richard Herman
 
15 Darwin’S Theory Of Evolution (Version 2)
15  Darwin’S Theory Of Evolution (Version 2)15  Darwin’S Theory Of Evolution (Version 2)
15 Darwin’S Theory Of Evolution (Version 2)ZBTHS
 

Destaque (20)

Temperature
TemperatureTemperature
Temperature
 
Work and Energy
Work and EnergyWork and Energy
Work and Energy
 
Universal Gravitation
Universal GravitationUniversal Gravitation
Universal Gravitation
 
Work and energy
Work and energyWork and energy
Work and energy
 
Moisture and Atmospheric Stability
Moisture and Atmospheric StabilityMoisture and Atmospheric Stability
Moisture and Atmospheric Stability
 
Electric Forces and Fields
Electric Forces and FieldsElectric Forces and Fields
Electric Forces and Fields
 
Electric Circuits
Electric CircuitsElectric Circuits
Electric Circuits
 
Air Pressure and Winds
Air Pressure and WindsAir Pressure and Winds
Air Pressure and Winds
 
Heating Earth's Surface and The Atmosphere
Heating Earth's Surface and The AtmosphereHeating Earth's Surface and The Atmosphere
Heating Earth's Surface and The Atmosphere
 
Waves Intro
Waves IntroWaves Intro
Waves Intro
 
Introduction to the Atmosphere
Introduction to the AtmosphereIntroduction to the Atmosphere
Introduction to the Atmosphere
 
Forms of Condensation and Precipitation
Forms of Condensation and PrecipitationForms of Condensation and Precipitation
Forms of Condensation and Precipitation
 
Circulation of the Atmosphere
Circulation of the AtmosphereCirculation of the Atmosphere
Circulation of the Atmosphere
 
Thunderstorms, Tornadoes, Hurricanes Oh My!
Thunderstorms, Tornadoes, Hurricanes Oh My!Thunderstorms, Tornadoes, Hurricanes Oh My!
Thunderstorms, Tornadoes, Hurricanes Oh My!
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Physics - Chapter 4
Physics - Chapter 4Physics - Chapter 4
Physics - Chapter 4
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Webinar - Immigration Legislation in 2011 and 2012
Webinar - Immigration Legislation in 2011 and 2012Webinar - Immigration Legislation in 2011 and 2012
Webinar - Immigration Legislation in 2011 and 2012
 
The AMAZING Success of Indian Immigrants in America!
The AMAZING Success of Indian Immigrants in America!The AMAZING Success of Indian Immigrants in America!
The AMAZING Success of Indian Immigrants in America!
 
15 Darwin’S Theory Of Evolution (Version 2)
15  Darwin’S Theory Of Evolution (Version 2)15  Darwin’S Theory Of Evolution (Version 2)
15 Darwin’S Theory Of Evolution (Version 2)
 

Semelhante a Forces and Laws of Motion

482564411-Newton-s-Laws-of-Motion-by-joy.pptx
482564411-Newton-s-Laws-of-Motion-by-joy.pptx482564411-Newton-s-Laws-of-Motion-by-joy.pptx
482564411-Newton-s-Laws-of-Motion-by-joy.pptxSaimaUsman41700TCHRM
 
discoveringnewtonslaws1
discoveringnewtonslaws1discoveringnewtonslaws1
discoveringnewtonslaws1jaygadhia4195
 
The Law of Inertia (The 3 Laws of Motion).ppt
The Law of Inertia (The 3 Laws of Motion).pptThe Law of Inertia (The 3 Laws of Motion).ppt
The Law of Inertia (The 3 Laws of Motion).pptRose Alba
 
1 discoveringnewtonslaws
1 discoveringnewtonslaws1 discoveringnewtonslaws
1 discoveringnewtonslawstvierra
 
Newtons laws of motion
Newtons laws of motionNewtons laws of motion
Newtons laws of motionAtit Gaonkar
 
ppt on newton laws
ppt on newton lawsppt on newton laws
ppt on newton lawsshivu Putta
 
Bs ed,gen sc,unit # 10,11,12,laws of motion.
Bs ed,gen sc,unit # 10,11,12,laws of motion.Bs ed,gen sc,unit # 10,11,12,laws of motion.
Bs ed,gen sc,unit # 10,11,12,laws of motion.Rakhshanda Hashmi
 
3 Laws of Motion12345678913333416454.ppt
3 Laws of Motion12345678913333416454.ppt3 Laws of Motion12345678913333416454.ppt
3 Laws of Motion12345678913333416454.pptlily rosemary masilang
 
