SlideShare uma empresa Scribd logo
1 de 124
Baixar para ler offline
Development of dry self lubricating
sintered steels for solid lubrication in
       mechanical engineering

               Aloisio N. Klein
     (Depto de Eng. Mecânica LabMat/UFSC)

                            Materials Laboratory
                            Mechanical Engineering Department
                            Federal University of Santa Catarina
                            Florianópolis, Brazil
Pesquisa Cientifica X Inovação tecnológica
 O Brasil atualmente produz 2,18% dos artigos científicos do
mundo em revistas indexadas, mas o percentual de patentes
encaminhadas, que de certa forma representa um Índice de
Inovação é apenas da ordem de 0,02%.
 Uma das maiores preocupações que temos hoje no BRASIL é
aprender a utilizar a ciência para fazer tecnologia no Brasil e
tornar esta tecnologia em inovação no setor produtivo.
 Na área de materiais, por exemplo, não basta desenvolver no
novo material. Para que ele venha a constituir de fato uma
inovação é necessário que venha a ser homologado na produção
industrial, na forma de um componente com função de
engenharia especifica.
Inovação em Materiais
De uma forma geral, um problema crônico dificulta a rápida
   incorporação de novos materiais e novos componentes em
   sistemas mecânicos. Isto se deve a inexistência da infra-
   estrutura e até de ampla metodologia para levar o processo
   até a fase de produto inovador disponível no mercado.
   Para INOVAÇÃO definitiva, além do novo material , é
   necessário:
      projeto de componente;
      prototipagem para testes no sistema;
      produção de lotes em escala piloto de componentes
       (alguns milhares) para a homologação do material, do
       componente e do seu processo de fabricação.
Development of dry self lubricating sintered
 steels for solid lubrication in mechanical
                 engineering

                                       Aloisio N. Klein (LabMat/UFSC)
                                       José Daniel B. de Mello (LTM/UFU)
                   Authorship:         Roberto Binder (Whirlpool-EMBRACO)
                                       Cristiano Binder (LabMat/UFSC)
                                       Gisele Hammes (LabMat/UFSC)
                                       Renan Schroeder (LabMat/UFSC)
Materials Laboratory
Mechanical Engineering Department
Federal University of Santa Catarina
Florianópolis, Brazil
                                        +
Most of the results shown in this presentation are part of a
research program whose main goal is:
-to develop dry self lubricating sintered steels that combine a
low friction coefficient with high mechanical and wear resistance
for applying in solid lubrication solutions.

Financial support:
 Whirlpool/Embraco (Joinville-Brazil)  hermetic compressors
  producer (34 million compressors/year). (www.embraco.com.br)
 Steelinject (Caxias do Sul – Brazil)  sintered parts producer (powder
    injection molding) (www.steelinject.com.br)
 FINEP - Financiadora de Estudos e Projetos  Brazilian funding
  agency (www.finep.gov.br)
 BNDES - Banco Nacional de Desenvolvimento Econômico e Social (
    www.bndes.gov.br )
 CNPq - Conselho Nacional de desenvolvimento Cientifico e
  tecnológico ( www.cnpq.br ).                                             5
Some general observations:
 About 1/3 of all energy used in industrial countries goes to
  overcome friction. High friction often results in high wear
  and more than 30% of the production in industry goes to
  replace worn out products with new ones.
 A better control of wear would result in longer product
  lifetimes and less energy consumption for replacement
  production. Thus, to reduce friction and wear is one
  important path for reducing the energy consumption and
  decreasing the human impact on climate change”



                                                             6
OUTLINE

1) Introduction
2) Brief overview on self lubricating sintered bulk
   materials
3) Microstructure and materials requirements for
   high strength and high tribological performance .
4) Process, experimental and materials in
   development
5) Some Results on sintered steels (MIM and die
   pressing)
6) Conclusions
                                                      7
1) Introduction




                  8
 In most tribological applications, mainly fluid and grease
  lubricants are used to reduce friction and minimize wear;
But, there are several situations where the use of solid lubricant
  is the best way or even the only viable option:
1) When working conditions become too severe the use of solid
   lubricants may be the only option to reduce friction and to
   control wear (e.g., high or low temperatures, low pressure or
   even in vacuum, or by extreme high contact pressure)
2) In Microelectromechanical Systems (MEMS);
3) In appliances and small office equipment, such as printers,
   electric shavers, mixers, drills, cameras, etc.



                                                                   9
 A combination of solid and liquid lubrication is
  also feasible and may have a synergistic effect in
  reducing friction and wear of the contact
  surfaces;
 The solid lubricants can also be dispersed in
  water, oil and grease to improve the friction and
  wear under conditions of extreme pressure and /
  or temperatures


                                                       10
1) Introduction
Solid lubricant can be applied to mechanical parts in two ways:

1) on the surface of the net shaped
   mechanical components in form
   of coatings (films ), or




2) in the volume of the material as          Solid
   dispersed particles (bulk dry self      lubricant
   lubricating composite materials)



                                                                  11
1) Introduction
Solid lubricant can be applied to mechanical parts in two ways:
                                    Vapor deposition techniques
1) on the surface of the net shaped (Chemical, Physical and Plasma
   mechanical components in form  assisted vapor deposition (CVD,
   of coatings (films ), or         PVD and PACVD))
                                    Other coating technologies
                                    (lamellar solids)



2) in the volume of the material as          Solid
   dispersed particles (bulk dry self      lubricant
   lubricating composite materials)



                                                                  12
1) Introduction
Solid lubricant can be applied to mechanical parts in two ways:
                                    Vapor deposition techniques
1) on the surface of the net shaped (Chemical, Physical and Plasma
   mechanical components in form  assisted chemical vapor
   of coatings (films ), or         deposition (CVD, PVD and
                                    PACVD))
                                    Other coating technologies
                                    (lamellar solids)

                                        Powder metallurgy techniques
2) in the volume of the material as     like:
                                      
   dispersed particles (bulk dry self   - die compaction
   lubricating composite materials)     - powder injection molding
                                        - powder extrusion
                                        - powder rolling, etc.

                                                                  13
 Powder metallurgy techniques are low cost serial
  mechanical parts manufacturing techniques
 By processing the parts via powder metallurgy
  techniques, the composition of material can easily be
  tuned for the particular application.




                                                     19
20
a                                             b
    SiC particles dispersed in Al: a) Mean particle size of SiC = 14,5 µm; b) Mean
    particle size of SiC= 1,5 µm




                                                                                     21
UO2 + 11Wt% Mo
                 22
Ni + 5%FeCr + 5FeP + 10%hBN

                              23
 Powder metallurgy techniques are low cost serial
  mechanical parts manufacturing techniques
 By processing the parts via powder metallurgy
  techniques, the composition of material can easily be
  tuned for the particular application.
 Self lubricating bulk materials can re-generate its
  tribolayer after demage by wear or when even when
  it peels away (self healing effect)



                                                     24
Self healing effect of dry self lubricating sintered materials



               Electrical
   Load       resistance
              of contact




Coefficient                                   Resistência elétrica do contato
of friction
                                                                     25
OUTLINE

1) Introduction
2) Brief overview on self lubricating sintered bulk
   materials
3) Microstructure and materials requirements for high
   strength and high tribological performance .
4) Process, experimental and materials in
   development
5) Some Results on sintered steels (MIM and die
   pressing)
6) Conclusions
                                                      26
2) Self lubricating sintered bulk materials


                               Solid lubricant particles
                               dispersed in the volume
                                   of the material




                                   Porous bearings:
                                 Pores are lubricant
                                   reservoirs (fluid
                                 lubricants and solid
                                      lubricants
                                                        27
2) Self lubricating sintered bulk materials

Dry self lubricating bearings:
 Used for decades in households equipments and in office
  slight equipments (printers, electric shavers, drills, blenders,
  among others)
 Solid lubricants phases mostly used include:
          • graphite, hexagonal boron Nitride (h-BN),
            molybdenum disulfide (MoS2), tungsten disulfide
            (WS2) and other dichalcogenides (lamellar solids)
          • Low melting metals (silver, tin, lead, others), halides,
            oxides, among others.
 The most used metallic matrixes are:
      copper alloys, ferrous alloys and nickel alloys.
                                                                 28
 Usually these materials have a high content of solid
  lubricant (15 to 35 v/o). This results in a high degree of
  discontinuity of the metallic matrix leading to poor
  mechanical strength of composite.

 Thus, these materials cannot be used for a lot of typical
  mechanical applications where we need higher
  mechanical and wear resistance of the self lubricating
  sintered material.
         So we need to develop bulk dry self lubricating
         materials that combine a low friction coefficient
         with high mechanical strength, tuned for each
         particular application

                                                               29
OUTLINE

1) Introduction
2) Brief overview on self lubricating sintered bulk
   materials
3) Microstructure and materials requirements for high
   strength and high tribological performance .
4) Process, experimental and materials in
   development
5) Some Results on sintered steels (MIM and die
   pressing)
6) Conclusions
                                                      30
3) Microstructure and materials requirements for high strength and high
    tribological performance


    By designing dry self lubricating composites with improved
    mechanical properties and low friction coefficient, we have to
    consider some specific requirements :
       1) optimization of microstructure parameters of the
          composite material (content of solid lubricant,
          lubricant particle size and size distribution, mean free
          path between lubricant particles)




Binder, C.; Hammes, G.; Schroeder, R.; Klein, A. N. ; De Mello, J.D.B.;
BInder, R. ; Ristow Jr, W. . “Fine tuned” steels point the way to a
focused future. Metal Powder Report, v. 65, p. 29-37, 2010.
                                                                          31
3) Microstructure and materials requirements for high strength
   and high tribological performance


          Ideal situation - model

                                        Area on the
                                      surfaces to be
                                       lubricated by
                                      each lubricant
                                          particle


                                      Solid lubricant
                                         particles
                                       dispersed in
                                      the composite
                                         material


  “regular distribution  each particle has
  to provide lubricant for a well defined
  area of the interface”.
                                                                 32
3) Microstructure and materials requirements for high strength
             and high tribological performance


    By designing dry self lubricating composites with improved
    mechanical properties and low friction coefficient, we have to
    consider some specific requirements :
       1) optimization of microstructure parameters of the
          composite material (content of solid lubricant,
          lubricant particle size and size distribution, mean free
          path between lubricant particles)

       2) mechanical properties of the metallic matrix tuned for
          specific application (hardness, strength and toughness)

Binder, C.; Hammes, G.; Schroeder, R.; Klein, A. N. ; De Mello, J.D.B.;
BInder, R. ; Ristow Jr, W. . “Fine tuned” steels point the way to a
focused future. Metal Powder Report, v. 65, p. 29-37, 2010.
                                                                          33
3) Microstructure and materials requirements for high strength
      and high tribological performance



The metallic matrix of the composite must be hard enough
to avoid occurrence of micro plastic deformation by friction
and wear under operation. The mass flow of plastic
deformation covers gradually the lubricant particles,
breaking replacement of lubricant to the interface.




                                                                34
OUTLINE

1) Introduction
2) Brief overview on self lubricating sintered bulk
   materials
3) Microstructure and materials requirements for high
   strength and high tribological performance .
4) Process, experimental and materials in
   development
5) Some results withn sintered steels (MIM and die
   pressing)
6) Conclusions
                                                      35
3) Microstructure and materials requirements for high strength
              and high tribological performance


    There are two different ways to get solid lubricant
    particles dispersed in the volume of the matrix:

     1) mix particles of solid lubricant with the metal matrix
        powders by any mixing process

     2) generate particles of solid lubricant “in situ” during
        the sintering by reaction between components (for
        example, dissociation of a carbide).


Binder, C.; Hammes, G.; Schroeder, R.; Klein, A. N. ; De Mello, J.D.B.;
BInder, R. ; Ristow Jr, W. . “Fine tuned” steels point the way to a focused
future. Metal Powder Report, v. 65, p. 29-37, 2010.

                                                                              36
3) Microstructure and materials requirements for high strength
         and high tribological performance

                                                                    solid
                                                                    lubricant
                                                                    phase




      We need solid lubricant nodules with rounded
      shape in order to avoid stress concentration.
                                                                        50 m

(Iron + h-BN) powder mixture              (Iron + Graphite) powder mixture
        (after sintering)                          (after sintering)
    Mixing process: mechanical stresses leads to spreading of
               lamellar solid lubricant by shearing
                   Undesirable distribution
                                                                         37
a) Sintering without                          b) Liquid phase
            liquid phase                             assisted sintering




Shape and distribution of h-BN dispersed in nickel alloys after sintering:
a) Ni + 10%hBN ; b) Ni + 5%FeCr (wt%) + 5%FeP(wt%) + 10%hBN (vol%).

                                                                          38
                         




                                      20m


Method used for the measurement of the length of
segments along the matrix phase.



                                                   39
25
                                           m = 19,5  1,6 m                    Ni + 10%hBN (without liquid
                                                                                 phase)
                                  20
    Frequency of occurrence [%]                                                  Ni + 10%hBN + 5%FeCr +
                                                                                 5%FeP (liquid phase sintering)
                                  15

                                                                     m = 65,5  4,8 m
                                  10



                                  5



                                  0
                                       0               50               100               150                  200
                                   Mean free path lengths between solid lubricant particles along the matrix [m]


Mean free paths lengths between solid lubricant particles measured
along matrix of sintered composite material. a) Sintering without
liquid phase; b) Sintering in presence of liquid phase.           40
3) Microstructure and materials requirements for high strength
              and high tribological performance


    There are two different ways to get solid lubricant
    particles disperse in the volume of the matrix:

     1) mix particles of solid lubricant with the metal matrix
        powders by any mixing process

     2) generate particles of solid lubricant “in situ” during
        the sintering by reaction between components (for
        example, dissociation of a carbide).


