SlideShare uma empresa Scribd logo
1 de 23
Baixar para ler offline
BIOMASS	
  AND	
  SECONDARY	
  PRODUCTION	
  OF	
  JUVENILE	
  STAGES	
  
                    OF	
  ACARTIA	
  (COPEPODA:	
  CALANOIDA)	
  POPULATIONS	
  FROM	
  A	
  
                      SOUTHERN	
  EUROPEAN	
  ESTUARY	
  (CANAL	
  DE	
  MIRA	
  –	
  RIA	
  DE	
  
                                            AVEIRO,	
  PORTUGAL	
  
                               Keywords:	
  Acar:a	
  tonsa;	
  A.clausi;	
  biomass;	
  secondary	
  producQon	
  rate;	
  Canal	
  de	
  Mira	
  (Ria	
  de	
  Aveiro	
  –	
  Portugal)	
  



           Sérgio	
  Miguel	
  Leandro1*,	
  Peter	
  Tiselius2,	
  Sónia	
  Cotrim	
  Marques3,	
  Francisco	
  Avelelas1,	
  Pedro	
  Sá1,	
  Henrique	
  Queiroga4	
  
	
  	
  
 1	
  GIRM	
  –Marine	
  Resources	
  Research	
  Group,	
  School	
  of	
  Tourism	
  and	
  Mari:me	
  Technology,	
  Polytechnic	
  Ins:tute	
  of	
  Leiria,	
  Campus	
  4,	
  2520-­‐641	
  Peniche,	
  Portugal	
  
                         2	
  Department	
  of	
  Biological	
  and	
  Environmental	
  Sciences,	
  University	
  of	
  Gothenburg,	
  Kris:neberg	
  566	
  SE-­‐451	
  78	
  Fiskebäckskil,	
  Sweden	
  
                         3CEF	
  -­‐	
  Centre	
  for	
  Func:onal	
  Ecology,	
  Department	
  of	
  Life	
  Sciences,	
  University	
  of	
  Coimbra,	
  PO	
  Box	
  3046,	
  3001-­‐401	
  Coimbra,	
  Portugal	
  
                                  4	
  CESAM	
  and	
  Department	
  of	
  Biology,	
  University	
  of	
  Aveiro,	
  Campus	
  Unversitário	
  de	
  San:ago,	
  3810-­‐193	
  Aveiro,	
  Portugal	
  




       Sérgio	
  Miguel	
  Leandro	
  (sleandro@ipleiria.pt)	
  
       Marine	
  Resources	
  Research	
  Group,	
  	
  
       School	
  of	
  Tourism	
  and	
  Mari:me	
  Technology,	
  	
  
       Polytechnic	
  Ins:tute	
  of	
  Leiria,	
  	
  
       Campus	
  4,	
  2520-­‐641	
  Peniche,	
  Portugal	
  
Outline:	
  
                                    	
  
                                    1.	
  Overview	
  
                                    2.	
  What	
  we	
  have	
  done	
  
                                    3.	
  Results	
  
                                    4.	
  Discussion	
  
                                    5.	
  Take	
  home	
  message	
  




Leandro	
  et	
  al	
  (2013)	
  
                                                                       InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
sleandro@ipleiria.pt	
  
                                                                                        March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  




                      ü  Zooplankton	
   is	
   a	
   group	
   of	
   organisms	
                                                                            Other microalgae
                          extremely	
   important	
   on	
   the	
   transfer	
  
                          of	
   maeer	
   and	
   energy	
   in	
   marine	
  
                          ecosystem.

                      ü  Among	
   zooplankton,	
   copepods	
   are	
  
                          the	
   most	
   abundant	
   organisms	
  
                          comprising	
   as	
   much	
   as	
   80%	
   of	
   its	
  
                          total	
  biomass	
  (Kiorboe	
  1998).	
  	
  

                      ü  I n	
   N o r t h	
   A t l a n Q c	
   e s t u a r i n e	
  
                          ecosystems,	
   species	
   of	
   Acar:a	
   genus	
  
                          frequently	
   dominates	
   the	
   pelagic	
  
                          environment	
   (Durbin	
   &	
   Durbin	
   1981,	
  
                          Lawrence	
   et	
   al.	
   2004,	
   Marques	
   et	
   al.	
  
                          2006)	
   and	
   may	
   be	
   considered	
   a	
   key	
  
                          species	
  in	
  the	
  carbon	
  flux.	
  	
  




 Leandro	
  et	
  al	
  (2013)	
                                              InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                             March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  




   ü  The	
  impact	
  of	
  a	
  given	
  species	
  on	
  the	
  carbon	
  flux	
  
       and	
  on	
  higher	
  trophic	
  levels	
  can	
  be	
  assessed	
  by	
  
       the	
  calculaQon	
  of	
  its	
  secondary	
  producQon	
  rate.	
  	
  

   ü  Zooplanktonic	
  producQon	
  can	
  be	
  measured	
  by:	
  
         ü  the	
   esQmate	
   of	
   growth	
   and	
   mortality	
   in	
  
             cohorts	
   over	
   consecuQve	
   sampling	
  
                                                                                                                                                                                                                                                        Uye	
  1988	
  
             intervals	
   (Parslow	
   &	
   Sonntag,	
   1979)	
   (not	
  
             reasonable	
  to	
  perform);	
  

                        ü  the	
   esQmate	
   of	
   growth	
   rates,	
   as	
   weight-­‐
                            specific	
  egg	
  producQon	
  or	
  somaQc	
  growth;	
  

                        ü  SomaQc	
  growth	
  is	
  frequently	
  measured	
  as	
  
                            juvenile	
  grow,	
  nauplii	
  and	
  copepodites.	
  	
  

                        ü  Hirst	
   &	
   Bunker	
   2003,	
   revealed	
   that	
  
                            juvenile	
   copepods	
   in	
   the	
   field	
   grow	
   at	
  
                                                                                                                                                      Hirst	
  AG,	
  Bunker	
  AJ	
  (2003)	
  Growth	
  of	
  marine	
  planktonic	
  copepods:	
  Global	
  rates	
  and	
  
                            rates	
   close	
   to	
   maximum	
   laboratory	
   rates	
                                                             paeerns	
  in	
  relaQon	
  to	
  chlorophyll	
  a,	
  temperature,	
  and	
  body	
  weight.	
  Limnology	
  and	
  
                                                                                                                                                      Oceanography	
  48:1988-­‐2010	
  
                            determined	
  at	
  food	
  saturated	
  condiQons.	
  
 Leandro	
  et	
  al	
  (2013)	
                                           InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                          March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  




 ü  Although,	
  the	
  growth	
  models	
  should	
  be	
  species-­‐
     specific	
   and	
   not	
   general	
   growth	
   equaQons	
  
     because	
   different	
   copepod	
   species	
   shows	
  
     different	
   generaQon	
   Qmes	
   (Leandro	
   et	
   al	
  
     2006a).	
  	
  
                                                                                                                               Leandro	
   SM,	
   Queiroga	
   H,	
   Rodriguez	
   L,	
   Tiselius	
   P	
   (2006b).	
   Temperature	
   dependent	
  
                                                                                                                               development	
   and	
   somaQc	
   growth	
   in	
   two	
   allopatric	
   populaQons	
   of	
   AcarQa	
   clausi	
   (Copepoda:	
  
 ü  AddiQonally,	
   the	
   specific	
   growth	
   model	
   should	
                                                        Calanoida).	
  Marine	
  Ecology	
  Progress	
  Series	
  322:	
  189-­‐197	
  (2.315),	
  doi:	
  10.3354/meps322189	
  

     be	
   defined	
   for	
   a	
   parQcular	
   copepod	
   populaQon	
  
     since	
   allopatric	
   populaQons	
   could	
   have	
   different	
  
     responses	
  (Leandro	
  et	
  al	
  2006b).	
  