Grade 8 Science IMs Q1 S1.ppt
Grade 8 Science IMs Q1 S1.pptGrade 8 Science IMs Q1 S1.ppt
Grade 8 Science IMs Q1 S1.pptJECKORO2
 

Semelhante a Forces and Laws of Motion (20)

482564411-Newton-s-Laws-of-Motion-by-joy.pptx
482564411-Newton-s-Laws-of-Motion-by-joy.pptx482564411-Newton-s-Laws-of-Motion-by-joy.pptx
482564411-Newton-s-Laws-of-Motion-by-joy.pptx
 
THREE LAWS OF MOTION
THREE LAWS OF MOTIONTHREE LAWS OF MOTION
THREE LAWS OF MOTION
 
discoveringnewtonslaws1
discoveringnewtonslaws1discoveringnewtonslaws1
discoveringnewtonslaws1
 
The Law of Inertia (The 3 Laws of Motion).ppt
The Law of Inertia (The 3 Laws of Motion).pptThe Law of Inertia (The 3 Laws of Motion).ppt
The Law of Inertia (The 3 Laws of Motion).ppt
 
Newton's Laws
Newton's LawsNewton's Laws
Newton's Laws
 
Newton's law
Newton's lawNewton's law
Newton's law
 
laws of motion.
laws of motion.laws of motion.
laws of motion.
 
1 discoveringnewtonslaws
1 discoveringnewtonslaws1 discoveringnewtonslaws
1 discoveringnewtonslaws
 
1 discoveringnewtonslaws
1 discoveringnewtonslaws1 discoveringnewtonslaws
1 discoveringnewtonslaws
 
Newtons laws of motion
Newtons laws of motionNewtons laws of motion
Newtons laws of motion
 
1DiscoveringNewtonsLaws1.ppt
1DiscoveringNewtonsLaws1.ppt1DiscoveringNewtonsLaws1.ppt
1DiscoveringNewtonsLaws1.ppt
 
ppt on newton laws
ppt on newton lawsppt on newton laws
ppt on newton laws
 
newton's laws of motion
newton's laws of motionnewton's laws of motion
newton's laws of motion
 
Bs ed,gen sc,unit # 10,11,12,laws of motion.
Bs ed,gen sc,unit # 10,11,12,laws of motion.Bs ed,gen sc,unit # 10,11,12,laws of motion.
Bs ed,gen sc,unit # 10,11,12,laws of motion.
 
3 Laws of Motion12345678913333416454.ppt
3 Laws of Motion12345678913333416454.ppt3 Laws of Motion12345678913333416454.ppt
3 Laws of Motion12345678913333416454.ppt
 
Newtons_Laws.ppt
Newtons_Laws.pptNewtons_Laws.ppt
Newtons_Laws.ppt
 
Grade 8 Science IMs Q1 S1.ppt
Grade 8 Science IMs Q1 S1.pptGrade 8 Science IMs Q1 S1.ppt
Grade 8 Science IMs Q1 S1.ppt
 
Newtons_Laws.ppt
Newtons_Laws.pptNewtons_Laws.ppt
Newtons_Laws.ppt
 
Newtons_Laws.ppt
Newtons_Laws.pptNewtons_Laws.ppt
Newtons_Laws.ppt
 
Newtons_Laws.ppt
Newtons_Laws.pptNewtons_Laws.ppt
Newtons_Laws.ppt
 

Mais de ZBTHS

Two Dimensional Motion and Vectors
Two Dimensional Motion and VectorsTwo Dimensional Motion and Vectors
Two Dimensional Motion and VectorsZBTHS
 
Sound
SoundSound
SoundZBTHS
 
Vibrations and Waves
Vibrations and WavesVibrations and Waves
Vibrations and WavesZBTHS
 
Electrical Energy and Currents
Electrical Energy and CurrentsElectrical Energy and Currents
Electrical Energy and CurrentsZBTHS
 
Momentum
MomentumMomentum
MomentumZBTHS
 
Chapter 6
Chapter 6Chapter 6
Chapter 6ZBTHS
 
Chapter 7
Chapter 7Chapter 7
Chapter 7ZBTHS
 
Chapter 3
Chapter 3Chapter 3
Chapter 3ZBTHS
 
Projectile motion ch 5 reg
Projectile motion ch 5 regProjectile motion ch 5 reg
Projectile motion ch 5 regZBTHS
 