Binder, C.; Hammes, G.; Schroeder, R.; Klein, A. N. ; De Mello, J.D.B.;
BInder, R. ; Ristow Jr, W. . “Fine tuned” steels point the way to a
focused future. Metal Powder Report, v. 65, p. 29-37, 2010.

                                                                            41
Using thermodynamic data for selecting the mixture components
  Example: Will compound AB dissociate ain a matrix M ?     In this
  case we have to compare the values for Gibbs free energy for
  formation of solid solution between A and B at temperature T
  (equation 1), and the Formation Gibbs free energy of compound AB
  at the same temperature T (equation 2) .

 g(T)sol = nARTlnaA + nBRTlnaB + ... + nMRTlnaM            (1)
 G0(T)AB = C1 + C2TlogT + C3T                              (2)
 g(T) = [nARTlnaA + nBRTlnaB + nMRTlnaM ] - nG0T(AB)

 Dissolution will occur up to activity values (corresponding to
 concentrations values via relation ai = xii) for which relation
 3 is satisfied:
                   |AG(T)sol| ≥ |G0(T)AB|                  (3)
                                                                  42
Example: Silicon carbide (SiC) in Iron, 11500C

G(T) = [nSiRTlnaSi + nCTlnaC + nMRTlnaM ] - nG0T(SiC)

                                 0                  RTlna Si                            T = TS = 1150 OC


                                - 10                                                             G 0 ( T ) Si C
  G0(T) at 11500C [kcal/mol]




                                                                                                 G 0 (T ) Cr 4C
                                - 20
                                             RT l na Si = G 0 ( T ) SiC


                                - 30                                                             G 0 (T) NbC


                                - 40                                                             G 0 (T) TiC



                                - 50
                                       1,0          0,1           0,01       0,001      0,0001
                                       Activity of alloying element Si dissolved in the matrix
                                                                                                                   43
+ 10




           0
                     Mn + C = MnC



          - 10
[


                                                             3/ Cr   + C = 1/2Cr3C2
                                                               2
kcal
mol
[
G0(T)




         - 20




         - 30




         - 40




         - 50
                 0      200   400    600   800    1000   1200   1400      1600

                               Temperatura (0C)      [ T(0K) = T(0C) + 273 ]
                                                                                      44
Test samples production

a) Powder injection moulding (fine carbonyl powders)
      Self lubricating sintered steels : Fe + C + SiC + Ni +
        Mo alloy system;
      Self lubricating composites with Ni alloys as matrix
      Solid lubricants used: h-BN, Graphite and mixtures
        of them

 b) Uniaxial die pressing (atomized powders from
    Höganäs)
       Self lubricating sintered steels : Fe + C + SiC + Ni +
          Mo alloy system;
       Solid lubricant used: h-BN, Graphite and mixtures
          of them
                                                             45
a
      Sintered steels produced by
       MIM (sintered in the PADS
     furnace, TS = 1150 C, 1h, H2 )
    a) Fe + 0.6%C + 4%Ni
        Ferrite + perlite



b   b) Fe + 0.6%C + 4%Ni + 2%SiC
        Ferrite + Perlite + Graphite
          nodules that are surrounded
          by a ferrite ring
        Solid lubricant nodules
      formed “in situ” during the
    sintering by dissociation of SiC
                                 46
Line profile - Microprobe analysis
                                     47
graphite
      nodule




FEG-SEM image of an graphite nodule
   (taken on a fractured surface)
                                      48
FEG-SEM image of the interior of the graphite nodule:
Graphite foils with 10 to 45 nm in thickness (about 30 to
                    100 atom planes)



                                                            49
Fe + 0,6C + 3SiC                       Fe+0,6C+2SiC+4Ni




                                         Fe+0,6C+ 3SiC+4Ni+1Mo
  Fe+0,6C+ 3SiC+4Ni

Microstructure of Fe+C+SiC+Ni+Mo steels (1h, 1150C, H2 plasma assisted)
3) Microstructure and materials requirements for high strength
           and high tribological performance

                          solid         Solid
                          lubricant   lubricant
                          phase        nodules




                              50 m                                  20 m


Sintered steel  graphite as solid       Graphite nodules formed “in
 lubricant mixed to the feedstock         situ” during the sintering:
    Tensile strength = 340 Mpa           Tensile strength = 710 Mpa
    Friction coefficient  = 0,11        Friction coefficient  = 0,06
                                                                         51
OUTLINE

1) Introduction
2) Brief overview on self lubricating sintered
   bulk materials
3) Some considerations about microstructure
   and properties requirements.
4) Process, experimental and materials in
   development
5) Some Results on sintered steels (MIM and die
   pressing)
6) Conclusions
                                                  52
4)Mechanical and tribologycal
properties of dry self lubricating
sintered MIM steels




                                     53
1) Powders
     Fe  BASF (CL-OM) carbonyl iron powder with a mean
      particle size of 7.8 m;
     Mo  elemental Mo (OMP HC Starck, d (mean) = 5,5 m,)
     Ni  element Ni powder (INCO 123, d (mean) = 8,86 m);
     SiC  mean particle size of 10 m
2) Feedstock preparation
The feedstock for injection molding was prepared by mixing
the powder (Haake Sigma mixer, 180C, 70 rpm, 90 min)
with 8% (w/o) organic binders (binder system)
Binder system:
       paraffin-wax, stearic acid (surfactant), amide wax,
       EVA (ethylene vinyl acetate copolymer) and
       polypropylene (back bone).                            54
3) Injection of the parts  Arbourg 320S injection molding
machine (pressure: 100 MPa).

4) A chemical debinding step  dissolution of the low
molecular weight components of the binder system in
hexane.
5) Thermal Debinding and Sintering (1100 to 1200 C, 1h,
H2 plasma (low energy)
The thermal debinding, as well as the sintering , were
performed in the same thermal cycle in a Hybrib Plasma
Reactor, i.e., using the Plasma Assisted Debinding and
Reactor
Sintering (PADS) process develop in Brazil.


                                                             55
Plasma Assisted Debiding (PAD)
           (using the reactive environment of a plasma)
        Electron bombardment of
                                                   Macromolecule
        macromolecules
        (inelastic collision)                     dissociation

                                               H      H
                                                                   H   H
    H   H   H      H   H   H             H                 H
                                               C      C
                                                               H   C   C    H
    C   C   C   C      C   C   n               H      H
                                                                   H   H
    H   H   H      H   H   H
                                          H     H
    polyethylene                                                   H
                                    H     C     C
                                                       H
    e + H2 = H + H + e                                         H   C   H
                                          H     H
                                                                   H

A. N. Klein et all, US Patent Nr. US 6,579,493 B1 (2003)
A. N. Klein at all, European Patent No. EP 1 230 056 B1 (2003)
                                                                           56
gas inlet
        Shielding

                                                                           cathode

energy supply for
electrical heating


                                                                           anode


                                                                               electrical
                                                                               heating
                                                                               elements
vacuum chamber




                                                              cooling system
                                                    thermocouples
                     energy supply
                     for the cathode                 vacuum system

         Design (schematic) of the hybrid plasma DC reactor
                                                                                            57
Materials Laboratory
Plasma Reactor: Pilot Plant at LabMat                       Mechanical Engineering Department
                                                            Federal University of Santa Catarina
                                                            Florianópolis, Brazil




R. Machado, A. N. Klein, … “Industrial Plasma Reactor for Plasma Assisted Thermal
Debinding of Powder Injection-Molded Parts. US 7,718,919 B2 (2010)                       58
Al2O3 plate

                                           anode




                                          cathode




Plasma Assisted Debinding and Sintering (PADS)
           in the same thermal cycle
                                                        60
After debinding without plasma: organic residues remain in the reactor

                                                                61
After debinding without plasma: details of organic residues
                                                              62
Debinding and sintering in the same equipment
             and same thermal cycle (single – cycle)

                                                           Saving energy
                                                           and processing
Temperature (0C)
                                    sintering
                                                               time!


                                                 plasma nitriding or
                   debinding                     carbonitriding




                               Processing time (h)


                                                                       63
Steelinject Industrial PADS Equipment
Properties of Fe + 0,6%C + SiC
       sintered steels




                                 65
Friction Coef f icient       Durability
                       0,50                                                              3500

                       0,45
                                                                                         3000
                       0,40

                       0,35                                                              2500
Friction Coefficient




                                                                                                 Durability ( N.m )
                       0,30
                                                                                         2000
                       0,25
                                                                                         1500
                       0,20

                       0,15                                                              1000
                       0,10
                                                                                         500
                       0,05

                       0,00                                                              0
                              0      1            2                 3            4   5
                                                SiC Content (w/o)

                       Fe + 0.6%C + SiC sintered steels (1150 C, 1h, H2, PADS)
                                                                                                66
0.40

                       0.35           Friction coefficient as a function                1100 °C
                                          of sintering temperature                      1150 °C
Friction Coefficient


                       0.30                                                             1200 °C


                       0.25

                       0.20

                       0.15

                       0.10

                       0.05

                       0.00
                              0        1          2           3            4        5             6
                                                      SiC content ( % )
                                  Fe + 0,6%C + SiC sintered steels (1h, H2, PADS)
                                                                                           67
16
                                          1100 °C
                                 14       1150 °C
Scuffing Resistance ( N.m )103


                                          1200 °C
                                 12

                                 10

                                  8

                                  6

                                  4                                             Mudar
                                  2                                             graficos
                                  0
                                      0         1   2          3            4      5        6
                                                        SiC content ( % )
                                                                                       68
Comparison of friction coefficient of materials
                   containing distinct graphite types




De Mello & Klein. To be published
                                                                 69
HV 0,2     YS       UTS       % EL
Yield Strength and Tensile Strength (MPa)
                                            800                                                          18

                                            700
                                                                                                         15
                                            600
             Hardness (HV)



                                                                                                         12




                                                                                                              Elongation (%)
                                            500

                                            400                                                          9

                                            300
                                                                                                         6
                                            200
                                                                                                         3
                                            100

                                             0                                                           0
                                                  0          1          2           3           4    5
                                                      SiC content (w/o) (w/o) in Fe + 0,6%C matrix
                                                             SiC Content in the matriz Fe + 0.6C

                                     Tensile strength, hardness and elongation measured on the sintered Fe
                                     + 0.6%C + increasing content of SiC (w/o).

                                                                                                              70
Properties of
Fe + 0,6%C + Ni + Mo + SiC
      sintered steels




                             71
Martensitic dry self
lubricating sintered steels. Fe
+ 0,6C + 4Ni + 1Mo + 3SiC
Mechanical properties of some of
 sintered self lubricating steels
                                    73
HV = 400
UTS = 810 Mpa
Elongation = 6%




            74
Wear bahavior in sliding tests
                                 75
Conclusions
1) Self lubricating sintered steels produced by Powder
   Injection Molding with a wide range of mechanical
   properties (200-1000 MPa and 150-600HV) were obtained.
   The friction coefficient of this materials can be varied in a
   range from  = 0,04 to  = 0,21
2) Compositions having at the same time Ni, Mo, Si and C
   generate a martensitic microstructure even under low
   cooling rates.
3) It is suggested that graphite foils, removed from the “in situ”
   generated graphite nodules, remain at the interface, thus
   contributing to the formation of the protective tribolayer.

                                                               76
Thanks for your attention!




                             77
Dissociation of SiC in iron matrix
Fe+0.6%C+3% SiC

                    Graphite


                               Fe

                                     Fe3C
                                            Fe   Fe
  Intensity




                                      Angle
                                                        78
In situ dissociation of precursor

                         Graphite                Fe+0.6% C+3% SiC – 1100 °C
              2400

              2200                                               240 min
              2000                                               120 min
                                    Fe                          60 min
              1800
                                                                 30 min
              1600                                               10 min
Intensidade
 Intensity




              1400                        Fe3C    Fe   Fe
              1200

              1000

               800

               600

               400

               200

                     0   20         40           60     80      100        120
                                           2(Graus)
                                             Angle


                                                                                 79
Martensitic dry self lubricatiing
sintered steels. Fe + 0,6C + 4Ni +
1Mo + 3SiC (verificar na tese
cristiano
Self healing effect of the dry self lubricating
sintered steel produced (composite material)
                                                  81
2) Materials and experimental

 5) Tribological characterization




                    (a)                               (b)
Reciprocating wear test (un-lubricated, in air). (a) equipment;
(b) steel sphere (held on a pivoted arm) compressing against the
moving specimen surface (schematically)
                                                             82
(sp3 - diamond)




                                                                                                       (sp2 – graphite)
Graphite nodule




                                                                                                                                           G’ Band
  Graphite nodule




                                                    D band
SiC dissociation
 SiC dissociation




                                                                                                       G band
 Graphite nodule                 10000                                        1582.3                              full-width at half
 nodular cast iron
                                  9000

                                  8000
                                                                                                                     peak height
                                  7000
                                                                                                                                 2727.11
                                  6000




                        Counts
                                  5000

                                  4000

                                  3000

                                                                 1356.62
                                  2000

                                  1000

                                    0


                                         500           1000                1500                           2000            2500               3000

                                                                                  Raman shift / cm-1



                                                                              1581.65

 Graphite powder                  5000




      UF4                         4000




                                  3000
                                                                                                                                 2727.42
                        Counts




                                  2000




                                  1000




                                     0

                                         500            1000               1500                            2000           2500                3000
                                                                                  Raman shift / cm-1



