MERDA ACONTECE
Algo está prestes a atingir o ventilador
“Seres humanos e o mundo natural estão em um curso de colisão ... ...
desenvolveram uma tática de sobrevivência especial que lhes permite dar
continuidade à sua existência mesmo após a morte d...
Quando a temperatura interna do corpo sobe, o microclima do corpo
muda, permitindo a proliferação rápida de anticorpos, ce...
em 1997, uma em oito (33.000 espécies) estavam ameaçadas de extinção.6
O que poderia levar a humanidade a agredir o sistem...
Alerta de Patógenos!
























15.589 espécies estão consideradas sob risco de
extinção, inc...
Onde há qualquer evidência que um planeta pode ficar doente e
morrer? Bom, e Marte?
O que aconteceu com Marte, afinal? Nos...
QUEM POUPA, TEM

O

s Estados Unidos são não somente uma terra de indústria e
comércio, mas também uma terra de consumo e ...
reciclados como “lixo”. Muitas das pessoas que estão desenvolvendo
programas municipais de compostagem vieram do campo da
...
fertilidade do solo. São ainda um dos ingredientes principais dos esgotos,
sendo responsáveis por boa parte da poluição da...
O CICLO DE
NUTRIENTES HUMANO

O Ciclo de Nutrientes Humano é um ciclo natural e infinito. Para manter
o ciclo intacto, o a...
Solos agrícolas utilizados na produção de alimentos deveriam ser
deixados mais férteis a cada ano devido ao crescimento co...
Cada um de nós nos Estados Unidos desperdiça a cada ano cerca
de 450 quilos de humanure, que são descartados nos esgotos e...
representa um recurso agrícola apropriado à produção de alimentos.
Quando nós combinamos nossos excrementos com outros mat...
Fonte: Fahm, Lattee, (1980), The Waste of Nations; páginas 33 e 38;
Allanheld, Osmun and Co. Publishers, Inc., Montclair, ...
As taxas cobradas para dispor de material nos aterros em cada
região dos Estados Unidos tem aumentado a uma taxa acima do ...
FATOS CURIOSOS
sobre a água



Se toda a água potável do mundo fosse posta em um tanque
cúbico, o tanque teria 150 quilôm...
ÁGUA, ÁGUA POR TODOS OS LADOS
E ELA ESTÁ TODA CORRENDO LADEIRA A BAIXO





















Em meados dos anos ...
nem queremos saber.
Cada vez que nós damos a descarga no banheiro, lançamos 25 a
30 litros de água poluída no mundo. Isso ...
ou biologicamente ativa. Além disso, drogas que foram parcialmente
degradadas antes da excreção podem ser convertidas a su...
gerar um lucro líquido, ao invés de serem uma fonte de gastos constantes.
A obsessão pelos banheiros que usam a descarga p...
atualmente um dos problemas mais sérios de poluição de águas na
Europa e América do Norte. A poluição por nitratos pode ca...
RECICLANDO HUMANURE
Dejetos humanos podem ser reciclados naturalmente, ao serem
oferecidos aos organismos que deles se ali...
abarrotadas representam hábitos arraigados que devem ser repensados
e reinventados. Se nós humanos temos a metade da intel...
ATENÇÃO TERRÁQUIOS, EU SOU GIRDLOK, DO PLANETA
TURDLOK,

NA

CONSTELAÇÃO

ALPHA

ROMEO.

NÓS

DESCOBRIMOS UM MANUSCRITO AN...
CRIAÇÃO DE MICRÓBIOS
Aproveitando o Poder dos Organismos Microscópicos

H

á no geral quatro maneiras de se lidar com excr...
entéricas através dos alimentos, além de ancilostomíase." 2
Este livro, portanto, não é sobre a reciclagem de excrementos
...
O Manual de Compostagem para a Fazenda diz que composto é "um
grupo de resíduos orgânicos ou uma mistura de resíduos orgân...
A compostagem de materiais orgânicos requer exércitos de
bactérias. Essa força microscópica trabalha tão vigorosamente que...
populações microbianas que adicionam vida ao solo. Nutrientes como o
nitrogênio no composto são liberados lentamente por t...
desagradáveis e ajudar a incorporar o oxigênio necessário na pilha. Portanto,
se você vai fazer compostagem, não jogue sim...
também não é necessário. Porém, a água necessária para compostagem pode
ir de 1000 a 1500 litros para cada metro cúbico de...
BENEFÍCIOS DO COMPOSTO
ENRIQUECE O SOLO
 Adiciona material orgânico
 Aumenta a fertilidade e produtividade
 Inibe doenç...
pouco de engenhosidade e uma busca minuciosa", pode-se encontrar. Um
horticultor no livro declara que quando ele fica "tod...
Tabela 3.2

RELAÇÕES CARBONO/NITROGÊNIO
Material
Sed. esgoto ativado
Amaranto
Bagaço de maçã
Sangue
Pão
Repolho
Papelão
Bo...
Tabela 3.5

COMPARAÇÕES ENTRE DIFERENTES TIPOS DE ESTERCOS
Esterco

Umidade (%)

Nitrogênio (%)

Fósforo (%)

Potássio(%)
...
Também é por isso que fezes e urina somente não vão compostar.
Elas contém muito nitrogênio e pouco carbono, e os microrga...
MICRORGANISMOS TERMÓFILOS
Uma vasta gama de microrganismos vivem em uma pilha de
composto. Bactérias são especialmente abu...
LEITURA ESSENCIAL PARA
NOITES DE INSÔNIA

pH SIGNIFICA FORÇA DE HIDROGÊNIO
É uma medida do grau de alcalinidade ou
acidez ...
Figura 3.3

MICRORGANISMOS DO COMPOSTO MAGNIFICADOS 1.000 VEZES

Actinomicetos

Fungos

Bactérias

100 mil a 100 milhões
p...
aquecem sementes quando germinam, já que sementes mantidas em
ambiente estéril permanecem frias enquanto germinam.24
Tanto...
encontradas na natureza, e ainda assim encontradas em todo lugar, é
suficientemente impressionante. O fato que elas estão ...
temperatura da massa do composto a até 44oC. Este é o primeiro estágio do
processo de compostagem. Essas bactérias mesofíl...
ele estava fazendo, e assim aumentaria a produção total em 50%.
Operadores de compostagem municipal vêem caminhões de comp...
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Humanure (português)
Próximos SlideShares
Carregando em…5
×

Humanure (português)

2.436 visualizações

Publicada em

The Humanure Handbook: A guide to compost human manure.
(Humanure: Um guia para a compostagem de estrume humano.)

Publicada em: Educação
0 comentários
5 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
2.436
No SlideShare
0
A partir de incorporações
0
Número de incorporações
1
Ações
Compartilhamentos
0
Downloads
49
Comentários
0
Gostaram
5
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Humanure (português)