Velocity, acceleration, free fall ch4 reg
Velocity, acceleration, free fall ch4 regVelocity, acceleration, free fall ch4 reg
Velocity, acceleration, free fall ch4 regZBTHS
 
Chapter 2 ppt
Chapter 2  pptChapter 2  ppt
Chapter 2 pptZBTHS
 
5 populations
5  populations5  populations
5 populationsZBTHS
 
26 intro to the animal kingdom
26  intro to the animal kingdom26  intro to the animal kingdom
26 intro to the animal kingdomZBTHS
 
3 biosphere
3  biosphere3  biosphere
3 biosphereZBTHS
 

Mais de ZBTHS (14)

Two Dimensional Motion and Vectors
Two Dimensional Motion and VectorsTwo Dimensional Motion and Vectors
Two Dimensional Motion and Vectors
 
Sound
SoundSound
Sound
 
Vibrations and Waves
Vibrations and WavesVibrations and Waves
Vibrations and Waves
 
Electrical Energy and Currents
Electrical Energy and CurrentsElectrical Energy and Currents
Electrical Energy and Currents
 
Momentum
MomentumMomentum
Momentum
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Projectile motion ch 5 reg
Projectile motion ch 5 regProjectile motion ch 5 reg
Projectile motion ch 5 reg
 
Velocity, acceleration, free fall ch4 reg
Velocity, acceleration, free fall ch4 regVelocity, acceleration, free fall ch4 reg
Velocity, acceleration, free fall ch4 reg
 
Chapter 2 ppt
Chapter 2  pptChapter 2  ppt
Chapter 2 ppt
 
5 populations
5  populations5  populations
5 populations
 
26 intro to the animal kingdom
26  intro to the animal kingdom26  intro to the animal kingdom
26 intro to the animal kingdom
 