                     Raman Spectroscopy                                                                                                    83
Band D     Band G     Band D Band G            Crystallite Band G’
   Material     position   position   FWHPH FWHPH      ID / IG  size La    Position   Band G’
                 (cm-1)     (cm-1)     (cm-1) (cm-1)              (Å)       (cm-1)     Shape

   Graphite                                                                           Broad
                1354.34    1581.65      8.0    14.71   0.050     880.00    2726,80
   powder
 Nodular cast                                                                         Broad
                1356.62    1582.3      16.50   27.96   0.189     232.80    2727,10
    iron
                                                                                       Peak
Fe+0.6C+3SiC    1351.55    1586.60     58.97   42.22   1.183      37.19    2709,17


FWHPH- full-width at half peak height

                                Turbostratic 2D graphite
                                Higher interlamellar distances
                                Lower friction coefficient

De Mello & Klein et al, 64th STLE Annual Meeting, Las Vegas, 2010
                                                                                      84
Results and discussion: Tribological behaviour
 Fe+0.6%C+5%SiC, 14 N


       Wear track




                                It is reasonable to suppose that
                                 the graphite foils are removed
                                 from the in situ generated
                                 On the other hand, the tribo-
                                 graphite nodules and remain at
                                   layers also degrade under the
                                 the interface thus contributing
                                   sliding action.
                                 to the formation of the
                                 protective tribo-layer;

                                                              85
Fe + 0.6%C + 5%SiC
                 Before test                                                                                   (14 N, 11500C,1h,PADS)



                                                                                                                    Turbostratic
                                                                                                                     2D graphite
                                                                                                                    Higher
         8000
                                                   1582.08
                                                                                                                     interlamellar
         7000
                                      1350.15
                                                                                                                     distances
         6000
                 Wear scar                                                                                          Low friction
         5000
                                                                                          2698.25
                                                                                                                     coefficient
C o u n ts




         4000


         3000                                                                                       2939.84


         2000


         1000


             0

                      500      1000             1500                        2000   2500                 3000                    86
                                                       Raman shift / cm-1
The Plasma Assisted Debinding rate is a function of
several variables:
 type of polymer or binder system used (properties of
  the binders)
 temperature and heating up rate (time)
 energy and quantity of the reactive species generated
  in the plasma.

   We need electrons with enough energy to cause the
    dissociation of de binder molecules, and
   Atomic Hydrogen (H2 + e = H + H + e ).
The reaction constant for any dissociation reaction promoted
by energy transfer via inelastic collisions of electrons with
binder molecules in the plasma may be given by
                 
      Kr 
                
                  g
                 0
                       e   (  ) e (  ) d 

Wherein:
 g e ( )    energy distribution function of the electrons

  e ( ) cross section of collision distribution function
 (cross section for the inelastic collision which promote the
 dissociation), as a function of the electrons energy
UFSC- Mechanical Engineering Department
                         MATERIALS LABORATORY



   Plasma technology applied to powder
           materials processing
                                              Aloisio N. Klein


Team involved in the developments:
Joel L. R. Muzart†, Antonio R. de Souza, Carlos Speller, Ana M. Maliska, Paulo
A. P. Wendhausen, Marcio C. Fredel, Cristiano Binder, Davi Fusão, Roberto
Binder, Waldyr Ristow Jr., Ricardo Machado, Paulo Alba, Maria A. dos Santos,
Rubens M. do Nascimento, Wagner da Silveira, Henrique C. Pavanati, Gisele
Hammes, Vilson J. Batista, Ivani T. Lawall...).
OUTLINE

1) Plasma technology applied to powder materials
   processing

 a) Plasma Assisted Debinding and Sintering (PADS) of PIM parts
   (dissociation of organic macromolecules)
 b) Plasma Assisted Sintering: Surface modification via plasma
    (surface morphology, chemical composition / surface enrichment ,
    cathodic sputtering, …).
 c) Thermo-chemical surface treatments - via plasma
    (cleaning, nitriding, cementation,…)
Plasma generation                  Important phenomena in
      (abnormal DC glow discharge)            the plasma environment:
                                              1) Ionic and fast neutral
 Cathode                              Anode      atoms bombardment on
                                                   the cathode:
-V             luminescent
                  region
                                                  heat generation and
                                                       sputtering

                                  -
           +   reactive species               2) Inelastic collision of
Vp                                -             electrons with gaseous
                                                species in the plasma
 0
                                                 environment:
                                  +


                                                 chemical reactions
-V                                                 improvement
OUTLINE

1) Plasma technology applied to powder materials
   processing

 a) Plasma Assisted Debinding and Sintering (PADS) of PIM parts
   (dissociation of organic macromolecules)
 b) Plasma Assisted Sintering: Surface modification via plasma
    (surface morphology, chemical composition / surface enrichment ,
    cathodic sputtering, …).
 c) Thermo-chemical surface treatments - via plasma
    (cleaning, nitriding, cementation,…)
Plasma Assisted Debiding (PAD)
           (using the reactive environment of a plasma)
        Electron bombardment of
                                                       Macromolecule
        macromolecules
        (inelastic collision)                         dissociation

                                                   H      H
                                                                         H   H
    H   H   H       H   H   H                H                   H
                                                   C      C
                                                                     H   C   C   H
    C   C   C    C      C   C   n                  H      H
                                                                         H   H
    H   H   H       H   H   H
                                              H     H
     polyethylene                                                        H
                                       H      C     C
                                                           H
     e + H2 = H + H + e                                              H   C   H
                                              H     H
                                                                         H
A. N. Klein et all, US Patent Nr. US 6,579,493 B1 (2003)
A. N. Klein at all, European Patent No. EP 1 230 056 B1 (2003)
Plasma Assisted Debinding of PIM parts

Advantages:
a) Increasing of the debinding rate
   save processing time / improve the productivity

b) The furnace remains clean
   possibility for debinding and sintering
    in the same equipment in a single – cycle
Plasma Assisted Debinding


                  1) Electrons impinging the
                     surface of the parts causes
                     dissociation of binder
                     molecules
                      to convert the binder into
                     gas molecules

                  2) A new portion of the molted
                     binder flows up to the top via
                     interconnected pores
                     reducing the time needed
                     for binder removal
Plasma Assisted Debinding:
Effect of the electrons on the debinding rate
(Experimental Results for Polypropylene in hydrogen electrical discharge)




         Polypropylene removal (%)
                                 100



                                     50



                                      0                      Anode-cathode
                                                             Floating potential
                                                             Anode/shield-cathode
                                          0   10   20   30     40   50     60
                                                    Time (min)           T = 400°C
Plasma Reactor: Pilot Plant at LabMat




R. Machado, A. N. Klein, … “Industrial Plasma Reactor for Plasma Assisted Thermal
Debinding of Powder Injection-Molded Parts. US 7,718,919 B2 (2010)
After Plasma Assisted Debinding: no organic residues
                remain in the reactor
Al2O3 plate

                                                 anode




                                                 cathode




Parts after Plasma Assisted Debinding and Sintering (PADS)
                 in the same thermal cycle
Parts after Plasma Assisted Debinding and Sintering (PADS)
                 in the same thermal cycle
After debinding without plasma: organic residues remain in the reactor
After debinding without plasma: details of organic residues
Debinding and sintering in the same equipment
      and same thermal cycle (single – cycle)

Temperature (0C)


                                   Sintering




          debinding                            plasma nitriding or
                                               carbonitriding




                   Processing time (h)
Some results

- Fe+ 2Ni + 0,6C low alloy steel
- 316-L stainless steel.

Binder system: polymer and wax. Wax debinding: organic solvent.
Thermal debinding and sintering: PADS furnace.


                                   Debinding             Sintering
        Alloy
                                   parameters           parameters
     2NiFe0,6C                                        1250 ºC, 60 min,
      (carbonyl             Heating rate: 2,0           argon partial
      powders)                  ºC/min.                   pressure
        316-L              Atmosphere: atomic
                               hydrogen              1300 ºC, 90 min,
      (atomized                                     H2 partial pressure
      powders)
Comparison of metallurgical variables of materials processed
      in PADS furnace and in a conventional route (catalytic
                           debinding)


                             Densit     Carbon     Hardness   Ultimate    Yield    Elong
         Conditio   Proces
Alloy                           y       content    (HV 0,2    Strength   Strengt   ation
            n          s
                             (g/cm3)   (% mass)      kg)       (MPa)     h (MPa)    (%)
                                        0,58 –
                    PADS      7,65                   170        575       480       4
                                         0,62
         sintered
 Fe +               Conv.     7,50     0,6 – 0,8     160        500       250       3
2% Ni
+ 0,6C                                  0,58 –
                    PADS      7,65                   350       1210       1180      2
                                         0,62
         tempered
                    Conv.     7,50     0,6 – 0,8     340        950       800       3

                    PADS      7,70      0,0015       170        505       290       54
316-L    sintered
                    Conv.     7,85     0,03 máx.     120        510       180       50
PADS process x Lupatech’s actual process
 Processed alloy: 316-L stainless steel:
 – Actual process: permeation controlled thermal + vacuum sintering.
 – PADS process: Plasma Assisted Debinding and Sintering.



                               Heating rate     Energy        Gas
              Lead time
Process                      during debinding consumption consumption
                 (h)
                                 (ºC/min)        (kW)         (m3)

 PADS              7                  2,0               500            12

Lupatech          80                  0,07              800            120
Steelinject Industrial PADS Equipment




Industrial Plasma Reactor for Plasma Assisted Thermal Debinding of Powder
Injection-Molded Parts. US Patent Office, number US 7,718,919 B2 (2010)
Resultados:

 Redução de custo (processo PADS): mínimo 20 %

 Redução de energia (processo PADS): : 50%

Premio Medalha de desenvolvimento




                                                  113
Nestor         http://medalha.desenvolvimento.gov.br/arquivos/agra
Perini         ciados06.htm
      Cargo: Presidente da Lupatech S/A
 Indicação: Sr. Paulo Belini; Sr. Jorge Gerdau Johannpeter e Sr. Raul
            Anselmo Randon
Justificativa A Lupatech S/A., através de sua divisão Steelinject, é pioneira
           da na América Latina na utilização da tecnologia MIM (Metal
 Indicação: Injection Molding). Esta tecnologia é indicada para produção
              de peças em série de alta precisão e complexidade de forma. A
              Steelinject conseguiu reduzir em 20% os custos de produção e
              em 50% o de consumo de energia graças a uma tecnologia
              desenvolvida em parceria com o laboratório de materiais da
              Universidade Federal de Santa Catarina (UFSC). Com o
              invento, a empresa pretende deixar de ser importadora para
              se tornar exportadora de tecnologia. A patente nos Estados
              Unidos acabou de ser registrada e está em processo o registro
              na Europa. No Brasil, a patente já está no Instituto Nacional
              de Propriedade Industrial (INPI).

                                                                        114
Processo de transferência da
       tecnologia para PADS para USA

                        DSH Technologies, LLC, que
                        através da associada - Elnik
                        Systems vai produzir o
Lupatech (Caxias)
                       equipamento e disponibilizar no
+ LabMat (UFSC)         mercado mundial.
                        Primeiro equipamento em 3D foi
                        exposto na PM2008 em
                        Washington (8 a 12 de Junho )



                                                     115
Forno PLASMIM projetado para a Empresa Elnik Systems (USA)
   pela Equipe do LabMat/UFSC + Steelinject (Caxias do sul)




Protótipo Forno Hibrido para extração térmica de ligantes orgânicos
assistida por plasma seguida de sinterização assistida por plasma.
Plasma reactors for materials processing

  Possibilities:
A) Plasma reactor with an auxiliary resistive heating
   The plasma is used only to promote the chemical
   reactions. Plasma works with low current density
   (at the exact current needed).


