SlideShare uma empresa Scribd logo
1 de 88
‫خدا‬ ‫نام‬ ‫به‬
A BRIEF SEMINAR PRESENTATION ABOUT
TURBOMACHINES
• 2nd project for thermodynomics
• Presented by Shahin Tavakoli and Hasan Parvin
OVERLOOK
• Introduction – categorization – classiffication
• Types of turbomachines and the components
• Systems using in turbomachines
• Off-design (power transfer equation)
• On-design (ideal turbomachine analysis)
TURBOMACHINES
‫توربوماشین‬
• ‫انتقال‬ ‫عامل‬ ‫و‬ ‫میکنند‬ ‫دریافت‬ ‫انرژی‬ ‫سیال‬ ‫از‬ ‫یا‬ ‫میدهند‬ ‫انرژی‬ ‫سیال‬ ‫به‬ ‫خود‬ ‫محور‬ ‫دوران‬ ‫با‬ ‫که‬ ‫ماشینهایی‬ ‫تمامی‬
‫است‬ ‫ماشین‬ ‫محور‬ ‫دوران‬ ‫قدرت‬.
‫توربوماشینها‬ ‫تقسیمبندی‬
‫توربوماشینها‬
‫پذیر‬ ‫تراکم‬ ‫سیال‬
‫ماشین‬ ‫به‬ ‫سیال‬ ‫از‬ ‫انرژی‬ ‫انتقال‬
(‫گازی‬ ‫های‬ ‫توربین‬)
‫سیال‬ ‫به‬ ‫ماشین‬ ‫از‬ ‫انرژی‬ ‫انتقال‬
(‫ها‬ ‫کمپرسور‬)
‫ناپذیر‬ ‫تراکم‬ ‫سیال‬
‫ماشین‬ ‫به‬ ‫سیال‬ ‫از‬ ‫انرژی‬ ‫انتقال‬
(‫هیدرولیکی‬ ‫های‬ ‫توربین‬)
‫سیال‬ ‫به‬ ‫ماشین‬ ‫از‬ ‫انرژی‬ ‫انتقال‬
(‫ها‬ ‫فن‬ ‫و‬ ‫ها‬ ‫پمپ‬)
PUT TURBOMACHINES TOGETHER TO CREAT
“THRUST”
Propulsive turbomachines
Air breathing
Turbine powered
Ram powered
Non-continuous combustion
Non-air breathing
rocket
hybrid
waterjet
TURBINE POWERED AIR BREATHING
TURBOMACHINES
turbojet
turboprop
turbofan
TURBOJETS
TURBOPROPS
TURBOFANS
FOR EXAMPLE
differences between an aero-drivative and a heavy industrial turbomachine
TURBOSHAFT TO TURBOFAN
• Weight heavier
• Shaft speed slower
• Air flow higher
• Maintenance time longer
• Maintenance lay-down space longer
COMPRESSORS
Centrifugal Axial
COMPRESSORS
• Pressure ratio 5-1 world war 2
12-1 newer
30-1 recently
Better pressure ratio better thermal efficiiency
The best thermal efficiency is about 35 %
To achieve this thermal efficiency we should use some forms of “waste heat recovery”
Special material (Al , Fe and their alloys)
TURBINES
Turbofan high aspect ratio (long , thin blades) with tip shrouds
1.to dampen vibration
2.improve blade tip sealing characteristics
Turboshaft low aspect ratio (short , thick blades)
with no tip shrouds
Long thin airfoils need 1.lacing wire to dampen vibration
2.tip shrouds or mid-spam shrouds
TURBINES
BEARING DESIGN AND LUBRICATION
Turbofans anti friction roller anb ball bearings
25 – 400 gallons of oil
Turboshafts hydrodynamic bearings
1500 – 2500 gallons of oil
SYSTEMS
Starting
systems
Thrust
augmentation Ignition
systems
Lubrication
systems
STARTING SYSTEMS
IGNITION SYSTEMS
LUBRICATION SYSTEMS
GAS TURBINE INLET TREATMENT
• Air inlet cooling
GAS TURBINE EXHAUST TREATMENT
• 1.pollution
• 2.power augmentation
POLLUTION
*carbon mono-oxide(co) 1.function of combustion design
2.can be treated with a catalytic converter
*oxides of nitrogen(NOx) 1. (organic NO)
2.produced in hot regions (thermal NO)
ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛. 𝑓𝑢𝑒𝑙 + 𝑎𝑖𝑟 →. . . . . . . +𝑁𝑂𝑥
POLLUTION
POLLUTION
THRUST (POWER) AUGMENTATION
• First way : cooling air entering combustor
a) Increasing air density
b) Increasing mass flow
c) More air and more cooled air to the combustor permits more fuel to be burned
before reaching the turbine inlet temperaturre limit
To cooling the air enterring combustor, water or steam injection is ok
WATER INJECTION
into diffuser, compressor or combustor
reducing combustion and turbine temperature
reducing oxides of nitrogen up to 80 %
Example in a heavy industrial gas turbine with 80 MW power output
ratio of water to fuel is 0.6
water is 1.15 % of total air intaking
WATER INJECTION
.
STEAM INJECTION
energy to vaporizing the water is conserved
reducing combustion and turbine temperature
steam is hot so it’s quenching capabilities are reduced
so more steam than the water is required to accomplish the same
amounts of nitrogen oxides
Example in an airo-drivative gas turbine with 25 MW power outpuut
ratio of steam to fuel is up to 2.4
steam is 3.3 % of total air
STEAM INJECTION
SELECTIVE CATALYTIC REDUCTION
(SCR)
• Injecting ammonia
AFTER BURNING OR REHEATING
Effect of after burner raising the exhaust temperature
raising the velocity of exhaust gases
Example with afterburner thrust = 17,900 lbf
TSFC = 1.956 ((lbm/hr)/lbf)/hr
without afterburner thrust = 11,870 lbf
TSFC = 0.86((lbm/hr)/lbf)/hr
OFF-DESIGN
(ENGINE PERFORMANCE ANALYSIS)
‫اویلر‬ ‫ی‬ ‫معادله‬(‫نیوتن‬ ‫دوم‬ ‫قانون‬ ‫از‬ ‫استفاده‬ ‫با‬)
‫محوری‬ ‫سرعت‬–Va‫محور‬ ‫با‬ ‫موازی‬o-o
‫شعاعی‬ ‫سرعت‬–Vm‫با‬ ‫موازی‬r
‫مماسی‬ ‫سرعت‬–Vt‫روتور‬ ‫گردش‬ ‫جهت‬ ‫با‬ ‫موازی‬
‫سرعت‬ ‫های‬ ‫مولفه‬ ‫تغییرات‬
‫کفگرد‬ ‫های‬ ‫یاتاقان‬ ‫با‬ ‫شدن‬ ‫خنثی‬ ‫محوری‬ ‫نیروی‬ ‫ایجاد‬ ‫محوری‬ ‫سرعت‬ ‫تغییرات‬
‫شعاعی‬ ‫نیروی‬ ‫ایجاد‬ ‫روتور‬ ‫طول‬ ‫در‬ ‫مومنتوم‬ ‫تغییرات‬ ‫شعاعی‬ ‫سرعت‬ ‫تغییرات‬
‫روتور‬ ‫محور‬ ‫حول‬ ‫کوپل‬ ‫ایجاد‬ ‫گردشی‬ ‫ممان‬ ‫تغییر‬ ‫مماسی‬ ‫سرعت‬ ‫تغییرات‬
‫انرژی‬ ‫انتقال‬ ‫ی‬ ‫رابطه‬ ‫آوردن‬ ‫بدست‬
‫کنترل‬ ‫حجم‬ ‫عنوان‬ ‫به‬ ‫آن‬ ‫اطراف‬ ‫سیال‬ ‫و‬ ‫روتور‬ ‫گرفتن‬ ‫نظر‬ ‫در‬ ‫و‬ ‫نیوتن‬ ‫دوم‬ ‫قانون‬ ‫اعمال‬
‫ورودی‬:‫با‬ ‫سیال‬‫و‬‫در‬
‫خروجی‬:‫با‬ ‫سیال‬‫و‬‫در‬
‫پایا‬ ‫جریان‬ ‫فرض‬ ‫با‬:
‫پس‬:
‫بنابراین‬:
𝑉𝑡1𝑚1𝑟1
𝑉𝑡2𝑟2 𝑚2
𝑇 = 𝑚(𝑟1. 𝑉𝑡1 − 𝑟2. 𝑉𝑡2
𝑊 = 𝑇. 𝜔 = 𝑚(𝑟1. 𝑉𝑡1. 𝜔 − 𝑟2. 𝑉𝑡2. 𝜔
𝑢 = 𝑟𝜔
𝑊 = 𝑚(𝑢1. 𝑉𝑡1 − 𝑢2. 𝑉𝑡2
‫توربوماشین‬ ‫هد‬
• H 1 1 2 2t tuV u VW
H
mg g