3 biosphere
3  biosphere3  biosphere
3 biosphere
 

Forces and Laws of Motion

  • 1. + Forces and the Laws of Motion Chapter 4 Pg. 118-143
  • 3. + What do you think? What is a force? Are any forces acting on your book as it rests on your desk?  If so, describe them.  Make a sketch showing any forces on the book. What units are used to measure force? Can forces exist without contact between objects? Explain.
  • 4. + Forces Forces can change motion. An action exerted on an object which may change the object’s state of rest or motion Start movement, stop movement, or change the direction of movement Cause an object in motion to speed up or slow down
  • 5. + Forces Contact forces  Pushes or pulls requiring physical contact between the objects  Baseball and bat Field forces  Objects create force fields that act on other objects.  Gravity, static electricity, magnetism
  • 6. + Units of Force The SI unit of force is the newton (N). Named for Sir Isaac Newton Defined as the force required to accelerate a 1 kg mass at a rate of 1 m/s2 Other units are shown below.
  • 7. + Force Diagrams Force diagram (a) Shows all forces acting during an interaction  On the car and on the wall Free-body diagram (b) Shows only forces acting on the object of interest  On the car Forces are vectors (magnitude and direction).
  • 8. + Free-Body Diagrams Three forces are shown on the car.  Describe each force by explaining the source of the force and where it acts on the car.  Is each force a contact force or a field force?
  • 9. + Now what do you think? What is a force? What forces act on your book as it rests on your desk?  Make a sketch showing any forces on the book.  Are they contact forces or field forces? What SI unit is used to measure force?  What equivalent basic SI units measure force?
  • 11. + What do you think?  Imagine the following two situations:  Pushing a puck across an air hockey table  Pushing a book across a lab table  What should your finger do in each case to maintain a constant speed for the object as it moves across the table or desk? (Choose from below.)  A quick push or force, then release the object  Maintain a constant force as you push the object  Increase or decrease the force as you push the object  Explain your choice for the puck and the book.
  • 12. + Newton’s First Law Experimentation led Galileo to the idea that objects maintain their state of motion or rest. Newton developed the idea further, in what is now known as Newton’s first law of motion:
  • 13. + Newton’s First Law Called the law of inertia Inertia Tendency of an object not to accelerate Mass is a measure of inertia More mass produces more resistance to a change in velocity
  • 14. + Newton’s First Law Which object in each pair has more inertia?  A baseball at rest or a tennis ball at rest  Answer: the baseball  A tennis ball moving at 125 mi/h or a baseball at rest  Answer: the baseball
  • 15. + Net Force - the Sum of the Forces This car is moving with a constant velocity.  Fforward = road pushing the tires  Fresistance = force caused by friction and air  Forces are balanced Velocity is constant because the net force (Fnet) is zero.
  • 16. + Net Force - the Sum of the Forces Fnormal- normal force working on objects Fgravity- force of gravity pulling it down Ffriction- friction acting on object to pull it back Facceleration- force of acceleration pulling it forward F normal F acceleration F gravity F friction
  • 17. + Net Force - the Sum of the Forces X-axis Fnet = Fa + Ff Y- axis Fnet = Fn + Fg F normal F acceleration F gravity F friction
  • 18. + 4.3 Newton’s Second and Third Laws
  • 19. + What do you think? If a net force acts on an object, what type of motion will be observed? Why? How would this motion be affected by the amount of force? Are there any other factors that might affect this motion?
  • 20. + Newton’s Second Law  Increasing the force will increase the acceleration.  Which produces a greater acceleration on a 3-kg model airplane, a force of 5 N or a force of 7 N?  Answer: the 7 N force  Increasing the mass will decrease the acceleration.  A force of 5 N is exerted on two model airplanes, one with a mass of 3 kg and one with a mass of 4 kg. Which has a greater acceleration?  Answer: the 3 kg airplane
  • 21. + Newton’s Second Law (Equation Form) F represents the vector sum of all forces acting on an object. F = Fnet Units for force: mass units (kg)  acceleration units (m/s2) The units kg•m/s2 are also called newtons (N).
  • 22. + Example 2 people are studying at a large table. The one student pushes a 2.2 kg book across the table to the other with a force of 1.6N. What is the acceleration? F= ma Given: F= 1.6N m= 2.2 Kg a=??
  • 24. + Classroom Practice Problem Space-shuttle astronauts experience accelerations of about 35 m/s2 during takeoff. What force does a 75 kg astronaut experience during an acceleration of this magnitude? Answer: 2600 kg•m/s2 or 2600 N
  • 25. + What do you think?  Two football players, Alex and Jason, collide head-on. They have the same mass and the same speed before the collision. How does the force on Alex compare to the force on Jason? Why do you think so?  Sketch each player as a stick figure.  Place a velocity vector above each player.  Draw the force vector on each and label it (i.e. FJA is the force of Jason on Alex).
  • 26. + What do you think?  Suppose Alex has twice the mass of Jason. How would the forces compare?  Why do you think so?  Sketch as before.  Suppose Alex has twice the mass and Jason is at rest. How would the forces compare?  Why do you think so?  Sketch as before.
  • 27. + Newton’s Third Law Forces always exist in pairs. You push down on the chair, the chair pushes up on you Called the action force and reaction force Occur simultaneously so either force is the action force
  • 28. + Newton’s Third Law 3rd Law states:  For every action force there is an equal and opposite reaction force. The forces act on different objects.  Therefore, they do not balance or cancel each other.  The motion of each object depends on the net force on that object.
  • 29. + Hammer Striking a Nail  What are the action/reaction pairs for a hammer striking a nail into wood?  Force of hammer on nail = force of nail on hammer  Force of wood on nail = force of nail on wood  Which of the action/reaction forces above act on the nail?  Force of hammer on nail (downward)  Force of wood on nail (upward)  Does the nail move? If so, how?  Fhammer-on-nail>Fwood-on-nail so the nail accelerates downward