  1. 1. MERDA ACONTECE Algo está prestes a atingir o ventilador “Seres humanos e o mundo natural estão em um curso de colisão ... Não restam mais que algumas poucas décadas, antes que a chance de evitar os riscos que agora confrontamos estejam perdidas, e as perspectivas apra a humanidade imensuravelmente diminuídas.” 1.600 cientistas, 18 de novembro de 1992 – Aviso dos Cientistas do Mundo à Humanidade H á uma teoria perturbadora sobre a espécie humana que começou a assumir um nível alarmante de realidade. Parece que o comportamento da raça humana está apresentando paralelos sinistros ao comportamento de organismos patogênicos, ou seja, causadores de doenças. Quando vista do próximo nível quântico de perspectiva, no qual a Terra é vista como um organismo e humanos são vistos como microorganismos, a espécie humana parece uma ameaça ao planeta. De fato, a raça humana está se parecendo um bocado com uma doença – consistindo de organismos multiplicando-se em excesso, consumindo desenfreadamente, e gerando resíduos sem se preocupar com a saúde e bem estar do seu hospedeiro – o planeta Terra. Organismos patogênicos são uma peculiaridade sórdida da natureza, embora eles também tenham seus propósitos construtivos, tais como eliminar os fracos garantindo somente a sobrevivência dos mais aptos. Eles o fazem subjugando seu hospedeiro, sugando sua vitalidade e liberando veneno em seu rastro. Patógenos não dão a mínima para a sua própria fonte de vida – o seu hospedeiro – e muitas vezes o matam rapidamente. Isso pode paracer uma forma boba de uma espécie manter sua própria existência; afinal, se você mata o hospedeiro do qual sua própria vida depende, então você também tem que morrer. Mas os patógenos Manual “Humanure” – Capítulo Um: Merda Acontece 1
  2. 2. desenvolveram uma tática de sobrevivência especial que lhes permite dar continuidade à sua existência mesmo após a morte de seu hospedeiro. Eles simplesmente viajam até um novo hospedeiro, enviando seus representantes para procurar e infectar outro organismo, enquanto sua própria população morre em massa junto com o hospedeiro original. Um homem morrendo de tuberculose tosse em seu leito de morte, um ato instigado pelo agente infeccioso, garantindo que a doença tenha chance de se espalhar para outros. Uma criança defeca na terra fora de sua casa, satisfazendo sem saber as necessidades dos parasitas que habitam seus intestinos, que requerem um tempo no solo para completar seu ciclo de vida. Uma pessoa com cólera defeca em uma fossa negra que vaza para dentro do solo, contaminando o lençol freático e o suprimento de água para sua vila, permitindo o alastramento da doença a outros moradores. No caso de organismos patogênicos que matam seu hospedeiro, o comportamento é previsível: multiplicar-se sem consideração por qualquer limite ao crescimento, consumir desenfreadamente e excretar toxinas a um nível que prejudica atrozmente o hospedeiro. Quando isso se traduz em termos humanos, fica evidente uma familiaridade inquietante, especialmente quando nós consideramos crescimento, consumo e riquezas materiais como sinônimos de sucesso. Suponha que nós humanos estejamos, enquanto espécie, comportando-nos como uma doença: estamos nos multiplicando sem consideração por qualquer limite, consumindo recursos naturais como se não houvesse gerações futuras, e gerando detritos que estão mortificando o planeta do qual depende nossa própria sobrevivência. Há dois fatores que nós, como espécie, não estamos levando em consideração. O primeiro é a tática de sobrevivência de patógenos, que requer hospedeiros adicionais para infectar. Nós não temos o luxo dessa opção, pelo menos não ainda. Se nós conseguirmos continuar com nosso comportamento perigoso, então também conseguiremos marchar rumo à nossa própria destruição. No processo, podemos também arrastar muitas outras espécies conosco, uma síndrome horrenda que já está ocorrendo. Isso é evidente pela ameaça de extinção que paira, como a espada de Dâmocles, sobre um número alarmante das espécies do planeta. Há uma segunda consideração: organismos hospedeiros, quando infectados, reagem. Conforme os humanos se tornam uma ameaça crescente, será que a Terra não tentará se defender? Quando um organismo patogênico infecta o corpo humano, este eleva sua própria temperatura para se defender. Esse aumento da temperatura não somente inibe o crescimento do patógeno invasor, como ainda aumenta em muito a eficiência de outros mecanismos de defesa do corpo. O aquecimento global pode ser a forma da Terra induzir uma “febre” global, como uma reação à poluição humana da atmosfera e o consumo excessivo de combustíveis fósseis. Manual “Humanure” – Capítulo Um: Merda Acontece 2
  3. 3. Quando a temperatura interna do corpo sobe, o microclima do corpo muda, permitindo a proliferação rápida de anticorpos, celulas T, leucócitos e outros defensores contra a doença. Conforme o clima da Terra muda e o meio ambiente é sufocado pela poluição, nós humanos já temos uma idéia de qual tipo de organismos a natureza pode e vai repentinamente liberar para nos confrontar. Eles estão começando a se mostrar como pragas, insetos e novas cêpas de bactérias mortíferas, vírus e algas particularmente tóxicas a humanos. Conforme a temperatura do planeta aumenta, ela pega um embalo que não pode ser contido, não importa quão desesperados e arrependidos nós humanos possamos eventualmente ficar. A “febre” da Terra, como uma roda em movimento, passará apenas no seu próprio tempo. Podemos estar criando um monstro de Frankenstein de proporções astronômicas, a não ser, claro, que nós realmente sejamos organismos patogênicos. Se for esse o caso, então nós realmente não ligamos, não é mesmo? Patógenos muitas vezes podem habitar um organismo hospedeiro por um tempo razoável sem causar sintomas de doença. Então algo acontece para desencadear seu crescimento – eles de repente acham um caminho e começam a proliferar rapidamente. É nesse ponto que efeitos óbvios de doença começam a ficar aparentes. Humanos começaram a mostrar seu potencial patogênico ao planeta durante os anos 1950, devorando vorazmente os recursos naturais e descartando detritos no ambiente com total indiferença. De 1990 a 1997, o consumo humano global cresceu o mesmo tanto que desde o começo da civilização até 1950. De fato, só em 1997 a economia global cresceu mias do que em todo o século XVII.1 Ao final do século XX, nossos estilos de vida de consumo e desperdício haviam pintado um quadro global desolado. Quase a metade das florestas do mundo já se foram. Entre 1980 e 1995, perdemos áreas de florestas maiores que o México, e ainda estamos perdendo florestas a uma taxa de milhões de hectares ao ano.2 Os lençóis freáticos estão caindo em cada continente. Populações de peixes estão sumindo, terras agrícolas estão se erodindo, rios secando, pântanos desaparecendo e espécies extinguindo-se.3 Além disso, a população humana está agora aumentando em 80 milhões a cada ano (mais ou menos a população de dez Suécias). Crescimento populacional sem responsabilidade, administração e respeito pelo meio ambiente virtualmente garante o aumento do consumo e poluição a cada ano que passa.4 Estima-se que a taxa basal, natural de extinção seja de cerca de uma a dez espécies ao ano. Atualmente, estima-se que estejamos perdendo 1.000 espécies ao ano. Mais de 10% de todas as espécies de aves, 25% das de mamíferos e 50% de todos os primatas estão ameaçados de extinção.5 De 242.000 espécies de plantas analizadas pela União de Conservação Mundial Manual “Humanure” – Capítulo Um: Merda Acontece 3
  4. 4. em 1997, uma em oito (33.000 espécies) estavam ameaçadas de extinção.6 O que poderia levar a humanidade a agredir o sistema que suporta sua própria vida dessa forma? Por que desrespeitamos nosso organismo hospedeiro, a Terra, como se não fossemos mais do que uma doença intencionando sua destruição? Uma resposta, como já vimos, é o consumo. Nós abraçamos a idéia que mais é melhor, medindo o sucesso com a régua da riqueza material. Algumas estatísticas alarmantes evidenciam isso: as 225 pessoas mais ricas no mundo (0,000003% da população mundial) acumularam tanta riqueza como a metade mais pobre de toda a raça humana. A riqueza das três pessoas mais ricas do mundo é equivalente à riqueza total dos 48 países mais pobres juntos. Nós nos Estados Unidos certamente podemos levantar nossas mãos e ser contados quando se fala em consumo – nosso consumo de energia, grãos e materiais é o mais alto do planeta. Os americanos podem admitir que usam três toneladas de materiais por mês, cada um de nós – e isso sem contar comida e combustível. A despeito do fato que representamos apenas 1/20 da população mundial, nós usamos 1/3 dos seus recursos. Seriam necessários nada menos que três planetas Terra para sustentar a população inteira nesse nível de consumo.7 Há aqueles que zombam da idéia que um pequenino organismo como a espécie humana poderia afetar mortalmente um ser tão antigo e imenso como a Mãe Terra. A noção que nós poderíamos ser poderosos o suficiente para infligir doença a um ser planetário seria pura presunção. Manual “Humanure” – Capítulo Um: Merda Acontece 4
  5. 5. Alerta de Patógenos!                 15.589 espécies estão consideradas sob risco de extinção, incluindo uma em cada três espécies de anfíbios, quase a metade das tartarugas, um quarto das espéces de mamíferos, um quinto dos tubarões e arraias, e um oitavo das aves. Destruição do habitat e degradação por humanos são a causa principal.16 Desde os anos 1950, mais de 750 milhões de toneladas de resíduos químicos tóxicos foram lançados ao ambiente.8 Ao final dos anos 1980, a produção de químicos orgânicos sintéticos associados ao câncer havia excedido 90 milhões de toneladas ao ano, um aumento de 100 vezes em apenas duas gerações.9 Em 1992, só nos Estados Unidos, mais de 200 milhões de toneladas de químicos sintéticos de carbono foram produzidos.10 Em 1994, bem mais de um milhão de toneladas de químicos tóxicos foram lançados no ambiente. Desses, 80 mil toneladas são carcinógenos suspeitos ou confirmados.11 Atualmente há 75.000 produtos químicos em uso comercial, e estima-se que 3.750 a 7.500 deles causam câncer a humanos. Há 1.231 locais declarados “prioritários” para descontaminação de substâncias perigosas, com 40 milhões de pessoas (um em cada seis americanos) vivendo dentro de um raio de 6,5 quilômetros de um desses locais.12 40% dos americanos podem esperar contrair câncer em suas vidas. 80% dos casos de câncer são atribuídos a influências ambientais. A incidência de câncer de mama é trinta vezes maior nos Estados Unidos que em certas partes da África. Casos de câncer infantil aumentaram em 30% desde 1950, e agora um em cada quatrocentos americanos podem esperar desenvolver câncer antes dos 15 anos de idade. A Agência de Proteção Ambiental dos Estados Unidos prevê dezenas de milhares de casos adicionais de câncer de pele fatal como resultado da destruição da camada de ozônio que já ocorreu sobre a América do Norte.13 Peixes machos estão sendo encontrados com ovários femininos, jacarés machos com pênis atrofiados, e as contagens de espermatozóides de pessoas do sexo masculino estão diminuindo vertiginosamente. A pessoa comum hoje em dia tem em média pelo menos 250 contaminantes químicos em sua gordura corporal.14 Cinqüenta novas doenças emergiram desde 1950, incluindo Ebola, doença de Lyme, hantavirus e HIV.15 As concentrações atmosféricas de CO2 escalaram ao mais alto nível em 150.000 anos. Manual “Humanure” – Capítulo Um: Merda Acontece 5
  6. 6. Onde há qualquer evidência que um planeta pode ficar doente e morrer? Bom, e Marte? O que aconteceu com Marte, afinal? Nosso vizinho, o Planeta Vermelho, aparentemente já foi coberto de rios. O que aconteceu com eles? Rios sugerem uma atmosfera. Onde ela está? Será que Marte já foi um planeta coberto de vida? Nesse caso, por que é que ele parece morto agora? Poderia alguma forma de vida pode ter proliferado tão abundantemente e tão desenfreadamente a ponto de alterar a atmosfera do planeta, dessa forma causando um desequilíbrio e destruindo-o? É isso que está acontecendo com o nosso planeta? Será esse nosso legado nesse sistema solar, deixar para trás mais uma rocha solitária e morta, revolvendo ao redor do Sol? Ou será que apenas destruiremos a nós mesmos, enquanto a Terra, mais forte que seu irmão Marciano, superará nossa influência e sobreviverá para florescer mais bilhões de anos – sem nós? A resposta, se me permitem especular, é nem uma coisa, nem outra – nós não destruiremos nem a Terra nem nós mesmos. Ao invés disso, aprenderemos a viver em uma relação simbiótica com nosso plantea. Posto de forma simples, a espécie humana alcançou uma bifurcação na estrada de sua evolução. Nós podemos continuar a seguir o caminho dos patógenos causadores de doença, ou podemos traçar um novo caminho como habitantes dependentes e respeitosos desse grãozinho de poeira galáctica que chamamos Terra. O primeiro caso requer apenas uma falta de respeito egocêntrica por tudo a não ser nós mesmos, vivendo como se não fosse haver futuras gerações humanas. O segundo caso, por outro lado, requer uma consciência de nós mesmos como uma parte dependente de um Ser Maior. Isso pode requerer uma alta dose de humildade, que nós podemos desenvolver por nós mesmos, ou esperar até que nos seja imposta, embora tragicamente, pelo mundo maior ao nosso redor. De qualquer forma, o tempo está acabando. É irônico que os humanos tenham ignorado o problema de um resíduo que todos nós ajudamos a gerar todos os dias – um problema ambiental que têm perseguido nossa espécie desde seus primórdios, e que continuará a nos perseguir até nossa extinção. Talvez uma razão para nós termos adotado uma posição de esconder-nos enterrando a cabeça na areia, em relação ao assunto de reciclagem de excremento humano, é porque nós não podemos nem sequer falar sobre isso. Se há uma coisa que a cultura de consumo se nega a tratar com maturidade e construtivamente, são as excreções do corpo. Este é um tópico tabu, o assunto no qual não se pode nem pensar. E trata-se do assunto no qual estamos para mergulhar de cabeça. Porque desperdícios não são encontrados na natureza – exceto na natureza humana. Depende de nós, humanos, desvendar o segredo de sua eliminação. A própria Natureza oferece a chave do mistério, e a tem oferecido a nós por aeons. Manual “Humanure” – Capítulo Um: Merda Acontece 6