 
&
&
𝐻 =
𝑊
𝑚𝑔
=
𝑢1 𝑉𝑡1 − 𝑢2 𝑉𝑡2
𝑔
‫واقعی‬ ‫و‬ ‫آل‬ ‫ایده‬ ‫های‬ ‫توربوماشین‬ ‫تفاوت‬
‫آل‬ ‫ایده‬
‫واقعی‬
‫سیال‬ ‫هد‬ ‫توربین‬>‫روتور‬ ‫هد‬
‫سیال‬ ‫هد‬ ‫کمپرسور‬<‫روتور‬ ‫هد‬
‫سیستم‬ ‫توسط‬ ‫شده‬ ‫انجام‬ ‫کار‬ ‫قرارداد‬+‫سیستم‬ ‫روی‬ ‫شده‬ ‫انجام‬ ‫کار‬–
‫پس‬:‫کمپرسور‬ ‫هد‬-‫پمپ‬ ‫هد‬-‫توربین‬ ‫هد‬+
𝑉𝑡‫سیال‬ = 𝑉𝑡‫روتور‬
𝑉𝑡‫سیال‬ ≠ 𝑉𝑡‫روتور‬
‫روتور‬ ‫و‬ ‫سیال‬ ‫بین‬ ‫انرژی‬ ‫انتقال‬
‫سیال‬ ‫نسبی‬ ‫سرعت‬2 2 2
2 2 2 2 2
2 2 2
1 1 1 1 1
1
( )
2
1
( )
2
r
t r
t r
V V u
u V V u V
uV V u V
 
  
  
𝑉𝑟 = 𝑉 − 𝑢2 2 2 2 2 2
1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )
2 2 2
r rV V u u V V
H
g g g
  
  
𝑢1 𝑉𝑡1 =
𝑉1
2
+ 𝑢1
2
− 𝑉𝑟1
2
2
𝑢2 𝑉𝑡2 =
𝑉2
2 + 𝑢2
2 − 𝑉𝑟2
2
2
𝐻 =
𝑉1
2 − 𝑉2
2
2𝑔
+
𝑢1
2 − 𝑢2
2
2𝑔
+
𝑉𝑟1
2 − 𝑉𝑟2
2
2𝑔
DYNAMIC HEAD
‫سیال‬ ‫جنبشی‬ ‫انرژی‬ ‫تغییرات‬
2 2
1 2
2 2
1 2
2 2
1 2
( ) ( )
2
( ) ( )
2
( ) ( )
2
r r
V V
g
u u
g
V V
g



𝑉1
2
− 𝑉2
2
2𝑔
STATIC HEAD
‫سیال‬ ‫نسبی‬ ‫سرعت‬ ‫تغییرات‬ ‫اثر‬ ‫بر‬ ‫سیال‬ ‫جنبشی‬ ‫انرژی‬ ‫تغییرات‬
‫است‬ ‫روتور‬ ‫سر‬ ‫دو‬ ‫در‬ ‫فشار‬ ‫تغییرات‬ ‫ایجاد‬ ‫آن‬ ‫ی‬ ‫نتیجه‬
𝑉𝑟1
2
− 𝑉𝑟2
2
2𝑔
CENTRIFUGAL ENERGY
‫انرژی‬ ‫تغییرات‬‫بر‬ ‫سیال‬‫شعاع‬ ‫تغییرات‬ ‫و‬ ‫چرخش‬ ‫اثر‬
𝑢1
2
− 𝑢2
2
2𝑔
1
2
( 𝑢2
2
− 𝑢1
2
=
𝑝1
𝑝2
𝜐. 𝑑𝑝
IMPULSE
DEGREE OF REACTION
‫پذیر‬ ‫تراکم‬ ‫سیال‬ ‫در‬ ‫آنتالپی‬ ‫تغییر‬=‫استاتیکی‬ ‫فشار‬ ‫تغییر‬ ‫اثر‬ ‫بر‬ ‫انرژی‬ ‫انتقال‬
𝑅 =
𝑢1
2 − 𝑢2
2 + 𝑉𝑟2
2 − 𝑉𝑟1
2 2 𝑔
𝐻
EFFICIENCY OF TURBINE
Overal efficiency
(‫سیال‬ ‫ی‬ ‫استفاده‬ ‫قابل‬ ‫هیدرودینامیکی‬ ‫انرژی‬(/)‫انرژی‬‫سیال‬ ‫سوی‬ ‫از‬ ‫توربین‬ ‫محور‬ ‫مکانیکی‬= )
Adiabatic or hydraulic efficiiency
(‫سیال‬ ‫ی‬ ‫استفاده‬ ‫قابل‬ ‫هیدرودینامیکی‬ ‫انرژی‬(/)‫انرژی‬‫روتور‬ ‫به‬ ‫شده‬ ‫داده‬ ‫مکانیکی‬)=
Mechanical efficiency
)‫انرژی‬‫روتور‬ ‫به‬ ‫شده‬ ‫داده‬ ‫مکانیکی‬(/)‫سیال‬ ‫سوی‬ ‫از‬ ‫توربین‬ ‫محور‬ ‫مکانیکی‬ ‫انرژی‬= )
𝜂 𝑜 𝑡
t
t
t
o
m
h




𝜂ℎ 𝑡
𝜂 𝑚 𝑡
=
𝜂 𝑜 𝑡
𝜂ℎ 𝑡
EFFICIENCY OF COMPESSOR
Overal efficiency
=(‫توربوماشین‬ ‫در‬ ‫سیال‬ ‫مفید‬ ‫هیدرودینامیکی‬ ‫انرژی‬ ‫توربوماشین(/)افزایش‬ ‫محور‬ ‫به‬ ‫شده‬ ‫داده‬ ‫مکانیکی‬ ‫)انرژی‬
Adiabatic or hydraulic efficiiency
=(‫توربوماشین‬ ‫در‬ ‫سیال‬ ‫مفید‬ ‫هیدرودینامیکی‬ ‫انرژی‬ ‫(/)افزایش‬ ‫مکانیکی‬ ‫انرژی‬‫توربوماشین‬ ‫روتور‬ )
Mechanical efficiency
=(‫توربوماشین‬ ‫روتور‬ ‫مکانیکی‬ ‫توربوماشین(/)انرژی‬ ‫محور‬ ‫به‬ ‫شده‬ ‫داده‬ ‫مکانیکی‬ ‫)انرژی‬
c
c
c
o
m
h