B) Plasma reactor without auxiliary resistive heating
  Heat is generated by the plasma, i.e., only by the
  bombardment of the cathode by ions and atoms of
  high energy.
  Problem: high sputtering from cathode – surface
               contamination
  Opportunity: this can be used for surface enrichment of
                   unalloyed iron parts
Modification of the
chemical composition of
parts during plasma
assisted sintering




                          Surface enrichment of unalloyed
                                iron with Chromium
6                                                1150 °C
 Concentração de Mo (%peso)                                                      1000 °C
                                                                                 800 °C
                                5
Concentration of Mo (%weight)




                                4


                                3


                                2


                                1


                                0
                                    0      5       10      15      20       25      30

                                                    Profundidade (m)
                                                        Depth(µm)

                                    Enrichment with Molybdenum: Temperature Influence (1Torr; 700V; 1h ;
                                             10%H2 + 90%Ar; Gas flow = 5 x 10-6 m3/s (300 sccm)
8
                                                                                  3,5 Torr
                                  7                                               1 Torr


    Concentração de Mo (%peso)
                                  6
  Concentration of Mo (%weight)
                                  5

                                  4

                                  3

                                  2

                                  1

                                  0
                                      0   10   20   30   40   50   60   70   80     90   100

                                                     Profundidade ( m)
                                                         Depth(µm)

Enrichment with Molybdenum: Pressure Influence ( 1150 °C ; 700V; 1h ; 10%H2 +
                 90%Ar; Gas flow = 5 x 10-6 m3/s (300 sccm)
800°C; 500 V



                                                                            500 V
                          250
                                                                            700 V

                          200




                 Amount
               Contagem
                          150


800°C; 700 V              100


                          50


                           0
                            0,0         0,2       0,4       0,6       0,8           1,0

                                          Tamanho de partícula (m)
                                               Particle size (µm)

                                  Deposition of atoms/ions sputtered from the
                                cathode (clusters of size in the nanometer range)
Surface dense layer in plasma assisted sintering
                  (parts placed on the cathode)




                                                                 
     View of the lateral side                     Base, which is in contact to the
     which is exposed to ion                      support and does not receive
                                                  bombardment
     bombardment
                                    Sputtering +
  Ion bombardment                   deposition and               Dense surface layer
                                    activated diffusion
The International Journal of Powder Metallurgy, Vol. 34, No. 8, 1998, pg.55–62.
Surface dense layer in plasma assisted sintering
               (parts placed on the cathode)

Sintering of unalloyed iron samples produced by powder compaction




        As compacted                      Afther sintering (on cathode)

 Ionic bombardment of the surface improves diffusion rates;
The densification is further enhanced by the
 retrodeposition of atoms.
OUTLINE

1) Plasma technology applied to powder materials
   processing

 a) Plasma Assisted Debinding and Sintering (PADS) of PIM parts
   (dissociation of organic macromolecules)
 b) Plasma Assisted Sintering: Surface modification via plasma
    (surface morphology, chemical composition / surface enrichment ,
    cathodic sputtering, …).
 c) Thermo-chemical surface treatments - via plasma
    (cleaning, nitriding, cementation,…)
c) Thermo-chemical surface treatments - via plasma
         (nitriding, cementation, nitro cementation)

                                        NITRIDE LAYER




                                   20 m                           20 m

                         Unalloyed iron: sintering followed by plasma nitriding
Surface and Coatings Technology 141(2001) 128-134
Reator de nitretação por plasma   Montagem parcial da carga a ser
 escala piloto (4 mil peças por             tratada.
        carregamento)
 Remoção do óleo de calibração dos poros residuais e nitretação por plasma de
materiais sinterizados em único ciclo térmico (patente);




  Desenho esquemático célula de limpeza e nitretação – escala industrial  4,5
  milhões peças/ano
                                                                                 127
 Remoção do óleo de calibração dos poros residuais e nitretação por plasma
de materiais sinterizados em único ciclo térmico (patente);




       Foto da célula em operação na Empresa GKN (fornecedor
       de peças para a Embraco)                                      128
Foto da célula em
   operação na
  Empresa GKN
 (fornecedor de
   peças para a
    Embraco)




                    129

Mais conteúdo relacionado

Destaque

Melhorando a competitividade na indústria da carne
Melhorando a competitividade na indústria da carne Melhorando a competitividade na indústria da carne
Melhorando a competitividade na indústria da carne senaimais
 
España e galicia no xix
España e galicia no xixEspaña e galicia no xix
España e galicia no xixlaurabarrosg
 
Tendências, diretrizes e desafios governamentais em pesquisa, desenvolvimento...
Tendências, diretrizes e desafios governamentais em pesquisa, desenvolvimento...Tendências, diretrizes e desafios governamentais em pesquisa, desenvolvimento...
Tendências, diretrizes e desafios governamentais em pesquisa, desenvolvimento...senaimais
 
Palestra 4 - Avanços em tecnologia de fresamento: do fresamento convencional ...
Palestra 4 - Avanços em tecnologia de fresamento: do fresamento convencional ...Palestra 4 - Avanços em tecnologia de fresamento: do fresamento convencional ...
Palestra 4 - Avanços em tecnologia de fresamento: do fresamento convencional ...senaimais
 
Tensións e conflitos (1914 1939)
Tensións e conflitos (1914 1939)Tensións e conflitos (1914 1939)
Tensións e conflitos (1914 1939)laurabarrosg
 
Pesquisas em materiais poliméricos: tendências internacionais para o setor in...
Pesquisas em materiais poliméricos: tendências internacionais para o setor in...Pesquisas em materiais poliméricos: tendências internacionais para o setor in...
Pesquisas em materiais poliméricos: tendências internacionais para o setor in...senaimais
 
Apresentação michael toth
Apresentação michael tothApresentação michael toth
Apresentação michael tothsenaimais
 
AS REVOLUCIÓNS POLÍTICAS
AS REVOLUCIÓNS POLÍTICASAS REVOLUCIÓNS POLÍTICAS
AS REVOLUCIÓNS POLÍTICASlaurabarrosg
 
Searching patents – a brief introduction
Searching patents – a brief introductionSearching patents – a brief introduction
Searching patents – a brief introductionBjörn Jürgens
 
“Have to know” free public patent databases
“Have to know” free public patent databases“Have to know” free public patent databases
“Have to know” free public patent databasesBjörn Jürgens
 
Komdat3 pengukuran komunikasi serial
Komdat3   pengukuran komunikasi serialKomdat3   pengukuran komunikasi serial
Komdat3 pengukuran komunikasi serialMyeena Ittuolive
 
Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas...
Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas...Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas...
Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas...senaimais
 
Como a computação em nuvem e tecnologias de brokering podem auxiliar os prove...
Como a computação em nuvem e tecnologias de brokering podem auxiliar os prove...Como a computação em nuvem e tecnologias de brokering podem auxiliar os prove...
Como a computação em nuvem e tecnologias de brokering podem auxiliar os prove...senaimais
 
Palestra 1 - Otimização do processo produtivo
Palestra 1  - Otimização do processo produtivoPalestra 1  - Otimização do processo produtivo
Palestra 1 - Otimização do processo produtivosenaimais
 
Palestra 5 - Aplicação do laser como ferramenta de fabricação de moldes.
Palestra 5 - Aplicação do laser como ferramenta de fabricação de moldes.Palestra 5 - Aplicação do laser como ferramenta de fabricação de moldes.
Palestra 5 - Aplicação do laser como ferramenta de fabricação de moldes.senaimais
 
Pensamiento e ciencia
Pensamiento e cienciaPensamiento e ciencia
Pensamiento e ciencialaurabarrosg
 
Adaptando novas tecnologias para o processamento da carne - Tatiana Koutchma ...
Adaptando novas tecnologias para o processamento da carne - Tatiana Koutchma ...Adaptando novas tecnologias para o processamento da carne - Tatiana Koutchma ...
Adaptando novas tecnologias para o processamento da carne - Tatiana Koutchma ...senaimais
 
Supercritical Fluid Extraction of Bioactive Compounds from Natural Products
Supercritical Fluid Extraction of Bioactive Compounds from Natural ProductsSupercritical Fluid Extraction of Bioactive Compounds from Natural Products
Supercritical Fluid Extraction of Bioactive Compounds from Natural Productssenaimais
 

Destaque (20)

Melhorando a competitividade na indústria da carne
Melhorando a competitividade na indústria da carne Melhorando a competitividade na indústria da carne
Melhorando a competitividade na indústria da carne
 
España e galicia no xix
España e galicia no xixEspaña e galicia no xix
España e galicia no xix
 
Tendências, diretrizes e desafios governamentais em pesquisa, desenvolvimento...
Tendências, diretrizes e desafios governamentais em pesquisa, desenvolvimento...Tendências, diretrizes e desafios governamentais em pesquisa, desenvolvimento...
Tendências, diretrizes e desafios governamentais em pesquisa, desenvolvimento...
 
AWR Brief
AWR Brief AWR Brief
AWR Brief
 
Palestra 4 - Avanços em tecnologia de fresamento: do fresamento convencional ...
Palestra 4 - Avanços em tecnologia de fresamento: do fresamento convencional ...Palestra 4 - Avanços em tecnologia de fresamento: do fresamento convencional ...
Palestra 4 - Avanços em tecnologia de fresamento: do fresamento convencional ...
 
Tensións e conflitos (1914 1939)
Tensións e conflitos (1914 1939)Tensións e conflitos (1914 1939)
Tensións e conflitos (1914 1939)
 
Pesquisas em materiais poliméricos: tendências internacionais para o setor in...
Pesquisas em materiais poliméricos: tendências internacionais para o setor in...Pesquisas em materiais poliméricos: tendências internacionais para o setor in...
Pesquisas em materiais poliméricos: tendências internacionais para o setor in...
 
Apresentação michael toth
Apresentação michael tothApresentação michael toth
Apresentação michael toth
 
AS REVOLUCIÓNS POLÍTICAS
AS REVOLUCIÓNS POLÍTICASAS REVOLUCIÓNS POLÍTICAS
AS REVOLUCIÓNS POLÍTICAS
 
Searching patents – a brief introduction
Searching patents – a brief introductionSearching patents – a brief introduction
Searching patents – a brief introduction
 
Parallel serial prog
Parallel serial progParallel serial prog
Parallel serial prog
 
“Have to know” free public patent databases
“Have to know” free public patent databases“Have to know” free public patent databases
“Have to know” free public patent databases
 
Komdat3 pengukuran komunikasi serial
Komdat3   pengukuran komunikasi serialKomdat3   pengukuran komunikasi serial
Komdat3 pengukuran komunikasi serial
 
Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas...
Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas...Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas...
Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas...
 
Como a computação em nuvem e tecnologias de brokering podem auxiliar os prove...
Como a computação em nuvem e tecnologias de brokering podem auxiliar os prove...Como a computação em nuvem e tecnologias de brokering podem auxiliar os prove...
Como a computação em nuvem e tecnologias de brokering podem auxiliar os prove...
 
Palestra 1 - Otimização do processo produtivo
Palestra 1  - Otimização do processo produtivoPalestra 1  - Otimização do processo produtivo
Palestra 1 - Otimização do processo produtivo
 
Palestra 5 - Aplicação do laser como ferramenta de fabricação de moldes.
Palestra 5 - Aplicação do laser como ferramenta de fabricação de moldes.Palestra 5 - Aplicação do laser como ferramenta de fabricação de moldes.
Palestra 5 - Aplicação do laser como ferramenta de fabricação de moldes.
 
Pensamiento e ciencia
Pensamiento e cienciaPensamiento e ciencia
Pensamiento e ciencia
 
Adaptando novas tecnologias para o processamento da carne - Tatiana Koutchma ...
Adaptando novas tecnologias para o processamento da carne - Tatiana Koutchma ...Adaptando novas tecnologias para o processamento da carne - Tatiana Koutchma ...
Adaptando novas tecnologias para o processamento da carne - Tatiana Koutchma ...
 
Supercritical Fluid Extraction of Bioactive Compounds from Natural Products
Supercritical Fluid Extraction of Bioactive Compounds from Natural ProductsSupercritical Fluid Extraction of Bioactive Compounds from Natural Products
Supercritical Fluid Extraction of Bioactive Compounds from Natural Products
 

Semelhante a Desenvolvimento de aços sinterizados autolubrificantes a seco para a lubrificação sólida na Engenharia Mecânica

Forging Lubricants For The Hot Forging Of Steels
Forging Lubricants For The Hot Forging Of SteelsForging Lubricants For The Hot Forging Of Steels
Forging Lubricants For The Hot Forging Of SteelsGustavo Schiuma
 
Forging Lubricants For The Hot Forging Of Steels
Forging Lubricants For The Hot Forging Of SteelsForging Lubricants For The Hot Forging Of Steels
Forging Lubricants For The Hot Forging Of SteelsGustavo Schiuma
 
Experimental Analysis of Lubricating Oil using Nanoparticles as Modifiers for...
Experimental Analysis of Lubricating Oil using Nanoparticles as Modifiers for...Experimental Analysis of Lubricating Oil using Nanoparticles as Modifiers for...
Experimental Analysis of Lubricating Oil using Nanoparticles as Modifiers for...IRJET Journal
 
Wear Rate Analysis and Investigation of Alternating Material for Food Mixer B...
Wear Rate Analysis and Investigation of Alternating Material for Food Mixer B...Wear Rate Analysis and Investigation of Alternating Material for Food Mixer B...
Wear Rate Analysis and Investigation of Alternating Material for Food Mixer B...IRJET Journal
 
Experimental Investigation of Tribological Properties using Nanoparticles as ...
Experimental Investigation of Tribological Properties using Nanoparticles as ...Experimental Investigation of Tribological Properties using Nanoparticles as ...
Experimental Investigation of Tribological Properties using Nanoparticles as ...IRJET Journal
 
Talk on additive manufacturing.pdf
Talk on additive manufacturing.pdfTalk on additive manufacturing.pdf
Talk on additive manufacturing.pdfVinuKrishnan11
 
Performance Investigation of minimum quantity lubrication (MQL) Parameters us...
Performance Investigation of minimum quantity lubrication (MQL) Parameters us...Performance Investigation of minimum quantity lubrication (MQL) Parameters us...
Performance Investigation of minimum quantity lubrication (MQL) Parameters us...IRJET Journal
 
Investigation of Tribological Properties of Cotton Seed Oil By Adding MoS2 an...
Investigation of Tribological Properties of Cotton Seed Oil By Adding MoS2 an...Investigation of Tribological Properties of Cotton Seed Oil By Adding MoS2 an...
Investigation of Tribological Properties of Cotton Seed Oil By Adding MoS2 an...IRJET Journal
 
sandeepkashyapcolliquium-170129204606.pdf
sandeepkashyapcolliquium-170129204606.pdfsandeepkashyapcolliquium-170129204606.pdf
sandeepkashyapcolliquium-170129204606.pdfdanere2178
 
COMPOSITE FABRICATION TECHNIQUES
COMPOSITE FABRICATION TECHNIQUESCOMPOSITE FABRICATION TECHNIQUES
COMPOSITE FABRICATION TECHNIQUESMNNIT Allahabad
 
additive manufacturing.pptx
additive manufacturing.pptxadditive manufacturing.pptx
additive manufacturing.pptxSudhirPatel46
 
2013 03-12-masterclass-biomedical-applications-of-am sirris-ad_dtechnic
2013 03-12-masterclass-biomedical-applications-of-am sirris-ad_dtechnic2013 03-12-masterclass-biomedical-applications-of-am sirris-ad_dtechnic
2013 03-12-masterclass-biomedical-applications-of-am sirris-ad_dtechnicSirris
 
Deburr sleeping-giant
Deburr sleeping-giantDeburr sleeping-giant
Deburr sleeping-giantDave Davidson
 
IRJET - Fused Deposition Modeling
IRJET - Fused Deposition ModelingIRJET - Fused Deposition Modeling
IRJET - Fused Deposition ModelingIRJET Journal
 
Powerpointpresentationofmultijetfusionofmechanicalprocess
PowerpointpresentationofmultijetfusionofmechanicalprocessPowerpointpresentationofmultijetfusionofmechanicalprocess
Powerpointpresentationofmultijetfusionofmechanicalprocessdanirudh34
 
Multi Jet Fusion (MJF)-Additive Manufacturing.pptx
Multi Jet Fusion (MJF)-Additive Manufacturing.pptxMulti Jet Fusion (MJF)-Additive Manufacturing.pptx
Multi Jet Fusion (MJF)-Additive Manufacturing.pptxPrashant18538
 
LUBRICATION: A REVIEW
LUBRICATION: A REVIEWLUBRICATION: A REVIEW
LUBRICATION: A REVIEWIJARIIT
 

Semelhante a Desenvolvimento de aços sinterizados autolubrificantes a seco para a lubrificação sólida na Engenharia Mecânica (20)

Forging Lubricants For The Hot Forging Of Steels
Forging Lubricants For The Hot Forging Of SteelsForging Lubricants For The Hot Forging Of Steels
Forging Lubricants For The Hot Forging Of Steels
 
Forging Lubricants For The Hot Forging Of Steels
Forging Lubricants For The Hot Forging Of SteelsForging Lubricants For The Hot Forging Of Steels
Forging Lubricants For The Hot Forging Of Steels
 
Experimental Analysis of Lubricating Oil using Nanoparticles as Modifiers for...
Experimental Analysis of Lubricating Oil using Nanoparticles as Modifiers for...Experimental Analysis of Lubricating Oil using Nanoparticles as Modifiers for...
Experimental Analysis of Lubricating Oil using Nanoparticles as Modifiers for...
 