  7. 7. QUEM POUPA, TEM O s Estados Unidos são não somente uma terra de indústria e comércio, mas também uma terra de consumo e desperdício, produzindo entre 12 e 14 bilhões de toneladas de lixo anualmente. Muito de nosso lixo consiste de material orgânico incluindo resíduos alimentares, restos de podas e folhas de árvores, resíduos agrícolas, e esterco humano e animal, sendo que todos esses materiais deveriam ser retornados ao solo de onde se originaram. Esses materiais orgânicos têm alto valor para a agricultura, um fator chave bem conhecido por praticantes da agricultura orgânica. Fezes e urina são exemplos de materiais orgânicos naturais, benéficos, excretados pelos corpos de animais após seus processos digestivos. Eles só constituem “lixo” quando nós os descartamos. Quando reciclados, eles são recursos, e muitas vezes nos referimos a eles como estercos, mas nunca como lixo. Nós não reciclamos lixo. É um erro semântico comum dizer que o lixo pode e deve ser reciclado. Recursos materiais são reciclados, mas lixo nunca é reciclado. É por isso que se chama “lixo”. Lixo é qualquer material que é descartado e não tem mais nenhuma utilidade. Nós humanos temos sido tão desperdiçadores por tanto tempo que o conceito de eliminação do desperdício nos é estranho. Porém, é um conceito importante. Quando descascamos uma batata, as cascas não são lixo de cozinha – elas ainda são cascas de batata. Quando estas são coletadas para compostagem, são recicladas, e lixo nenhum está sendo gerado. Profissionais da compostagem às vezes se referem a materiais Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 7
  8. 8. reciclados como “lixo”. Muitas das pessoas que estão desenvolvendo programas municipais de compostagem vieram do campo da administração de resíduos, um campo no qual materiais descartados sempre foram chamados de “lixo”. Hoje, porém, o uso do termo “lixo” para descrever materiais reciclados é um desagradável hábito semântico que deve ser abandonado. Caso contrário, alguém poderia se referir às folhas caídas no outono como “lixo de árvores”, porque elas já não são necessárias à árvore e são descartadas. Porém, quando você entra na floresta, onde é que você vê lixo ou desperdício? A resposta é: em lugar nenhum; porque os materiais orgânicos da floresta são reciclados naturalmente, e nenhum lixo é criado. Ironicamente, alguns profissionais da compostagem referem-se às folhas e aparas de grama como “lixo de jardim” – outro exemplo da mentalidade de desperdício persistente, que é uma praga na nossa cultura. Os excrementos de um organismo são a comida do outro. Tudo é reciclado em sistemas naturais, não havendo portanto desperdício. Humanos geram lixo porque nós insistimos em ignorar os sistemas nsturais dos quais dependemos. Somos tão viciados nesse sentido que consideramos o desperdício como uma coisa natural, e damos à palavra “lixo” uma posição de destaque em nosso vocabulário. Temos “lixo” de cozinha, “lixo” de jardim, “lixo” agrícola, “lixo” municipal, “lixo” biológico, e assim vai. Porém, nossa sobrevivência a longo prazo exige que nós aprendamos a viver em harmonia com nosso planeta. Isso também requer que compreendamos os ciclos naturais e os incorporemos em nosso dia-a-dia. Essencialmente, isso significa que nós humanos devemos tentar eliminar os desperdícios completamente. Conforme nós progressivamente eliminamos o desperdício de nossos hábitos de vida, podemos também progressivamente eliminar a palavra “lixo” de nosso vocabulário. “Resíduos humanos” é um termo que tem sido usado para se referir aos excrementos humanos, ou seja fezes e urina, que são subprodutos da digestão e metabolismo. Quando descartados, como geralmente são, esses materiais são chamados de resíduos, mas quando reciclados para fins agrícolas, eles recebem vários nomes. Humanure (do inglês human, humano + manure, esterco), diferentemente de resíduos humanos, não é nenhum tipo de resíduo ou lixo – é um recurso material orgânico rico em nutrientes para o solo. Humanure origina-se a partir do solo, e pode ser devolvido ao solo bem rapidamente, especialmente se convertido a húmus através do processo de compostagem. Resíduos humanos (fezes e urinas descartados), por outro lado, criam problemas ambientais significativos, asseguram a rota de transmissão de doenças, e privam a humanidade da importantíssima Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 8
  9. 9. fertilidade do solo. São ainda um dos ingredientes principais dos esgotos, sendo responsáveis por boa parte da poluição das águas por todo o mundo. Uma distinção clara deve ser feita entre humanure e esgoto, porque são duas coisas muito diferentes. Esgoto pode incluir dejetos de muitas fontes – indústrias, hospitais e oficinas, por exemplo. Esgotos também podem conter uma vasta gama de contaminantes, tais como químicos industriais, metais pesados, óleos e graxas, entre outros. Humanure, por outro lado, é estritamente material fecal humano e urina. O que, na verdade, são os resíduos humanos? Resíduos humanos são lixo, pontas de cigarro, embalagens plásticas, caixas de hambúrguer de isopor, latas de desodorante, fraldas descartáveis, eletrodomésticos estragados, garrafas, jornais, etc quando não reciclados, pneus velhos, baterias gastas, lixo nuclear, embalagens de comida, depósitos de resíduos químicos, emissões atmosféricas, CDs descartados, os vinte e cinco bilhões de litros de água potável que nós descarregamos privada a baixo diariamente, e os milhões de toneladas de material orgânico descartados no ambiente, ano após ano. O CICLO DE NUTRIENTES HUMANO Na agricultura, é aconselhável que os resíduos orgânicos resultantes da atividade agrícola, incluindo excrementos animais, sejam devolvidos ao solo de onde se originaram. Essa reciclagem de resíduos orgânicos para fins agrícolas é fundamental para a agricultura sustentável. Ainda assim, os representantes dos movimentos pela agricultura sustentável permanecem em silêncio quanto ao uso de humanure para fins agrícolas. Por que? Talvez o silêncio seja porque há atualmente uma profunda falta de conhecimento e compreensão sobre o que vem a ser o “ciclo de nutrientes humano” e a necessidade de manter o ciclo intacto. O ciclo de nutrientes humano funciona assim: a) nós produzimos comida; b) nós a comemos; c) nós coletamos e processamos os resíduos orgânicos (fezes, urina, restos de comida e materiais agrícolas) e, finalmente, d) nós então devolvemos os materiais orgânicos processados ao solo, assim enriquecendo o solo e possibilitando a produção de mais comida. Este ciclo pode ser repetido, infinitamente. Este é um processo que imita os ciclos da natureza e aumenta nossa habilidade de sobreviver neste planeta. Quando ao invés disso esses materiais são descartados como lixo, o ciclo natural de nutrientes é quebrado, criando problemas tais como a poluição, perda de fertilidade do solo e abuso de nossos recursos hídricos. Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 9
  10. 10. O CICLO DE NUTRIENTES HUMANO O Ciclo de Nutrientes Humano é um ciclo natural e infinito. Para manter o ciclo intacto, o alimento para humanos tem que ser produzido em solos que são enriquecidos pela adição contínua de materiais orgânicos reciclados por humanos, tais como excrementos, restos e cascas de alimentos e resíduos agrícolas. Respeitando esse ciclo da natureza, os humanos podem manter a fertilidade de seus solos agrícolas para sempre, ao invés de degradá-los continuamente, como ocorre hoje. Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 10
  11. 11. Solos agrícolas utilizados na produção de alimentos deveriam ser deixados mais férteis a cada ano devido ao crescimento constante da população humana e a necessidade de produzir mais comida a cada ano que passa. Ao invés disso, nós esgotamos os nutrientes de nossos solos ao descartarmos materiais orgânicos na forma de lixo e esgotos, sendo que deveríamos estar devolvendo esses materiais ao solo. Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 11
  12. 12. Cada um de nós nos Estados Unidos desperdiça a cada ano cerca de 450 quilos de humanure, que são descartados nos esgotos e tanques sépticos por todo o país. Boa parte do humanure desperdiçado eventualmente encontra sua destinação final nos lixões, junto com outros desperdícios sólidos que nós americanos geramos e descartamos e que, coincidentemente, também são da ordem de 450 quilos por pessoa ao ano. Com uma população de 305 milhões, isso representa aproximadamente 305 milhões de toneladas de resíduos sólidos descartados pessoalmente por cada um de nós todo ano, sendo que pelo menos a metade disso poderia ter alto valor como um recurso agrícola. A prática que nós humanos temos freqüentemente empregado para o descarte de resíduos é bem primitiva – nós enterramos o lixo em buracos no chão. Agora, dá-se o nome de aterro sanitário, e por muitos anos eles foram simples assim. Os novos aterros “sanitários” são revestidos com materiais sintéticos impermeáveis para prevenir a penetração do chorume e contaminação dos lençóis freáticos. Porém, apenas cerca de um terço dos lixões ativos nos Estados Unidos têm esse tipo de impermeabilização.1 Curiosamente, os aterros impermeabilizados assemelham-se sinistramente a fraldas descartáveis gigantes. São imensos receptáculos revestidos de plástico, onde nós depositamos nossas fezes e outros detritos, em camadas; assim, os produtos finais de nossos estilos de vida desperdiçadores são enterrados, em verdadeiros mausoléus gigantes de lixo, como se quiséssemos preservar nossos dejetos para a posteridade. Nós confortavelmente damos a descarga do banheiro, e o esgoto resultante é transportado a esses aterros, para dentro dessas fraldas descartáveis gigantescas, e enterrado. Não se está sugerindo aqui que esgoto deva ser usado para produzir comida. Esgoto consiste de humanure coletado junto com materiais perigosos, tais como resíduos industriais, médicos e químicos, todos carregados juntos pelas mesmas vias. Ou, nas palavras de Gary Gardner (Estado do Mundo 1998), “Dezenas de milhares de substâncias tóxicas e componentes químicos usados em economias industriais, incluindo bifenilpoliclorados, pesticidas, dioxinas, metais pesados, asbestos, derivados do petróleo, e solventes industriais, são potencialmente parte do esgoto”. Isso sem mencionar os organismos patogênicos. Quando esgotos não tratados foram utilizados para fins agrícolas em Berlin em 1949, por exemplo, tal prática foi responsabilizada pela disseminação de doenças verminóticas. Nos anos oitenta, a mesma prática foi associada a um surto de febre tifóide em Santiago, e em 1970 e 1991, a surtos de cólera em Jerusalém e na América do Sul, respectivamente.2 Humanure, por outro lado, quando mantido fora dos esgotos, coletado como um recurso material, e devidamente compostado, Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 12
  13. 13. representa um recurso agrícola apropriado à produção de alimentos. Quando nós combinamos nossos excrementos com outros materiais orgânicos tais como subprodutos agrícolas e restos de alimentos, podemos obter uma mistura que é irresistível a certos microorganismos benéficos. A Agência de Proteção Ambiental dos Estados Unidos (EPA) estima que aproximadamente 22 milhões de toneladas de restos de alimentos são gerados nas cidades americanas a cada ano. Por todo o país, perdas de alimentos nos níveis de varejo, serviços alimentares e domiciliar foram estimadas em um total de 48 milhões de toneladas em 1995.3 Essas perdas representariam um excelente material orgânico para compostagem juntamente com humanure. Ao invés disso, apenas uma pequena porcentagem de nossas perdas de comida estão sendo compostadas nos Estados Unidos, enquanto o restante está sendo incinerado ou depositado em aterros.4 A Organização para Cooperação e Desenvolvimento Econômico, um grupo composto principalmente por países industrializados ocidentais, estima que 36% do lixo produzido por seus países membros consistem de restos de comida e jardins. Se também considerarmos o papel, a fração de matéria orgânica no fluxo do lixo sobe ao nível incrível de dois terços do total! Em países em desenvolvimento, materiais orgânicos tipicamente representam metade a dois terços do lixo.5 De acordo com a Agência de Proteção Ambiental, quase 80% dos resíduos sólidos gerados nos Estados Unidos são compostos de material orgânico. Está se tornando cada vez mais óbvio que contar com aterros para o descarte de materiais recicláveis não é uma estratégia sábia. Aterros atingem sua capacidade máxima, e novos têm que ser construídos para substituí-los. E aterros são grandes poluidores da água, solo e ar. Dos dez mil aterros fechados desde 1982, 20% são agora considerados locais contaminados de alto risco. Um relatório de 1996 no estado da Flórida revelou que a contaminação de lençóis freáticos por aterros antigos, não impermeabilizados, pode se extender por mais de 5,4 quilômetros, e que 523 reservatórios de água públicos na Flórida estão localizados dentro de uma milha desses aterros inativados, enquanto 2.700 estão dentro de 5 quilômetros.6 Sem dúvida situações semelhantes existem por todos os Estados Unidos. Material orgânico descartado em aterros também cria grandes quantidades de metano, um dos principais gases causadores do efeito estufa. Lixões nos Estados Unidos estão "entre as principais fontes de emissões de metano globais", de acordo com o Conselho de Defesa dos Recursos Naturais. Segundo a Agência de Proteção Ambiental, cada molécula de metano é 20 a 30 vezes mais potente que o CO2 na geração do efeito-estufa.7 Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 13