𝜂 𝑚 𝑐
=
𝜂 𝑜 𝑐
𝜂ℎ 𝑐
𝜂 𝑜 𝑐
𝜂ℎ 𝑐
ON-DESIGN
(PARAMETRIC CYCLE ANALYSIS)
• Total or stagnation temprature
• Static or thermodynamic temperature
• Flow velocity
• First law of thermodynamic
• Mach number
𝑇𝑡
𝑇
𝑣
𝑇𝑡 = 𝑇 +
𝑣2
2𝑔 𝑐 𝑐 𝑝
𝑀 =
𝑣
𝑎
=
𝑣
𝛾𝑔 𝑐 𝑅𝑇
𝑇𝑡 = 𝑇(1 +
𝛾 − 1
2
. 𝑀2 𝑝𝑡
𝑝
=
𝑇𝑡
𝑇
𝛾−1
𝛾
𝑝𝑡 = 𝑝 1 +
𝛾 − 1
2
. 𝑀2
𝛾
𝛾−1
TOTAL
PRESSURE AND TEMPRETURE RATIO
diffuser (d) compressor (c) burner (b) turbine (t)
Nozzle (n) fan (f) free stream (r)
= ( total pressure leaving a / total pressure entring a )
= ( total temperature leaving a / total temperature entring a )
𝜋 𝑎
𝜏 𝑎
𝜏 𝑟 =
𝑇𝑡0
𝑇0
= 1 +
𝛾 − 1
2
. 𝑀2
𝜋 𝑟 =
𝑝𝑡0
𝑝0
= 1 +
𝛾 − 1
2
. 𝑀2
𝛾
𝛾−1
𝑇𝑡0 = 𝑇0. 𝜏 𝑟𝑝𝑡0 = 𝑝0. 𝜋 𝑟
𝜏 𝜆 =
ℎ 𝑡 𝑏𝑢𝑟𝑛𝑒𝑟
ℎ 𝑜
=
𝑐 𝑝 𝑇𝑡 𝑏𝑢𝑟𝑛𝑒𝑟
𝑐 𝑝 𝑇0
STEPS OF ENGINE PARAMETRIC
CYCLE ANALYSIS
DESIGN INPUT
• 1. flight conditions
• 2. design limits
• 3. component performance
• 4. design choise
𝑝0, 𝑇0, 𝑀0, 𝑐 𝑝, 𝜋 𝑟, 𝜏 𝑟
𝑐 𝑝. 𝑇𝑡 𝑏𝑢𝑟𝑛𝑒𝑟
𝜋 𝑑, 𝜋 𝑛, 𝜋 𝑏, 𝑒𝑡𝑐.
𝜋 𝑐, 𝜋 𝑓, 𝑒𝑡𝑐.
RELATIONS FOR ALL T AND P
STEP 1
• 1. equation for thrust
𝐹 =
1
𝑔 𝑐
𝑚9. 𝑣𝑒 − 𝑚0. 𝑣0 + 𝐴9 𝑝9 − 𝑝0
→
𝐹
𝑚0
=
𝑎0
𝑔 𝑐
𝑚9
𝑚0
𝑣9
𝑎0
− 𝑀0 +
𝐴9 𝑝9
𝑚0
1 −
𝑝0
𝑝9
STEP 2
• 2. velocity ratio(s) in terms of mach numbers , temperatures and …
𝑣9
𝑎0
2
=
𝑎9
2
𝑀9
2
𝑎0
2
=
𝛾9 𝑅9 𝑔 𝑐 𝑇9
𝛾0 𝑅0 𝑔 𝑐 𝑇0
. 𝑀9
2
STEP 3
• 3. find the exit mach number
Then
Where
r d c b t AB n      
𝑀9
𝑝𝑡9 = 𝑝9 1 +
𝛾 − 1
2
. 𝑀9
2
𝛾
𝛾−1
𝑀9
2 =
2
𝛾 − 1
𝑝𝑡9
𝑝9
𝛾−1
𝛾
− 1
𝑝𝑡9
𝑝9
=
𝑝0
𝑝9
𝑝𝑡0
𝑝0
𝑝𝑡2
𝑝𝑡0
𝑝𝑡3
𝑝𝑡2
𝑝𝑡4
𝑝𝑡3
𝑝𝑡5
𝑝𝑡4
𝑝𝑡7
𝑝𝑡5
𝑝𝑡9
𝑝𝑡7
=
𝑝0
𝑝9
𝜋 𝑟 𝜋 𝑑 𝜋 𝑐 𝜋 𝑏 𝜋 𝑡 𝜋 𝐴𝐵 𝜋 𝑛
STEP 4
• 4. find the temperature ratio
Where
𝑇9 𝑇0
𝑇9
𝑇0
=
𝑇𝑡9 𝑇0
𝑇𝑡9 𝑇9
=
𝑇𝑡9 𝑇0
𝑝𝑡9 𝑝9
𝛾−1
𝛾
𝑇𝑡9
𝑇0
=
𝑇𝑡0
𝑇0
𝑇𝑡2
𝑇𝑡0
𝑇𝑡3
𝑇𝑡2
𝑇𝑡4
𝑇𝑡3
𝑇𝑡5
𝑇𝑡4
𝑇𝑡7
𝑇𝑡5
𝑇𝑡9
𝑇𝑡7
= 𝜏 𝑟 𝜏 𝑑 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡 𝜏 𝐴𝐵 𝜏 𝑛
STEP 5
• 5. apply the 1st law of thermodynamics to the burner and find an expression for the
fuel/air ratio
0 3 0 4p t f PR p tm c T m h m c T & & &
𝑚0 𝑐 𝑝 𝑇𝑡3 + 𝑚 𝑓ℎ 𝑃𝑅 = 𝑚0 𝑐 𝑝 𝑇𝑡4
STEP 6,7
• 6. when applicable, find an expression for the total temperature ratio across the
turbine by relating the turbine power output to the compressor, fan, and/or
propeller power requirements. This allows us to find in terms of other variables.
• 7. evaluate the specific thrust using the above results
t
𝜏 𝑡
𝜏 𝑡
STEP 8,9
• 8. evaluate the thrust specific fuel consumption , using the results for specific
thrust and fuel/air ratio
• 9. develop expressions for the thermal and propulsive efficiencies
1
1
d n
d n
 
 
 
 
𝑠
𝑠 =
𝑓
𝐹 𝑚0
ASSUMPTIONS
OF IDEAL CYCLE ANALYSIS
• 1.the working fluid is air and acts as a perfect gas
• 2.isentropic ( reversible and adiabatic ) processes
𝜏 𝑑 = 𝜏 𝑛 = 1 𝜋 𝑑 = 𝜋 𝑛 = 1
𝜏 𝑐 = 𝜋 𝑐
𝛾−1
𝛾 𝜏 𝑡 = 𝜋 𝑡
𝛾−1
𝛾
ASSUMPTIONS
OF IDEAL CYCLE ANALYSIS
• 3.the exhaust nozzle expand the gas to the ambient pressure
• 4.constant pressure combustion
; ;
𝑝 𝑒 = 𝑝0
𝜋 𝑏 = 1
𝑚 𝑓 <<< 𝑚 𝑎𝑖𝑟
𝑚 𝑓
𝑚 𝑐
<< 1 𝑚 𝑐 + 𝑚 𝑓 ≅ 𝑚 𝑐
ANALYZING AN IDEAL TURBOJET
IDEAL CYCLE
IDEAL
TURBOJET CYCLE ANALYSIS
Assumptions
𝜂 𝑡ℎ = 1 −
𝑇0
𝑇𝑡3
= 1 −
1
𝜏 𝑟 𝜏 𝑐
t cw w& &
𝑤𝑡 = 𝑤𝑐 𝑇𝑡4 > 𝑇𝑡3 𝑝𝑡4 > 𝑝𝑡3
STEP 1
F
𝐹
𝑚0
=
1
𝑔 𝑐
(𝑣9 − 𝑣0 =
𝑎0
𝑔 𝑐
(
𝑣9
𝑎0
− 𝛭0
STEP 2
v , a
𝑣9
𝑎0
2
=
𝑎9
2
𝑀9
2
𝑎0
2 =
𝛾9 𝑅9 𝑔 𝑐 𝑇9 𝑀9
2
𝛾0 𝑅0 𝑔 𝑐 𝑇0
=
𝑇9
𝑇0
𝑀2
STEP 3
Total exit pressure
;
However thus
So and so
𝑝𝑡9 = 𝑝9 1 −
𝛾 − 1
2
. 𝑀9
2
𝛾
𝛾−1
𝑃𝑡9 = 𝑃0
𝑝𝑡0
𝑝0
𝑝𝑡2
𝑝𝑡1
𝑝𝑡3
𝑝𝑡2
𝑝𝑡4
𝑝𝑡3
𝑝𝑡5
𝑝𝑡4
𝑝𝑡9
𝑝𝑡5
0 r d c b t np      
= 𝑝0 𝜋 𝑟 𝜋 𝑑 𝜋 𝑐 𝜋 𝑏 𝜋 𝑡 𝜋 𝑛
𝜋 𝑑 = 𝜋 𝑏 = 𝜋 𝑛 = 1 𝑝𝑡9 = 𝑝0 𝜋 𝑟 𝜋 𝑐 𝜋 𝑡
𝑀9
2
=
2
𝛾 − 1
[
𝑝𝑡9
𝑝9
𝛾−1
𝛾
− 1 𝑀9
2
=
2
𝛾 − 1
(𝜏 𝑟 𝜏 𝑐 𝜏 𝑡 − 1
STEP 4
Total exit temperature
Then
Thus
𝛵𝑡9 = 𝑇0
𝑇𝑡0
𝑇0
𝑇𝑡2
𝑇𝑡0
𝑇𝑡3
𝑇𝑡1
𝑇𝑡4
𝑇𝑡2
𝑇𝑡5
𝑇𝑡3
𝑇𝑡9
𝑇𝑡5
= 𝑇0 𝜏0 𝜏 𝑟 𝜏 𝑑 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡 𝜏 𝑛 = 𝑇0 𝜏 𝑟 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡
𝑇9
𝑇0
= 𝜏 𝑏
𝑇9
𝑇0
=
𝑇𝑡9
𝑇0
𝑇𝑡9
𝑇9
=
𝜏 𝑟 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡
𝑝𝑡9
𝑝9
𝛾−1
𝛾
=
𝜏 𝑟 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡
− 𝜋 𝑟 𝜋 𝑐 𝜋 𝑡
𝛾−1
𝛾
=
𝜏 𝑟 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡
𝜏 𝑟 𝜏 𝑐 𝜏 𝑡
STEP 5
Steady flow energy equation
𝑚0ℎ 𝑡3 + 𝑚 𝑓ℎ 𝑃𝑅 = 𝑚0 + 𝑚 𝑓 ℎ 𝑡4
𝑓 =
𝑚 𝑓
𝑚0
=
𝑐 𝑝 𝑇0
ℎ 𝑃𝑅
𝜏 𝜆 − 𝜏 𝑟 𝜏 𝑐
𝑓 =
𝑚 𝑓
𝑚0
=
𝑐 𝑝 𝑇0
ℎ 𝑃𝑅
𝑇𝑡4
𝑇0
−
𝑇𝑡3
𝑇0
STEP 6
The power output of the turbine
The power required to drive the compressor
0 4 1p t
T
m c T
 