  • 30. + Action-Reaction: A Book on a Desk  Earth pulls down on the book (force of gravity). Reaction Force  The book pushes down on the desk. Action Force  The desk pushes up on the book.  The book pulls up on Earth.
  • 31. + Action-Reaction: A Falling Book Action Earth pulls down on the book (force of gravity). What is the result of the action force (if this is the only force on the book)?  Unbalanced force produces an acceleration of -9.81 m/s2. Reaction • The book pulls up on Earth. • What is the result of the reaction force? • Unbalanced force produces a very small upward acceleration (because the mass of Earth is so large).
  • 32. + Now what do you think?  If a net force acts on an object, what type of motion will be observed?  Why?  How would this motion be affected by the amount of force?  Are there any other factors that might affect this motion?
  • 33. + Now what do you think? Two football players, Alex and Jason, collide head-on. For each scenario below, do the following:  Sketch each player as a stick figure.  Place a velocity vector above each player.  Draw the force vector on each and label it.  Draw the acceleration vector above each player.  Scenario 1: Alex and Jason have the same mass and the same speed before the collision.  Scenario 2: Alex has twice the mass of Jason, and they both have the same speed before the collision.  Scenario 3: Alex has twice the mass and Jason is at rest.
  • 36. + What do you think? How do the quantities weight and mass differ from each other? Which of the following terms is most closely related to the term friction?  Heat, energy, force, velocity Explain the relationship.
  • 37. + Weight and Mass Mass is the amount of matter in an object.  Kilograms, slugs Weight is a measure of the gravitational force on an object.  Newtons, pounds  Depends on the acceleration of gravity Weight = mass  acceleration of gravity  W = mag where ag = 9.81 m/s2 on Earth  Depends on location  ag varies slightly with location on Earth.  ag is different on other planets.
  • 38. Normal Force Force on an object perpendicular to the surface (Fn) It may equal the weight (Fg), as it does here. It does not always equal the weight (Fg), as in the second example. Fn = mg cos
  • 39. + Net Force - the Sum of the Forces Fnormal- normal force working on objects Fgravity- force of gravity pulling it down Ffriction- friction acting on object to pull it back Facceleration- force of acceleration pulling it forward F normal F acceleration F gravity F friction
  • 40. + Net Force - the Sum of the Forces X-axis Fnet = Fa + Ff Y- axis Fnet = Fn + Fg F normal F acceleration F gravity F friction
  • 41. Static Friction • Force that prevents motion • Abbreviated Fs – How does the applied force (F) compare to the frictional force (Fs)? – Would Fs change if F was reduced? If so, how? – If F is increased significantly, will Fs change? If so, how? – Are there any limits on the value for Fs?
  • 42. Kinetic Friction  Using the picture, describe the motion you would observe.  The jug will accelerate.  How could the person push the jug at a constant speed?  Reduce F so it equals Fk. • Force between surfaces that opposes movement • Abbreviated Fk • Does not depend on the speed
  • 43. + Friction Click below to watch the Visual Concept. Visual Concept
  • 44. + Calculating the Force of Friction (Ff) Ff is directly proportional to Fn(normal force). Coefficient of friction ():  Determined by the nature of the two surfaces  s is for static friction.  k is for kinetic friction.  s>k
  • 45. Typical Coefficients of Friction Values for  have no units and are approximate.
  • 46. + Click below to watch the Visual Concept. Visual Concept Everyday Forces
  • 47. + Classroom Practice Problem A 24 kg crate initially at rest on a horizontal floor requires a 75 N horizontal force to set it in motion. Find the coefficient of static friction between the crate and the floor.  Draw a free-body diagram and use it to find:  the weight  the normal force (Fn)  the force of friction (Ff)  Find the coefficient of friction. Answer: s = 0.32
  • 48. Classroom Practice Problem A student attaches a rope to a 20.0 kg box of books. He pulls with a force of 90.0 N at an angle of 30.0˚ with the horizontal. The coefficient of kinetic friction between the box and the sidewalk is 0.500. Find the magnitude of the acceleration of the box. – Start with a free-body diagram. – Determine the net force. – Find the acceleration. • Answer: a = 0.12 m/s2
  • 49. + The Four Fundamental Forces Electromagnetic  Caused by interactions between protons and electrons  Produces friction Gravitational  The weakest force Strong nuclear force  The strongest force  Short range Weak nuclear force  Short range
  • 50. + Now what do you think? How do the quantities weight and mass differ from each other? Which of the following terms is most closely related to the term friction?  Heat, energy, force, velocity Explain the relationship.
  • 51. + Example Derek Leaves his physics book on top of a drafting table that is inclined at a 35° angle. The free body diagram shows the forces. F table-on-book = 18N F gravity-on-book = 22N F friction= 11N
  • 52. + Example Given: F table-on-book = 18N F gravity-on-book = 22N F friction= 11N F net =?? 18N 22N 11N Y X
  • 53. + Example What can I do now?? Make a triangle!!! Now we can figure out vector components, Meaning the sides and unknown angle  35° θ 22N Y X
  • 54. + Example θ= 180-90-35 θ= 55° Cos θ=x F gravity Sinθ=y F gravity X = Fgcosθ X = (22N) cos 55° X = 13N Y = Fg sin θ Y = (22N) sin 55° Y = 18N
  • 55. + Example X- axis Fnet = Fa + Ff Y- axis Fnet = Fn + Fg
  • 56. + Example A man is pulling his dog with a force of 70N directed at an angle of 30° to the horizontal. Find the x and y components of this force. As an apple falls, the gravitational force on the apple is 2.25N down, and the force of the wind on the apple is 1.05N right. Find the magnitude and direction of the net force.
  • 57. Equilibrium  The state in which the net force is zero.  All forces are balanced.  Object is at rest or travels with constant velocity  In the diagram, the bob on the fishing line is in equilibrium.  The forces cancel each other.  If either force changes, acceleration will occur.
  • 58. + Classroom Practice Problem An agricultural student is designing a support system to keep a tree upright. Two wires have been attached to the tree and placed at right angles to each other (parallel to the ground). One wire exerts a force of 30.0 N and the other exerts a force of 40.0 N. Determine where to place a third wire and how much force it should exert so that the net force on the tree is zero. Answer: 50.0 N at 143° from the 40.0 N force