  14. 14. Fonte: Fahm, Lattee, (1980), The Waste of Nations; páginas 33 e 38; Allanheld, Osmun and Co. Publishers, Inc., Montclair, NJ USA. Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 14
  15. 15. As taxas cobradas para dispor de material nos aterros em cada região dos Estados Unidos tem aumentado a uma taxa acima do dobro da inflação desde 1986. De fato, desde então, essas taxas já aumentaram em 300%, e espera-se que continuem crescendo nesse mesmo ritmo.8 Nos países em desenvolvimento, o quadro dos aterros sanitários também é desolado. No Brasil, por exemplo, 99% do lixo sólido vai parar em aterros, e três quartos das 90.000 toneladas ao dia vão parar em lixões a céu aberto.9 Lentamente estamos nos tornando cientes do fato que essa tendência de jogar coisas fora tem que ser revertida. Não podemos continuar jogando "fora" recursos úteis de forma desperdiçadora, enterrando-os em aterros poluentes e cada vez mais caros. Se tivéssemos coletado todo o excremento humano do mundo e amontoado sobre as terras agrícolas em 1950, teríamos aplicado cerca de 77 toneladas por quilômetro quadrado. No ano 2000, teríamos coletado mais do dobro daquela quantidade por que a população está crescendo, mas a área de terra não está. De fato, a área global de terras agrícolas está continuamente diminuindo conforme o mundo perde, devido à agricultura e pecuária, uma área do tamanho do Kansas a cada ano.10 A sempre crescente população humana está produzindo uma quantidade cada vez maior de restos orgânicos que um dia terão que ser administrados de forma responsável e construtiva. Não é cedo demais para começarmos a entender os dejetos humanos como um recurso valioso implorando para ser reciclado. Em 1950, o valor econômico dos nutrientes agrícolas na gigantesca pilha global de humanure era de 6,93 bilhões de dólares. Em 2000, teria um valor de 18,67 bilhões de dólares calculados no preço de 1975.11 Esse é o dinheiro atualmente sendo levado pelas descargas, despejado no ambiente onde aparece como poluição. Cada tubo de esgoto tem uma saída em algum lugar; tudo jogado "fora" apenas passa de um lugar a outro. Humanure e outros materiais orgânicos não são nenhuma exceção. Não apenas estamos jogando "dinheiro" descarga abaixo, ainda estamos pagando para fazê-lo. O custo não é apenas econômico, mas também ambiental. ÁGUA SUJA O mundo divide-se em duas categorias de pessoas: aqueles que defecam em seus próprios reservatórios de água, e aqueles que não. Nós no mundo ocidental estamos no primeiro grupo. Nós defecamos na água, geralmente água purificada, potável. Após poluirmos a água com nossos excrementos, nós damos a descarga, mandando a água "para longe", significando que nós provavelmente nem sabemos para onde isso vai, e Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 15
  16. 16. FATOS CURIOSOS sobre a água  Se toda a água potável do mundo fosse posta em um tanque cúbico, o tanque teria 150 quilômetros de lado.  Número de pessoas atualmente sofrendo com falta de acesso a água potável: 1,2 bilhões.  Porcentagem de famílias no mundo que têm que ir buscar água fora de casa: 67.  Projeção para o aumento da população mundial até meados do século 21: 100%  Quantidade de água que os americanos usam por dia: 1,3 bilhões de litros.  Quantidade de água necessária para produzir um carro: 380 mil litros.  Número de carros produzidos todo ano: 50 milhões.  Quantidade de água usada anualmente por um reator nuclear: 8 trilhões de litros.  Quantidade de água usada por reatores nucleares todos os anos: o equivalente a 1,3 vezes o Lago Eries. Fontes: Der Spiegel, 25 de maio de 1992; e Anais da Terra, volume 8, número 2, 1990; Ocean Arks International, One Locust Street, Falmouth, MA 02540. Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 16
  17. 17. ÁGUA, ÁGUA POR TODOS OS LADOS E ELA ESTÁ TODA CORRENDO LADEIRA A BAIXO            Em meados dos anos 80, as 2.207 estações de tratamento de esgotos costeiras mantidas pelo governo estavam descarregando 14 trilhões de litros de esgotos tratados ao ano nos ambientes costeiros.14 Em 2004, mais de 3 trilhões de litros de esgotos não tratados misturados a águas de enxurradas foram lançados por transbordamento de esgotos, e algo entre 10 e 40 bilhões de litros de esgotos não tratados contendo descargas de banheiros são lançados ao ambiente a cada ano nos Estados Unidos.43 Em 1997, poluição causou pelo menos 4.153 interdições de praias e advertências, 69% das quais foram causadas por poluição bacteriana elevada na água.15 Em 2001, das 2.445 praias avaliadas pela Agência de Proteção Ambiental, 672 foram afetadas por interdições ou advertências, geralmente por níveis elevados de contaminação bacteriana. Em 2003, houve mais de 18.000 dias de interdições e advertências em praias dos Estados Unidos de acordo com o relatório anual de qualidade do mar do Conselho de Defesa dos Recursos Naturais. 88% das intervenções se deveram à presença de bactérias associadas com contaminação fecal. Em 2007, o número de interdições e advertências em praias e nos Grandes Lagos alcançou 20.000 pelo terceiro ano consecutivo. O número devido a vazamentos de esgotos mais que triplicou de 2006 a 2007. De acordo com a Agência de Proteção Ambiental dos Estados Unidos, a causa primária de interdições de praias foi o transbordamento da combinação de esgotos e águas de chuvas, com insuficiente capacidade de retenção de chuvas fortes para o processamento em estações de tratamento de esgotos. Em 2002, o Estado de Nova Iorque processou a cidade de Yonkers por descargas de esgotos, alegando que milhares de litros de esgotos não tratados estavam sendo despejados diariamente no Rio Bronx a partir de pelo menos quatro tubos de propriedade do município. Resultados laboratoriais mostraram que a poluição continha bactérias coliformes fecais, indicadoras de esgotos não tratados, em concentrações de até 250 vezes mais que o permitido pelos padrões de qualidade de águas do Estado de Nova Iorque. Em 2002, um juíz federal condenou Los Angeles por 297 vazamentos de esgotos. De 1993 a janeiro de 2002, a cidade relatou 3.000 vazamentos de esgotos. Los Angeles tem cerca de 10.000 quilômetros de esgotos. Os vazamentos atingem cursos d’água, são carreados até o oceano e poluem as praias.16 Estudos do Programa Ambiental das Nações Unidas mostram que mais de 800 milhões de pessoas nas regiões costeiras do sul da Ásia não têm serviços sanitários básicos, o que as coloca sob alto risco de doenças relacionadas a esgotos. Em 2000, 55% dos lagos, rios e estuários dos Estados Unidos não estavam limpos o suficiente para pesca ou banho segundo testemunho da Agência de Proteção Ambiental ao Congresso em 2002. Em 1995, 40% estavam poluídos demais para pesca, banho ou qualquer uso aquático em qualquer época do ano, de acordo com a Agência de Proteção Ambiental. Em janeiro de 2005, reportou-se que 22% das águas costeiras dos Estados Unidos estavam impróprias para a pesca, baseado nas orientações da Agência de Proteção Ambiental para o consumo moderado de peixes pescados por lazer. Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 17
  18. 18. nem queremos saber. Cada vez que nós damos a descarga no banheiro, lançamos 25 a 30 litros de água poluída no mundo. Isso seria como defecar dentro de uma jarra de água de 25 litros e então despejar tudo antes que qualquer um possa bebê-la. E então, fazendo o mesmo quando urinamos. E fazendo isso todos os dias, várias vezes. E então, multiplicando isso pelas cerca de 305 milhões de pessoas só nos Estados Unidos. Mesmo após a água contaminada ser tratada em estações de tratamento de esgotos, ela ainda pode estar contaminada com níveis excessivos de nitratos, cloro, drogas, químicos industriais, detergentes e outros poluentes. Essa água "tratada" é descarregada diretamente ao ambiente. Estima-se que em 2010, pelo menos a metade das pessoas nos Estados Unidos viverão em cidades costeiras, exacerbando ainda mais os problemas de poliução causados pelos esgotos. O grau de poluição das praias torna-se um pouco mais pessoal quando você se dá conta que os padrões de balneabilidade atuais da Agência de Proteção Ambiental ainda permitem 19 casos de doença para cada 1.000 banhistas de águas salgadas, e 8 a cada 1.000 banhistas de águas doces.13 Algumas das doenças associadas a banho em mares e cursos d'água contaminados com esgotos incluem a febre tifóide, salmonelose, shigelose, hepatite, gastroenterite, pneumonia e infecções de pele.17 Se você não quer ficar doente por causa da água onde nada, não afunde a cabeça. Se afundar, você pode acabar como os nadadores da baía de Santa Mônica. As pessoas que nadam no mar ali, dentro de 365 metros de um emissário de esgotos, têm 66% mais chance de desenvolver uma "doença respiratória significante" dentro de 9 a 14 dias após entrar no mar.18 Isso não deveria ser nenhuma surpresa quando se leva em consideração o surgimento de bactérias resistentes a antibióticos. O uso de antibióticos está tão disseminado que muita gente agora está criando bactérias resistentes em seus intestinos. Essas bactérias são excretadas em banheiros, sendo levadas até as estações de tratamento de esgotos onde a resistência a antibióticos pode ser transferida a outras bactérias. Essas estações de tratamento então podem se tornar criadouros de bactérias resistentes, que são descarregadas no ambiente. E por que não se trata a água com cloro antes de lançar ao ambiente? Normalmente a água é previamente clorada, mas estudos demonstraram que o cloro parece aumentar a resistência a alguns antibióticos.19 Você não está preocupado com bactérias resistentes a antibióticos em sua área de natação? Aqui vai algo mais para você pensar: 50 a 90% dos fármacos ingeridos pelas pessoas podem ser excretados no banheiro e chegar aos cursos d'água em sua forma original Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 18
  19. 19. ou biologicamente ativa. Além disso, drogas que foram parcialmente degradadas antes da excreção podem ser convertidas a suas formas ativas originais por reações químicas ambientais. Drogas como quimioterápicos, antibióticos, antissépticos, cardiotrópicos, bloqueadores beta-adrenérgicos, hormônios, analgésicos, drogas redutoras do colesterol e reguladoras de lipídeos sanguíneos, já surgiram em locais como água de torneira, estações de tratamento de águas pluviais, lagos, rios e em aquíferos usados no abastecimento de água. Pense nisso na próxima vez que você encher seu copo de água.20 O Estuário de Long Island recebe mais de cinco bilhões de litros de esgoto tratado todos os dias - os dejetos de oito milhões de pessoas. Tanto nitrogênio estava sendo lançado ao estuário com os esgotos tratados que isso fez o oxigênio aquático desaparecer, tornando o ambiente marinho impróprio para os peixes que normalmente vivem ali. As doze estações de tratamento que seriam completadas ao longo do estuário em 1996 deveriam remover 2,3 toneladas de nitrogênio diariamente. O nitrogênio é normalmente um nutriente do solo e um recurso agrícola, mas ao invés disso, quando lançado nos esgotos, torna-se um perigoso poluente da água.21 Em 31 de dezembro de 1991, proibiu-se nos Estados Unidos o lançamento de esgotos ao oceano. Antes disso, boa parte dos esgotos das cidades costeiras nos Estados Unidos eram simplesmente lançados ao mar. A descarga de esgotos e águas servidas nos cursos d'água naturais invariavelmente cria poluição. Os impactos da água poluída são vastos, causando a morte de 25 milhões de pessoas a cada ano, três quintos dos quais são crianças.22 Metade das pessoas em países em desenvolvimento sofrem com doenças associadas com problemas de suprimento e saneamento de água.23 Diarréia, uma doença associada com água poluída, mata seis milhões de crianças cada ano nos países em desenvolvimento, e contribui para a morte de até 18 milhões de pessoas.24 No começo do século 21, uma em cada quatro pessoas nos países em desenvolvimento ainda sofrem com a carência de água limpa, e dois terços sofrem com a falta de saneamento adequado.25 Saneamento adequado é definido pela Organização Mundial da Saúde como qualquer descarte de excretas que interrompa a transmissão de contaminantes fecais a humanos.26 Esta definição deveria ser expandida para incluir instalações para reciclagem de excretas. Sistemas de banheiros secos, para a compostagem dos excretas, estão se tornando internacionalmente reconhecidos como “saneamento adequado”, e estão se tornando cada vez mais atrativos por todo o mundo devido ao seu custo relativamente baixo, comparado a sistemas que empregam a água e esgotos centralizados. De fato, sistemas de banheiros secos produzem um dividendo – o húmus, que permite a esses sistemas Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 19