 ü  In	
   previous	
   studies	
   (Leandro	
   et	
   al	
   2006	
   a,	
   b)	
  
     addressed	
   the	
   temperature-­‐dependent	
   growth	
  
     rate	
   of	
   Acar:a	
   and	
   defined	
   site-­‐	
   and	
   species-­‐
     specific	
   temperature-­‐dependent	
   growth	
                                                                          Leandro	
   SM,	
   Tiselius	
   P,	
   Queiroga	
   H	
   (2006a)	
   Growth	
   and	
   development	
   of	
   nauplii	
   and	
  
     models.	
                                                                                                                 copepodites	
   of	
   the	
   estuarine	
   copepod	
   Acar:a	
   tonsa	
   from	
   southern	
   Europe	
   (Ria	
   de	
   Aveiro,	
  
                                                                                                                               Portugal)	
   under	
   saturaQng	
   food	
   condiQons.	
   Marine	
   Biology	
   150:	
   121-­‐129	
   (1.754),	
   doi:	
  
                                                                                                                               10.1007/s00227-­‐006-­‐0336-­‐y	
  




 Leandro	
  et	
  al	
  (2013)	
                                   InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                  March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  




       •  Based	
   on	
   that	
   evidence,	
   realisQc	
   esQmates	
   of	
  
          juvenile	
   producQon	
   can	
   be	
   easily	
   determined	
  
          by:	
  

                           •  combining	
  in	
  situ	
  data	
  (copepod	
  biomass	
  
                              and	
  water	
  temperature)	
  	
  
                           •  with	
   temperature-­‐dependent	
   growth	
  
                              models.	
  	
                                                                                      Fig.	
  1	
  Regression	
  between	
  weight-­‐specific	
  growth	
  rate	
  (g,	
  day−1)	
  and	
  temperature	
  (°C)	
  for	
  
                                                                                                                                 nauplii	
  (filled	
  symbols	
  and	
  con:nuous	
  line)	
  and	
  copepodites	
  (open	
  symbols	
  and	
  dashed	
  line)	
  of	
  
                                                                                                                                 Acar:a	
  tonsa	
  from	
  Ria	
  de	
  Aveiro	
  (Portugal)	
  (Leandro	
  et	
  al	
  2006)	
  


       In	
  the	
  present	
  study	
  we	
  aeempt	
  to:	
  
       	
  
       (1)  describe	
   seasonal	
   biomass	
   paeerns	
   of	
  
               A.tonsa	
   and	
   A.clausi	
   along	
   a	
   salinity	
   gradient	
  
               (Canal	
  de	
  Mira	
  –	
  Ria	
  de	
  Aveiro,	
  Portugal)	
  
       (2)  esQmate	
   secondary	
   producQon	
   rates	
   of	
   non-­‐
               adult	
  stages.	
  	
  

                                                                                                                                 Fig.	
   2	
   Acar:a	
   clausi	
   -­‐	
   Non-­‐linear	
   regression	
   of	
   the	
   weight-­‐specific	
   growth	
   rate	
   (g,	
   d–1)	
   on	
  
                                                                                                                                 temperature	
  (T,	
  °C)	
  for	
  nauplii	
  and	
  copepodites	
  of	
  both	
  populaQons.	
  The	
  relaQonship	
  proposed	
  
                                                                                                                                 by	
  Huntley	
  &	
  Lopez	
  (1992)	
  is	
  indicated	
  by	
  the	
  dashed	
  line	
  (Leandro	
  et	
  al	
  2006b)	
  


 Leandro	
  et	
  al	
  (2013)	
                                        InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                       March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  




   Study	
  area	
  

   •  Canal	
  de	
  Mira,	
  a	
  sub-­‐estuarine	
  system	
  of	
  Ria	
  de	
  
      Aveiro	
   -­‐	
   Portugal	
   (laQtude	
   40º	
   38’	
   N,	
   N,	
  
      longitude	
  8º	
  44’W).	
  	
  

   •  Tides	
  –	
  semidiurnal,	
  average	
  range	
  of	
  2.1	
  m	
  

   •  Average	
  depth	
  is	
  about	
  1	
  m	
  

   •  No	
   thermal	
   or	
   salinity	
   straQficaQon	
   occurs,         	
  
      except	
   during	
   high	
   peaks	
   of	
   freshwater            	
  
      discharge	
   (mainly	
   from	
   rainfall	
   and	
   runoff	
   from	
  
      the	
  margins)	
  

   •  Based	
   on	
   the	
   abundance	
   and	
   distribuQon               	
  
      paeerns	
   of	
   Acar:a	
   populaQons,	
   Canal	
   de	
   Mira     	
                                      Fig.	
   3	
   LocaQon	
   of	
   Ria	
   de	
   Aveiro	
   coastal	
   lagoon	
   (A),	
   Canal	
   de	
   Mira	
   (B),	
  
                                                                                                                      sampling	
  sites	
  (C)	
  and	
  the	
  3	
  zones	
  previously	
  defined	
  by	
  Leandro	
  et	
  al	
  
      was	
   divided	
   into	
   three	
   disQnct	
   zones:	
   Zone	
   1	
                                      (2013).	
  
      (lower	
   estuary),	
   Zone	
   2	
   (middle	
   estuary)	
   and    	
  
      Zone	
  3	
  (upper	
  estuary	
  (Leandro	
  et	
  al.,	
  2013).	
                               Leandro	
  SM,	
  Tiselius	
  P,	
  Queiroga	
  H	
  (2013)	
  SpaQal	
  and	
  temporal	
  scales	
  of	
  environmental	
  forcing	
  of	
  Acar:a	
  
                                                                                                         populaQons	
   (Copepoda:	
   Calanoida)	
   in	
   the	
   Canal	
   de	
   Mira	
   (Ria	
   de	
   Aveiro,	
   Portugal).	
   ICES	
   Journal	
   of	
   Marine	
  
                                                                                                         Science	
  DOI:	
  10.1093/icesjms/fst008	
  


 Leandro	
  et	
  al	
  (2013)	
                                InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                               March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



   Sampling	
  

   •  Zooplankton	
   and	
   environmental	
   data	
   (salinity,	
  
                temperature,	
   chlorophyll	
   a	
   and	
   SPM	
   )	
   were	
   collected	
  
                at	
  6	
  fixed	
  locaQons	
  

   •            Sampling	
   performed	
   between	
   August	
   2000	
   and	
   June	
  
                2002	
  

   •            Copepods	
  collected	
  by	
  towing	
  a	
  125	
  µm	
  Bongo	
  net	
  	
  

   •            Species	
   idenQficaQon	
   (A.tonsa,	
   A.clausi)	
   and                               	
  
                quanQficaQon	
   of	
   the	
   different	
   developmental	
   stages,                    	
  
                nauplii	
   (NI	
   to	
   NVI),	
   copepodites	
   (CI	
   to	
   CV)	
   and	
   adults
                                                                                                         	
  
                (males	
  and	
  females).	
  	
  

   Copepod	
  biomass	
  

   •  DW	
   corrected	
   for	
   weight	
   lost	
   during	
   preservaQon	
                                                                         Fig.	
   4	
   LocaQon	
   of	
   Ria	
   de	
   Aveiro	
   coastal	
   lagoon	
   (A),	
   Canal	
   de	
   Mira	
   (B),	
  
                                                                                                                                                        sampling	
  sites	
  (C)	
  
                by	
  a	
  factor	
  of	
  1.3	
  (corresponding	
  to	
  a	
  loss	
  of	
  30%)	
  and	
  
                converted	
   to	
   carbon	
   weight	
   (µg	
   C)	
   assuming	
   this	
  
                to	
   be	
   40	
   %	
   of	
   DW	
   (Omori	
   &	
   Ikeda	
   1984,	
   Båmstedt  	
  
                1986).	
  