  
 
& 𝑤𝑡 = 𝑚0 + 𝑚 𝑓 ℎ 𝑡4 − ℎ 𝑡5 = 𝑚0 𝑐 𝑝 ℎ 𝑡4 − ℎ 𝑡5
= 𝑚0 𝑐 𝑝 𝑇𝑡4 1 −
𝑇𝑡5
𝑇𝑡4
= 𝑚0 𝑐 𝑝 𝑇𝑡4 1 − 𝜏 𝑡
𝑤𝑐 = 𝑚0 ℎ 𝑡3 − ℎ 𝑡2 = 𝑚0 𝑐 𝑝 𝑇𝑡3 − 𝑇𝑡2 = 𝑚0 𝑐 𝑝 𝑇𝑡2
𝑇𝑡3
𝑇𝑡2
− 1
= 𝑚0 𝑐 𝑝 𝑇𝑡2 𝜏 𝑐 − 1
STEP 6
Since for the ideal turbojet, then
or
thus
c tw w& &
𝑤𝑐 = 𝑤𝑡 𝑚0 𝑐 𝑝 𝑇𝑡2 𝜏 𝑐 − 1 = 𝑚0 𝑐 𝑝 𝑇𝑡4 1 − 𝜏 𝑡
𝜏 𝑡 = 1 −
𝑇𝑡2
𝑇𝑡4
𝜏 𝑐 − 1
𝜏 𝑡 = 1 −
𝜏 𝑟
𝜏 𝜆
𝜏 𝑐 − 1
STEP 7
Specific thrust
But
thus
   
2
29 9
9
0 0
2
1
1
r c t
r c
v T
M
a T

  
  
 
   
 
𝑣9
𝑎0
2
=
𝑇9
𝑇0
𝑀9
2
=
2
𝛾 − 1
𝜏 𝜆
𝜏 𝑟 𝜏 𝑐
𝜏 𝑟 𝜏 𝑐 𝜏 𝑡 − 1
𝐹
𝑚0
=
𝑎0
𝑔 𝑐
[
2
𝛾 − 1
𝜏 𝜆
𝜏 𝑟 𝜏 𝑐
𝜏 𝑟 𝜏 𝑐 𝜏 𝑡 − 1 − 𝑀0
𝐹
𝑚0
=
𝑎0
𝑔 𝑐
(
𝑣9
𝑎0
− 𝑀0
STEP 8
Specific thrust fuel consumption
So
𝑠 =
𝑓
𝐹 𝑚0
pc
s 
𝑠 =
𝑐 𝑝 𝑇0 𝑔 𝑐 𝜏 𝜆 − 𝜏 𝑟 𝜏 𝑐
𝑎0ℎ 𝑃𝑅
2
𝛾 − 1
𝜏 𝜆
𝜏 𝑟 𝜏 𝑐
𝜏 𝑟 𝜏 𝑐 𝜏 𝑡 − 1 − 𝑀0
STEP 9
Efficiencies
Thermal efficiency
Propulsive efficiency
Overal efficiency
.o th p  
𝜂 𝑡ℎ = 1 −
1
𝜏 𝑟 𝜏 𝑐
𝜂 𝑝 =
2𝑀0
𝑣9 𝑎0 + 𝑀0
𝜂 𝑜 = 𝜂 𝑡ℎ. 𝜂 𝑝
REFERENCES
1. Elements of gas turbine propulsion
REFERENCES
2. Gas turbine handbook
REFERENCES
3. Gas turbine theory
REFERENCES
4. Turbomachines
project 2
project 2

Mais conteúdo relacionado

Mais procurados

MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copyMET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
Ibrahim AboKhalil
 
analysis of compressor
analysis of compressoranalysis of compressor
analysis of compressor
sanishvj
 
gas reheat and intercooling
gas reheat and intercoolinggas reheat and intercooling
gas reheat and intercooling
Cik Minn
 
Internal combustion engine (ja304) chapter 4
Internal combustion engine (ja304) chapter 4Internal combustion engine (ja304) chapter 4
Internal combustion engine (ja304) chapter 4
mechanical86
 
Thermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power PlantThermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power Plant
Muhammad Surahman
 
Compressor design
Compressor designCompressor design
Compressor design
gauree313
 
Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressor
VJTI Production
 

Mais procurados (19)

MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copyMET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
MET 401 Chapter 6 -_gas_turbine_power_plant_brayton_cycle_-_copy
 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cycles
 
Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...
Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...
Use of Hydrogen in Fiat Lancia Petrol engine, Combustion Process and Determin...
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
 
Turbojet Design Project
Turbojet Design ProjectTurbojet Design Project
Turbojet Design Project
 
Design of transonic axial compressor
Design of transonic axial compressorDesign of transonic axial compressor
Design of transonic axial compressor
 
Turbo Machines Lab manual
Turbo Machines Lab manualTurbo Machines Lab manual
Turbo Machines Lab manual
 
analysis of compressor
analysis of compressoranalysis of compressor
analysis of compressor
 
Gas turbine power plant
Gas turbine power plantGas turbine power plant
Gas turbine power plant
 
gas reheat and intercooling
gas reheat and intercoolinggas reheat and intercooling
gas reheat and intercooling
 
Recapitulation of carnot,otto and diesel cycle, dual cycle,comparison of ott...
Recapitulation of  carnot,otto and diesel cycle, dual cycle,comparison of ott...Recapitulation of  carnot,otto and diesel cycle, dual cycle,comparison of ott...
Recapitulation of carnot,otto and diesel cycle, dual cycle,comparison of ott...
 