  20. 20. gerar um lucro líquido, ao invés de serem uma fonte de gastos constantes. A obsessão pelos banheiros que usam a descarga por todo o mundo está causando a perpetuação dos problemas sanitários. Muitas partes do mundo não podem suportar os custos de tais sistemas, que são caros e requerem grande quantidade de água. Nós também estamos esgotando nossos reservatórios de águas, e a descarga dos banheiros é um dos fatores levando a esse esgotamento. Dos 143 países com maior uso per capita de água, de acordo com o Instituto Mundial de Recursos, os Estados Unidos estão em segundo lugar, com um consumo de 712 litros por pessoa por dia (Bahrein ficou em 1o lugar). O consumo de água nos Estados Unidos aumentou em 10 vezes entre 1900 e 1990, indo de 151 bilhões para 1,55 trilhões de litros por dia.28 A quantidade de água que nós Americanos utilizamos em geral, usada na produção dos bens que cada um de nós consome, mais a água usada para limpeza e bebida, totaliza o volume exorbitante de 5.900 litros por pessoa por dia, o que é três vezes mais que a quantidade utilizada na Alemanha ou França.29 Essa quantidade de água é equivalente a dar a descarga em nossos banheiros 313 vezes todos os dias, cerca de uma vez a cada minuto e meio por oito horas seguidas. Segundo estimativas, são utilizadas uma a duas toneladas de água para a descarga de uma tonelada de excrementos humanos.30 Não é surpresa nenhuma, portanto, que o uso de águas subterrâneas nos Estados Unidos exceda a taxa de reposição em 80 bilhões de litros ao dia.31 LIXO VS. ADUBO Ao despejarmos nutrientes do solo na privada, nós aumentamos nossa necessidade de fertilizantes químicos sintéticos. Hoje, a poluição agrícola, causada pela erosão e efluxo de nutrientes devido ao uso incorreto ou excessivo de fertilizantes,32 representa “a maior fonte de poluição de águas” em nossos rios e lagos.33 Fertilizantes químicos oferecem uma fonte rápida de nitrogênio, fósforo e potássio para solos empobrecidos. Porém, estima-se que 25 a 85% do nitrogênio químico aplicado ao solo e 15 a 20% do fósforo e potássio são perdidos por lixiviação, o que polui os lençóis freáticos.34 Esta poluição aparece em pequenas lagoas que tornam-se sufocadas com algas como resultado da entrada anormal de nutrientes. De 1950 a 1990, o consumo global de fertilizantes artificiais aumentou em 1.000%, de 14 milhões de toneladas para 140 milhões de toneladas.35 Em 1997, produtores rurais nos Estados Unidos usaram 20 milhões de toneladas de fertilizantes sintéticos,36 e metade de todo fertilizante artificial já produzido foi usado apenas desde de 1982.37 Poluição por nitratos, proveniente do uso excessivo de fertilizantes artificiais, é Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 20
  21. 21. atualmente um dos problemas mais sérios de poluição de águas na Europa e América do Norte. A poluição por nitratos pode causar câncer e até lesão cerebral ou morte em crianças.38 Ainda assim, centenas de milhões de toneladas de materiais orgânicos compostáveis são gerados nos Estados Unidos todo ano, que são desperdiçados, poluindo o ambiente. O abuso de nossos recursos hídricos e poluição com esgotos e fertilizantes químicos resultam em parte da crença que dejetos humanos e restos de cozinha são lixo, ao invés de recursos naturais recicláveis. Há porém, uma alternativa. Excrementos humanos podem passar por um processo de digestão bacteriana e então ser retornados para o solo. Este processo é normalmente conhecido como compostagem. Esse é o elo perdido do processo de reciclagem dos nutrientes humanos. Excrementos humanos não processados trazem consigo um significativo perigo na forma de organismos causadores de doenças, ou patógenos. Essas doenças, tais como parasitas intestinais, hepatite, cólera e febre tifóide, são destruídas pelo processo de compostagem, quando o tempo de retenção é adequado em uma pilha de composto a baixa temperatura, ou quando o processo de compostagem gera calor biológico, que pode matar os patógenos em questão de minutos. A aplicação de excrementos humanos não processados a campos não é segura do ponto de vista sanitário, e pode contribuir para a transmissão de muitas doenças. Americanos que já viajaram ao Oriente contam estórias do “fedor horrível” dos excrementos que paira pelo ar quando estes são aplicados aos campos. Por essas razões, é fundamental que os excrementos humanos sejam sempre compostados antes de seu uso agrícola. Compostagem adequada destrói possíveis patógenos e resulta em um material com odor agradável. Por outro lado, a aplicação direta de excrementos não processados aos campos na Ásia representa um retorno dos nutrientes ao solo, assim recuperando um recurso valioso que é então utilizado na produção de alimentos para humanos. Cidades na China, Coréia do Sul e Japão reciclam os excrementos humanos ao redor de seus perímetros em cinturões verdes onde se produzem verduras e legumes. Xangai, na China, uma cidade com uma população de 14,2 milhões de habitantes em 2000,39 produz um excedente exportável de vegetais dessa forma. Excrementos humanos podem também ser utilizados para alimentar algas que, por sua vez, podem alimentar peixes em projetos de aquacultura. Em Calcutá, um desses sistemas produz 20 toneladas de peixes frescos por dia.40 A cidade de Tainan, em Taiwan, é famosa por seus peixes, que são produzidos em 6.000 hectares de criações de peixes fertilizadas com humanure. Ali, humanure é tão valorizado que é vendido no mercado negro.41 Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 21
  22. 22. RECICLANDO HUMANURE Dejetos humanos podem ser reciclados naturalmente, ao serem oferecidos aos organismos que deles se alimentam. Essas criaturas vorazes existem há milhões, ou teoricamente bilhões de anos. Elas esperaram pacientemente por todo esse tempo para que nós, humanos, as descobríssemos. A Mãe Natureza inoculou nossos excrementos, assim como nosso lixo, com esses “pequenos amiguinhos”, que converterão nossos dejetos orgânicos em um material enriquecedor do solo, sob nossos olhos. Ajudantes invisíveis, essas criaturas são pequenas demais para serem vistas pelo olho humano, sendo portanto chamados microrganismos. O processo de alimentar esses microrganismos com matéria orgânica na presença de oxigênio é chamado compostagem. Compostagem apropriada garante a destruição de patógenos em potencial no humanure. A compostagem também converte os excrementos em um composto novo, benigno e de odor agradável, chamado húmus, que por sua vez é devolvido ao solo para enriquecê-lo e melhorar o crescimento das plantas. A propósito, todos os excrementos animais beneficiam-se da compostagem, como os fazendeiros estão agora descobrindo. Estercos compostados, ao contrário de fezes frescas, não permitem a lixiviação de seus componentes. O invés disso, o composto ajuda a reter os nutrientes nos sistemas do solo. Estercos compostados também reduzem doenças das plantas e danos por insetos, e permitem um melhor manejo dos nutrientes na propriedade. De fato, duas toneladas de composto trarão muito mais benefício que cinco toneladas de estrume fresco.42 Esterco humano pode ser misturado com outros materiais orgânicos resultantes das atividades humanas, tais como restos de alimentos, cascas, restos de podas, folhas de árvores e aparas de grama, papéis e serragem. Esta mistura de materiais é necessária para que a compostagem ocorra apropriadamente, e produzirá um aditivo de solo adequado para a agricultura e horticultura. Uma razão pela qual nós humanos não temos fornecido nossas fezes para os microrganismos apropriados é que nós nem sabíamos que eles existiam. Apenas os descobrimos em nosso passado recente. Também não tínhamos um crescimento populacional tão rápido no passado, e não convivíamos com os graves problemas ambientais que ameaçam nossa espécie hoje, como carcarás rodeando um animal moribundo. Isto tudo redunda no fato que a espécie humana deve inevitavelmente evoluir. Evolução significa mudança, e mudança é muitas vezes temida. Vasos sanitários com descarga e latas de lixo Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 22
  23. 23. abarrotadas representam hábitos arraigados que devem ser repensados e reinventados. Se nós humanos temos a metade da inteligência que pensamos que temos, acabaremos acordando para essa realidade. Enquanto isso não acontece, estamos percebendo que a natureza possui muitas das chaves que precisamos para abrir as portas para uma existência sustentável, harmoniosa nesse planeta. A compostagem é uma dessas chaves, mas só foi descoberta relativamente recentemente pela raça humana. Sua utilização está agora comecando a se espalhar pelo mundo. Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 23
  24. 24. ATENÇÃO TERRÁQUIOS, EU SOU GIRDLOK, DO PLANETA TURDLOK, NA CONSTELAÇÃO ALPHA ROMEO. NÓS DESCOBRIMOS UM MANUSCRITO ANTIGO EM UMA DE NOSSAS RUÍNAS ESCRITO ARQUEOLÓGICAS. EM INGLÊS SURPREENDENTEMENTE, TERRÁQUIO E TRATA DAS ESTÁ SUAS EXCREÇÕES MAL CHEIROSAS. O NOME DO MANUSCRITO É MANUAL HUMANURE, E ELE É A CHAVE PARA A SALVAÇÃO ESPIRITUAL DA SUA ESPÉCIE PATÉTICA E INSIGNIFICANTE. COMO UM ATO DE BOA VONTADE INTERGALÁCTICA NÓS DECIDIMOS PUBLICAR E DISTRIBUIR ESSE LIVRO NA TERRA. NÃO PEDIMOS NADA EM TROCA, ETC... ETC... BLA... BLA... Manual “Humanure” – Capítulo Dois: Quem Poupa, Tem 24
  25. 25. CRIAÇÃO DE MICRÓBIOS Aproveitando o Poder dos Organismos Microscópicos H á no geral quatro maneiras de se lidar com excrementos humanos. A primeira é jogar fora como lixo. As pessoas o fazem ao defecar em reservatórios de água potável, ou em fossas externas ou privadas. A maioria desse material acaba sendo lançada ao ambiente, incinerada, enterrada ou descarregada nos cursos d'água. A segunda maneira de lidar com excrementos humanos é a aplicação desse material fresco a terras agrícolas. Isso é bastante popular na Ásia onde o "solo noturno", ou excrementos humanos frescos, é aplicado aos campos. Embora essa prática mantenha os solos férteis, também age como um vetor, ou rota de transmissão para organismos causadores de doenças. Nas palavras do Dr. J. W. Scharff, ex-diretor do departamento de saúde de Singapura, "Embora as verduras se desenvolvam bem, a prática de aplicar esterco humano diretamente ao solo é perigosa à saúde. A pesada carga de doenças e mortes por várias doenças entéricas na China é bem conhecida." É interessante observar a alternativa sugerida pelo Dr. Scharff ao uso de solo noturno fresco: "Nós temos nos inclinado a considerar a instalação de um sistema de carreamento pela água como um dos objetivos finais da civilização." A Organização Mundial da Saúde também desencoraja o uso de solo noturno: "O solo noturno é às vezes utilizado como fertilizante, e nesse caso representa grandes riscos por promover a transmissão de doenças Manual “Humanure” – Capítulo Três: Criação de Micróbios 25
  26. 26. entéricas através dos alimentos, além de ancilostomíase." 2 Este livro, portanto, não é sobre a reciclagem de excrementos através da aplicação dos mesmos frescos ao solo, prática essa que deve ser desencorajada quando alternativas sanitárias, tais como a compostagem, são disponíveis. A terceira forma de lidar com excremento humano é compostá-lo lentamente por um período prolongado de tempo. Esta é a forma empregada pela maioria dos banheiros compostáveis comerciais. A compostagem lenta geralmente ocorre a temperaturas abaixo da do corpo humano que é de aproximadamente 37oC. Este tipo de compostagem elimina a maioria dos organismos patogênicos em questão de meses, e acaba por eliminar todos os patógenos humanos, após transcorrido tempo adequado. Compostagem a baixa temperatura cria um aditivo de solo útil que é ao menos seguro para uso em jardins, hortas e pomares. Compostagem termofílica é a quarta maneira de se lidar com excrementos humanos. Este tipo de compostagem envolve o cultivo de microrganismos que adoram calor, ou termofílicos, no processo de compostagem. Microrganismos termofílicos, tais como bactérias e fungos, podem criar um ambiente no composto que destrói organismos causadores de doenças potencialmente presentes nas fezes, convertendo o humanure em um húmus seguro, de aspecto e odor agradáveis, para uso em horticultura. Humanure após compostagem termofílica é totalmente diferente de solo noturno. Talvez isso seja melhor explicado pelos especialistas na área: "A partir de um estudo da literatura a respeito do tratamento do solo noturno, pode-se concluir claramente que o único método que assegura uma inativação efetiva e essencialmente total de patógenos, incluindo os mais resistentes helmintos (vermes) tais como ovos de Ascaris e todos os patógenos bacterianos e virais, é o tratamento pelo calor a temperaturas de 55 a 60oC por várias horas." 3 Esses especialistas referem-se especificamente ao calor da pilha de compostagem. DEFININDO COMPOSTO De acordo com alguns dicionários, composto é "uma mistura de restos vegetais em decomposição, estrumes, etc. para fertilização e condicionamento do solo." O Guia Prático de Engenharia de Compostagem define a compostagem assim: "A decomposição biológica e estabilização de substratos orgânicos, sob condições que permitem o desenvolvimento de temperaturas termofílicas como resultado de calor biológico, resultando em um produto final que é estável, livre de patógenos e sementes de plantas, e pode ser aplicado beneficialmente ao solo." Manual “Humanure” – Capítulo Três: Criação de Micróbios 26