 Leandro	
  et	
  al	
  (2013)	
                                                       InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                                      March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  




  Copepod	
  secondary	
  produc@on	
  
                                                                                                                                                        Table	
   1.	
   Temperature-­‐dependent	
   growth	
   model	
   for	
   A.tonsa	
   and	
  
                                                                                                                                                        A.clausi	
  of	
  Ria	
  de	
  Aveiro	
  (Portugal)	
  
  •           Daily	
  secondary	
  producQon	
  rate	
  was	
  esQmated	
  by	
  the	
  
              product	
  of	
  biomass	
  and	
  the	
  growth	
  rate:	
                                                                                 Species	
                              Nauplii	
                                       Copepodites	
                                     Reference	
  

                                                      P	
  =	
  B	
  x	
  g	
                                                                            A.tonsa	
                g	
  =	
  0.0517	
  e	
  (0.130	
  x	
  T)	
           g	
  =	
  0.0364	
  e	
  (0.114	
  x	
  T)	
      Leandro	
  et	
  al.	
  2006a	
  

                                                                                                                                                         A.clausi	
              g	
  =	
  0.0914	
  e	
  (0.0701	
  x	
  T)	
           g	
  =	
  0.0591	
  e	
  (0.0775	
  x	
  T)	
     Leandro	
  et	
  al.	
  2006b	
  
       where	
  P	
  is	
  the	
  daily	
  secondary	
  producQon	
  (mg	
  C	
  m-­‐3	
  d-­‐1),	
  B	
  is	
  the	
  
                                     biomass	
  (mg	
  C	
  m-­‐3)	
  and	
  g	
  is	
  growth	
  rate	
  (d-­‐1)
                                                                                                                	
  

  •  Nauplii	
  and	
  copepodites	
  growth	
  rates	
  were	
  taken	
  
              from	
   specific	
   temperature-­‐dependent	
   growth	
   models
                                                                               	
  
                                                                                                                                                        Table	
  2.	
  EsQmated	
  area	
  (m2)	
  and	
  water	
  volume	
  (m3)	
  for	
  Canal	
  de	
  Mia	
  
              previously	
  defined	
  (Table	
  1)	
                                                                                                    and	
  each	
  Zone.	
  (Dias,	
  pers.	
  Comm)	
  

  •           Mean	
   biomass	
   and	
   mean	
   daily	
   secondary	
   producQon    	
                                                                                               	
                                       Area	
  (m2)	
                                          Volume	
  (m3)	
  
              rate	
  were	
  calculated	
  for	
  each	
  zone	
  and	
  month.	
  	
  
                                                                                                                                                                                  Zone	
  1	
                                      2	
  372	
  800	
                                         4	
  887	
  728	
  

  •           In	
   order	
   to	
   obtain	
   an	
   esQmate	
   of	
   biomass	
   and     	
                                                                                 Zone	
  2	
                                      4	
  017	
  600	
                                         3	
  496	
  352	
  
              producQon	
   for	
   Canal	
   de	
   Mira	
   (Ria	
   de	
   Aveiro	
   –    	
  
                                                                                                                                                                                  Zone	
  3	
                                       592	
  000	
                                               374	
  352	
  
              Portugal),	
  the	
  water	
  volume	
  for	
  each	
  zone	
  and	
  for	
  the	
  
              whole	
   estuarine	
   ecossysytem	
   was	
   taken	
   into	
   account      	
                                                                          Canal	
  de	
  Mira	
                                    6	
  982	
  400	
                                         8	
  758	
  342	
  
              (Table	
  2).	
  


 Leandro	
  et	
  al	
  (2013)	
                                                                               InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                                                              March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



Rainfall	
  regime	
  and	
  hydrological	
  parameters	
  




       Fig.	
   5	
   Rainfall	
   and	
   air	
   temperature	
   regime	
   in	
   Aveiro	
   (July	
   2000	
   –	
   July	
   2002).	
                     Fig.	
   6	
   Monthly	
   mean	
   values	
   of	
   (a)	
   salinity,	
   (b)	
   water	
   temperature	
   (ºC),	
   (c)	
  
       PrecipitaQon	
  graph	
  refers	
  to	
  the	
  weekly	
  accumulated	
  rainfall	
  and	
  temperature	
                                               chlorophyll	
  a	
  (mg	
  m-­‐3),	
  (d)	
  SPM	
  (mg	
  l-­‐1),	
  (e)	
  POM	
  (mg	
  l-­‐1),	
  and	
  Chla/SPM	
  (mg	
  
       curve	
   shows	
   the	
   average,	
   maximum	
   and	
   minimum	
   monthly	
   air	
   temperature	
                                              g-­‐1)	
  in	
  Canal	
  de	
  Mira	
  (Ria	
  de	
  Aveiro,	
  Portugal)	
  between	
  August	
  2000	
  and	
  June	
  
       (Leandro	
  et	
  al	
  2013)	
                                                                                                                         2002	
  (Leandro	
  et	
  al	
  2013)	
  

 Leandro	
  et	
  al	
  (2013)	
                                                                               InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                                                              March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



Copepods	
  biomass	
  




 Leandro	
  et	
  al	
  (2013)	
       InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                      March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



Copepods	
  biomass	
  




 Leandro	
  et	
  al	
  (2013)	
       InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                      March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



Copepods	
  biomass	
  




 Leandro	
  et	
  al	
  (2013)	
       InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                      March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



Copepods	
  biomass	
  




 Leandro	
  et	
  al	
  (2013)	
       InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                      March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



     Copepods	
  produc@on	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



      Copepods	
  produc@on	
  




 Leandro	
  et	
  al	
  (2013)	
       InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                      March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



      Copepods	
  produc@on	
  




 Leandro	
  et	
  al	
  (2013)	
       InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                      March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



      Copepods	
  produc@on	
  




 Leandro	
  et	
  al	
  (2013)	
       InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                      March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



          DISCUSSION	
  



       §          Secondary	
   producQon	
   rate,	
   in	
   terms	
   of	
   juvenile	
  
                   producQon,	
   was	
   obtained	
   by	
   combining	
   in	
   situ	
  
                   d a t a	
   o n	
   a b u n d a n c e	
   w i t h	
   s p e c i fi c	
  
                   temperature-­‐dependent	
   growth	
   models	
  
                   defined	
  at	
  food	
  saturated	
  condiQons.	
  	
  

       §          This	
   methodology	
   is	
   assumed	
   to	
   give	
   realisQc	
  
                   esQmates	
   based	
   on	
   studies	
   that	
   concluded	
   that	
  
                   growth	
   rates	
   of	
   juveniles	
   under	
   in	
   situ	
  
                   condiQons	
  are	
  close	
  to	
  maximum	
  laboratory	
  
                   rates	
   determined	
   at	
   food	
   saturated	
  
                   condiQons	
  (Hirst	
  &	
  Bunker	
  2003).	
  
                                                                                                                      Hirst	
  AG,	
  Bunker	
  AJ	
  (2003)	
  Growth	
  of	
  marine	
  planktonic	
  copepods:	
  Global	
  rates	
  and	
  
                                                                                                                      paeerns	
  in	
  relaQon	
  to	
  chlorophyll	
  a,	
  temperature,	
  and	
  body	
  weight.	
  Limnology	
  and	
  
                                                                                                                      Oceanography	
  48:1988-­‐2010	
  




 Leandro	
  et	
  al	
  (2013)	
                                             InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                            March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  



          DISCUSSION	
  


          •  The	
   relaQve	
   contribuQon	
   of	
   juvenile	
   forms	
  
             (nauplii	
   and	
   copepodites)	
   to	
   the	
   respecQve	
   total	
  
             copepod	
   biomass	
   accouted	
   to	
   more	
   than	
   54%	
  
             (A.clausi)	
  and	
  70%	
  (A.tonsa).	
  	
  

          §  This	
  fact,	
  in	
  conjugaQon	
  with	
  the	
  highest	
  growth	
  
              rates	
  of	
  juveniles	
  compared	
  to	
  the	
  adults	
  (Hirst	
  &	
  
              Bunker	
   2003),	
   supports	
   the	
   growing	
   evidence	
  
              that	
   measurements	
   of	
   secondary	
   producQon,	
  
              based	
  on	
  fecundity	
  rates	
  and	
  extrapolated	
  to	
  the	
  
              enQre	
   populaQon,	
   certainly	
   underesQmate	
   the	
  
              total	
  copepod	
  producQon.	
  