Internal combustion engine (ja304) chapter 4
Internal combustion engine (ja304) chapter 4Internal combustion engine (ja304) chapter 4
Internal combustion engine (ja304) chapter 4
 
Fundamentals of Centrifugal Compressor - Head (revised)
Fundamentals of Centrifugal Compressor - Head (revised)Fundamentals of Centrifugal Compressor - Head (revised)
Fundamentals of Centrifugal Compressor - Head (revised)
 
Rnakine reheat regen
Rnakine reheat regenRnakine reheat regen
Rnakine reheat regen
 
Thermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power PlantThermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power Plant
 
Compressor design
Compressor designCompressor design
Compressor design
 
Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressor
 
Actual cycles of IC engines
Actual cycles of IC enginesActual cycles of IC engines
Actual cycles of IC engines
 
Eg 261 - carnot and jet engines
Eg 261 - carnot and jet enginesEg 261 - carnot and jet engines
Eg 261 - carnot and jet engines
 

Semelhante a project 2

fanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdffanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdf
BlentBulut5
 
thermal project 1
thermal project 1thermal project 1
thermal project 1
James Li
 

Semelhante a project 2 (20)

Steam Turbine Performance in TPS
Steam Turbine Performance in TPSSteam Turbine Performance in TPS
Steam Turbine Performance in TPS
 
Turbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.pptTurbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.ppt
 
UNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdfUNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdf
 
OPTIMIZATION OF AN ORGANIC RANKINE CYCLE IN ENERGY RECOVERY FROM EXHAUST GASE...
OPTIMIZATION OF AN ORGANIC RANKINE CYCLE IN ENERGY RECOVERY FROM EXHAUST GASE...OPTIMIZATION OF AN ORGANIC RANKINE CYCLE IN ENERGY RECOVERY FROM EXHAUST GASE...
OPTIMIZATION OF AN ORGANIC RANKINE CYCLE IN ENERGY RECOVERY FROM EXHAUST GASE...
 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
 
fanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdffanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdf
 
FAN MODULE.pdf
FAN MODULE.pdfFAN MODULE.pdf
FAN MODULE.pdf
 
Internship Report
Internship ReportInternship Report
Internship Report
 
Propulsion
PropulsionPropulsion
Propulsion
 
Applications of thermodynamics
Applications of thermodynamicsApplications of thermodynamics
Applications of thermodynamics
 
Ec ii
Ec iiEc ii
Ec ii
 
Micro turbine ppt
Micro turbine pptMicro turbine ppt
Micro turbine ppt
 
Summer Internship at Cranfield University-Report
Summer Internship at Cranfield University-ReportSummer Internship at Cranfield University-Report
Summer Internship at Cranfield University-Report
 
gas turbine cycles.pptx .
gas turbine cycles.pptx                    .gas turbine cycles.pptx                    .
gas turbine cycles.pptx .
 
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power CyclesAPPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
 
Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (Fina...
Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (Fina...Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (Fina...
Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (Fina...
 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plants
 
Energy Coservation In Gas turbine
Energy Coservation In Gas turbineEnergy Coservation In Gas turbine
Energy Coservation In Gas turbine
 
thermal project 1
thermal project 1thermal project 1
thermal project 1
 
Maquinas y equipos termicos
Maquinas y equipos termicos Maquinas y equipos termicos
Maquinas y equipos termicos
 