  27. 27. O Manual de Compostagem para a Fazenda diz que composto é "um grupo de resíduos orgânicos ou uma mistura de resíduos orgânicos e solo que foi empilhada, umedecida, e passou por um processo de decomposição biológica aeróbica." O Conselho de Compostagem adiciona: "Composto é o produto estabilizado e saneado da compostagem; composto é principalmente material decomposto e está no processo de humificação (cura). Composto tem pouca semelhança em forma física com o material original do qual ele é feito." Esta última sentença é particularmente importante para quem composta humanure. J. I. Rodale define composto um pouco mais eloquentemente: "Composto é mais que um fertilizante ou remédio para as feridas do solo. Ele é um símbolo da continuação da vida ... A pilha de composto está para o agricultor orgânico assim como a máquina de escrever está para o escritor, como a pá está para o trabalhador, e como o caminhão está para o caminhoneiro." 4 Em geral, a compostagem é um processo manejado por humanos envolvendo o cultivo de microrganismos que degradam e transformam materiais orgânicos na presença de oxigênio. Quando adequadamente manejado, o composto se torna tão altamente populado com microrganismos termofílicos que acaba por gerar boa dose de calor. Microrganismos do composto podem ser tão eficientes na conversão de material orgânico em húmus que o fenômeno não perde nada para um verdadeiro milagre. NATURALQUIMIA De certa forma, nós temos um universo acima de nós e um abaixo de nós. O universo acima pode ser visto nos céus noturnos, mas o universo de baixo é invisível sem lentes de aumento. Nossos antepassados não tinham muito entendimento do mundo vasto porém invisível que os rodeava, um mundo de incontáveis criaturas, tão pequenas que fogem ao alcance da visão humana. E ainda assim, algumas dessas microscópicas criaturas já estavam trabalhando para a humanidade na produção de alimentos tais como a cerveja, vinho, queijo e pão. Embora fermentos tenham sido usados pelas pessoas por séculos, bactérias só passaram a ser utilizadas pela humanidade ocidental em tempos recentes. A compostagem é uma das maneiras pelas quais o poder dos microrganismos pode ser utilizado para o melhoramento da humanidade. Antes do avanço da magnificação, nossos antepassados não entendiam o papel dos microrganismos na decomposição da matéria orgânica, ou a eficácia da vida microscópica na conversão de humanure, restos de comida e residuos vegetais em solo. Manual “Humanure” – Capítulo Três: Criação de Micróbios 27
  28. 28. A compostagem de materiais orgânicos requer exércitos de bactérias. Essa força microscópica trabalha tão vigorosamente que aquece o material a temperaturas mais altas que normalmente se encontra na natureza. Outros micro (invisíveis) e macro (visíveis) organismos como fungos e insetos também ajudam no processo de compostagem. Quando o composto se esfria, minhocas muitas vezes chegam e se alimentam do delicioso material, seus excrementos representando uma refinação adicional ao composto. ENERGIA SOLAR NUMA CASCA DE BANANA Restos orgânicos contém energia solar armazenada. Cada miolo de maçã ou casca de batata contém uma pequena quantidade de calor e luz, assim como um pedaço de lenha. Talvez S. Sides do jornal Mother Earth News ponha isso de forma mais sucinta: "Plantas convertem energia solar em alimento para animais (nós mesmos incluídos). Então, o resto deixado por esses animais, juntamente com plantas mortas e cadáveres animais, 'acumulam-se na pilha de composto', são compostados, e 'nascem de novo no cereal.' Esse ciclo de luz é a razão central por que o composto é um elo tão importante na produção orgânica de comida. Ele devolve a energia solar ao solo. Nesse contexto, ingredientes tão comuns do composto tais como cascas de cebola, cabelos, cascas de ovos, restos de verduras, e até mesmo torradas queimadas já não são mais vistos como lixo, mas como luz solar passando de uma forma a outra." 5 O material orgânico usado para fazer composto poderia ser considerado qualquer coisa na suerfície da Terra que já foi vivo, ou veio de uma coisa viva, tal como estrume, plantas, folhas, serragem, turfa, palha, aparas de grama, restos de comida e urina. Uma regra geral diz que qualquer coisa que pode apodrecer poderá ser compostada, incluindo coisas como tecidos de algodão, tapetes de lã, trapos, papel, carcaças animais, e papelão. Compostar significa converter material orgânico em solo ou, mais precisamente, húmus. Húmus é uma substância marrom ou preta, resultado da degradação de material orgânico ou restos vegetais. É um material estável que não atrai insetos nem incomoda animais. Ele pode ser manuseado e armazenado sem problemas, e é benéfico para o crescimento de plantas. Húmus retém umidade, e portanto aumenta a capacidade do solo de absorver e conter água. Diz-se que o composto contém nove vezes o seu peso em água (900%), enquanto a areia contém apenas 2%, e a argila 20%.6 O composto também adiciona nutrientes de liberação lenta, essenciais para o crescimento das plantas, areja o solo, ajuda a balancear o pH, escurece o solo (ajudando assim a absorção de calor), e suporta Manual “Humanure” – Capítulo Três: Criação de Micróbios 28
  29. 29. populações microbianas que adicionam vida ao solo. Nutrientes como o nitrogênio no composto são liberados lentamente por toda a estação de crescimento, fazendo-os menos susceptíveis a perdas por lixiviação que os fertilizantes químicos, mais solúveis.7 Matéria orgânica do composto possibilita ao solo imobilizar e degradar pesticidas, nitratos, fósforo e outras substâncias que podem tornar-se poluentes. O composto imobiliza os poluentes em sistemas de solos, reduzindo sua lixiviação e absorção pelas plantas.8 A construção da camada superior, viva do solo pela Mãe Natureza é um processo que leva séculos. A adição de composto ao solo ajuda a restaurar rapidamente a fertilidade que, de outra forma, poderia levar centenas de anos para ser construída de novo pela natureza. Nós humanos esgotamos nossos solos em períodos de tempo relativamente curtos. Através da compostagem de nossos restos orgânicos e devolução à terra, podemos restaurar essa fertilidade também em relativamente curto tempo. Solos férteis produzem melhores alimentos, promovendo assim boa saúde. Os Hunzas do norte da Índia já foram muito estudados. Sir Albert Howard relatou, "Quando a saúde e composição física das várias raças do norte da Índia foram estudadas em detalhe, as melhores foram as dos Hunzas, um povo robusto, ágil e vigoroso vivendo em um dos vales nas montanhas altas da região do Gilgit... Não há praticamente diferença entre os tipos de alimentos consumidos por esse povo e o restante do norte da Índia. Há, porém, uma grande diferença na forma como esses alimentos são produzidos... O maior cuidado é tomado para se devolver ao solo todos os restos humanos, animais e vegetais, após terem sido compostados juntos. A área de terra é limitada: a vida depende da forma como ela é cuidada." 9 GOMER, A PILHA Há várias razões para se empilhar o material para compostagem. Uma pilha protege o material do ressecamento ou resfriamento prematuro. Um alto nível de umidade (50-60%) é necessário para os microrganismos trabalharam contentes.10 O empilhamento previne escorrimento ou enxarcamento, e preserva o calor. Paredes verticais ao redor de uma pilha, especialmente se feitas de madeira ou fardos de palha, protegem contra o vento e previnem o esfriamento prematuro de um lado da pilha. Uma pilha contida, organizada, tem um aspecto melhor. Dá a impressão que você sabe o que esta fazendo quando faz a compostagem, ao invés de parecer uma pilha de lixo. Uma caixa de composto construída também ajuda a proteger contra animais como cães, que podem incomodar. Uma pilha facilita a disposição de camadas ou cobertura no composto. Quando um depósito fétido é adicionado ao topo da pilha, é essencial cobrir com material orgânico limpo para eliminar odores Manual “Humanure” – Capítulo Três: Criação de Micróbios 29
  30. 30. desagradáveis e ajudar a incorporar o oxigênio necessário na pilha. Portanto, se você vai fazer compostagem, não jogue simplesmente o material num monte no jardim. Construa um bom reservatório e faça as coisas direito. Esse reservatório não tem que custar dinheiro; pode ser feito de madeiras recicladas e blocos de cimento. Madeira é preferível, já que vai isolar a pilha e prevenir perda de calor e penetração de geadas. Evite madeiras que foram tratadas ou contaminadas com produtos tóxicos. Um sistema de compostagem de quintal não tem que ser complicado de forma alguma. Não requer eletricidade, tecnologia, aparatos ou truques. Você não precisa de picadores, cortadores, moedores ou qualquer outra máquina. QUATRO COISAS NECESSÁRIAS PARA UM BOM COMPOSTO 1) Umidade O composto tem que ser mantido úmido. Uma pilha sêca não vai funcionar - ela vai apenas ficar ali, com cara de aborrecida. É incrível a quantidade de umidade que uma pilha de composto pode absorver. Quando as pessoas sem nenhuma experiência em compostagem tentam imaginar uma pilha de compostagem de humanure no quintal de alguém, elas imaginam uma pilha gigante de excrementos, fétida e infestada de moscas, com todo tipo de líquidos horrorosos vazando pelo fundo da pilha de composto. Porém, uma pilha de composto não é uma pilha de lixo. Graças ao milagre da compostagem, a pilha se torna uma massa biológica viva, uma esponja orgânica que absorve uma boa umidade. A pilha não oferece riscos de vazamentos, a não ser que seja sujeita a fortes chuvas – e, neste caso, pode simplesmente ser coberta. Por que é que pilhas de composto necessitam umidade? Por exemplo, o composto perde muita umidade para o ar durante o processo de compostagem, o que comumente causa uma retração de 40 a 80% na pilha.11 Até mesmo quando materiais úmidos são compostados, uma pilha pode ressecar consideravelmente.12 Um teor de umidade inicial de 65% pode cair para 20 a 30% em apenas uma semana, segundo alguns pesquisadores.13 É mais fácil você ter que adicionar umidade ao composto que ter que lidar com excesso de umidade vazando do composto. A quantidade de umidade que uma pilha de composto recebe ou necessita depende dos materiais adicionados à pilha bem como a localização da pilha. Na Pensilvânia, há cerca de 1000 mm de chuva ao ano. Pilhas de composto raramente precisam da adição de água nessas condições. De acordo com Sir Albert Howard, adicionar água a uma pilha de composto em uma área da Inglaterra onde a precipitação chuvosa anual é de 610 mm Manual “Humanure” – Capítulo Três: Criação de Micróbios 30
  31. 31. também não é necessário. Porém, a água necessária para compostagem pode ir de 1000 a 1500 litros para cada metro cúbico de composto preparado.14 Essa umidade será alcançada se a urina humana for adicionada na compostagem de humanure e o topo da pilha for mantido descoberto e recebendo quantidade adequada de chuva. Água adicional pode vir de materiais orgânicos úmidos, tais como restos de comida. Se uma precipitação chuvosa adequada não for disponível e o conteúdo da pilha não estiver úmido, adição de água será necessária para produzir um teor de umidade equivalente a uma esponja molhada e espremida. Águas servidas ou água da chuva coletada podem ser usadas para esse propósito. 2) Oxigênio Compostagem requer o cultivo de bactérias aeróbicas, que gostam de oxigênio, para possibilitar a decomposição termofílica. Isso é feito pela adição de materiais volumosos à pilha de composto para criar pequenos espaços de ar. Bactérias aeróbicas sofrem com a falta de oxigênio quando afogadas em líquido. Decomposição bacteriana também pode ocorrer anaerobicamente, mas este é um processo mais lento e frio que pode, falando francamente, feder. Odores anaeróbicos podem cheirar a ovos podres (devido ao ácido sulfídrico), leite azedo (por ácidos butíricos), vinagre (ácidos acéticos), vômito (ácidos valéicos), e putrefação (compostos alcoólicos e fenóis).15 Obviamente, nós queremos evitar tais odores, mantendo para isso uma pilha de composto aeróbica. Composto bom, saudável, aeróbico não deve ofender o senso de odor de ninguém. Porém, para tanto, uma regra simples deve ser seguida: qualquer coisa que cheire mal, quando adicionada a uma pilha de composto, deve ser coberta com material orgânico limpo e sem cheiro. Se você usa um banheiro compostável, então você deve cobrir os depósitos dentro do vaso após cada uso. Da mesma forma, você deve cobrir sua pilha de composto toda vez que adiciona material a ela. Bons materiais para cobertura em banheiros compostáveis incluem serragem, musgos sêcos, folhas, cascas de arroz, palhas e muitas outras coisas. Bons materiais de cobertura da pilha de composto incluem mato, palha, feno, folhas e outros materiais volumosos que retém oxigênio no composto. Cobrir adequadamente o composto com material orgânico limpo é o simples segredo para a prevenção de odores, e também previne problemas com moscas. 3) Temperatura Desidratação interromperá o trabalho dos microrganismos. Congelamento também. Pilhas de composto não funcionam se estiverem Manual “Humanure” – Capítulo Três: Criação de Micróbios 31