Wear Rate Analysis and Investigation of Alternating Material for Food Mixer B...
Wear Rate Analysis and Investigation of Alternating Material for Food Mixer B...Wear Rate Analysis and Investigation of Alternating Material for Food Mixer B...
Wear Rate Analysis and Investigation of Alternating Material for Food Mixer B...
 
Experimental Investigation of Tribological Properties using Nanoparticles as ...
Experimental Investigation of Tribological Properties using Nanoparticles as ...Experimental Investigation of Tribological Properties using Nanoparticles as ...
Experimental Investigation of Tribological Properties using Nanoparticles as ...
 
R01226111114
R01226111114R01226111114
R01226111114
 
Talk on additive manufacturing.pdf
Talk on additive manufacturing.pdfTalk on additive manufacturing.pdf
Talk on additive manufacturing.pdf
 
Performance Investigation of minimum quantity lubrication (MQL) Parameters us...
Performance Investigation of minimum quantity lubrication (MQL) Parameters us...Performance Investigation of minimum quantity lubrication (MQL) Parameters us...
Performance Investigation of minimum quantity lubrication (MQL) Parameters us...
 
Investigation of Tribological Properties of Cotton Seed Oil By Adding MoS2 an...
Investigation of Tribological Properties of Cotton Seed Oil By Adding MoS2 an...Investigation of Tribological Properties of Cotton Seed Oil By Adding MoS2 an...
Investigation of Tribological Properties of Cotton Seed Oil By Adding MoS2 an...
 
sandeepkashyapcolliquium-170129204606.pdf
sandeepkashyapcolliquium-170129204606.pdfsandeepkashyapcolliquium-170129204606.pdf
sandeepkashyapcolliquium-170129204606.pdf
 
COMPOSITE FABRICATION TECHNIQUES
COMPOSITE FABRICATION TECHNIQUESCOMPOSITE FABRICATION TECHNIQUES
COMPOSITE FABRICATION TECHNIQUES
 
additive manufacturing.pptx
additive manufacturing.pptxadditive manufacturing.pptx
additive manufacturing.pptx
 
2013 03-12-masterclass-biomedical-applications-of-am sirris-ad_dtechnic
2013 03-12-masterclass-biomedical-applications-of-am sirris-ad_dtechnic2013 03-12-masterclass-biomedical-applications-of-am sirris-ad_dtechnic
2013 03-12-masterclass-biomedical-applications-of-am sirris-ad_dtechnic
 
Deburr sleeping-giant
Deburr sleeping-giantDeburr sleeping-giant
Deburr sleeping-giant
 
AM Module 2 pdf.pdf
AM Module 2 pdf.pdfAM Module 2 pdf.pdf
AM Module 2 pdf.pdf
 
IRJET - Fused Deposition Modeling
IRJET - Fused Deposition ModelingIRJET - Fused Deposition Modeling
IRJET - Fused Deposition Modeling
 
Radtech 2014 Presentation
Radtech 2014 PresentationRadtech 2014 Presentation
Radtech 2014 Presentation
 
Powerpointpresentationofmultijetfusionofmechanicalprocess
PowerpointpresentationofmultijetfusionofmechanicalprocessPowerpointpresentationofmultijetfusionofmechanicalprocess
Powerpointpresentationofmultijetfusionofmechanicalprocess
 
Multi Jet Fusion (MJF)-Additive Manufacturing.pptx
Multi Jet Fusion (MJF)-Additive Manufacturing.pptxMulti Jet Fusion (MJF)-Additive Manufacturing.pptx
Multi Jet Fusion (MJF)-Additive Manufacturing.pptx
 
LUBRICATION: A REVIEW
LUBRICATION: A REVIEWLUBRICATION: A REVIEW
LUBRICATION: A REVIEW
 

Mais de senaimais

Estratégias criativas de sustentabilidade
Estratégias criativas de sustentabilidadeEstratégias criativas de sustentabilidade
Estratégias criativas de sustentabilidadesenaimais
 
Planilha de Plataformas, Serviços e Produtos
Planilha de Plataformas, Serviços e ProdutosPlanilha de Plataformas, Serviços e Produtos
Planilha de Plataformas, Serviços e Produtossenaimais
 
USANDO AS TENDÊNCIAS PARA ALAVANCAR A INDÚSTRIA DE CARNES
USANDO AS TENDÊNCIAS PARA ALAVANCAR A INDÚSTRIA DE CARNESUSANDO AS TENDÊNCIAS PARA ALAVANCAR A INDÚSTRIA DE CARNES
USANDO AS TENDÊNCIAS PARA ALAVANCAR A INDÚSTRIA DE CARNESsenaimais
 
Tecnologia laser - Potencial e oportunidades
Tecnologia laser - Potencial e oportunidadesTecnologia laser - Potencial e oportunidades
Tecnologia laser - Potencial e oportunidadessenaimais
 
Adaptando novas tecnologias para o processamento da carne
Adaptando novas tecnologias para o processamento da carne Adaptando novas tecnologias para o processamento da carne
Adaptando novas tecnologias para o processamento da carne senaimais
 
Seminário chapecóset2012
Seminário chapecóset2012Seminário chapecóset2012
Seminário chapecóset2012senaimais
 
Estratégias tecnológicas para a redução de sódio em produtos cárneos
Estratégias tecnológicas para a redução de sódio em produtos cárneos Estratégias tecnológicas para a redução de sódio em produtos cárneos
Estratégias tecnológicas para a redução de sódio em produtos cárneos senaimais
 
Gestão de sistemas de segurança alimentar na indústria de alimentos
Gestão de sistemas de segurança alimentar na indústria de alimentosGestão de sistemas de segurança alimentar na indústria de alimentos
Gestão de sistemas de segurança alimentar na indústria de alimentossenaimais
 
Carne de frango: perspectivas atuais e futuras - Fábio Nunes - Instituto Inte...
Carne de frango: perspectivas atuais e futuras - Fábio Nunes - Instituto Inte...Carne de frango: perspectivas atuais e futuras - Fábio Nunes - Instituto Inte...
Carne de frango: perspectivas atuais e futuras - Fábio Nunes - Instituto Inte...senaimais
 
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...senaimais
 
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...senaimais
 
Materiais avançados: vinculação e transferência de tecnologia
Materiais avançados: vinculação e transferência de tecnologia Materiais avançados: vinculação e transferência de tecnologia
Materiais avançados: vinculação e transferência de tecnologia senaimais
 
Cerâmica avançada: perspectivas de aplicação e desafios tecnológicos atuais e...
Cerâmica avançada: perspectivas de aplicação e desafios tecnológicos atuais e...Cerâmica avançada: perspectivas de aplicação e desafios tecnológicos atuais e...
Cerâmica avançada: perspectivas de aplicação e desafios tecnológicos atuais e...senaimais
 
A Eficiência Energética para o aumento da competitividade das indústrias
A Eficiência Energética para o aumento da competitividade das indústriasA Eficiência Energética para o aumento da competitividade das indústrias
A Eficiência Energética para o aumento da competitividade das indústriassenaimais
 
Apresentação isi ist senai
Apresentação isi ist senaiApresentação isi ist senai
Apresentação isi ist senaisenaimais
 
Desenvolvimentos recentes para uma produção sustentável
Desenvolvimentos recentes para uma produção sustentávelDesenvolvimentos recentes para uma produção sustentável
Desenvolvimentos recentes para uma produção sustentávelsenaimais
 
Cases de Inovação para a competitividade
Cases de Inovação para a competitividadeCases de Inovação para a competitividade
Cases de Inovação para a competitividadesenaimais
 
Benefícios da comunicação integrada com Ethernet Industrial: Uso de Ethernet ...
Benefícios da comunicação integrada com Ethernet Industrial: Uso de Ethernet ...Benefícios da comunicação integrada com Ethernet Industrial: Uso de Ethernet ...
Benefícios da comunicação integrada com Ethernet Industrial: Uso de Ethernet ...senaimais
 
Excelência Operacional – A Relevância da rede no ganho de produtividade indus...
Excelência Operacional – A Relevância da rede no ganho de produtividade indus...Excelência Operacional – A Relevância da rede no ganho de produtividade indus...
Excelência Operacional – A Relevância da rede no ganho de produtividade indus...senaimais
 
Tendências Futuras: Automação baseada em robótica para fabricação, montagem e...
Tendências Futuras: Automação baseada em robótica para fabricação, montagem e...Tendências Futuras: Automação baseada em robótica para fabricação, montagem e...
Tendências Futuras: Automação baseada em robótica para fabricação, montagem e...senaimais
 

Mais de senaimais (20)

Estratégias criativas de sustentabilidade
Estratégias criativas de sustentabilidadeEstratégias criativas de sustentabilidade
Estratégias criativas de sustentabilidade
 
Planilha de Plataformas, Serviços e Produtos
Planilha de Plataformas, Serviços e ProdutosPlanilha de Plataformas, Serviços e Produtos
Planilha de Plataformas, Serviços e Produtos
 
USANDO AS TENDÊNCIAS PARA ALAVANCAR A INDÚSTRIA DE CARNES
USANDO AS TENDÊNCIAS PARA ALAVANCAR A INDÚSTRIA DE CARNESUSANDO AS TENDÊNCIAS PARA ALAVANCAR A INDÚSTRIA DE CARNES
USANDO AS TENDÊNCIAS PARA ALAVANCAR A INDÚSTRIA DE CARNES
 
Tecnologia laser - Potencial e oportunidades
Tecnologia laser - Potencial e oportunidadesTecnologia laser - Potencial e oportunidades
Tecnologia laser - Potencial e oportunidades
 
Adaptando novas tecnologias para o processamento da carne
Adaptando novas tecnologias para o processamento da carne Adaptando novas tecnologias para o processamento da carne
Adaptando novas tecnologias para o processamento da carne
 
Seminário chapecóset2012
Seminário chapecóset2012Seminário chapecóset2012
Seminário chapecóset2012
 
Estratégias tecnológicas para a redução de sódio em produtos cárneos
Estratégias tecnológicas para a redução de sódio em produtos cárneos Estratégias tecnológicas para a redução de sódio em produtos cárneos
Estratégias tecnológicas para a redução de sódio em produtos cárneos
 
Gestão de sistemas de segurança alimentar na indústria de alimentos
Gestão de sistemas de segurança alimentar na indústria de alimentosGestão de sistemas de segurança alimentar na indústria de alimentos
Gestão de sistemas de segurança alimentar na indústria de alimentos
 
Carne de frango: perspectivas atuais e futuras - Fábio Nunes - Instituto Inte...
Carne de frango: perspectivas atuais e futuras - Fábio Nunes - Instituto Inte...Carne de frango: perspectivas atuais e futuras - Fábio Nunes - Instituto Inte...
Carne de frango: perspectivas atuais e futuras - Fábio Nunes - Instituto Inte...
 
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
 
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
Produtos inovadores na Indústria da Carne - Ana Lúcia da Silva Corrêa Lemos -...
 
Materiais avançados: vinculação e transferência de tecnologia
Materiais avançados: vinculação e transferência de tecnologia Materiais avançados: vinculação e transferência de tecnologia
Materiais avançados: vinculação e transferência de tecnologia
 
Cerâmica avançada: perspectivas de aplicação e desafios tecnológicos atuais e...
Cerâmica avançada: perspectivas de aplicação e desafios tecnológicos atuais e...Cerâmica avançada: perspectivas de aplicação e desafios tecnológicos atuais e...
Cerâmica avançada: perspectivas de aplicação e desafios tecnológicos atuais e...
 