project 2

  • 2. A BRIEF SEMINAR PRESENTATION ABOUT TURBOMACHINES • 2nd project for thermodynomics • Presented by Shahin Tavakoli and Hasan Parvin
  • 3. OVERLOOK • Introduction – categorization – classiffication • Types of turbomachines and the components • Systems using in turbomachines • Off-design (power transfer equation) • On-design (ideal turbomachine analysis)
  • 5. ‫توربوماشین‬ • ‫انتقال‬ ‫عامل‬ ‫و‬ ‫میکنند‬ ‫دریافت‬ ‫انرژی‬ ‫سیال‬ ‫از‬ ‫یا‬ ‫میدهند‬ ‫انرژی‬ ‫سیال‬ ‫به‬ ‫خود‬ ‫محور‬ ‫دوران‬ ‫با‬ ‫که‬ ‫ماشینهایی‬ ‫تمامی‬ ‫است‬ ‫ماشین‬ ‫محور‬ ‫دوران‬ ‫قدرت‬.
  • 6. ‫توربوماشینها‬ ‫تقسیمبندی‬ ‫توربوماشینها‬ ‫پذیر‬ ‫تراکم‬ ‫سیال‬ ‫ماشین‬ ‫به‬ ‫سیال‬ ‫از‬ ‫انرژی‬ ‫انتقال‬ (‫گازی‬ ‫های‬ ‫توربین‬) ‫سیال‬ ‫به‬ ‫ماشین‬ ‫از‬ ‫انرژی‬ ‫انتقال‬ (‫ها‬ ‫کمپرسور‬) ‫ناپذیر‬ ‫تراکم‬ ‫سیال‬ ‫ماشین‬ ‫به‬ ‫سیال‬ ‫از‬ ‫انرژی‬ ‫انتقال‬ (‫هیدرولیکی‬ ‫های‬ ‫توربین‬) ‫سیال‬ ‫به‬ ‫ماشین‬ ‫از‬ ‫انرژی‬ ‫انتقال‬ (‫ها‬ ‫فن‬ ‫و‬ ‫ها‬ ‫پمپ‬)
  • 7. PUT TURBOMACHINES TOGETHER TO CREAT “THRUST” Propulsive turbomachines Air breathing Turbine powered Ram powered Non-continuous combustion Non-air breathing rocket hybrid waterjet
  • 8. TURBINE POWERED AIR BREATHING TURBOMACHINES turbojet turboprop turbofan
  • 12. FOR EXAMPLE differences between an aero-drivative and a heavy industrial turbomachine
  • 13. TURBOSHAFT TO TURBOFAN • Weight heavier • Shaft speed slower • Air flow higher • Maintenance time longer • Maintenance lay-down space longer
  • 15. COMPRESSORS • Pressure ratio 5-1 world war 2 12-1 newer 30-1 recently Better pressure ratio better thermal efficiiency The best thermal efficiency is about 35 % To achieve this thermal efficiency we should use some forms of “waste heat recovery” Special material (Al , Fe and their alloys)
  • 16. TURBINES Turbofan high aspect ratio (long , thin blades) with tip shrouds 1.to dampen vibration 2.improve blade tip sealing characteristics Turboshaft low aspect ratio (short , thick blades) with no tip shrouds Long thin airfoils need 1.lacing wire to dampen vibration 2.tip shrouds or mid-spam shrouds
  • 18. BEARING DESIGN AND LUBRICATION Turbofans anti friction roller anb ball bearings 25 – 400 gallons of oil Turboshafts hydrodynamic bearings 1500 – 2500 gallons of oil
  • 23. GAS TURBINE INLET TREATMENT • Air inlet cooling
  • 24. GAS TURBINE EXHAUST TREATMENT • 1.pollution • 2.power augmentation
  • 25. POLLUTION *carbon mono-oxide(co) 1.function of combustion design 2.can be treated with a catalytic converter *oxides of nitrogen(NOx) 1. (organic NO) 2.produced in hot regions (thermal NO) ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛. 𝑓𝑢𝑒𝑙 + 𝑎𝑖𝑟 →. . . . . . . +𝑁𝑂𝑥
  • 28. THRUST (POWER) AUGMENTATION • First way : cooling air entering combustor a) Increasing air density b) Increasing mass flow c) More air and more cooled air to the combustor permits more fuel to be burned before reaching the turbine inlet temperaturre limit To cooling the air enterring combustor, water or steam injection is ok
  • 29. WATER INJECTION into diffuser, compressor or combustor reducing combustion and turbine temperature reducing oxides of nitrogen up to 80 % Example in a heavy industrial gas turbine with 80 MW power output ratio of water to fuel is 0.6 water is 1.15 % of total air intaking
  • 31. STEAM INJECTION energy to vaporizing the water is conserved reducing combustion and turbine temperature steam is hot so it’s quenching capabilities are reduced so more steam than the water is required to accomplish the same amounts of nitrogen oxides Example in an airo-drivative gas turbine with 25 MW power outpuut ratio of steam to fuel is up to 2.4 steam is 3.3 % of total air
  • 34. AFTER BURNING OR REHEATING Effect of after burner raising the exhaust temperature raising the velocity of exhaust gases Example with afterburner thrust = 17,900 lbf TSFC = 1.956 ((lbm/hr)/lbf)/hr without afterburner thrust = 11,870 lbf TSFC = 0.86((lbm/hr)/lbf)/hr
  • 35. OFF-DESIGN (ENGINE PERFORMANCE ANALYSIS) ‫اویلر‬ ‫ی‬ ‫معادله‬(‫نیوتن‬ ‫دوم‬ ‫قانون‬ ‫از‬ ‫استفاده‬ ‫با‬) ‫محوری‬ ‫سرعت‬–Va‫محور‬ ‫با‬ ‫موازی‬o-o ‫شعاعی‬ ‫سرعت‬–Vm‫با‬ ‫موازی‬r ‫مماسی‬ ‫سرعت‬–Vt‫روتور‬ ‫گردش‬ ‫جهت‬ ‫با‬ ‫موازی‬