Notas do Editor

  1. When asking students to express their ideas, you might try one of the following methods. (1) You could ask them to write their answers in their notebook and then discuss them. (2) You could ask them to first write their ideas and then share them with a small group of 3 or 4 students. At that time you can have each group present their consensus idea. This can be facilitated with the use of whiteboards for the groups. The most important aspect of eliciting student’s ideas is the acceptance of all ideas as valid. Do not correct or judge them. You might want to ask questions to help clarify their answers. You do not want to discourage students from thinking about these questions and just waiting for the correct answer from the teacher. Thank them for sharing their ideas. Misconceptions are common and can be dealt with if they are first expressed in writing and orally. Many students will be able to answer these fairly well. They may have some trouble describing the forces acting on the book. They probably know pounds as a unit of force, but they may not know that the newton is the SI unit of force.
  2. One common misconception is that “forces cause motion.” Forces actually cause a change in motion, or more specifically, a change in velocity (an acceleration). This will be covered in more detail in the next sections, in the context of Newton’s laws.
  3. Pictured is a contact force, the bat and the ball, as well as a field force, the static electric field around charged balloon exerting a force on small pieces of paper. Ask students to identify other examples of contact forces.
  4. 1 N = 0.225 pounds (roughly 1/4 pound) Have students determine their approximate weight in newtons to reinforce the size of the unit. When talking about problems, use both units to help them become more comfortable. For example, a 10 000 N car is about a 2500 lb car.
  5. Students often have trouble isolating the forces acting on an object to draw a free-body diagram for the object. The free-body diagram of the car is analyzed in more detail in the next slide.
  6. For simplicity, all forces are shown acting on the center of the object. Remind students that, when adding vectors, they can be moved parallel without changing the results. Even though the upward force acts on each of the 4 tires, the total is shown acting on the center of the car. Even though the wall strikes the front bumper, that force can be moved to the center of the car without changing the resultant. Gravity (the pull of Earth’s field) acts on every particle in the car but is shown as a single downward force at the center.
  7. Answers: A force is a push or a pull between two objects. There are two forces acting on the book: the force of gravity downward (field force) and the force of the desk pushing upward (contact force). Forces are measured in newtons (N), a derived unit equivalent to kg•m/s2 .
  8. When asking students to express their ideas, you might try one of the following methods. (1) You could ask them to write their answers in their notebook and then discuss them. (2) You could ask them to first write their ideas and then share them with a small group of 3 or 4 students. At that time you can have each group present their consensus idea. This can be facilitated with the use of whiteboards for the groups. The most important aspect of eliciting student’s ideas is the acceptance of all ideas as valid. Do not correct or judge them. You might want to ask questions to help clarify their answers. You do not want to discourage students from thinking about these questions and just waiting for the correct answer from the teacher. Thank them for sharing their ideas. Misconceptions are common and can be dealt with if they are first expressed in writing and orally. Answers will vary. If you have an air track or table or a low-friction cart, you should have the students try their ideas. Hopefully they will see that the continuous push is only needed if there is an opposing force of friction. If not, you can come back to these questions after working through Newton’s 1st law. Students might insist that you need to keep pushing the air hockey puck because it will slow down ever so slightly due to the slight amount of friction. Ask them questions about why this is true. Be very accepting of all answers because there may be a wide variety of beliefs.
  9. Discuss Galileo’s experiment with balls rolling down and then back up inclines. Each ball returned to its original height even if the angle of incline was changed. He theorized that the ball would roll forever if the track was horizontal because it would never reach the starting height. A short version of this law would be as follows: Fnet = 0 <-----> v = constant If net force is zero, the velocity is constant and, if the velocity is constant, the net force is zero. It sounds simple, but students have a difficult time with this law because they do not “see” the force of friction when they look at moving objects.
  10. Students may choose the moving tennis ball if they confuse inertia (mass) with momentum (mass times velocity). Emphasize that inertia depends only on mass, and so the baseball has a greater inertia in both cases.
  11. Ask students how to increase the speed of the car. Answer: Increase the forward force (accelerator) or decrease the resistance force (make the car more aerodynamic). Ask students how to decrease the speed of the car. Answer: Increase the resistance force (the brakes) or decrease the forward force (accelerator). This will provide a nice introduction to Newton’s 2nd Law.