  32. 32. BENEFÍCIOS DO COMPOSTO ENRIQUECE O SOLO  Adiciona material orgânico  Aumenta a fertilidade e produtividade  Inibe doenças das plantas  Inibe insetos  Aumenta a retenção de água  Inocula o solo com microrganismos benéficos  Reduz ou elimina a necessidade de fertilizantes químicos  Modera a temperatura do solo PREVINE POLUIÇÃO  Reduz a produção de metano nos aterros  Reduz ou elimina o lixo orgânicos  Reduz ou elimina o esgoto COMBATE POLUIÇÃO JÁ EXISTENTE  Degrada substâncias químicas tóxicas  Imobiliza metais pesados  Limpa ar contaminado  Limpa fluxo de águas pluviais RECUPERA O SOLO  Ajuda no reflorestamento  Ajuda a restaurar habitats naturais  Ajuda a recuperar terras usadas para mineração  Ajuda a recuperar pântanos danificados  Ajuda a prevenir a erosão em planícies sujeitas a inundação DESTRÓI PATÓGENOS  Pode destruir organismos causadores de doenças em humanos  Pode destruir patógenos das plantas  Pode destruir patógenos animais ECONOMIZA DINHEIRO  Pode ser usado para a produção de alimentos  Pode eliminar custos com disposição de lixo  Reduz as necessidades de água, fertilizantes e pesticidas  Pode ser vendido, gerando lucro  Extende a vida de aterros por desviar materiais  É uma técnica de reparação ambiental mais barata Fonte: Agência de Proteção Ambiental dos Estados Unidos (outubro de 1997). Composto: Novas Aplicações para uma Tecnologia Antiga. EPA 530-F-97-047 E a experiência do autor congeladas. Porém, os microrganismos podem simplesmente esperar até que as temperaturas aumentem o suficiente para que reiniciem o trabalho fervorosamente. Se você tiver espaço, você pode continuar a adicionar material a uma pilha de composto congelada. Após o descongelamento, a pilha vai começar a soltar vapor como se nada tivesse acontecido. 4) Dieta Balanceada Uma boa mistura de materiais (um bom equilíbrio entre carbono e nitrogênio, no jargão da compostagem) é necessária para uma boa pilha de composto a quente (termofílico). Como a maioria dos materiais comumente adicionados a uma pilha de composto caseira são ricos em carbono, uma fonte de nitrogênio deve ser incorporada a essa mistura de ingredientes. Isso não é tão difícil quanto parece. Você pode trazer montes de ervas da capina, palha, folhas e restos de comida, mas você ainda estará com falta de nitrogênio. Claro, a solução é simples: adicione esterco. Onde você pode obter esterco? De um animal. Onde você pode achar um animal? Olhe no espelho. Rodale afirma no seu livro The Complete Book of Composting ("Livro Completo da Compostagem") que um jardineiro ou horticultor comum pode ter dificuldade em obter esterco para a pilha do composto, mas com "um Manual “Humanure” – Capítulo Três: Criação de Micróbios 32
  33. 33. pouco de engenhosidade e uma busca minuciosa", pode-se encontrar. Um horticultor no livro declara que quando ele fica "todo empolgado para construir uma boa pilha de composto, sempre vem uma grande questão: Onde é que eu vou achar esterco? Eu posso apostar, também, que a falta de esterco é um dos motivos porque sua pilha de composto não é a vibrante fábrica de húmus que poderia ser." Hmmm. Onde poderia um animal grande como um ser humano encontrar esterco? Oh, essa é difícil. Vamos pensar com bastante atenção sobre isso. Talvez com um pouco de "engenhosidade e uma busca minuciosa" nós possamos achar uma fonte. Onde está aquele espelho mesmo? Pode haver alguma pista ali... A PROPORÇÃO ENTRE CARBONO E NITROGÊNIO Uma forma de entender a mistura de ingredientes na sua pilha de composto é usar a relação C/N (carbono/nigrogênio). Francamente, a chance de uma pessoa comum medir e monitorar as quantidades de carbono e nitrogênio em seu material orgânico é quase nula. Se a compostagem necessitasse esse tipo de sofisticação, ninguém faria. Porém, ao usar todo o resíduo orgânico que uma família produz, incluindo fezes, urina, restos de comida, capinação e cortes de grama, com alguns materiais da comunidade agrícola maior como um pouco de palha, e talvez alguma serragem que esteja apodrecendo ou algumas folhas coletadas pela prefeitura, pode-se obter uma boa mistura de carbono e nitrogênio para conseguir com sucesso a compostagem termofílica. Uma boa relação C/N para uma pilha de composto fica entre 20:1 e 35:1.16 Ou seja, vinte partes de carbono para uma de nitrogênio, até 35 partes de carbono para uma de nitrogênio. Ou, para simplificar, ao redor de 30:1. Para os microrganismos, o carbono é o ingrediente básico da vida e encerra sua fonte de energia, mas o nitrogênio também é necessário para coisas como proteínas, material genético e estrutura celular. Para uma dieta balanceada, microrganismos que digerem composto necessitam cerca de 30 partes de carbono para cada parte de nitrogênio que consomem. Se houver excesso de nitrogênio, os microrganismos não conseguem usá-lo e o excesso é perido na forma de gás de amônia. Perdas de nitrogênio devido a excesso de nitrogênio na pilha de composto (baixa proporção C/N) podem chegar a mais de 60%. Numa proporção C/N de 30 a 35:1, apenas 0,5% do nitrogênio será perdido (veja a Tabela 3,1). É por isso que você não quer um excesso de nitrogênio no seu composto – o nitrogênio será perdido na forma de amônia, e nitrogênio é valioso demais para as plantas para o deixarmos escapar para a atmosfera.17 Manual “Humanure” – Capítulo Três: Criação de Micróbios 33
  34. 34. Tabela 3.2 RELAÇÕES CARBONO/NITROGÊNIO Material Sed. esgoto ativado Amaranto Bagaço de maçã Sangue Pão Repolho Papelão Borra de café Esterco bovino Sabugo de milho Talo de milho Torta de algodão Oxicoco Esterco de sítio Samambaia Restos de peixe Frutas Lixo (bruto) Aparas de grama Casca árvore. (dura) Madeira dura Feno (geral) Feno (leguminosa) Esterco de galinha Esterco de cavalo Esterco humano Folhas Alface Restos de carne Restos de mexilhão Mostarda Jornal Palha de aveia Casca de oliva Cebola Papel Pimenta Esterco de porco Casca de batata Carcaça de frango Beldroega Serragem bruta %N 5-6 3,6 1,1 10-14 2,10 3,6 0,10 -2,4 0,6 0,6-0,8 7,7 0,9 2,25 1,15 10,6 1,4 2,15 2,4 0,241 0,09 2,10 2,5 8 1,6 5,7 0,9 3,7 5,1 3,6 1,5 0,06-0,14 1,05 1,2-1,5 2,65 -2,6 3,1 1,5 2,4 4,5 0,11 C/N 6 11 13 3 -12 400-563 20 19 56-123 60-73 7 61 14 43 3,6 40 15-25 12-19 223 560 -16 6-15 25-30 5-10 54 --2,2 26 398-852 48 30-35 15 100-800 15 14 25 5 8 511 Trevo vermelho Palha de arroz Serragem pôdre Alga marinha Sed. esgoto bruto Esterco de ovelha Restos de camarão Restos abatedouro Casca árvore (mole) Madeira mole (méd.) Soja Palha (geral) Palha (aveia) Palha (trigo) Lista telefônica Phleum pratense Tomate Penas de peru Folhas de nabo Urina Verduras e legumes Aguapé Cenoura inteira Nabo inteiro 1,8 0,3 0,25 1,9 2-6,9 2,7 9,5 7-10 0,14 0,09 7,2-7,6 0,7 0,9 0,4 0,7 0,85 3,3 2,6 2,3 15-18 2,7 -1,6 1,0 27 121 200-500 19 5-16 16 3,4 2,4 426 641 4-6 80 60 80-127 772 58 12 16 19 0,8 19 20-30 128-150 27 Tabela 3.1 PERDA DE NITROGÊNIO E RELAÇÃO CARBONO/NITROGÊNIO Relação C/N inicial Perda de Nitrogênio (%) 20 38,8 20,5 48,1 22,0 14,8 30,0 0,5 35,0 0,5 76,0 -8,0 Fonte: Gotaas, Composting, 1956, p92 Fontes: Gotaas, Harold B. (1956). Composting – Sanitary Disposal and Reclamation of Organic Wastes (p. 44). World Health Organization, Monograph Series Number 31. Geneva. and Rynk, Robert, ed. (1992). On-Farm Composting Handbook. Norgheast Regional Agricultural Engineering Service. Fone (607) 255-7654. p. 106-113. Alguns dados de Biocycle, Jornal de Compostagem e Reciclagem. Julho de 1998, p. 18, 61, 62; e janeiro de 1998, p. 20. Manual “Humanure” – Capítulo Três: Criação de Micróbios 34
  35. 35. Tabela 3.5 COMPARAÇÕES ENTRE DIFERENTES TIPOS DE ESTERCOS Esterco Umidade (%) Nitrogênio (%) Fósforo (%) Potássio(%) Humano Bovino Equino Ovino Suíno Galinha Pombo Esgoto 66-80 80 75 68 82 56 52 -- 5-7 1,67 2,29 3,75 3,75 6,27 5,68 5-10 3-5,4 1,11 1,25 1,87 1,86 5,92 5,74 2,5-4,5 1,0-2,5 0,56 1,38 1,25 1,25 3,27 3,23 3,0-4,5 Fonte: Gotaas, Harold B. (1956). Compostagem – Disposição Sanitária e Reaproveitamento de Restos Orgânicos. p. 35, 37, 40. Organização Mundial da Saúde, Monograph Series Number 31. Geneva. Tabela 3.3 Tabela 3.4 COMPOSIÇÃO DO HUMANURE TAXA DE DECOMPOSIÇÃO DE ALGUMAS SERRAGENS Material Fecal 135-270 gramas/pessoa/dia Matéria Orgânica (peso sêco) 88-97% Teor de Umidade 66-80% Nitrogênio 5-7% Fósforo 3-5,4% Potássio 1-2,5% Carbono 40-55% Cálcio 4-5% Relação C/N 5-10 Urina 1,0-1,3 litros/pessoa/dia Teor de Umidade 15-19% Fósforo (m.s.) 2,5-5% Potássio (m.s.) 3-4,5% Carbono 11-17% Cálcio 4,5-6% TAXA DE DECOMPOSIÇÃO Cedro Vermelho Pseudotsuga Pinho Branco Pin. Branco Ocidental Mad. moles (média) 3.9 8,4 9,5 22,2 12,0 Castanheiro Choupo Amarelo Nogueira Preta Carvalho Branco Mad. duras (média) 33,5 44,3 44,7 49,1 45,1 Palha de Trigo 54,6 93-96% Nitrogênio (na matéria sêca) SERRAGEM Fonte: Gotaas, Composting, (1956), p.35. Quanto menor o número, mais lenta a decomposição. Serragem de madeiras duras decompõe mais rápido que a de madeiras moles. Fonte: Haug, Roger T. (1993). Guia Prático de Engenharia da Compostagem. CRC Press, Inc., 2000 Corporate Blvd, N.W., Bora Raton, FL 33431 U.S.A. In Biocyde – Journal of Composting and Recycling. Dezembro de 1998. p. 19. Manual “Humanure” – Capítulo Três: Criação de Micróbios 35
  36. 36. Também é por isso que fezes e urina somente não vão compostar. Elas contém muito nitrogênio e pouco carbono, e os microrganismos, assim como nós humanos, não gostam da idéia de comer isso. Como não há nada pior que a idéia de vários bilhões de microrganismos hesitantes, um material rico em carbono tem que ser adicionado ao humanure para fazê-lo apetitoso. A celulose das plantas é rica em carbono, e portanto produtos vegetais tais como palha, ervas ou mesmo papel, se picados a uma consistência apropriada, fornecerão o carbono necessário. Restos de cozinha são geralmente balanceados em carbono e nitrogênio, e podem ser adicionados diretamente à compostagem de humanure. Serragem (preferencialmente não torrada) é uma boa fonte de carbono para balancear o nitrogênio do humanure. Serragem de madeireiras tem um teor de umidade de 40-65%, o que é bom para o composto.18 Serragem de serrarias, por outro lado, às vezes é sêca em fornos, tornando-se biologicamente inerte pela desidratação. Portanto, não é desejável para compostagem a não ser que seja re-hidratada com água (ou urina) antes de sua adição à pilha de composto. Também, serragem de serrarias hoje em dia muitas vezes é contaminada com conservantes de madeira como arsenato cromado de cobre (de "madeira tratada sob pressão"). Tanto o cromo como o arsênio são carcinógenos, portanto é bom evitar essas madeiras – agora proibidas pela EPA). Algumas pessoas que praticam compostagem em casa referem-se aos materiais orgânicos como "marrons" e "verdes". Os marrons (tais como folhas secas) fornecem carbono, e os verdes (tais como aparas frescas de grama) fornecem nitrogênio. É recomendado que dois a três volumes de marrons sejam misturados com um volume de verdes para produzir uma mistura com uma correta proporção C/N para compostagem.19 Porém, como a maioria dos praticantes de compostagem caseira não compostam humanure, muitos acabam com uma pilha de material em suas pilhas de composto apresentando muito pouca atividade. O que normalmente está faltando é nitrogênio, assim como umidade, dois ingredientes críticos em qualquer pilha de composto. Ambos são fornecidos pelo humanure quando coletado junto com a urina e um material de cobertura rico em carbono. A mistura de humanure pode ser bem marrom, mas também é muito rica em nitrogênio. Portanto a abordagem "marrom/verde" não funciona muito bem, e nem é necessária, quando compostamos humanure juntamente com outros materiais orgânicos domésticos. Vamos admitir, compostadores de humanure formam uma classe à parte. Manual “Humanure” – Capítulo Três: Criação de Micróbios 36
  37. 37. MICRORGANISMOS TERMÓFILOS Uma vasta gama de microrganismos vivem em uma pilha de composto. Bactérias são especialmente abundantes e podem ser usualmente divididas em diversas classes baseado nas temperaturas em que crescem melhor. As bactérias de baixa temperatura são as psicrófilas, e podem crescer a temperaturas tão baixas como -10oC, embora a temperatura ótima seja 15oC ou menos. As mesófilas vivem em temperaturas médias, entre 20 e 45oC, e incluem os patógenos humanos. Termófilas crescem melhor acima de 45oC, e algumas suportam temperaturas acima do ponto de ebulição da água. Variedades de bactérias termofílicas com temperaturas ótimas variando de 55 a 105oC (acima do ponto de ebulição da água) já foram identificadas, e muitas em temperaturas intermediárias.20 As variedades que sobrevivem em temperaturas extremamente altas são chamadas, apropriadamente, termófilas extremas, ou hiper-termófilas, e têm uma temperatura ótima igual ou superior a 80oC. Bactérias termofílicas ocorrem naturalmente em águas termais, solos tropicais, pilhas de composto, no seu excremento, em aquecedores de água (tanto os domésticos como industriais), e no seu lixo, entre outros lugares.21 Bactérias termofílicas foram isoladas pela primeira vez em 1870 por Miquel, que encontrou bactérias capazes de se desenvolver a 72oC. Ele encontrou essas bacterias em solo, poeira, excremento, esgotos, e lama de rios. Não demorou muito para uma variedade de bactérias termofílicas serem descobertas no solo – bactérias que cresciam rapidamente em altas temperaturas, mas não a temperatura ambiente. Diz-se que essas bactérias são encontradas nas areias do Deserto do Saara, mas não em solos de florestas frias. Solos de jardins estercados ou com aplicação de composto podem conter 1 a 10% de tipos de bactérias termófilas, enquanto solos de campos podem ter apenas 0,25% ou menos. Solos não cultivados podem ser totalmente livres de bactérias termofílicas.22 Os termófilos são responsávels pelo aquecimento espontâneo de fardos de feno que podem causar incêndios. O próprio composto pode às vezes pegar fogo sozinho. Isso ocorre em pilhas grandes (geralmente acima de 4 metros de altura) que se tornam muito sêcas (entre 25 e 45% de umidade) e então se sobreaquecem.23 Incêndios espontâneos já ocorrerem em duas usinas de compostagem nos Estados Unidos – Schenectady e Cabo May – devido a composto muito sêco. De acordo com a EPA, incêndios podem começar a temperatura surpreendentemente baixas (90oC) em composto muito sêco, embora este não seja um problema para quem faz composto em casa. Quando se alimentam de pão, os termófilos podem elevar a temperatura do pão a 74oC. Calor produzido pelas bactérias também Manual “Humanure” – Capítulo Três: Criação de Micróbios 37