  • 36. ‫سرعت‬ ‫های‬ ‫مولفه‬ ‫تغییرات‬ ‫کفگرد‬ ‫های‬ ‫یاتاقان‬ ‫با‬ ‫شدن‬ ‫خنثی‬ ‫محوری‬ ‫نیروی‬ ‫ایجاد‬ ‫محوری‬ ‫سرعت‬ ‫تغییرات‬ ‫شعاعی‬ ‫نیروی‬ ‫ایجاد‬ ‫روتور‬ ‫طول‬ ‫در‬ ‫مومنتوم‬ ‫تغییرات‬ ‫شعاعی‬ ‫سرعت‬ ‫تغییرات‬ ‫روتور‬ ‫محور‬ ‫حول‬ ‫کوپل‬ ‫ایجاد‬ ‫گردشی‬ ‫ممان‬ ‫تغییر‬ ‫مماسی‬ ‫سرعت‬ ‫تغییرات‬
  • 37. ‫انرژی‬ ‫انتقال‬ ‫ی‬ ‫رابطه‬ ‫آوردن‬ ‫بدست‬ ‫کنترل‬ ‫حجم‬ ‫عنوان‬ ‫به‬ ‫آن‬ ‫اطراف‬ ‫سیال‬ ‫و‬ ‫روتور‬ ‫گرفتن‬ ‫نظر‬ ‫در‬ ‫و‬ ‫نیوتن‬ ‫دوم‬ ‫قانون‬ ‫اعمال‬ ‫ورودی‬:‫با‬ ‫سیال‬‫و‬‫در‬ ‫خروجی‬:‫با‬ ‫سیال‬‫و‬‫در‬ ‫پایا‬ ‫جریان‬ ‫فرض‬ ‫با‬: ‫پس‬: ‫بنابراین‬: 𝑉𝑡1𝑚1𝑟1 𝑉𝑡2𝑟2 𝑚2 𝑇 = 𝑚(𝑟1. 𝑉𝑡1 − 𝑟2. 𝑉𝑡2 𝑊 = 𝑇. 𝜔 = 𝑚(𝑟1. 𝑉𝑡1. 𝜔 − 𝑟2. 𝑉𝑡2. 𝜔 𝑢 = 𝑟𝜔 𝑊 = 𝑚(𝑢1. 𝑉𝑡1 − 𝑢2. 𝑉𝑡2
  • 38. ‫توربوماشین‬ ‫هد‬ • H 1 1 2 2t tuV u VW H mg g    & & 𝐻 = 𝑊 𝑚𝑔 = 𝑢1 𝑉𝑡1 − 𝑢2 𝑉𝑡2 𝑔
  • 39. ‫واقعی‬ ‫و‬ ‫آل‬ ‫ایده‬ ‫های‬ ‫توربوماشین‬ ‫تفاوت‬ ‫آل‬ ‫ایده‬ ‫واقعی‬ ‫سیال‬ ‫هد‬ ‫توربین‬>‫روتور‬ ‫هد‬ ‫سیال‬ ‫هد‬ ‫کمپرسور‬<‫روتور‬ ‫هد‬ ‫سیستم‬ ‫توسط‬ ‫شده‬ ‫انجام‬ ‫کار‬ ‫قرارداد‬+‫سیستم‬ ‫روی‬ ‫شده‬ ‫انجام‬ ‫کار‬– ‫پس‬:‫کمپرسور‬ ‫هد‬-‫پمپ‬ ‫هد‬-‫توربین‬ ‫هد‬+ 𝑉𝑡‫سیال‬ = 𝑉𝑡‫روتور‬ 𝑉𝑡‫سیال‬ ≠ 𝑉𝑡‫روتور‬
  • 40. ‫روتور‬ ‫و‬ ‫سیال‬ ‫بین‬ ‫انرژی‬ ‫انتقال‬ ‫سیال‬ ‫نسبی‬ ‫سرعت‬2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 ( ) 2 1 ( ) 2 r t r t r V V u u V V u V uV V u V         𝑉𝑟 = 𝑉 − 𝑢2 2 2 2 2 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 r rV V u u V V H g g g       𝑢1 𝑉𝑡1 = 𝑉1 2 + 𝑢1 2 − 𝑉𝑟1 2 2 𝑢2 𝑉𝑡2 = 𝑉2 2 + 𝑢2 2 − 𝑉𝑟2 2 2 𝐻 = 𝑉1 2 − 𝑉2 2 2𝑔 + 𝑢1 2 − 𝑢2 2 2𝑔 + 𝑉𝑟1 2 − 𝑉𝑟2 2 2𝑔
  • 41. DYNAMIC HEAD ‫سیال‬ ‫جنبشی‬ ‫انرژی‬ ‫تغییرات‬ 2 2 1 2 2 2 1 2 2 2 1 2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 r r V V g u u g V V g    𝑉1 2 − 𝑉2 2 2𝑔
  • 42. STATIC HEAD ‫سیال‬ ‫نسبی‬ ‫سرعت‬ ‫تغییرات‬ ‫اثر‬ ‫بر‬ ‫سیال‬ ‫جنبشی‬ ‫انرژی‬ ‫تغییرات‬ ‫است‬ ‫روتور‬ ‫سر‬ ‫دو‬ ‫در‬ ‫فشار‬ ‫تغییرات‬ ‫ایجاد‬ ‫آن‬ ‫ی‬ ‫نتیجه‬ 𝑉𝑟1 2 − 𝑉𝑟2 2 2𝑔
  • 43. CENTRIFUGAL ENERGY ‫انرژی‬ ‫تغییرات‬‫بر‬ ‫سیال‬‫شعاع‬ ‫تغییرات‬ ‫و‬ ‫چرخش‬ ‫اثر‬ 𝑢1 2 − 𝑢2 2 2𝑔 1 2 ( 𝑢2 2 − 𝑢1 2 = 𝑝1 𝑝2 𝜐. 𝑑𝑝
  • 44. IMPULSE DEGREE OF REACTION ‫پذیر‬ ‫تراکم‬ ‫سیال‬ ‫در‬ ‫آنتالپی‬ ‫تغییر‬=‫استاتیکی‬ ‫فشار‬ ‫تغییر‬ ‫اثر‬ ‫بر‬ ‫انرژی‬ ‫انتقال‬ 𝑅 = 𝑢1 2 − 𝑢2 2 + 𝑉𝑟2 2 − 𝑉𝑟1 2 2 𝑔 𝐻
  • 45. EFFICIENCY OF TURBINE Overal efficiency (‫سیال‬ ‫ی‬ ‫استفاده‬ ‫قابل‬ ‫هیدرودینامیکی‬ ‫انرژی‬(/)‫انرژی‬‫سیال‬ ‫سوی‬ ‫از‬ ‫توربین‬ ‫محور‬ ‫مکانیکی‬= ) Adiabatic or hydraulic efficiiency (‫سیال‬ ‫ی‬ ‫استفاده‬ ‫قابل‬ ‫هیدرودینامیکی‬ ‫انرژی‬(/)‫انرژی‬‫روتور‬ ‫به‬ ‫شده‬ ‫داده‬ ‫مکانیکی‬)= Mechanical efficiency )‫انرژی‬‫روتور‬ ‫به‬ ‫شده‬ ‫داده‬ ‫مکانیکی‬(/)‫سیال‬ ‫سوی‬ ‫از‬ ‫توربین‬ ‫محور‬ ‫مکانیکی‬ ‫انرژی‬= ) 𝜂 𝑜 𝑡 t t t o m h     𝜂ℎ 𝑡 𝜂 𝑚 𝑡 = 𝜂 𝑜 𝑡 𝜂ℎ 𝑡
  • 46. EFFICIENCY OF COMPESSOR Overal efficiency =(‫توربوماشین‬ ‫در‬ ‫سیال‬ ‫مفید‬ ‫هیدرودینامیکی‬ ‫انرژی‬ ‫توربوماشین(/)افزایش‬ ‫محور‬ ‫به‬ ‫شده‬ ‫داده‬ ‫مکانیکی‬ ‫)انرژی‬ Adiabatic or hydraulic efficiiency =(‫توربوماشین‬ ‫در‬ ‫سیال‬ ‫مفید‬ ‫هیدرودینامیکی‬ ‫انرژی‬ ‫(/)افزایش‬ ‫مکانیکی‬ ‫انرژی‬‫توربوماشین‬ ‫روتور‬ ) Mechanical efficiency =(‫توربوماشین‬ ‫روتور‬ ‫مکانیکی‬ ‫توربوماشین(/)انرژی‬ ‫محور‬ ‫به‬ ‫شده‬ ‫داده‬ ‫مکانیکی‬ ‫)انرژی‬ c c c o m h     𝜂 𝑚 𝑐 = 𝜂 𝑜 𝑐 𝜂ℎ 𝑐 𝜂 𝑜 𝑐 𝜂ℎ 𝑐
  • 47. ON-DESIGN (PARAMETRIC CYCLE ANALYSIS) • Total or stagnation temprature • Static or thermodynamic temperature • Flow velocity • First law of thermodynamic • Mach number 𝑇𝑡 𝑇 𝑣 𝑇𝑡 = 𝑇 + 𝑣2 2𝑔 𝑐 𝑐 𝑝 𝑀 = 𝑣 𝑎 = 𝑣 𝛾𝑔 𝑐 𝑅𝑇 𝑇𝑡 = 𝑇(1 + 𝛾 − 1 2 . 𝑀2 𝑝𝑡 𝑝 = 𝑇𝑡 𝑇 𝛾−1 𝛾 𝑝𝑡 = 𝑝 1 + 𝛾 − 1 2 . 𝑀2 𝛾 𝛾−1
  • 48. TOTAL PRESSURE AND TEMPRETURE RATIO diffuser (d) compressor (c) burner (b) turbine (t) Nozzle (n) fan (f) free stream (r) = ( total pressure leaving a / total pressure entring a ) = ( total temperature leaving a / total temperature entring a ) 𝜋 𝑎 𝜏 𝑎 𝜏 𝑟 = 𝑇𝑡0 𝑇0 = 1 + 𝛾 − 1 2 . 𝑀2 𝜋 𝑟 = 𝑝𝑡0 𝑝0 = 1 + 𝛾 − 1 2 . 𝑀2 𝛾 𝛾−1 𝑇𝑡0 = 𝑇0. 𝜏 𝑟𝑝𝑡0 = 𝑝0. 𝜋 𝑟 𝜏 𝜆 = ℎ 𝑡 𝑏𝑢𝑟𝑛𝑒𝑟 ℎ 𝑜 = 𝑐 𝑝 𝑇𝑡 𝑏𝑢𝑟𝑛𝑒𝑟 𝑐 𝑝 𝑇0
  • 49. STEPS OF ENGINE PARAMETRIC CYCLE ANALYSIS
  • 50. DESIGN INPUT • 1. flight conditions • 2. design limits • 3. component performance • 4. design choise 𝑝0, 𝑇0, 𝑀0, 𝑐 𝑝, 𝜋 𝑟, 𝜏 𝑟 𝑐 𝑝. 𝑇𝑡 𝑏𝑢𝑟𝑛𝑒𝑟 𝜋 𝑑, 𝜋 𝑛, 𝜋 𝑏, 𝑒𝑡𝑐. 𝜋 𝑐, 𝜋 𝑓, 𝑒𝑡𝑐.
  • 51. RELATIONS FOR ALL T AND P
  • 52. STEP 1 • 1. equation for thrust 𝐹 = 1 𝑔 𝑐 𝑚9. 𝑣𝑒 − 𝑚0. 𝑣0 + 𝐴9 𝑝9 − 𝑝0 → 𝐹 𝑚0 = 𝑎0 𝑔 𝑐 𝑚9 𝑚0 𝑣9 𝑎0 − 𝑀0 + 𝐴9 𝑝9 𝑚0 1 − 𝑝0 𝑝9