                                                                                                             Hirst	
  AG,	
  Bunker	
  AJ	
  (2003)	
  Growth	
  of	
  marine	
  planktonic	
  copepods:	
  Global	
  rates	
  and	
  
                                                                                                             paeerns	
  in	
  relaQon	
  to	
  chlorophyll	
  a,	
  temperature,	
  and	
  body	
  weight.	
  Limnology	
  and	
  
                                                                                                             Oceanography	
  48:1988-­‐2010	
  



 Leandro	
  et	
  al	
  (2013)	
                                    InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                   March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
1.	
  Overview	
  
2.	
  What	
  we	
  have	
  done	
  
3.	
  Results	
  
4.	
  Discussion	
  
5.	
  Take	
  home	
  message	
  


         TAKE	
  HOME	
  MESSAGE	
  

           •  The	
   average	
   daily	
   juvenile	
   secondary	
  
              producQon	
   of	
   Acar:a	
   populaQons	
   was	
  
              esQmated	
   as	
   equal	
   to	
   1.208	
   mg	
   C	
   m-­‐3	
   d-­‐1,	
  
              with	
  A.tonsa	
  represenQng	
  more	
  than	
  94%.	
  

           •  Although	
  our	
  approach	
  was	
  based	
  only	
  on	
  
              juvenile	
   forms,	
   AcarQa	
   producQon	
  
              revealed	
   to	
   represent	
   32.6%	
   (Huntley	
   &	
  
              Lopez	
   model)	
   to	
   41.7%	
   (Hirst	
   &	
   Bunker	
  
              model)	
   of	
   the	
   total	
   copepod	
   community	
  
              producQon	
   of	
   Ria	
   de	
   Aveiro	
   (Leandro	
   et	
   al.	
  
              2007).	
  

           •  Nearly	
  25%	
  of	
  the	
  biomass	
  daily	
  produced	
                                                                Huntley & Lopez model: 3.71 ± 0.540 mg C m-3
              by	
  Acar:a	
  populaQons	
  will	
  be	
  available	
  for	
                                                              Hirst & Bunker model: 2.90 ± 0.422 mg C m-3
              higher	
  trophic	
  levels.	
  
                                                                                                                       Leandro	
  SM,	
  Morgado	
  F,	
  Pereira	
  F,	
  Queiroga	
  H	
  (2007)	
  Temporal	
  changes	
  of	
  abundance,	
  biomass	
  and	
  
                                                                                                                       producQon	
  of	
  copepod	
  community	
  in	
  a	
  shallow	
  temperate	
  estuary	
  (Ria	
  de	
  Aveiro,	
  Portugal).	
  Estuarine	
  
                                                                                                                       Coastal	
  and	
  Shelf	
  Science	
  74:	
  215-­‐222,	
  doi:	
  10.1016/j.ecss.2007.04.009	
  




 Leandro	
  et	
  al	
  (2013)	
                                              InternaQonal	
  Conference	
  on	
  Challenges	
  in	
  AquaQc	
  Sciences	
  
 sleandro@ipleiria.pt	
  	
                                                             March	
  15-­‐21	
  (2013)	
  –	
  Keelung	
  Taiwan	
  
ACKNOWLEDGEMENTS	
  




                                                                   The	
   present	
   work	
   was	
   parQally	
   supported	
   by	
   FCT	
   (Portuguese	
  
                                                                   FoundaQon	
  for	
  Science	
  and	
  Technology)	
  through	
  COMPARE	
  Project	
  
                                                                   (PTDC/MAR/121788/2010)	
   financed	
   by	
   POPH	
   (Portuguese	
  
                                                                   OperaQonal	
   Human	
   PotenQal	
   Program),	
   QREN	
   Portugal	
  
                                                                   (Portuguese	
  NaQonal	
  Strategic	
  Reference	
  Framework),	
  and	
  MCTES	
  
                                                                   (Portuguese	
   Ministry	
   of	
   Science,	
   Technology,	
   and	
   Higher	
  
                                                                   EducaQon).	
  




Sérgio	
  Miguel	
  Leandro	
  (sleandro@ipleiria.pt)	
  
Marine	
  Resources	
  Research	
  Group,	
  	
  
School	
  of	
  Tourism	
  and	
  Mari:me	
  Technology,	
  	
  
Polytechnic	
  Ins:tute	
  of	
  Leiria,	
  	
  
Campus	
  4,	
  2520-­‐641	
  Peniche,	
  Portugal	
  
Thank	
  you	
  .	
  .	
  .	
  


                                                                       謝謝	
  
Sérgio	
  Miguel	
  Leandro	
  (sleandro@ipleiria.pt)	
  
Marine	
  Resources	
  Research	
  Group,	
  	
  
School	
  of	
  Tourism	
  and	
  Mari:me	
  Technology,	
  	
  
Polytechnic	
  Ins:tute	
  of	
  Leiria,	
  	
  
Campus	
  4,	
  2520-­‐641	
  Peniche,	
  Portugal	
  

Mais conteúdo relacionado

Mais procurados

Publications-Julie-Scopelitis
Publications-Julie-ScopelitisPublications-Julie-Scopelitis
Publications-Julie-ScopelitisJulie Scopelitis
 
Howell_Daniel_MR_201504_MSc
Howell_Daniel_MR_201504_MScHowell_Daniel_MR_201504_MSc
Howell_Daniel_MR_201504_MScD. Mark Howell
 
2002 sa r.o. & langone j.a. 2002 the tadpole of
2002 sa r.o. & langone j.a. 2002 the tadpole of2002 sa r.o. & langone j.a. 2002 the tadpole of
2002 sa r.o. & langone j.a. 2002 the tadpole ofPedro Taucce
 
Guerre_Megan_UHCThesis
Guerre_Megan_UHCThesis Guerre_Megan_UHCThesis
Guerre_Megan_UHCThesis Megan Guerre
 
Genetic connectivity patterns of sympatric Scurria limpets along the Chilean ...
Genetic connectivity patterns of sympatric Scurria limpets along the Chilean ...Genetic connectivity patterns of sympatric Scurria limpets along the Chilean ...
Genetic connectivity patterns of sympatric Scurria limpets along the Chilean ...LviaPeluso
 
Express Notes Science Form 1
Express Notes Science Form 1Express Notes Science Form 1
Express Notes Science Form 1science-resources
 

Mais procurados (12)

Publications-Julie-Scopelitis
Publications-Julie-ScopelitisPublications-Julie-Scopelitis
Publications-Julie-Scopelitis
 
Mt lasut 2008-hg-cms
Mt lasut 2008-hg-cmsMt lasut 2008-hg-cms
Mt lasut 2008-hg-cms
 
Nasa scubanaut article
Nasa scubanaut articleNasa scubanaut article
Nasa scubanaut article
 
In the Field. Pantropical Scholars Newsletter (february 2012)
In the Field. Pantropical Scholars Newsletter  (february 2012)In the Field. Pantropical Scholars Newsletter  (february 2012)
In the Field. Pantropical Scholars Newsletter (february 2012)
 
Howell_Daniel_MR_201504_MSc
Howell_Daniel_MR_201504_MScHowell_Daniel_MR_201504_MSc
Howell_Daniel_MR_201504_MSc
 
PalaniS
PalaniSPalaniS
PalaniS
 
H0343044046
H0343044046H0343044046
H0343044046
 
2002 sa r.o. & langone j.a. 2002 the tadpole of
2002 sa r.o. & langone j.a. 2002 the tadpole of2002 sa r.o. & langone j.a. 2002 the tadpole of
2002 sa r.o. & langone j.a. 2002 the tadpole of
 
Guerre_Megan_UHCThesis
Guerre_Megan_UHCThesis Guerre_Megan_UHCThesis
Guerre_Megan_UHCThesis
 
Jurnal Chemo
Jurnal ChemoJurnal Chemo
Jurnal Chemo
 
Genetic connectivity patterns of sympatric Scurria limpets along the Chilean ...
Genetic connectivity patterns of sympatric Scurria limpets along the Chilean ...Genetic connectivity patterns of sympatric Scurria limpets along the Chilean ...
Genetic connectivity patterns of sympatric Scurria limpets along the Chilean ...
 