  12. When asking students to express their ideas, you might try one of the following methods. (1) You could ask them to write their answers in their notebook and then discuss them. (2) You could ask them to first write their ideas and then share them with a small group of 3 or 4 students. At that time you can have each group present their consensus idea. This can be facilitated with the use of whiteboards for the groups. The most important aspect of eliciting student’s ideas is the acceptance of all ideas as valid. Do not correct or judge them. You might want to ask questions to help clarify their answers. You do not want to discourage students from thinking about these questions and just waiting for the correct answer from the teacher. Thank them for sharing their ideas. Misconceptions are common and can be dealt with if they are first expressed in writing and orally. Hopefully, students will follow Newton’s first law (balanced forces produce no acceleration) with the idea that unbalanced forces produce accelerations. They may posit that a greater force will produce a greater acceleration. They may also use the idea of inertia from the previous section to realize that a greater mass corresponds to a smaller acceleration. On the other hand, it may be difficult for some students to let go of the idea that a force is necessary to maintain constant motion. Revisit this misconception with examples throughout this presentation.
  13. Be sure students understand what is meant by the terms “directly proportional” and “inversely proportional.” A simulation from the Phet web site is available to help students visualize the force and the acceleration. The web address is: http://phet-web.colorado.edu/web-pages/index.html Choose the “Motion” simulations, then select “motion in 2D.” You can turn off the vectors and just allow students to observe the motion. Then ask the students to predict the acceleration vector. Which way will it point? Will it have a constant size? After predicting, show the acceleration vector. Next, have them predict the force vector’s direction and size. After predicting, show the force vector and both vectors. Then you can try the other motions described on the screen and ask them to observe the motion, describe the acceleration, and describe the forces. This exercise allows students to see that accelerations are caused by forces. We see the accelerations, but often do not see the forces.
  14. It is often useful to write the equation as a = F/m to show students the relationship between force and acceleration and between mass and acceleration. It is easier to see that forces cause accelerations when the equation is written in this form. Even though students saw these units in section 1, they may not recall the fact that newtons are simply a short name for the SI units of kg•m/s2. When solving problems, they will need to know this equivalence in order to cancel units. Remind students of the other units for force, such as dynes (g•cm/s2) and pounds (slug•ft/s2).
  15. When asking students to express their ideas, you might try one of the following methods. (1) You could ask them to write their answers in their notebook and then discuss them. (2) You could ask them to first write their ideas and then share them with a small group of 3 or 4 students. At that time you can have each group present their consensus idea. This can be facilitated with the use of whiteboards for the groups. The most important aspect of eliciting student’s ideas is the acceptance of all ideas as valid. Do not correct or judge them. You might want to ask questions to help clarify their answers. You do not want to discourage students from thinking about these questions and just waiting for the correct answer from the teacher. Thank them for sharing their ideas. Misconceptions are common and can be dealt with if they are first expressed in writing and orally. This question will likely produce a wide variety of responses. Some students may believe that the forces are always equal. Many will believe they are equal for the first example but not so for the second and third examples (next slide).
  16. Emphasize that the action and reaction forces occur at the same time.
  17. This example is continued on the next slide.
  18. Have students observe a book sitting on a desk for this slide. After students see the action force on the slide, they should be able to state the reaction force before you show it to them. Often students think the reaction force for the desk pushing up on the book is Earth pulling down on the book. Remind them that these forces act on the same object, the book, so they are not an action-reaction pair.
  19. Now, remove the book from the desk and allow it to fall to the floor. Ask students if the forces on the book are still balanced. What is the result of this unbalanced force? Acceleration. Have students calculate the acceleration of Earth. Assume the book’s mass is 2.0 kg, so the force on the book is (2.0 kg)(-9.8 m/s2) or 19.6 N downward. Therefore, the upward force on Earth is also 19.6 N. The mass of Earth is about 6 x 1024 kg, so students can calculate the upward acceleration and see how small it will be. You could also choose a falling distance and have students calculate the time required to fall the distance Earth would move upward during that time (using the equations from Chapter 2).
  20. Acceleration or a changing velocity will result. Increase the force will increase the acceleration. Increasing the mass will decrease the acceleration.
  21. The forces are equal in all three scenarios. In this first case, the accelerations will also be the same because the forces are equal and the masses are equal. In the other two cases, the accelerations will differ because the masses are not the same.