A Eficiência Energética para o aumento da competitividade das indústrias
A Eficiência Energética para o aumento da competitividade das indústriasA Eficiência Energética para o aumento da competitividade das indústrias
A Eficiência Energética para o aumento da competitividade das indústrias
 
Apresentação isi ist senai
Apresentação isi ist senaiApresentação isi ist senai
Apresentação isi ist senai
 
Desenvolvimentos recentes para uma produção sustentável
Desenvolvimentos recentes para uma produção sustentávelDesenvolvimentos recentes para uma produção sustentável
Desenvolvimentos recentes para uma produção sustentável
 
Cases de Inovação para a competitividade
Cases de Inovação para a competitividadeCases de Inovação para a competitividade
Cases de Inovação para a competitividade
 
Benefícios da comunicação integrada com Ethernet Industrial: Uso de Ethernet ...
Benefícios da comunicação integrada com Ethernet Industrial: Uso de Ethernet ...Benefícios da comunicação integrada com Ethernet Industrial: Uso de Ethernet ...
Benefícios da comunicação integrada com Ethernet Industrial: Uso de Ethernet ...
 
Excelência Operacional – A Relevância da rede no ganho de produtividade indus...
Excelência Operacional – A Relevância da rede no ganho de produtividade indus...Excelência Operacional – A Relevância da rede no ganho de produtividade indus...
Excelência Operacional – A Relevância da rede no ganho de produtividade indus...
 
Tendências Futuras: Automação baseada em robótica para fabricação, montagem e...
Tendências Futuras: Automação baseada em robótica para fabricação, montagem e...Tendências Futuras: Automação baseada em robótica para fabricação, montagem e...
Tendências Futuras: Automação baseada em robótica para fabricação, montagem e...
 

Último

Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxAndy Lambert
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLSeo
 
Event mailer assignment progress report .pdf
Event mailer assignment progress report .pdfEvent mailer assignment progress report .pdf
Event mailer assignment progress report .pdftbatkhuu1
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communicationskarancommunications
 
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature SetCreating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature SetDenis Gagné
 
GD Birla and his contribution in management
GD Birla and his contribution in managementGD Birla and his contribution in management
GD Birla and his contribution in managementchhavia330
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒anilsa9823
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...Any kyc Account
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Delhi Call girls
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.Aaiza Hassan
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesDipal Arora
 
BEST ✨ Call Girls In Indirapuram Ghaziabad ✔️ 9871031762 ✔️ Escorts Service...
BEST ✨ Call Girls In  Indirapuram Ghaziabad  ✔️ 9871031762 ✔️ Escorts Service...BEST ✨ Call Girls In  Indirapuram Ghaziabad  ✔️ 9871031762 ✔️ Escorts Service...
BEST ✨ Call Girls In Indirapuram Ghaziabad ✔️ 9871031762 ✔️ Escorts Service...noida100girls
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayNZSG
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Servicediscovermytutordmt
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfPaul Menig
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageMatteo Carbone
 

Último (20)

Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptx
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
 
Event mailer assignment progress report .pdf
Event mailer assignment progress report .pdfEvent mailer assignment progress report .pdf
Event mailer assignment progress report .pdf
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
 
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature SetCreating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
 
Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517
Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517
Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517
 
GD Birla and his contribution in management
GD Birla and his contribution in managementGD Birla and his contribution in management
GD Birla and his contribution in management
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
 
BEST ✨ Call Girls In Indirapuram Ghaziabad ✔️ 9871031762 ✔️ Escorts Service...
BEST ✨ Call Girls In  Indirapuram Ghaziabad  ✔️ 9871031762 ✔️ Escorts Service...BEST ✨ Call Girls In  Indirapuram Ghaziabad  ✔️ 9871031762 ✔️ Escorts Service...
BEST ✨ Call Girls In Indirapuram Ghaziabad ✔️ 9871031762 ✔️ Escorts Service...
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 May
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Service
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdf
 
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
 

Desenvolvimento de aços sinterizados autolubrificantes a seco para a lubrificação sólida na Engenharia Mecânica