Express Notes Science Form 1
Express Notes Science Form 1Express Notes Science Form 1
Express Notes Science Form 1
 

Semelhante a Biomass and secondary production of juvenile stages of Acartia (Copepoda: Calanoida) populations from a southern european estuary (Canal de Mira - Ria de Aveiro, Portugal)

Mt lasut 1996-tesis-aarhus univ-dk
Mt lasut 1996-tesis-aarhus univ-dkMt lasut 1996-tesis-aarhus univ-dk
Mt lasut 1996-tesis-aarhus univ-dkMarkus T Lasut
 
Condition index, meat yield and population structure of the
Condition index, meat yield and population structure of theCondition index, meat yield and population structure of the
Condition index, meat yield and population structure of theAlexander Decker
 
Effect of Stocking Density on the Resistance to Fasting, Growth and Survival ...
Effect of Stocking Density on the Resistance to Fasting, Growth and Survival ...Effect of Stocking Density on the Resistance to Fasting, Growth and Survival ...
Effect of Stocking Density on the Resistance to Fasting, Growth and Survival ...Agriculture Journal IJOEAR
 
Applications Of DNA Barcoding To Fish Landings Authentication And Diversity ...
Applications Of DNA Barcoding To Fish Landings  Authentication And Diversity ...Applications Of DNA Barcoding To Fish Landings  Authentication And Diversity ...
Applications Of DNA Barcoding To Fish Landings Authentication And Diversity ...Heather Strinden
 
Jones and Berkelmens 2010 paper discussion
Jones and Berkelmens 2010 paper discussionJones and Berkelmens 2010 paper discussion
Jones and Berkelmens 2010 paper discussionLoretta Roberson
 
MyctophidFeedingEcology
MyctophidFeedingEcologyMyctophidFeedingEcology
MyctophidFeedingEcologyWalter Conley
 
Original articleGamma radiation effect on quality changes .docx
Original articleGamma radiation effect on quality changes .docxOriginal articleGamma radiation effect on quality changes .docx
Original articleGamma radiation effect on quality changes .docxgerardkortney
 
4.Influence of stocking density on production and water quality of a photo-he...
4.Influence of stocking density on production and water quality of a photo-he...4.Influence of stocking density on production and water quality of a photo-he...
4.Influence of stocking density on production and water quality of a photo-he...earambulm3
 
Population dynamics of tinfoil barb, barbonymus schwanenfeldii (bleeker, 1853...
Population dynamics of tinfoil barb, barbonymus schwanenfeldii (bleeker, 1853...Population dynamics of tinfoil barb, barbonymus schwanenfeldii (bleeker, 1853...
Population dynamics of tinfoil barb, barbonymus schwanenfeldii (bleeker, 1853...Alexander Decker
 
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...JulinSimonato
 
Shane Donaghy (2013) Dissertation (Full Text)
Shane Donaghy (2013) Dissertation (Full Text)Shane Donaghy (2013) Dissertation (Full Text)
Shane Donaghy (2013) Dissertation (Full Text)Shane Donaghy
 
Climate change impact on ocean forests and their biodiversity
Climate change impact on ocean forests and their biodiversityClimate change impact on ocean forests and their biodiversity
Climate change impact on ocean forests and their biodiversityAlexander Jueterbock
 
Effect of Climate Change on Copepods Diversity in a Subtropical Pond of Jammu
Effect of Climate Change on Copepods Diversity in a Subtropical Pond of JammuEffect of Climate Change on Copepods Diversity in a Subtropical Pond of Jammu
Effect of Climate Change on Copepods Diversity in a Subtropical Pond of JammuAnuragSingh1049
 
Evaluation of the oyster farming potential of the Cintra bay (southern Morocco)
Evaluation of the oyster farming potential of the Cintra bay (southern Morocco)Evaluation of the oyster farming potential of the Cintra bay (southern Morocco)
Evaluation of the oyster farming potential of the Cintra bay (southern Morocco)Origins publication
 
Tiffany Barber OA Poster
Tiffany Barber OA PosterTiffany Barber OA Poster
Tiffany Barber OA PosterTiffany Barber
 
Dorothy's presentation on the Ecosystem Approach to Fisheries
Dorothy's presentation on the Ecosystem Approach to FisheriesDorothy's presentation on the Ecosystem Approach to Fisheries
Dorothy's presentation on the Ecosystem Approach to FisheriesDorothy Jane Dankel
 
Determination of Rate of Shell Accretion in Pesticide Induced Fresh Water Biv...
Determination of Rate of Shell Accretion in Pesticide Induced Fresh Water Biv...Determination of Rate of Shell Accretion in Pesticide Induced Fresh Water Biv...
Determination of Rate of Shell Accretion in Pesticide Induced Fresh Water Biv...ijtsrd
 
Leal et al 2016a
Leal et al 2016aLeal et al 2016a
Leal et al 2016aPablo Leal
 

Semelhante a Biomass and secondary production of juvenile stages of Acartia (Copepoda: Calanoida) populations from a southern european estuary (Canal de Mira - Ria de Aveiro, Portugal) (20)

Copepod reproduction poster
Copepod reproduction posterCopepod reproduction poster
Copepod reproduction poster
 
Mt lasut 1996-tesis-aarhus univ-dk
Mt lasut 1996-tesis-aarhus univ-dkMt lasut 1996-tesis-aarhus univ-dk
Mt lasut 1996-tesis-aarhus univ-dk
 
Condition index, meat yield and population structure of the
Condition index, meat yield and population structure of theCondition index, meat yield and population structure of the
Condition index, meat yield and population structure of the
 
Effect of Stocking Density on the Resistance to Fasting, Growth and Survival ...
Effect of Stocking Density on the Resistance to Fasting, Growth and Survival ...Effect of Stocking Density on the Resistance to Fasting, Growth and Survival ...
Effect of Stocking Density on the Resistance to Fasting, Growth and Survival ...
 
Applications Of DNA Barcoding To Fish Landings Authentication And Diversity ...
Applications Of DNA Barcoding To Fish Landings  Authentication And Diversity ...Applications Of DNA Barcoding To Fish Landings  Authentication And Diversity ...
Applications Of DNA Barcoding To Fish Landings Authentication And Diversity ...
 
Jones and Berkelmens 2010 paper discussion
Jones and Berkelmens 2010 paper discussionJones and Berkelmens 2010 paper discussion
Jones and Berkelmens 2010 paper discussion
 
MyctophidFeedingEcology
MyctophidFeedingEcologyMyctophidFeedingEcology
MyctophidFeedingEcology
 
Original articleGamma radiation effect on quality changes .docx
Original articleGamma radiation effect on quality changes .docxOriginal articleGamma radiation effect on quality changes .docx
Original articleGamma radiation effect on quality changes .docx
 
4.Influence of stocking density on production and water quality of a photo-he...
4.Influence of stocking density on production and water quality of a photo-he...4.Influence of stocking density on production and water quality of a photo-he...
4.Influence of stocking density on production and water quality of a photo-he...
 
Population dynamics of tinfoil barb, barbonymus schwanenfeldii (bleeker, 1853...
Population dynamics of tinfoil barb, barbonymus schwanenfeldii (bleeker, 1853...Population dynamics of tinfoil barb, barbonymus schwanenfeldii (bleeker, 1853...
Population dynamics of tinfoil barb, barbonymus schwanenfeldii (bleeker, 1853...
 