  22. When asking students to express their ideas, you might try one of the following methods. (1) You could ask them to write their answers in their notebook and then discuss them. (2) You could ask them to first write their ideas and then share them with a small group of 3 or 4 students. At that time you can have each group present their consensus idea. This can be facilitated with the use of whiteboards for the groups. The most important aspect of eliciting student’s ideas is the acceptance of all ideas as valid. Do not correct or judge them. You might want to ask questions to help clarify their answers. You do not want to discourage students from thinking about these questions and just waiting for the correct answer from the teacher. Thank them for sharing their ideas. Misconceptions are common and can be dealt with if they are first expressed in writing and orally. Weight and mass are often confused. Students learned earlier that mass was the amount of matter in an object and weight was the force of gravity, but they often still confuse the issue. When eliciting their responses, ask them to discuss appropriate units for each. You might discuss “weightlessness” and ask if objects can be massless as well. Friction is often confused with heat or thermal energy. Students likely will think of friction as being related to many of the quantities listed above.
  23. Mention that weight is less on the moon because ag on the moon is 1.6 m/s2 . Reinforce that converting between mass and weight is simple, just multiply or divide by 9.81 m/s2 . Point out that each kg has a weight of 9.81 N on Earth.
  24. Point out that the equation for normal force applies to the first example also. Because cos(0)=1, the equation reduces to Fn = mg when the forces are directly opposite one another.
  25. These questions should help students understand that static friction balances the external force (F), so it increases and decreases as F increases and decreases. Eventually, F will be so large that the static frictional force (Fs) will no longer be able to balance it, and the net force will cause the object to slide. At this point, frictional forces become kinetic (see next slide).
  26. Ask students if it requires more force to get an object moving when it is at rest or to keep it moving once it is already in motion. When pushing an object, we exert enough force to overcome static friction. At that point the object moves. The opposing force is now kinetic friction, which is less than static friction. Therefore, in order to maintain a constant speed and not accelerate, the force pushing the object is reduced.
  27. This Visual Concept discusses the nature of friction and the factors that affect the amount of friction. Before running the video, ask students to explain what causes the force of friction. Lead this discussion by asking students how the force of friction is affected by changing the types of surfaces or by adding a lubricant (such as water or glycerin on glass tubing). They should see these things clearly when you play the video. Make sure the students are focused on the magnified view of the surfaces. This will help them understand the effect of increased normal force and the effect of different surface types. During the comments on swimming, ask them how swimmers reduce the force of friction. Have them draw a free-body diagram of a swimmer showing the force propelling him forward (water pushing against his hand) and the frictional force in the opposite direction. Ask students how the swimmer can accelerate. They should respond that he can reduce friction or increase the force of the water on his hand.
  28. Point out to students that Ff is the general term for both static friction (Fs) and kinetic friction (Fk).
  29. Point out that static is greater than kinetic for each example. Also explain that the coefficient is generally less than 1 but there could be sticky surfaces where the frictional force was greater than the normal force. This would lead to coefficients greater than 1.
  30. This is a relatively simple example from the book (Sample Problem D). Ask students to follow the steps. It is easy to get the answer by skipping the free-body diagram, but they need this diagram to understand that normal force = weight, and the 75 N horizontal push is equal to the force of friction. More complicated problems (next slide) can’t be solved without a free- body diagram.
  31. This is Sample Problem E from the book. The free-body diagram is essential to solving this problem. Students often make the mistake of assuming the normal force equals the weight. These two forces are not equal because the student is pulling upward on the box, thus reducing the normal force. So, Fn = weight - (90.0 N)(sin 30)°. Students can then determine the value for Fk and subtract it from (90.0 N)(cos 30°) to get the net force. At this point, they can use Newton’s second law to find the acceleration.
  32. Mass is the amount of matter in an object while weight is the force of gravity. On the surface of Earth, weight = 9.81 x mass. Friction is a force. Friction is affected by the normal force and by the nature of the surfaces in contact with each other.
  33. X is the line and ourFgravity is our hypotenuse so when we look for Cos θ what is our 22N is actually our hypotenuse and what we think is the hypotenuse is the X because it’s on the X axis.
  34. After reviewing this slide, return to the previous slide and ask students if the car is in equilibrium.
  35. Be sure students have looked at Sample Problem B in the Student Edition before trying this problem. Give students some time to work on this problem and then go through each step with them. After completing this problem, show the students that any two of the three forces will be cancelled by the third force. These balanced forces produce equilibrium.