  • 53. STEP 2 • 2. velocity ratio(s) in terms of mach numbers , temperatures and … 𝑣9 𝑎0 2 = 𝑎9 2 𝑀9 2 𝑎0 2 = 𝛾9 𝑅9 𝑔 𝑐 𝑇9 𝛾0 𝑅0 𝑔 𝑐 𝑇0 . 𝑀9 2
  • 54. STEP 3 • 3. find the exit mach number Then Where r d c b t AB n       𝑀9 𝑝𝑡9 = 𝑝9 1 + 𝛾 − 1 2 . 𝑀9 2 𝛾 𝛾−1 𝑀9 2 = 2 𝛾 − 1 𝑝𝑡9 𝑝9 𝛾−1 𝛾 − 1 𝑝𝑡9 𝑝9 = 𝑝0 𝑝9 𝑝𝑡0 𝑝0 𝑝𝑡2 𝑝𝑡0 𝑝𝑡3 𝑝𝑡2 𝑝𝑡4 𝑝𝑡3 𝑝𝑡5 𝑝𝑡4 𝑝𝑡7 𝑝𝑡5 𝑝𝑡9 𝑝𝑡7 = 𝑝0 𝑝9 𝜋 𝑟 𝜋 𝑑 𝜋 𝑐 𝜋 𝑏 𝜋 𝑡 𝜋 𝐴𝐵 𝜋 𝑛
  • 55. STEP 4 • 4. find the temperature ratio Where 𝑇9 𝑇0 𝑇9 𝑇0 = 𝑇𝑡9 𝑇0 𝑇𝑡9 𝑇9 = 𝑇𝑡9 𝑇0 𝑝𝑡9 𝑝9 𝛾−1 𝛾 𝑇𝑡9 𝑇0 = 𝑇𝑡0 𝑇0 𝑇𝑡2 𝑇𝑡0 𝑇𝑡3 𝑇𝑡2 𝑇𝑡4 𝑇𝑡3 𝑇𝑡5 𝑇𝑡4 𝑇𝑡7 𝑇𝑡5 𝑇𝑡9 𝑇𝑡7 = 𝜏 𝑟 𝜏 𝑑 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡 𝜏 𝐴𝐵 𝜏 𝑛
  • 56. STEP 5 • 5. apply the 1st law of thermodynamics to the burner and find an expression for the fuel/air ratio 0 3 0 4p t f PR p tm c T m h m c T & & & 𝑚0 𝑐 𝑝 𝑇𝑡3 + 𝑚 𝑓ℎ 𝑃𝑅 = 𝑚0 𝑐 𝑝 𝑇𝑡4
  • 57. STEP 6,7 • 6. when applicable, find an expression for the total temperature ratio across the turbine by relating the turbine power output to the compressor, fan, and/or propeller power requirements. This allows us to find in terms of other variables. • 7. evaluate the specific thrust using the above results t 𝜏 𝑡 𝜏 𝑡
  • 58. STEP 8,9 • 8. evaluate the thrust specific fuel consumption , using the results for specific thrust and fuel/air ratio • 9. develop expressions for the thermal and propulsive efficiencies 1 1 d n d n         𝑠 𝑠 = 𝑓 𝐹 𝑚0
  • 59. ASSUMPTIONS OF IDEAL CYCLE ANALYSIS • 1.the working fluid is air and acts as a perfect gas • 2.isentropic ( reversible and adiabatic ) processes 𝜏 𝑑 = 𝜏 𝑛 = 1 𝜋 𝑑 = 𝜋 𝑛 = 1 𝜏 𝑐 = 𝜋 𝑐 𝛾−1 𝛾 𝜏 𝑡 = 𝜋 𝑡 𝛾−1 𝛾
  • 60. ASSUMPTIONS OF IDEAL CYCLE ANALYSIS • 3.the exhaust nozzle expand the gas to the ambient pressure • 4.constant pressure combustion ; ; 𝑝 𝑒 = 𝑝0 𝜋 𝑏 = 1 𝑚 𝑓 <<< 𝑚 𝑎𝑖𝑟 𝑚 𝑓 𝑚 𝑐 << 1 𝑚 𝑐 + 𝑚 𝑓 ≅ 𝑚 𝑐
  • 61. ANALYZING AN IDEAL TURBOJET
  • 63. IDEAL TURBOJET CYCLE ANALYSIS Assumptions 𝜂 𝑡ℎ = 1 − 𝑇0 𝑇𝑡3 = 1 − 1 𝜏 𝑟 𝜏 𝑐 t cw w& & 𝑤𝑡 = 𝑤𝑐 𝑇𝑡4 > 𝑇𝑡3 𝑝𝑡4 > 𝑝𝑡3
  • 64. STEP 1 F 𝐹 𝑚0 = 1 𝑔 𝑐 (𝑣9 − 𝑣0 = 𝑎0 𝑔 𝑐 ( 𝑣9 𝑎0 − 𝛭0
  • 65. STEP 2 v , a 𝑣9 𝑎0 2 = 𝑎9 2 𝑀9 2 𝑎0 2 = 𝛾9 𝑅9 𝑔 𝑐 𝑇9 𝑀9 2 𝛾0 𝑅0 𝑔 𝑐 𝑇0 = 𝑇9 𝑇0 𝑀2
  • 66. STEP 3 Total exit pressure ; However thus So and so 𝑝𝑡9 = 𝑝9 1 − 𝛾 − 1 2 . 𝑀9 2 𝛾 𝛾−1 𝑃𝑡9 = 𝑃0 𝑝𝑡0 𝑝0 𝑝𝑡2 𝑝𝑡1 𝑝𝑡3 𝑝𝑡2 𝑝𝑡4 𝑝𝑡3 𝑝𝑡5 𝑝𝑡4 𝑝𝑡9 𝑝𝑡5 0 r d c b t np       = 𝑝0 𝜋 𝑟 𝜋 𝑑 𝜋 𝑐 𝜋 𝑏 𝜋 𝑡 𝜋 𝑛 𝜋 𝑑 = 𝜋 𝑏 = 𝜋 𝑛 = 1 𝑝𝑡9 = 𝑝0 𝜋 𝑟 𝜋 𝑐 𝜋 𝑡 𝑀9 2 = 2 𝛾 − 1 [ 𝑝𝑡9 𝑝9 𝛾−1 𝛾 − 1 𝑀9 2 = 2 𝛾 − 1 (𝜏 𝑟 𝜏 𝑐 𝜏 𝑡 − 1
  • 67. STEP 4 Total exit temperature Then Thus 𝛵𝑡9 = 𝑇0 𝑇𝑡0 𝑇0 𝑇𝑡2 𝑇𝑡0 𝑇𝑡3 𝑇𝑡1 𝑇𝑡4 𝑇𝑡2 𝑇𝑡5 𝑇𝑡3 𝑇𝑡9 𝑇𝑡5 = 𝑇0 𝜏0 𝜏 𝑟 𝜏 𝑑 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡 𝜏 𝑛 = 𝑇0 𝜏 𝑟 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡 𝑇9 𝑇0 = 𝜏 𝑏 𝑇9 𝑇0 = 𝑇𝑡9 𝑇0 𝑇𝑡9 𝑇9 = 𝜏 𝑟 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡 𝑝𝑡9 𝑝9 𝛾−1 𝛾 = 𝜏 𝑟 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡 − 𝜋 𝑟 𝜋 𝑐 𝜋 𝑡 𝛾−1 𝛾 = 𝜏 𝑟 𝜏 𝑐 𝜏 𝑏 𝜏 𝑡 𝜏 𝑟 𝜏 𝑐 𝜏 𝑡
  • 68. STEP 5 Steady flow energy equation 𝑚0ℎ 𝑡3 + 𝑚 𝑓ℎ 𝑃𝑅 = 𝑚0 + 𝑚 𝑓 ℎ 𝑡4 𝑓 = 𝑚 𝑓 𝑚0 = 𝑐 𝑝 𝑇0 ℎ 𝑃𝑅 𝜏 𝜆 − 𝜏 𝑟 𝜏 𝑐 𝑓 = 𝑚 𝑓 𝑚0 = 𝑐 𝑝 𝑇0 ℎ 𝑃𝑅 𝑇𝑡4 𝑇0 − 𝑇𝑡3 𝑇0
  • 69. STEP 6 The power output of the turbine The power required to drive the compressor 0 4 1p t T m c T        & 𝑤𝑡 = 𝑚0 + 𝑚 𝑓 ℎ 𝑡4 − ℎ 𝑡5 = 𝑚0 𝑐 𝑝 ℎ 𝑡4 − ℎ 𝑡5 = 𝑚0 𝑐 𝑝 𝑇𝑡4 1 − 𝑇𝑡5 𝑇𝑡4 = 𝑚0 𝑐 𝑝 𝑇𝑡4 1 − 𝜏 𝑡 𝑤𝑐 = 𝑚0 ℎ 𝑡3 − ℎ 𝑡2 = 𝑚0 𝑐 𝑝 𝑇𝑡3 − 𝑇𝑡2 = 𝑚0 𝑐 𝑝 𝑇𝑡2 𝑇𝑡3 𝑇𝑡2 − 1 = 𝑚0 𝑐 𝑝 𝑇𝑡2 𝜏 𝑐 − 1
  • 70. STEP 6 Since for the ideal turbojet, then or thus c tw w& & 𝑤𝑐 = 𝑤𝑡 𝑚0 𝑐 𝑝 𝑇𝑡2 𝜏 𝑐 − 1 = 𝑚0 𝑐 𝑝 𝑇𝑡4 1 − 𝜏 𝑡 𝜏 𝑡 = 1 − 𝑇𝑡2 𝑇𝑡4 𝜏 𝑐 − 1 𝜏 𝑡 = 1 − 𝜏 𝑟 𝜏 𝜆 𝜏 𝑐 − 1
  • 71. STEP 7 Specific thrust But thus     2 29 9 9 0 0 2 1 1 r c t r c v T M a T                𝑣9 𝑎0 2 = 𝑇9 𝑇0 𝑀9 2 = 2 𝛾 − 1 𝜏 𝜆 𝜏 𝑟 𝜏 𝑐 𝜏 𝑟 𝜏 𝑐 𝜏 𝑡 − 1 𝐹 𝑚0 = 𝑎0 𝑔 𝑐 [ 2 𝛾 − 1 𝜏 𝜆 𝜏 𝑟 𝜏 𝑐 𝜏 𝑟 𝜏 𝑐 𝜏 𝑡 − 1 − 𝑀0 𝐹 𝑚0 = 𝑎0 𝑔 𝑐 ( 𝑣9 𝑎0 − 𝑀0
  • 72. STEP 8 Specific thrust fuel consumption So 𝑠 = 𝑓 𝐹 𝑚0 pc s  𝑠 = 𝑐 𝑝 𝑇0 𝑔 𝑐 𝜏 𝜆 − 𝜏 𝑟 𝜏 𝑐 𝑎0ℎ 𝑃𝑅 2 𝛾 − 1 𝜏 𝜆 𝜏 𝑟 𝜏 𝑐 𝜏 𝑟 𝜏 𝑐 𝜏 𝑡 − 1 − 𝑀0
  • 73. STEP 9 Efficiencies Thermal efficiency Propulsive efficiency Overal efficiency .o th p   𝜂 𝑡ℎ = 1 − 1 𝜏 𝑟 𝜏 𝑐 𝜂 𝑝 = 2𝑀0 𝑣9 𝑎0 + 𝑀0 𝜂 𝑜 = 𝜂 𝑡ℎ. 𝜂 𝑝
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83. REFERENCES 1. Elements of gas turbine propulsion

Notas do Editor

  1. df=rw2.dm dm=ro . dr . dA dp=df/dA=ro . rw2 . dr dp/ro = rw2 . dr Integral ,,,, r2w2=u2