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
 
Shane Donaghy (2013) Dissertation (Full Text)
Shane Donaghy (2013) Dissertation (Full Text)Shane Donaghy (2013) Dissertation (Full Text)
Shane Donaghy (2013) Dissertation (Full Text)
 
Climate change impact on ocean forests and their biodiversity
Climate change impact on ocean forests and their biodiversityClimate change impact on ocean forests and their biodiversity
Climate change impact on ocean forests and their biodiversity
 
Effect of Climate Change on Copepods Diversity in a Subtropical Pond of Jammu
Effect of Climate Change on Copepods Diversity in a Subtropical Pond of JammuEffect of Climate Change on Copepods Diversity in a Subtropical Pond of Jammu
Effect of Climate Change on Copepods Diversity in a Subtropical Pond of Jammu
 
Evaluation of the oyster farming potential of the Cintra bay (southern Morocco)
Evaluation of the oyster farming potential of the Cintra bay (southern Morocco)Evaluation of the oyster farming potential of the Cintra bay (southern Morocco)
Evaluation of the oyster farming potential of the Cintra bay (southern Morocco)
 
Tiffany Barber OA Poster
Tiffany Barber OA PosterTiffany Barber OA Poster
Tiffany Barber OA Poster
 
Dorothy's presentation on the Ecosystem Approach to Fisheries
Dorothy's presentation on the Ecosystem Approach to FisheriesDorothy's presentation on the Ecosystem Approach to Fisheries
Dorothy's presentation on the Ecosystem Approach to Fisheries
 
Determination of Rate of Shell Accretion in Pesticide Induced Fresh Water Biv...
Determination of Rate of Shell Accretion in Pesticide Induced Fresh Water Biv...Determination of Rate of Shell Accretion in Pesticide Induced Fresh Water Biv...
Determination of Rate of Shell Accretion in Pesticide Induced Fresh Water Biv...
 
Leal et al 2016a
Leal et al 2016aLeal et al 2016a
Leal et al 2016a
 
Stream sci paper
Stream sci paperStream sci paper
Stream sci paper
 

Mais de Sérgio Leandro

smartOCEAN - shaping the blue economy
smartOCEAN - shaping the blue economysmartOCEAN - shaping the blue economy
smartOCEAN - shaping the blue economySérgio Leandro
 
Uma visão para o mar - Sérgio Leandro
Uma visão para o mar - Sérgio LeandroUma visão para o mar - Sérgio Leandro
Uma visão para o mar - Sérgio LeandroSérgio Leandro
 
smart ocean Peniche - uma ferramenta para a economia do mar do séc XXI
smart ocean Peniche - uma ferramenta para a economia do mar do séc XXIsmart ocean Peniche - uma ferramenta para a economia do mar do séc XXI
smart ocean Peniche - uma ferramenta para a economia do mar do séc XXISérgio Leandro
 
Berlenga - Reserva da Biosfera da UNESCO
Berlenga - Reserva da Biosfera da UNESCOBerlenga - Reserva da Biosfera da UNESCO
Berlenga - Reserva da Biosfera da UNESCOSérgio Leandro
 
Projecto SURGE - Peniche
Projecto SURGE - PenicheProjecto SURGE - Peniche
Projecto SURGE - PenicheSérgio Leandro
 
Biologia Marinha e Biotecnologia - ESTM (Peniche) - Instituto Politécnico de ...
Biologia Marinha e Biotecnologia - ESTM (Peniche) - Instituto Politécnico de ...Biologia Marinha e Biotecnologia - ESTM (Peniche) - Instituto Politécnico de ...
Biologia Marinha e Biotecnologia - ESTM (Peniche) - Instituto Politécnico de ...Sérgio Leandro
 

Mais de Sérgio Leandro (9)

smartOCEAN - shaping the blue economy
smartOCEAN - shaping the blue economysmartOCEAN - shaping the blue economy
smartOCEAN - shaping the blue economy
 
Leandro
LeandroLeandro
Leandro
 
Livro do mar ao prato
Livro do mar ao pratoLivro do mar ao prato
Livro do mar ao prato
 
Uma visão para o mar - Sérgio Leandro
Uma visão para o mar - Sérgio LeandroUma visão para o mar - Sérgio Leandro
Uma visão para o mar - Sérgio Leandro
 
smart ocean Peniche - uma ferramenta para a economia do mar do séc XXI
smart ocean Peniche - uma ferramenta para a economia do mar do séc XXIsmart ocean Peniche - uma ferramenta para a economia do mar do séc XXI
smart ocean Peniche - uma ferramenta para a economia do mar do séc XXI
 
Beyond 2020 workshop
Beyond 2020 workshopBeyond 2020 workshop
Beyond 2020 workshop
 
Berlenga - Reserva da Biosfera da UNESCO
Berlenga - Reserva da Biosfera da UNESCOBerlenga - Reserva da Biosfera da UNESCO
Berlenga - Reserva da Biosfera da UNESCO
 
Projecto SURGE - Peniche
Projecto SURGE - PenicheProjecto SURGE - Peniche
Projecto SURGE - Peniche
 
Biologia Marinha e Biotecnologia - ESTM (Peniche) - Instituto Politécnico de ...
Biologia Marinha e Biotecnologia - ESTM (Peniche) - Instituto Politécnico de ...Biologia Marinha e Biotecnologia - ESTM (Peniche) - Instituto Politécnico de ...
Biologia Marinha e Biotecnologia - ESTM (Peniche) - Instituto Politécnico de ...
 

Último

5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...CaraSkikne1
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17Celine George
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxAditiChauhan701637
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17Celine George
 
What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?TechSoup
 
The Singapore Teaching Practice document
The Singapore Teaching Practice documentThe Singapore Teaching Practice document
The Singapore Teaching Practice documentXsasf Sfdfasd
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17Celine George
 
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...Nguyen Thanh Tu Collection
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxEduSkills OECD
 
Ultra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxUltra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxDr. Asif Anas
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfTechSoup
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17Celine George
 
CAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxCAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxSaurabhParmar42
 
Patterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptxPatterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptxMYDA ANGELICA SUAN
 
UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptxraviapr7
 
Human-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming ClassesHuman-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming ClassesMohammad Hassany
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICESayali Powar
 
How to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesHow to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesCeline George
 

Último (20)

5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptx
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17
 
What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?
 
The Singapore Teaching Practice document
The Singapore Teaching Practice documentThe Singapore Teaching Practice document
The Singapore Teaching Practice document
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17
 
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
 
Prelims of Kant get Marx 2.0: a general politics quiz
Prelims of Kant get Marx 2.0: a general politics quizPrelims of Kant get Marx 2.0: a general politics quiz
Prelims of Kant get Marx 2.0: a general politics quiz
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
 
Ultra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxUltra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptx
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17
 
CAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxCAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptx
 
Patterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptxPatterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptx
 
UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
 
Human-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming ClassesHuman-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming Classes
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICE
 
How to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesHow to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 Sales
 

Biomass and secondary production of juvenile stages of Acartia (Copepoda: Calanoida) populations from a southern european estuary (Canal de Mira - Ria de Aveiro, Portugal)