  • 1. Development of dry self lubricating sintered steels for solid lubrication in mechanical engineering Aloisio N. Klein (Depto de Eng. Mecânica LabMat/UFSC) Materials Laboratory Mechanical Engineering Department Federal University of Santa Catarina Florianópolis, Brazil
  • 2. Pesquisa Cientifica X Inovação tecnológica  O Brasil atualmente produz 2,18% dos artigos científicos do mundo em revistas indexadas, mas o percentual de patentes encaminhadas, que de certa forma representa um Índice de Inovação é apenas da ordem de 0,02%.  Uma das maiores preocupações que temos hoje no BRASIL é aprender a utilizar a ciência para fazer tecnologia no Brasil e tornar esta tecnologia em inovação no setor produtivo.  Na área de materiais, por exemplo, não basta desenvolver no novo material. Para que ele venha a constituir de fato uma inovação é necessário que venha a ser homologado na produção industrial, na forma de um componente com função de engenharia especifica.
  • 3. Inovação em Materiais De uma forma geral, um problema crônico dificulta a rápida incorporação de novos materiais e novos componentes em sistemas mecânicos. Isto se deve a inexistência da infra- estrutura e até de ampla metodologia para levar o processo até a fase de produto inovador disponível no mercado. Para INOVAÇÃO definitiva, além do novo material , é necessário:  projeto de componente;  prototipagem para testes no sistema;  produção de lotes em escala piloto de componentes (alguns milhares) para a homologação do material, do componente e do seu processo de fabricação.
  • 4. Development of dry self lubricating sintered steels for solid lubrication in mechanical engineering Aloisio N. Klein (LabMat/UFSC) José Daniel B. de Mello (LTM/UFU) Authorship: Roberto Binder (Whirlpool-EMBRACO) Cristiano Binder (LabMat/UFSC) Gisele Hammes (LabMat/UFSC) Renan Schroeder (LabMat/UFSC) Materials Laboratory Mechanical Engineering Department Federal University of Santa Catarina Florianópolis, Brazil +
  • 5. Most of the results shown in this presentation are part of a research program whose main goal is: -to develop dry self lubricating sintered steels that combine a low friction coefficient with high mechanical and wear resistance for applying in solid lubrication solutions. Financial support:  Whirlpool/Embraco (Joinville-Brazil)  hermetic compressors producer (34 million compressors/year). (www.embraco.com.br)  Steelinject (Caxias do Sul – Brazil)  sintered parts producer (powder injection molding) (www.steelinject.com.br)  FINEP - Financiadora de Estudos e Projetos  Brazilian funding agency (www.finep.gov.br)  BNDES - Banco Nacional de Desenvolvimento Econômico e Social ( www.bndes.gov.br )  CNPq - Conselho Nacional de desenvolvimento Cientifico e tecnológico ( www.cnpq.br ). 5
  • 6. Some general observations:  About 1/3 of all energy used in industrial countries goes to overcome friction. High friction often results in high wear and more than 30% of the production in industry goes to replace worn out products with new ones.  A better control of wear would result in longer product lifetimes and less energy consumption for replacement production. Thus, to reduce friction and wear is one important path for reducing the energy consumption and decreasing the human impact on climate change” 6
  • 7. OUTLINE 1) Introduction 2) Brief overview on self lubricating sintered bulk materials 3) Microstructure and materials requirements for high strength and high tribological performance . 4) Process, experimental and materials in development 5) Some Results on sintered steels (MIM and die pressing) 6) Conclusions 7
  • 9.  In most tribological applications, mainly fluid and grease lubricants are used to reduce friction and minimize wear; But, there are several situations where the use of solid lubricant is the best way or even the only viable option: 1) When working conditions become too severe the use of solid lubricants may be the only option to reduce friction and to control wear (e.g., high or low temperatures, low pressure or even in vacuum, or by extreme high contact pressure) 2) In Microelectromechanical Systems (MEMS); 3) In appliances and small office equipment, such as printers, electric shavers, mixers, drills, cameras, etc. 9
  • 10.  A combination of solid and liquid lubrication is also feasible and may have a synergistic effect in reducing friction and wear of the contact surfaces;  The solid lubricants can also be dispersed in water, oil and grease to improve the friction and wear under conditions of extreme pressure and / or temperatures 10
  • 11. 1) Introduction Solid lubricant can be applied to mechanical parts in two ways: 1) on the surface of the net shaped mechanical components in form of coatings (films ), or 2) in the volume of the material as Solid dispersed particles (bulk dry self lubricant lubricating composite materials) 11
  • 12. 1) Introduction Solid lubricant can be applied to mechanical parts in two ways: Vapor deposition techniques 1) on the surface of the net shaped (Chemical, Physical and Plasma mechanical components in form  assisted vapor deposition (CVD, of coatings (films ), or PVD and PACVD)) Other coating technologies (lamellar solids) 2) in the volume of the material as Solid dispersed particles (bulk dry self lubricant lubricating composite materials) 12
  • 13. 1) Introduction Solid lubricant can be applied to mechanical parts in two ways: Vapor deposition techniques 1) on the surface of the net shaped (Chemical, Physical and Plasma mechanical components in form  assisted chemical vapor of coatings (films ), or deposition (CVD, PVD and PACVD)) Other coating technologies (lamellar solids) Powder metallurgy techniques 2) in the volume of the material as like:  dispersed particles (bulk dry self - die compaction lubricating composite materials) - powder injection molding - powder extrusion - powder rolling, etc. 13
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.  Powder metallurgy techniques are low cost serial mechanical parts manufacturing techniques  By processing the parts via powder metallurgy techniques, the composition of material can easily be tuned for the particular application. 19
  • 19. 20
  • 20. a b SiC particles dispersed in Al: a) Mean particle size of SiC = 14,5 µm; b) Mean particle size of SiC= 1,5 µm 21
  • 21. UO2 + 11Wt% Mo 22
  • 22. Ni + 5%FeCr + 5FeP + 10%hBN 23
  • 23.  Powder metallurgy techniques are low cost serial mechanical parts manufacturing techniques  By processing the parts via powder metallurgy techniques, the composition of material can easily be tuned for the particular application.  Self lubricating bulk materials can re-generate its tribolayer after demage by wear or when even when it peels away (self healing effect) 24
  • 24. Self healing effect of dry self lubricating sintered materials Electrical Load resistance of contact Coefficient Resistência elétrica do contato of friction 25
  • 25. OUTLINE 1) Introduction 2) Brief overview on self lubricating sintered bulk materials 3) Microstructure and materials requirements for high strength and high tribological performance . 4) Process, experimental and materials in development 5) Some Results on sintered steels (MIM and die pressing) 6) Conclusions 26
  • 26. 2) Self lubricating sintered bulk materials Solid lubricant particles dispersed in the volume of the material Porous bearings: Pores are lubricant reservoirs (fluid lubricants and solid lubricants 27
  • 27. 2) Self lubricating sintered bulk materials Dry self lubricating bearings:  Used for decades in households equipments and in office slight equipments (printers, electric shavers, drills, blenders, among others)  Solid lubricants phases mostly used include: • graphite, hexagonal boron Nitride (h-BN), molybdenum disulfide (MoS2), tungsten disulfide (WS2) and other dichalcogenides (lamellar solids) • Low melting metals (silver, tin, lead, others), halides, oxides, among others.  The most used metallic matrixes are:  copper alloys, ferrous alloys and nickel alloys. 28
  • 28.  Usually these materials have a high content of solid lubricant (15 to 35 v/o). This results in a high degree of discontinuity of the metallic matrix leading to poor mechanical strength of composite.  Thus, these materials cannot be used for a lot of typical mechanical applications where we need higher mechanical and wear resistance of the self lubricating sintered material. So we need to develop bulk dry self lubricating materials that combine a low friction coefficient with high mechanical strength, tuned for each particular application 29
  • 29. OUTLINE 1) Introduction 2) Brief overview on self lubricating sintered bulk materials 3) Microstructure and materials requirements for high strength and high tribological performance . 4) Process, experimental and materials in development 5) Some Results on sintered steels (MIM and die pressing) 6) Conclusions 30
  • 30. 3) Microstructure and materials requirements for high strength and high tribological performance By designing dry self lubricating composites with improved mechanical properties and low friction coefficient, we have to consider some specific requirements : 1) optimization of microstructure parameters of the composite material (content of solid lubricant, lubricant particle size and size distribution, mean free path between lubricant particles) Binder, C.; Hammes, G.; Schroeder, R.; Klein, A. N. ; De Mello, J.D.B.; BInder, R. ; Ristow Jr, W. . “Fine tuned” steels point the way to a focused future. Metal Powder Report, v. 65, p. 29-37, 2010. 31
  • 31. 3) Microstructure and materials requirements for high strength and high tribological performance Ideal situation - model Area on the surfaces to be lubricated by each lubricant particle Solid lubricant particles dispersed in the composite material “regular distribution  each particle has to provide lubricant for a well defined area of the interface”. 32
  • 32. 3) Microstructure and materials requirements for high strength and high tribological performance By designing dry self lubricating composites with improved mechanical properties and low friction coefficient, we have to consider some specific requirements : 1) optimization of microstructure parameters of the composite material (content of solid lubricant, lubricant particle size and size distribution, mean free path between lubricant particles) 2) mechanical properties of the metallic matrix tuned for specific application (hardness, strength and toughness) Binder, C.; Hammes, G.; Schroeder, R.; Klein, A. N. ; De Mello, J.D.B.; BInder, R. ; Ristow Jr, W. . “Fine tuned” steels point the way to a focused future. Metal Powder Report, v. 65, p. 29-37, 2010. 33
  • 33. 3) Microstructure and materials requirements for high strength and high tribological performance The metallic matrix of the composite must be hard enough to avoid occurrence of micro plastic deformation by friction and wear under operation. The mass flow of plastic deformation covers gradually the lubricant particles, breaking replacement of lubricant to the interface. 34
  • 34. OUTLINE 1) Introduction 2) Brief overview on self lubricating sintered bulk materials 3) Microstructure and materials requirements for high strength and high tribological performance . 4) Process, experimental and materials in development 5) Some results withn sintered steels (MIM and die pressing) 6) Conclusions 35
  • 35. 3) Microstructure and materials requirements for high strength and high tribological performance There are two different ways to get solid lubricant particles dispersed in the volume of the matrix: 1) mix particles of solid lubricant with the metal matrix powders by any mixing process 2) generate particles of solid lubricant “in situ” during the sintering by reaction between components (for example, dissociation of a carbide). Binder, C.; Hammes, G.; Schroeder, R.; Klein, A. N. ; De Mello, J.D.B.; BInder, R. ; Ristow Jr, W. . “Fine tuned” steels point the way to a focused future. Metal Powder Report, v. 65, p. 29-37, 2010. 36
  • 36. 3) Microstructure and materials requirements for high strength and high tribological performance solid lubricant phase We need solid lubricant nodules with rounded shape in order to avoid stress concentration. 50 m (Iron + h-BN) powder mixture (Iron + Graphite) powder mixture (after sintering) (after sintering) Mixing process: mechanical stresses leads to spreading of lamellar solid lubricant by shearing  Undesirable distribution 37
  • 37. a) Sintering without b) Liquid phase liquid phase assisted sintering Shape and distribution of h-BN dispersed in nickel alloys after sintering: a) Ni + 10%hBN ; b) Ni + 5%FeCr (wt%) + 5%FeP(wt%) + 10%hBN (vol%). 38
  • 38.     20m Method used for the measurement of the length of segments along the matrix phase. 39
  • 39. 25 m = 19,5  1,6 m Ni + 10%hBN (without liquid phase) 20 Frequency of occurrence [%] Ni + 10%hBN + 5%FeCr + 5%FeP (liquid phase sintering) 15 m = 65,5  4,8 m 10 5 0 0 50 100 150 200 Mean free path lengths between solid lubricant particles along the matrix [m] Mean free paths lengths between solid lubricant particles measured along matrix of sintered composite material. a) Sintering without liquid phase; b) Sintering in presence of liquid phase. 40
  • 40. 3) Microstructure and materials requirements for high strength and high tribological performance There are two different ways to get solid lubricant particles disperse in the volume of the matrix: 1) mix particles of solid lubricant with the metal matrix powders by any mixing process 2) generate particles of solid lubricant “in situ” during the sintering by reaction between components (for example, dissociation of a carbide). Binder, C.; Hammes, G.; Schroeder, R.; Klein, A. N. ; De Mello, J.D.B.; BInder, R. ; Ristow Jr, W. . “Fine tuned” steels point the way to a focused future. Metal Powder Report, v. 65, p. 29-37, 2010. 41
  • 41. Using thermodynamic data for selecting the mixture components Example: Will compound AB dissociate ain a matrix M ?  In this case we have to compare the values for Gibbs free energy for formation of solid solution between A and B at temperature T (equation 1), and the Formation Gibbs free energy of compound AB at the same temperature T (equation 2) . g(T)sol = nARTlnaA + nBRTlnaB + ... + nMRTlnaM (1) G0(T)AB = C1 + C2TlogT + C3T (2) g(T) = [nARTlnaA + nBRTlnaB + nMRTlnaM ] - nG0T(AB) Dissolution will occur up to activity values (corresponding to concentrations values via relation ai = xii) for which relation 3 is satisfied: |AG(T)sol| ≥ |G0(T)AB| (3) 42
  • 42. Example: Silicon carbide (SiC) in Iron, 11500C G(T) = [nSiRTlnaSi + nCTlnaC + nMRTlnaM ] - nG0T(SiC) 0 RTlna Si T = TS = 1150 OC - 10 G 0 ( T ) Si C G0(T) at 11500C [kcal/mol] G 0 (T ) Cr 4C - 20 RT l na Si = G 0 ( T ) SiC - 30 G 0 (T) NbC - 40 G 0 (T) TiC - 50 1,0 0,1 0,01 0,001 0,0001 Activity of alloying element Si dissolved in the matrix 43
  • 43. + 10 0 Mn + C = MnC - 10 [ 3/ Cr + C = 1/2Cr3C2 2 kcal mol [ G0(T) - 20 - 30 - 40 - 50 0 200 400 600 800 1000 1200 1400 1600 Temperatura (0C) [ T(0K) = T(0C) + 273 ] 44
  • 44. Test samples production a) Powder injection moulding (fine carbonyl powders)  Self lubricating sintered steels : Fe + C + SiC + Ni + Mo alloy system;  Self lubricating composites with Ni alloys as matrix  Solid lubricants used: h-BN, Graphite and mixtures of them b) Uniaxial die pressing (atomized powders from Höganäs)  Self lubricating sintered steels : Fe + C + SiC + Ni + Mo alloy system;  Solid lubricant used: h-BN, Graphite and mixtures of them 45
  • 45. a Sintered steels produced by MIM (sintered in the PADS furnace, TS = 1150 C, 1h, H2 ) a) Fe + 0.6%C + 4%Ni  Ferrite + perlite b b) Fe + 0.6%C + 4%Ni + 2%SiC  Ferrite + Perlite + Graphite nodules that are surrounded by a ferrite ring Solid lubricant nodules formed “in situ” during the sintering by dissociation of SiC 46
  • 46. Line profile - Microprobe analysis 47
  • 47. graphite nodule FEG-SEM image of an graphite nodule (taken on a fractured surface) 48
  • 48. FEG-SEM image of the interior of the graphite nodule: Graphite foils with 10 to 45 nm in thickness (about 30 to 100 atom planes) 49
  • 49. Fe + 0,6C + 3SiC Fe+0,6C+2SiC+4Ni Fe+0,6C+ 3SiC+4Ni+1Mo Fe+0,6C+ 3SiC+4Ni Microstructure of Fe+C+SiC+Ni+Mo steels (1h, 1150C, H2 plasma assisted)
  • 50. 3) Microstructure and materials requirements for high strength and high tribological performance solid Solid lubricant lubricant phase nodules 50 m 20 m Sintered steel  graphite as solid Graphite nodules formed “in lubricant mixed to the feedstock situ” during the sintering: Tensile strength = 340 Mpa Tensile strength = 710 Mpa Friction coefficient  = 0,11 Friction coefficient  = 0,06 51
  • 51. OUTLINE 1) Introduction 2) Brief overview on self lubricating sintered bulk materials 3) Some considerations about microstructure and properties requirements. 4) Process, experimental and materials in development 5) Some Results on sintered steels (MIM and die pressing) 6) Conclusions 52
  • 52. 4)Mechanical and tribologycal properties of dry self lubricating sintered MIM steels 53
  • 53. 1) Powders  Fe  BASF (CL-OM) carbonyl iron powder with a mean particle size of 7.8 m;  Mo  elemental Mo (OMP HC Starck, d (mean) = 5,5 m,)  Ni  element Ni powder (INCO 123, d (mean) = 8,86 m);  SiC  mean particle size of 10 m 2) Feedstock preparation The feedstock for injection molding was prepared by mixing the powder (Haake Sigma mixer, 180C, 70 rpm, 90 min) with 8% (w/o) organic binders (binder system) Binder system: paraffin-wax, stearic acid (surfactant), amide wax, EVA (ethylene vinyl acetate copolymer) and polypropylene (back bone). 54