  38. 38. LEITURA ESSENCIAL PARA NOITES DE INSÔNIA pH SIGNIFICA FORÇA DE HIDROGÊNIO É uma medida do grau de alcalinidade ou acidez de uma solução, freqüentemente expresso como o logaritmo do inverso da concentração de íons hidrogênio em equivalentes-grama por litro de solução. pH7 = 0,0000001 gramas de átomos de hidrogênio por litro. Água destilada pura é considerada neutra, com um pH de 7. Valores de pH vão de 0 a 14. De 0 a 7 é ácido, e de 7 a 14 é alcalino. 0 7 14 ÁCIDO ◄●●●●●●●●●●●●●► NEUTRO ◄●●●●●●●●●●●●► ALCALINO Manual “Humanure” – Capítulo Três: Criação de Micróbios 38
  39. 39. Figura 3.3 MICRORGANISMOS DO COMPOSTO MAGNIFICADOS 1.000 VEZES Actinomicetos Fungos Bactérias 100 mil a 100 milhões por grama de composto . 10 mil a 1 milhão por grama de composto 100 milhões a 1 bilhão por grama de composto Reproduzido com permissão do Manual de Compostagem na Fazenda. NRAES-54, publicado por NRAES, Extensão Cooperativa, 152 Riley-Robb Hall, Ithaca, Nova Iorque 14853-5701. (607) 255-7654. Quantidades de microrganismos: Sterritt, Robert M. (1988). Microbiologia para Engenheiros Ambientais e Sanitaristas. p.200. E.&F.N. Spon Ltd., Nova Iorque, NY 10001 USA. Tabela 3.6 MICRORGANISMOS NO COMPOSTO Actinomicetos Actinobifida chromogena Microbispora bispora Micropolyspora faeni Nocardia sp. Pseudocardia thermophila Streptomyces rectus S. thermofuscus S. Thermoviolaceus S. thermovulgaris S. violaceus-ruber Thermoactinomyces sacchari T. vulgaris Thermomonospora curvata T. viridis Fungos Aspergillus fumigatus Humicola grisea H. insolens H. lauginosa Malbranchea pulchella Myriococcum thermophilum Paecilomyces variotti Papulaspora thermophila Scytalidium thermophilum Sporotrichum thermophile Fonte: Palmisano, Anna C. e Barlaz, Morton A. (Eds.) (1996). Microbiologia de Resíduos Sólidos. p.125-127. CRC Press, Inc., 200 Corporate Blvd., NW., Boca Raton, FL 33431 USA. Bactérias Alcaligenes faecalis Bacillus brevis B. circulans (complexo) B. coagulans tipo A B. coagulans tipo B B. licheniformis B. megaterium B. pumilus B. sphaericus B. stearothermophilus B. subtilis Clostridium thermocellum Escherichia coli Flavobacterium sp. Pseudomonas sp. Serratia sp. Thermus sp. Manual “Humanure” – Capítulo Três: Criação de Micróbios 39
  40. 40. aquecem sementes quando germinam, já que sementes mantidas em ambiente estéril permanecem frias enquanto germinam.24 Tanto os microrganismos mesofílicos como os termofílicos encontram-se amplamente distribuídos na natureza e estão comumente presentes em alimentos, lixo e estercos. Isso não é surpreendente no caso dos mesófilos, já que suas temperaturas óptimas são comumente encontradas na natureza. Essas temperaturas incluem as dos animais de sangue quente, que excretam mesófilos em suas fezes em grandes números. Um mistério surge, porém, quando consideramos os microrganismos termofílicos, já que estes preferem viver em temperaturas não comumente encontradas na natureza, tais como fontes termais, aquecedores de água e pilhas de composto. Sua preferência por altas temperaturas gerou certa especulação a respeito de sua evolução. Uma teoria sugere que os termófilos estavam entre os primeiros seres vivos neste planeta, desenvolvendo-se e evoluindo durante o período primordial da Terra quando as temperaturas na superfície eram bem quentes. Eles foram chamados portanto de "Antepassado Universal". Com uma idade estimada em 3,6 bilhões de anos, diz-se que eram tão abundantes que chegavam a "representar metade de toda matéria viva no planeta".25 Este é um conceito razoavelmente profundo, já que significaria que os organismos termofílicos são talvez mais antigos que qualquer outro ser vivo. Sua idade faz os dinossauros parecerem bebês recém-nascidos, ainda úmidos atrás das orelhas, embora já extintos. Claro que nós, humanos, por comparação, acabamos de chegar à Terra. Os termófilos poderiam portanto ser o organismo ancestral comum a todas as formas de vida em nosso planeta. E igualmente extraordinário é o conceito que os termófilos, a despeito de sua necessidade de um ambiente quente, são encontrados em todo lugar. Eles estão no seu lixo e nas suas fezes, e estiveram ali sempre, desde que nós humanos começamos a andar por esse planeta. Eles esperaram quietamente desde o começo dos tempos, e nós nem sabíamos da sua existência até recentemente. Pesquisadores insistem que os termófilos não crescem em temperatura ambiente.26 Porém, como num milagre, quando nós coletamos nossos restos orgânicos em uma pilha organizada, os termófilos parecem ser acordados de sua dormência e começam a trabalhar furiosamente na criação do calor primordial que tanto desejam. E eles conseguem – se nós os ajudarmos criando pilhas de composto. Eles nos recompensam por nossa ajuda ao converter nosso lixo e outros descartes orgânicos em terra sustentadora de vida. O conhecimento de criaturas vivas incompreensivelmente ancestrais, tão pequenas que se tornam totalmente invisíveis, multiplicando-se a temperaturas mais quentes que aquelas normalmente Manual “Humanure” – Capítulo Três: Criação de Micróbios 40
  41. 41. encontradas na natureza, e ainda assim encontradas em todo lugar, é suficientemente impressionante. O fato que elas estão tão dispostas a trabalhar para o nosso benefício, porém, é uma lição de humildade. Segundo alguma estimativas, humanure contém até um trilhão (1.000.000.000.000) de bactérias por grama de material.27 Essas são, claro, uma mistura de espécies, e claro que não todas são termófilas. Um trilhão de bactérias é equivalente à população humana total da Terra multiplicada por 166, e tudo isso espremido em um grama de material orgânico. Esses conceitos microbiológicos de tamanho e número são difíceis de entender para nós humanos. Dez pessoas apertadas dentro de um elevador nós podemos entender. Um trilhão de organismos vivos em uma colher de chá de fezes é um pouco atordoante. Alguém já identificou as espécies de microrganismos que aquecem o composto? Na verdade, uma grande variedade de espécies, uma biodiversidade, é crítica para o sucesso do composto. Porém, o estágio termofílico do processo é dominado por bactérias termofílicas. Um exame dos microrganismos do composto em duas estações de compostagem mostrou que a maioria das bactérias (87%) eram do gênero Bacillus, que são bactérias que formam esporos,28 enquanto outro pesquisador constatou que acima de 65oC, os organismos no composto eram quase puramente Bacillus stearothermophilus.29 QUATRO ESTÁGIOS DO COMPOSTO Há uma enorme diferença entre fazer compostagem caseira (pequena escala) ou em nível municipal (larga escala). A compostagem municipal processa grandes quantidades de materiais orgânicos de uma vez, enquanto na compostagem de quintal produzem-se pequenas quantidades de material orgânico a cada dia. Portanto, no nível municipal trata-se de "lotes", enquanto no nível doméstico tem-se um processo "contínuo". Quando o material orgânico é compostado em um lote, quatro estágios distintos do processo de compostagem ficam aparentes. Embora as mesmas fases ocorram durante a compostagem contínua, elas não são tão aparentes, e de fato elas podem estar ocorrendo simultaneamente, e não seqüencialmente. As quatro fases incluem: 1) a fase mesofílica; 2) a fase termofílica; 3) a fase de resfriamento; e 4) a fase de cura. As bactérias do composto combinam carbono com oxigênio para produzir dióxido de carbono e energia. Parte da energia é usada pelos microrganismos para reprodução e crescimento; o restante é liberado na forma de calor. Quando uma pilha de restos orgânicos começa a passar pelo processo de compostagem, bactérias mesofílicas proliferam, aumentando a Manual “Humanure” – Capítulo Três: Criação de Micróbios 41
  42. 42. temperatura da massa do composto a até 44oC. Este é o primeiro estágio do processo de compostagem. Essas bactérias mesofílicas podem incluir E. coli e outras bactérias do trato intestinal humano, mas estas logo são crescentemente inibidas pela temperatura, conforme as bactérias termofílicas assumem o comando na fase de transição de 44 a 52oC. Isso inicia o segundo estágio do processo, quando microrganismos termofílicos estão muito ativos e produzem um monte de calor. Este estágio pode então continuar até cerca de 70oC,30 embora temperaturas tão altas não sejam nem comuns, nem desejáveis no composto caseiro. Este estágio de aquecimento começa bem rápido e pode durar apenas alguns poucos dias, semanas ou meses. Ele tende a permanecer localizado na porção superior do composto caseiro onde o material fresco vai sendo adicionado; enquanto num composto em maior escala, toda a massa do composto pode tornar-se termofílica de uma vez. Após o período de aquecimento termofílico, o humanure parecerá já ter sido digerido, mas os materiais orgânicos mais grosseiros não. É aí que o terceiro estágio da compostagem, a fase do resfriamento, ocorre. Durante esta fase, os microrganismos que foram expulsos pelos termófilos migram de volta para o composto e põem-se a trabalhar digerindo materiais orgânicos mais resistentes. Fungos e organismos macroscópicos tais como minhocas e tatuzinhos-de-jardim também quebram os elementos mais grosseiros em húmus. Após o estágio termofílico ter-se completado, apenas os nutrientes prontamente disponíveis no material orgânico já foram digeridos. Ainda há um monte de comida na pilha, e um monte de trabalho a ser feito pelas criaturas no composto. Leva muitos meses para quebrar alguns dos materiais orgânicos mais resistentes no composto tais como a "lignina", que vem da madeira. Como os humanos, as árvores evoluíram com uma pele que é resistente ao ataque bacteriano, e em uma pilha de composto essas ligninas resistem à digestão pelos termófilos. Porém, outros organismos, tais como fungos, podem quebrar a lignina, se lhes for dado tempo suficiente; já que muitos fungos não gostam do calor da pilha de composto, eles simplesmente esperam as coisas esfriarem antes de começarem seu trabalho. O estágio final do processo de compostagem é chamado de cura ou processo de maturação, e trata-se de um período longo e importante. Profissionais da compostagem comercial muitas vezes querem fazer seu composto tão rápido quanto possível, usualmente sacrificando o período de cura do composto. Um operador de compostagem municipal certa vez disse que se ele pudesse encurtar seu tempo de compostagem para quatro meses, ele poderia fazer três lotes de composto por ano ao invés dos dois lotes que Manual “Humanure” – Capítulo Três: Criação de Micróbios 42
  43. 43. ele estava fazendo, e assim aumentaria a produção total em 50%. Operadores de compostagem municipal vêem caminhões de composto chegando todo dia, e eles querem garantir que não vão ficar inundados com material orgânico esperando para ser compostado. Portanto, eles sentem a necessidade de passar o material através do processo de compostagem tão rápido quanto possível para liberar espaço para mais material. Pessoas que fazem compostagem em casa não têm esse problema, embora pareça haver muitos compostadores de fundo de quintal obsecados em fazer seu composto tão rápido quanto possível. Porém, a cura do composto é um estágio criticamente importante do processo de compostagem. Um longo período de cura, como um ano após o período termofílico, aumenta a segurança na destruição de patógenos. Muitos patógenos humanos têm apenas um período de viabilidade limitado no solo, e quanto mais tempo eles forem sujeitos à competição microbiológica da pilha do composto, maior a chance que eles morrerão. Composto imaturo ou não curado pode produzir substâncias chamadas fototoxinas que são tóxicas para plantas. Ele também pode roubar o oxigênio e nitrogênio do solo, e pode conter altos níveis de ácidos orgânicos. Portanto relaxe, sente-se, ponha seus pés para cima, e deixe seu composto atingir a maturidade total antes de você pensar em utilizá-lo. BIODIVERSIDADE DO COMPOSTO O composto é normalmente povoado por três categorias gerais de microrganismos: bactérias, actinomicetos e fungos (veja Figura 3.3 e Tabela 3.6). São principalmente as bactérias, e especificamente as termofílicas, que criam o calor da pilha de composto. Embora considerados bactérias, os actinomicetos são efetivamente intermediários entre bactérias e fungos porque eles se parecem com fungos e têm preferências nutricionais e hábitos de crescimento semelhantes aos fungos. Eles tendem a ser mais comumente encontrados nos estágios mais tardios da compostagem, e geralmente acredita-se que eles sucedam às bactérias termofílicas. Eles, por sua vez, são seguidos predominantemente por fungos durante os últimos estágios da compostagem. Há pelo menos 100.000 espécies conhecidas de fungos, sendo que a imensa maioria são microscópicos.31 A maioria dos fungos não podem crescer a 50oC porque é muito quente, embora fungos termofílicos sejam tolerantes ao calor. Fungos tendem a estar ausentes em composto acima de 60oC e actinomicetos tendem a estar ausentes acima de 70oC. Acima de 82oC a atividade biológica efetivamente pára (termófilos extremos não são encontrados no composto).32 Manual “Humanure” – Capítulo Três: Criação de Micróbios 43

×