  • 1. BIOMASS  AND  SECONDARY  PRODUCTION  OF  JUVENILE  STAGES   OF  ACARTIA  (COPEPODA:  CALANOIDA)  POPULATIONS  FROM  A   SOUTHERN  EUROPEAN  ESTUARY  (CANAL  DE  MIRA  –  RIA  DE   AVEIRO,  PORTUGAL   Keywords:  Acar:a  tonsa;  A.clausi;  biomass;  secondary  producQon  rate;  Canal  de  Mira  (Ria  de  Aveiro  –  Portugal)   Sérgio  Miguel  Leandro1*,  Peter  Tiselius2,  Sónia  Cotrim  Marques3,  Francisco  Avelelas1,  Pedro  Sá1,  Henrique  Queiroga4       1  GIRM  –Marine  Resources  Research  Group,  School  of  Tourism  and  Mari:me  Technology,  Polytechnic  Ins:tute  of  Leiria,  Campus  4,  2520-­‐641  Peniche,  Portugal   2  Department  of  Biological  and  Environmental  Sciences,  University  of  Gothenburg,  Kris:neberg  566  SE-­‐451  78  Fiskebäckskil,  Sweden   3CEF  -­‐  Centre  for  Func:onal  Ecology,  Department  of  Life  Sciences,  University  of  Coimbra,  PO  Box  3046,  3001-­‐401  Coimbra,  Portugal   4  CESAM  and  Department  of  Biology,  University  of  Aveiro,  Campus  Unversitário  de  San:ago,  3810-­‐193  Aveiro,  Portugal   Sérgio  Miguel  Leandro  (sleandro@ipleiria.pt)   Marine  Resources  Research  Group,     School  of  Tourism  and  Mari:me  Technology,     Polytechnic  Ins:tute  of  Leiria,     Campus  4,  2520-­‐641  Peniche,  Portugal  
  • 2. Outline:     1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt   March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 3. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   ü  Zooplankton   is   a   group   of   organisms   Other microalgae extremely   important   on   the   transfer   of   maeer   and   energy   in   marine   ecosystem. ü  Among   zooplankton,   copepods   are   the   most   abundant   organisms   comprising   as   much   as   80%   of   its   total  biomass  (Kiorboe  1998).     ü  I n   N o r t h   A t l a n Q c   e s t u a r i n e   ecosystems,   species   of   Acar:a   genus   frequently   dominates   the   pelagic   environment   (Durbin   &   Durbin   1981,   Lawrence   et   al.   2004,   Marques   et   al.   2006)   and   may   be   considered   a   key   species  in  the  carbon  flux.     Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 4. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   ü  The  impact  of  a  given  species  on  the  carbon  flux   and  on  higher  trophic  levels  can  be  assessed  by   the  calculaQon  of  its  secondary  producQon  rate.     ü  Zooplanktonic  producQon  can  be  measured  by:   ü  the   esQmate   of   growth   and   mortality   in   cohorts   over   consecuQve   sampling   Uye  1988   intervals   (Parslow   &   Sonntag,   1979)   (not   reasonable  to  perform);   ü  the   esQmate   of   growth   rates,   as   weight-­‐ specific  egg  producQon  or  somaQc  growth;   ü  SomaQc  growth  is  frequently  measured  as   juvenile  grow,  nauplii  and  copepodites.     ü  Hirst   &   Bunker   2003,   revealed   that   juvenile   copepods   in   the   field   grow   at   Hirst  AG,  Bunker  AJ  (2003)  Growth  of  marine  planktonic  copepods:  Global  rates  and   rates   close   to   maximum   laboratory   rates   paeerns  in  relaQon  to  chlorophyll  a,  temperature,  and  body  weight.  Limnology  and   Oceanography  48:1988-­‐2010   determined  at  food  saturated  condiQons.   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 5. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   ü  Although,  the  growth  models  should  be  species-­‐ specific   and   not   general   growth   equaQons   because   different   copepod   species   shows   different   generaQon   Qmes   (Leandro   et   al   2006a).     Leandro   SM,   Queiroga   H,   Rodriguez   L,   Tiselius   P   (2006b).   Temperature   dependent   development   and   somaQc   growth   in   two   allopatric   populaQons   of   AcarQa   clausi   (Copepoda:   ü  AddiQonally,   the   specific   growth   model   should   Calanoida).  Marine  Ecology  Progress  Series  322:  189-­‐197  (2.315),  doi:  10.3354/meps322189   be   defined   for   a   parQcular   copepod   populaQon   since   allopatric   populaQons   could   have   different   responses  (Leandro  et  al  2006b).   ü  In   previous   studies   (Leandro   et   al   2006   a,   b)   addressed   the   temperature-­‐dependent   growth   rate   of   Acar:a   and   defined   site-­‐   and   species-­‐ specific   temperature-­‐dependent   growth   Leandro   SM,   Tiselius   P,   Queiroga   H   (2006a)   Growth   and   development   of   nauplii   and   models.   copepodites   of   the   estuarine   copepod   Acar:a   tonsa   from   southern   Europe   (Ria   de   Aveiro,   Portugal)   under   saturaQng   food   condiQons.   Marine   Biology   150:   121-­‐129   (1.754),   doi:   10.1007/s00227-­‐006-­‐0336-­‐y   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 6. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   •  Based   on   that   evidence,   realisQc   esQmates   of   juvenile   producQon   can   be   easily   determined   by:   •  combining  in  situ  data  (copepod  biomass   and  water  temperature)     •  with   temperature-­‐dependent   growth   models.     Fig.  1  Regression  between  weight-­‐specific  growth  rate  (g,  day−1)  and  temperature  (°C)  for   nauplii  (filled  symbols  and  con:nuous  line)  and  copepodites  (open  symbols  and  dashed  line)  of   Acar:a  tonsa  from  Ria  de  Aveiro  (Portugal)  (Leandro  et  al  2006)   In  the  present  study  we  aeempt  to:     (1)  describe   seasonal   biomass   paeerns   of   A.tonsa   and   A.clausi   along   a   salinity   gradient   (Canal  de  Mira  –  Ria  de  Aveiro,  Portugal)   (2)  esQmate   secondary   producQon   rates   of   non-­‐ adult  stages.     Fig.   2   Acar:a   clausi   -­‐   Non-­‐linear   regression   of   the   weight-­‐specific   growth   rate   (g,   d–1)   on   temperature  (T,  °C)  for  nauplii  and  copepodites  of  both  populaQons.  The  relaQonship  proposed   by  Huntley  &  Lopez  (1992)  is  indicated  by  the  dashed  line  (Leandro  et  al  2006b)   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 7. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Study  area   •  Canal  de  Mira,  a  sub-­‐estuarine  system  of  Ria  de   Aveiro   -­‐   Portugal   (laQtude   40º   38’   N,   N,   longitude  8º  44’W).     •  Tides  –  semidiurnal,  average  range  of  2.1  m   •  Average  depth  is  about  1  m   •  No   thermal   or   salinity   straQficaQon   occurs,   except   during   high   peaks   of   freshwater   discharge   (mainly   from   rainfall   and   runoff   from   the  margins)   •  Based   on   the   abundance   and   distribuQon   paeerns   of   Acar:a   populaQons,   Canal   de   Mira   Fig.   3   LocaQon   of   Ria   de   Aveiro   coastal   lagoon   (A),   Canal   de   Mira   (B),   sampling  sites  (C)  and  the  3  zones  previously  defined  by  Leandro  et  al   was   divided   into   three   disQnct   zones:   Zone   1   (2013).   (lower   estuary),   Zone   2   (middle   estuary)   and   Zone  3  (upper  estuary  (Leandro  et  al.,  2013).   Leandro  SM,  Tiselius  P,  Queiroga  H  (2013)  SpaQal  and  temporal  scales  of  environmental  forcing  of  Acar:a   populaQons   (Copepoda:   Calanoida)   in   the   Canal   de   Mira   (Ria   de   Aveiro,   Portugal).   ICES   Journal   of   Marine   Science  DOI:  10.1093/icesjms/fst008   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 8. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Sampling   •  Zooplankton   and   environmental   data   (salinity,   temperature,   chlorophyll   a   and   SPM   )   were   collected   at  6  fixed  locaQons   •  Sampling   performed   between   August   2000   and   June   2002   •  Copepods  collected  by  towing  a  125  µm  Bongo  net     •  Species   idenQficaQon   (A.tonsa,   A.clausi)   and   quanQficaQon   of   the   different   developmental   stages,   nauplii   (NI   to   NVI),   copepodites   (CI   to   CV)   and   adults   (males  and  females).     