  • 54. 3) Injection of the parts  Arbourg 320S injection molding machine (pressure: 100 MPa). 4) A chemical debinding step  dissolution of the low molecular weight components of the binder system in hexane. 5) Thermal Debinding and Sintering (1100 to 1200 C, 1h, H2 plasma (low energy) The thermal debinding, as well as the sintering , were performed in the same thermal cycle in a Hybrib Plasma Reactor, i.e., using the Plasma Assisted Debinding and Reactor Sintering (PADS) process develop in Brazil. 55
  • 55. Plasma Assisted Debiding (PAD) (using the reactive environment of a plasma) Electron bombardment of Macromolecule macromolecules (inelastic collision)  dissociation H H H H H H H H H H H H C C H C C H C C C C C C n H H H H H H H H H H H H polyethylene H H C C H e + H2 = H + H + e H C H H H H A. N. Klein et all, US Patent Nr. US 6,579,493 B1 (2003) A. N. Klein at all, European Patent No. EP 1 230 056 B1 (2003) 56
  • 56. gas inlet Shielding cathode energy supply for electrical heating anode electrical heating elements vacuum chamber cooling system thermocouples energy supply for the cathode vacuum system Design (schematic) of the hybrid plasma DC reactor 57
  • 57. Materials Laboratory Plasma Reactor: Pilot Plant at LabMat Mechanical Engineering Department Federal University of Santa Catarina Florianópolis, Brazil R. Machado, A. N. Klein, … “Industrial Plasma Reactor for Plasma Assisted Thermal Debinding of Powder Injection-Molded Parts. US 7,718,919 B2 (2010) 58
  • 58. Al2O3 plate anode cathode Plasma Assisted Debinding and Sintering (PADS) in the same thermal cycle 60
  • 59. After debinding without plasma: organic residues remain in the reactor 61
  • 60. After debinding without plasma: details of organic residues 62
  • 61. Debinding and sintering in the same equipment and same thermal cycle (single – cycle) Saving energy and processing Temperature (0C) sintering time! plasma nitriding or debinding carbonitriding Processing time (h) 63
  • 63. Properties of Fe + 0,6%C + SiC sintered steels 65
  • 64. Friction Coef f icient Durability 0,50 3500 0,45 3000 0,40 0,35 2500 Friction Coefficient Durability ( N.m ) 0,30 2000 0,25 1500 0,20 0,15 1000 0,10 500 0,05 0,00 0 0 1 2 3 4 5 SiC Content (w/o) Fe + 0.6%C + SiC sintered steels (1150 C, 1h, H2, PADS) 66
  • 65. 0.40 0.35 Friction coefficient as a function 1100 °C of sintering temperature 1150 °C Friction Coefficient 0.30 1200 °C 0.25 0.20 0.15 0.10 0.05 0.00 0 1 2 3 4 5 6 SiC content ( % ) Fe + 0,6%C + SiC sintered steels (1h, H2, PADS) 67
  • 66. 16 1100 °C 14 1150 °C Scuffing Resistance ( N.m )103 1200 °C 12 10 8 6 4 Mudar 2 graficos 0 0 1 2 3 4 5 6 SiC content ( % ) 68
  • 67. Comparison of friction coefficient of materials containing distinct graphite types De Mello & Klein. To be published 69
  • 68. HV 0,2 YS UTS % EL Yield Strength and Tensile Strength (MPa) 800 18 700 15 600 Hardness (HV) 12 Elongation (%) 500 400 9 300 6 200 3 100 0 0 0 1 2 3 4 5 SiC content (w/o) (w/o) in Fe + 0,6%C matrix SiC Content in the matriz Fe + 0.6C Tensile strength, hardness and elongation measured on the sintered Fe + 0.6%C + increasing content of SiC (w/o). 70
  • 69. Properties of Fe + 0,6%C + Ni + Mo + SiC sintered steels 71
  • 70. Martensitic dry self lubricating sintered steels. Fe + 0,6C + 4Ni + 1Mo + 3SiC
  • 71. Mechanical properties of some of sintered self lubricating steels 73
  • 72. HV = 400 UTS = 810 Mpa Elongation = 6% 74
  • 73. Wear bahavior in sliding tests 75
  • 74. Conclusions 1) Self lubricating sintered steels produced by Powder Injection Molding with a wide range of mechanical properties (200-1000 MPa and 150-600HV) were obtained. The friction coefficient of this materials can be varied in a range from  = 0,04 to  = 0,21 2) Compositions having at the same time Ni, Mo, Si and C generate a martensitic microstructure even under low cooling rates. 3) It is suggested that graphite foils, removed from the “in situ” generated graphite nodules, remain at the interface, thus contributing to the formation of the protective tribolayer. 76
  • 75. Thanks for your attention! 77
  • 76. Dissociation of SiC in iron matrix Fe+0.6%C+3% SiC Graphite Fe Fe3C Fe Fe Intensity Angle 78
  • 77. In situ dissociation of precursor Graphite Fe+0.6% C+3% SiC – 1100 °C 2400 2200 240 min 2000 120 min Fe 60 min 1800 30 min 1600 10 min Intensidade Intensity 1400 Fe3C Fe Fe 1200 1000 800 600 400 200 0 20 40 60 80 100 120 2(Graus) Angle 79
  • 78. Martensitic dry self lubricatiing sintered steels. Fe + 0,6C + 4Ni + 1Mo + 3SiC (verificar na tese cristiano
  • 79. Self healing effect of the dry self lubricating sintered steel produced (composite material) 81
  • 80. 2) Materials and experimental 5) Tribological characterization (a) (b) Reciprocating wear test (un-lubricated, in air). (a) equipment; (b) steel sphere (held on a pivoted arm) compressing against the moving specimen surface (schematically) 82
  • 81. (sp3 - diamond) (sp2 – graphite) Graphite nodule G’ Band Graphite nodule D band SiC dissociation SiC dissociation G band Graphite nodule 10000 1582.3 full-width at half nodular cast iron 9000 8000 peak height 7000 2727.11 6000 Counts 5000 4000 3000 1356.62 2000 1000 0 500 1000 1500 2000 2500 3000 Raman shift / cm-1 1581.65 Graphite powder 5000 UF4 4000 3000 2727.42 Counts 2000 1000 0 500 1000 1500 2000 2500 3000 Raman shift / cm-1 Raman Spectroscopy 83
  • 82. Band D Band G Band D Band G Crystallite Band G’ Material position position FWHPH FWHPH ID / IG size La Position Band G’ (cm-1) (cm-1) (cm-1) (cm-1) (Å) (cm-1) Shape Graphite Broad 1354.34 1581.65 8.0 14.71 0.050 880.00 2726,80 powder Nodular cast Broad 1356.62 1582.3 16.50 27.96 0.189 232.80 2727,10 iron Peak Fe+0.6C+3SiC 1351.55 1586.60 58.97 42.22 1.183 37.19 2709,17 FWHPH- full-width at half peak height  Turbostratic 2D graphite  Higher interlamellar distances  Lower friction coefficient De Mello & Klein et al, 64th STLE Annual Meeting, Las Vegas, 2010 84
  • 83. Results and discussion: Tribological behaviour Fe+0.6%C+5%SiC, 14 N Wear track It is reasonable to suppose that the graphite foils are removed from the in situ generated On the other hand, the tribo- graphite nodules and remain at layers also degrade under the the interface thus contributing sliding action. to the formation of the protective tribo-layer; 85
  • 84. Fe + 0.6%C + 5%SiC Before test (14 N, 11500C,1h,PADS)  Turbostratic 2D graphite  Higher 8000 1582.08 interlamellar 7000 1350.15 distances 6000 Wear scar  Low friction 5000 2698.25 coefficient C o u n ts 4000 3000 2939.84 2000 1000 0 500 1000 1500 2000 2500 3000 86 Raman shift / cm-1
  • 85. The Plasma Assisted Debinding rate is a function of several variables:  type of polymer or binder system used (properties of the binders)  temperature and heating up rate (time)  energy and quantity of the reactive species generated in the plasma.  We need electrons with enough energy to cause the dissociation of de binder molecules, and  Atomic Hydrogen (H2 + e = H + H + e ).
  • 86. The reaction constant for any dissociation reaction promoted by energy transfer via inelastic collisions of electrons with binder molecules in the plasma may be given by   Kr   g 0 e (  ) e (  ) d  Wherein: g e ( )  energy distribution function of the electrons  e ( ) cross section of collision distribution function (cross section for the inelastic collision which promote the dissociation), as a function of the electrons energy
  • 87. UFSC- Mechanical Engineering Department MATERIALS LABORATORY Plasma technology applied to powder materials processing Aloisio N. Klein Team involved in the developments: Joel L. R. Muzart†, Antonio R. de Souza, Carlos Speller, Ana M. Maliska, Paulo A. P. Wendhausen, Marcio C. Fredel, Cristiano Binder, Davi Fusão, Roberto Binder, Waldyr Ristow Jr., Ricardo Machado, Paulo Alba, Maria A. dos Santos, Rubens M. do Nascimento, Wagner da Silveira, Henrique C. Pavanati, Gisele Hammes, Vilson J. Batista, Ivani T. Lawall...).
  • 88. OUTLINE 1) Plasma technology applied to powder materials processing a) Plasma Assisted Debinding and Sintering (PADS) of PIM parts (dissociation of organic macromolecules) b) Plasma Assisted Sintering: Surface modification via plasma (surface morphology, chemical composition / surface enrichment , cathodic sputtering, …). c) Thermo-chemical surface treatments - via plasma (cleaning, nitriding, cementation,…)
  • 89. Plasma generation Important phenomena in (abnormal DC glow discharge) the plasma environment: 1) Ionic and fast neutral Cathode Anode atoms bombardment on the cathode: -V luminescent region heat generation and sputtering - + reactive species 2) Inelastic collision of Vp - electrons with gaseous species in the plasma 0 environment: + chemical reactions -V improvement
  • 90. OUTLINE 1) Plasma technology applied to powder materials processing a) Plasma Assisted Debinding and Sintering (PADS) of PIM parts (dissociation of organic macromolecules) b) Plasma Assisted Sintering: Surface modification via plasma (surface morphology, chemical composition / surface enrichment , cathodic sputtering, …). c) Thermo-chemical surface treatments - via plasma (cleaning, nitriding, cementation,…)
  • 91. Plasma Assisted Debiding (PAD) (using the reactive environment of a plasma) Electron bombardment of Macromolecule macromolecules (inelastic collision)  dissociation H H H H H H H H H H H H C C H C C H C C C C C C n H H H H H H H H H H H H polyethylene H H C C H e + H2 = H + H + e H C H H H H A. N. Klein et all, US Patent Nr. US 6,579,493 B1 (2003) A. N. Klein at all, European Patent No. EP 1 230 056 B1 (2003)
  • 92. Plasma Assisted Debinding of PIM parts Advantages: a) Increasing of the debinding rate  save processing time / improve the productivity b) The furnace remains clean  possibility for debinding and sintering in the same equipment in a single – cycle
  • 93. Plasma Assisted Debinding 1) Electrons impinging the surface of the parts causes dissociation of binder molecules  to convert the binder into gas molecules 2) A new portion of the molted binder flows up to the top via interconnected pores  reducing the time needed for binder removal
  • 94. Plasma Assisted Debinding: Effect of the electrons on the debinding rate (Experimental Results for Polypropylene in hydrogen electrical discharge) Polypropylene removal (%) 100 50 0 Anode-cathode Floating potential Anode/shield-cathode 0 10 20 30 40 50 60 Time (min) T = 400°C
  • 95.
  • 96. Plasma Reactor: Pilot Plant at LabMat R. Machado, A. N. Klein, … “Industrial Plasma Reactor for Plasma Assisted Thermal Debinding of Powder Injection-Molded Parts. US 7,718,919 B2 (2010)
  • 97.
  • 98. After Plasma Assisted Debinding: no organic residues remain in the reactor
  • 99. Al2O3 plate anode cathode Parts after Plasma Assisted Debinding and Sintering (PADS) in the same thermal cycle
  • 100. Parts after Plasma Assisted Debinding and Sintering (PADS) in the same thermal cycle
  • 101. After debinding without plasma: organic residues remain in the reactor
  • 102. After debinding without plasma: details of organic residues
  • 103. Debinding and sintering in the same equipment and same thermal cycle (single – cycle) Temperature (0C) Sintering debinding plasma nitriding or carbonitriding Processing time (h)
  • 104. Some results - Fe+ 2Ni + 0,6C low alloy steel - 316-L stainless steel. Binder system: polymer and wax. Wax debinding: organic solvent. Thermal debinding and sintering: PADS furnace. Debinding Sintering Alloy parameters parameters 2NiFe0,6C 1250 ºC, 60 min, (carbonyl Heating rate: 2,0 argon partial powders) ºC/min. pressure 316-L Atmosphere: atomic hydrogen 1300 ºC, 90 min, (atomized H2 partial pressure powders)
  • 105. Comparison of metallurgical variables of materials processed in PADS furnace and in a conventional route (catalytic debinding) Densit Carbon Hardness Ultimate Yield Elong Conditio Proces Alloy y content (HV 0,2 Strength Strengt ation n s (g/cm3) (% mass) kg) (MPa) h (MPa) (%) 0,58 – PADS 7,65 170 575 480 4 0,62 sintered Fe + Conv. 7,50 0,6 – 0,8 160 500 250 3 2% Ni + 0,6C 0,58 – PADS 7,65 350 1210 1180 2 0,62 tempered Conv. 7,50 0,6 – 0,8 340 950 800 3 PADS 7,70 0,0015 170 505 290 54 316-L sintered Conv. 7,85 0,03 máx. 120 510 180 50
  • 106. PADS process x Lupatech’s actual process Processed alloy: 316-L stainless steel: – Actual process: permeation controlled thermal + vacuum sintering. – PADS process: Plasma Assisted Debinding and Sintering. Heating rate Energy Gas Lead time Process during debinding consumption consumption (h) (ºC/min) (kW) (m3) PADS 7 2,0 500 12 Lupatech 80 0,07 800 120
  • 107. Steelinject Industrial PADS Equipment Industrial Plasma Reactor for Plasma Assisted Thermal Debinding of Powder Injection-Molded Parts. US Patent Office, number US 7,718,919 B2 (2010)
  • 108. Resultados:  Redução de custo (processo PADS): mínimo 20 %  Redução de energia (processo PADS): : 50% Premio Medalha de desenvolvimento 113
  • 109. Nestor http://medalha.desenvolvimento.gov.br/arquivos/agra Perini ciados06.htm Cargo: Presidente da Lupatech S/A Indicação: Sr. Paulo Belini; Sr. Jorge Gerdau Johannpeter e Sr. Raul Anselmo Randon Justificativa A Lupatech S/A., através de sua divisão Steelinject, é pioneira da na América Latina na utilização da tecnologia MIM (Metal Indicação: Injection Molding). Esta tecnologia é indicada para produção de peças em série de alta precisão e complexidade de forma. A Steelinject conseguiu reduzir em 20% os custos de produção e em 50% o de consumo de energia graças a uma tecnologia desenvolvida em parceria com o laboratório de materiais da Universidade Federal de Santa Catarina (UFSC). Com o invento, a empresa pretende deixar de ser importadora para se tornar exportadora de tecnologia. A patente nos Estados Unidos acabou de ser registrada e está em processo o registro na Europa. No Brasil, a patente já está no Instituto Nacional de Propriedade Industrial (INPI). 114
  • 110. Processo de transferência da tecnologia para PADS para USA DSH Technologies, LLC, que através da associada - Elnik Systems vai produzir o Lupatech (Caxias)  equipamento e disponibilizar no + LabMat (UFSC) mercado mundial. Primeiro equipamento em 3D foi exposto na PM2008 em Washington (8 a 12 de Junho ) 115
  • 111. Forno PLASMIM projetado para a Empresa Elnik Systems (USA) pela Equipe do LabMat/UFSC + Steelinject (Caxias do sul) Protótipo Forno Hibrido para extração térmica de ligantes orgânicos assistida por plasma seguida de sinterização assistida por plasma.
  • 112. Plasma reactors for materials processing Possibilities: A) Plasma reactor with an auxiliary resistive heating The plasma is used only to promote the chemical reactions. Plasma works with low current density (at the exact current needed). B) Plasma reactor without auxiliary resistive heating Heat is generated by the plasma, i.e., only by the bombardment of the cathode by ions and atoms of high energy. Problem: high sputtering from cathode – surface contamination Opportunity: this can be used for surface enrichment of unalloyed iron parts
  • 113. Modification of the chemical composition of parts during plasma assisted sintering Surface enrichment of unalloyed iron with Chromium
  • 114. 6 1150 °C Concentração de Mo (%peso) 1000 °C 800 °C 5 Concentration of Mo (%weight) 4 3 2 1 0 0 5 10 15 20 25 30 Profundidade (m) Depth(µm) Enrichment with Molybdenum: Temperature Influence (1Torr; 700V; 1h ; 10%H2 + 90%Ar; Gas flow = 5 x 10-6 m3/s (300 sccm)
  • 115. 8 3,5 Torr 7 1 Torr Concentração de Mo (%peso) 6 Concentration of Mo (%weight) 5 4 3 2 1 0 0 10 20 30 40 50 60 70 80 90 100 Profundidade ( m) Depth(µm) Enrichment with Molybdenum: Pressure Influence ( 1150 °C ; 700V; 1h ; 10%H2 + 90%Ar; Gas flow = 5 x 10-6 m3/s (300 sccm)
  • 116. 800°C; 500 V 500 V 250 700 V 200 Amount Contagem 150 800°C; 700 V 100 50 0 0,0 0,2 0,4 0,6 0,8 1,0 Tamanho de partícula (m) Particle size (µm) Deposition of atoms/ions sputtered from the cathode (clusters of size in the nanometer range)
  • 117. Surface dense layer in plasma assisted sintering (parts placed on the cathode)   View of the lateral side Base, which is in contact to the which is exposed to ion support and does not receive bombardment bombardment Sputtering + Ion bombardment deposition and Dense surface layer activated diffusion The International Journal of Powder Metallurgy, Vol. 34, No. 8, 1998, pg.55–62.
  • 118. Surface dense layer in plasma assisted sintering (parts placed on the cathode) Sintering of unalloyed iron samples produced by powder compaction As compacted Afther sintering (on cathode)  Ionic bombardment of the surface improves diffusion rates; The densification is further enhanced by the retrodeposition of atoms.
  • 119. OUTLINE 1) Plasma technology applied to powder materials processing a) Plasma Assisted Debinding and Sintering (PADS) of PIM parts (dissociation of organic macromolecules) b) Plasma Assisted Sintering: Surface modification via plasma (surface morphology, chemical composition / surface enrichment , cathodic sputtering, …). c) Thermo-chemical surface treatments - via plasma (cleaning, nitriding, cementation,…)
  • 120. c) Thermo-chemical surface treatments - via plasma (nitriding, cementation, nitro cementation) NITRIDE LAYER 20 m 20 m Unalloyed iron: sintering followed by plasma nitriding Surface and Coatings Technology 141(2001) 128-134
  • 121. Reator de nitretação por plasma Montagem parcial da carga a ser escala piloto (4 mil peças por tratada. carregamento)
  • 122.  Remoção do óleo de calibração dos poros residuais e nitretação por plasma de materiais sinterizados em único ciclo térmico (patente); Desenho esquemático célula de limpeza e nitretação – escala industrial  4,5 milhões peças/ano 127
  • 123.  Remoção do óleo de calibração dos poros residuais e nitretação por plasma de materiais sinterizados em único ciclo térmico (patente); Foto da célula em operação na Empresa GKN (fornecedor de peças para a Embraco) 128
  • 124. Foto da célula em operação na Empresa GKN (fornecedor de peças para a Embraco) 129