Copepod  biomass   •  DW   corrected   for   weight   lost   during   preservaQon   Fig.   4   LocaQon   of   Ria   de   Aveiro   coastal   lagoon   (A),   Canal   de   Mira   (B),   sampling  sites  (C)   by  a  factor  of  1.3  (corresponding  to  a  loss  of  30%)  and   converted   to   carbon   weight   (µg   C)   assuming   this   to   be   40   %   of   DW   (Omori   &   Ikeda   1984,   Båmstedt   1986).   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 9. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Copepod  secondary  produc@on   Table   1.   Temperature-­‐dependent   growth   model   for   A.tonsa   and   A.clausi  of  Ria  de  Aveiro  (Portugal)   •  Daily  secondary  producQon  rate  was  esQmated  by  the   product  of  biomass  and  the  growth  rate:   Species   Nauplii   Copepodites   Reference   P  =  B  x  g   A.tonsa   g  =  0.0517  e  (0.130  x  T)   g  =  0.0364  e  (0.114  x  T)   Leandro  et  al.  2006a   A.clausi   g  =  0.0914  e  (0.0701  x  T)   g  =  0.0591  e  (0.0775  x  T)   Leandro  et  al.  2006b   where  P  is  the  daily  secondary  producQon  (mg  C  m-­‐3  d-­‐1),  B  is  the   biomass  (mg  C  m-­‐3)  and  g  is  growth  rate  (d-­‐1)   •  Nauplii  and  copepodites  growth  rates  were  taken   from   specific   temperature-­‐dependent   growth   models   Table  2.  EsQmated  area  (m2)  and  water  volume  (m3)  for  Canal  de  Mia   previously  defined  (Table  1)   and  each  Zone.  (Dias,  pers.  Comm)   •  Mean   biomass   and   mean   daily   secondary   producQon     Area  (m2)   Volume  (m3)   rate  were  calculated  for  each  zone  and  month.     Zone  1   2  372  800   4  887  728   •  In   order   to   obtain   an   esQmate   of   biomass   and   Zone  2   4  017  600   3  496  352   producQon   for   Canal   de   Mira   (Ria   de   Aveiro   –   Zone  3   592  000   374  352   Portugal),  the  water  volume  for  each  zone  and  for  the   whole   estuarine   ecossysytem   was   taken   into   account   Canal  de  Mira   6  982  400   8  758  342   (Table  2).   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 10. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Rainfall  regime  and  hydrological  parameters   Fig.   5   Rainfall   and   air   temperature   regime   in   Aveiro   (July   2000   –   July   2002).   Fig.   6   Monthly   mean   values   of   (a)   salinity,   (b)   water   temperature   (ºC),   (c)   PrecipitaQon  graph  refers  to  the  weekly  accumulated  rainfall  and  temperature   chlorophyll  a  (mg  m-­‐3),  (d)  SPM  (mg  l-­‐1),  (e)  POM  (mg  l-­‐1),  and  Chla/SPM  (mg   curve   shows   the   average,   maximum   and   minimum   monthly   air   temperature   g-­‐1)  in  Canal  de  Mira  (Ria  de  Aveiro,  Portugal)  between  August  2000  and  June   (Leandro  et  al  2013)   2002  (Leandro  et  al  2013)   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 11. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Copepods  biomass   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 12. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Copepods  biomass   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 13. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Copepods  biomass   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 14. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Copepods  biomass   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 15. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Copepods  produc@on  
  • 16. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Copepods  produc@on   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 17. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Copepods  produc@on   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 18. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   Copepods  produc@on   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 19. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   DISCUSSION   §  Secondary   producQon   rate,   in   terms   of   juvenile   producQon,   was   obtained   by   combining   in   situ   d a t a   o n   a b u n d a n c e   w i t h   s p e c i fi c   temperature-­‐dependent   growth   models   defined  at  food  saturated  condiQons.     §  This   methodology   is   assumed   to   give   realisQc   esQmates   based   on   studies   that   concluded   that   growth   rates   of   juveniles   under   in   situ   condiQons  are  close  to  maximum  laboratory   rates   determined   at   food   saturated   condiQons  (Hirst  &  Bunker  2003).   Hirst  AG,  Bunker  AJ  (2003)  Growth  of  marine  planktonic  copepods:  Global  rates  and   paeerns  in  relaQon  to  chlorophyll  a,  temperature,  and  body  weight.  Limnology  and   Oceanography  48:1988-­‐2010   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 20. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   DISCUSSION   •  The   relaQve   contribuQon   of   juvenile   forms   (nauplii   and   copepodites)   to   the   respecQve   total   copepod   biomass   accouted   to   more   than   54%   (A.clausi)  and  70%  (A.tonsa).     §  This  fact,  in  conjugaQon  with  the  highest  growth   rates  of  juveniles  compared  to  the  adults  (Hirst  &   Bunker   2003),   supports   the   growing   evidence   that   measurements   of   secondary   producQon,   based  on  fecundity  rates  and  extrapolated  to  the   enQre   populaQon,   certainly   underesQmate   the   total  copepod  producQon.   Hirst  AG,  Bunker  AJ  (2003)  Growth  of  marine  planktonic  copepods:  Global  rates  and   paeerns  in  relaQon  to  chlorophyll  a,  temperature,  and  body  weight.  Limnology  and   Oceanography  48:1988-­‐2010   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 21. 1.  Overview   2.  What  we  have  done   3.  Results   4.  Discussion   5.  Take  home  message   TAKE  HOME  MESSAGE   •  The   average   daily   juvenile   secondary   producQon   of   Acar:a   populaQons   was   esQmated   as   equal   to   1.208   mg   C   m-­‐3   d-­‐1,   with  A.tonsa  represenQng  more  than  94%.   •  Although  our  approach  was  based  only  on   juvenile   forms,   AcarQa   producQon   revealed   to   represent   32.6%   (Huntley   &   Lopez   model)   to   41.7%   (Hirst   &   Bunker   model)   of   the   total   copepod   community   producQon   of   Ria   de   Aveiro   (Leandro   et   al.   2007).   •  Nearly  25%  of  the  biomass  daily  produced   Huntley & Lopez model: 3.71 ± 0.540 mg C m-3 by  Acar:a  populaQons  will  be  available  for   Hirst & Bunker model: 2.90 ± 0.422 mg C m-3 higher  trophic  levels.   Leandro  SM,  Morgado  F,  Pereira  F,  Queiroga  H  (2007)  Temporal  changes  of  abundance,  biomass  and   producQon  of  copepod  community  in  a  shallow  temperate  estuary  (Ria  de  Aveiro,  Portugal).  Estuarine   Coastal  and  Shelf  Science  74:  215-­‐222,  doi:  10.1016/j.ecss.2007.04.009   Leandro  et  al  (2013)   InternaQonal  Conference  on  Challenges  in  AquaQc  Sciences   sleandro@ipleiria.pt     March  15-­‐21  (2013)  –  Keelung  Taiwan  
  • 22. ACKNOWLEDGEMENTS   The   present   work   was   parQally   supported   by   FCT   (Portuguese   FoundaQon  for  Science  and  Technology)  through  COMPARE  Project   (PTDC/MAR/121788/2010)   financed   by   POPH   (Portuguese   OperaQonal   Human   PotenQal   Program),   QREN   Portugal   (Portuguese  NaQonal  Strategic  Reference  Framework),  and  MCTES   (Portuguese   Ministry   of   Science,   Technology,   and   Higher   EducaQon).   Sérgio  Miguel  Leandro  (sleandro@ipleiria.pt)   Marine  Resources  Research  Group,     School  of  Tourism  and  Mari:me  Technology,     Polytechnic  Ins:tute  of  Leiria,     Campus  4,  2520-­‐641  Peniche,  Portugal  
  • 23. Thank  you  .  .  .   謝謝   Sérgio  Miguel  Leandro  (sleandro@ipleiria.pt)   Marine  Resources  Research  Group,     School  of  Tourism  and  Mari:me  Technology,     Polytechnic  Ins:tute  of  Leiria,     Campus  4,  2520-­‐641  Peniche,  Portugal