SlideShare uma empresa Scribd logo
1 de 44
1 Series de Fourier "Series de Fourier, Transformadas de Fourier y Aplicaciones", Genaro González
2 Serie trigonométrica de Fourier Algunas funciones periódicas f(t) de periodo T pueden expresarse por la siguiente serie, llamada serie trigonométrica de Fourier f(t) = ½ a0 + a1cos(w0t) + a2cos(2w0t) + ... 		+ b1sen(w0t) + b2sen(2w0t) + ... Donde w0 = 2p/T se denomina frecuencia fundamental.
3 Ortogonalidad Se dice que las funciones del conjunto {fk(t)} son ortogonales  en el intervalo a < t < b si dos funciones cualesquiera fm(t), fn(t) de dicho conjunto cumplen: Ejemplo: Demostrar que las funciones sen t y cos t son ortogonales en el intervalo –p < t <p:
4 Funciones Pares e Impares Una función es par  si su gráfica es simétrica respecto al eje vertical, es decir	      f(t) = f(-t) una función es impar si su gráfica es simétrica respecto al origen, es decir,             -f(t) = f(-t)
5 ¿Cómo calcular los coeficientes de la serie?
6 f(t) 1 t . . .      -T/2         0T/2          T   . . . -1 w0= 2p/T Encontrar la serie de Fourier para la función de onda cuadrada de periodo T: La expresión para f(t) en –T/2< t < T/2 es:
7 Coeficientea0:
8 Coeficientesan:
9 Coeficientes bn:
10 Finalmente, la serie de Fourier queda como  En la siguiente figura se muestran: la componente fundamental y los armónicos 3, 5 y 7, así como la suma parcial de estos primeros cuatro términos de la serie para  w0 = p (w0= 2p/T), es decir, T = 2:
11 Componentes de la Serie de Fourier 1.5 1 0.5 0 Componentes -0.5 Suma fundamental -1 tercer armónico quinto armónico séptimo armónico -1.5 -1 -0.5 0 0.5 1 t Fourier series java applet (http://www.falstad.com/fourier/)
12 Nota: Para expresarse como serie de Fourier f(t), no necesita estar  centrada en el origen. Simplemente debemos tomar el intervalo, donde está definida, como el periodo de la serie.  La ortogonalidad de las funciones seno y coseno no sólo se da en el intervalo de  –T/2 a T/2, sino en cualquier intervalo que cubra un periodo completo: de t0 a t0 + T, con t0 arbitrario, con el mismo resultado.
13 f(t) 1 t . . .      -T/2         0T/2          T   . . . -1 f(t) Habíamos calculado  los coeficientes para: 1 t . . .      -T/2         0T/2          T   . . . -1 Si los calculamos para la misma función desplazada tienen que ser los mismos:
14 f(t) De hecho si repetimos  para cualquier intervalo  de longitud el periodo  T de la función, será lo  mismo: 1 t -1 . . .          t0                                    t0 +T    . . .
Actividad 1 Calcular la serie de Fourier de la función periódica:
16   Como la función sen(nw0t) es una función impar para todo n y la función cos(nw0t) es una función par para todo n, es de esperar que: Si f(t) es par, su serie de Fourier no contendrá  términos seno, por lo tanto  bn= 0 para todo n. Si f(t) es impar, su serie de Fourier no contendrá  términos coseno, por lo tanto an= 0 para todo n.
17 f(t) 1 t . . .      -T/2         0T/2          T   . . . -1 Por ejemplo, la señal cuadrada, que hemos analizado: Es una función impar, por ello su serie de Fourier no contiene términos coseno:
18 f(t)  t Simetría de media onda Una función periodica de periodo T se dice simétrica de media onda, si cumple la propiedad Es decir, si en su gráfica las partes negativas son un reflejo de las positivas pero desplazadas medio periodo:
19 Simetrías y Coeficientes de Fourier
20
21
22 Actividad 2
23 Forma compleja de la serie de Fourier Consideremos la serie de Fourier para una función periódica f(t), con periodo T = 2p/w0. Es posible obtener una forma alternativa usando las fórmulas de Euler:
24 Sustituyendo: Y usando el hecho de que 1/i = -i: Y definiendo:
25 A la expresión obtenida se le llama forma compleja de la serie de Fourier y sus coeficientes cn pueden obtenerse a partir de los coeficientes an, bn como ya se dijo, o bien: Para n = 0, 1, 2, 3, ...
26 f(t) 1 t . . .      -T/2         0T/2          T   . . . -1 Ejemplo. Encontrar la forma compleja de la serie de Fourier para la función ya tratada: Solución 1. Como ya se calcularon los coeficientes de la forma trigonométrica (an y bn), que eran an= 0 para todo n y
27 0 Entonces la serie compleja de Fourier queda:
28 Solución 2. También podemos calcular los coeficientes cn mediante la integral:
29 Como  w0T = 2p y : que coincide con el resultado ya obtenido.
30 Actividad 3 Calcular la serie de Fourier de la función de Heaviside, usando la  forma compleja,
31 d(t) d(t) f3(t) f2(t) t La función impulso o delta de Dirac f1(t) t Podemos pensar en la delta de Dirac como el límite de una serie de funciones:
32 d(t) t Propiedades de la función d
33 Calcular la serie de Fourier de d(x):
34 Calcular la serie de Fourier de d(x): Para todas las x ≠ 0 la función delta vale 0
35
36
37
38
39
40
41
42
43
44

Mais conteúdo relacionado

Mais procurados

Transformada de fourier y transformada inversa de fourier
Transformada de fourier y transformada inversa de fourierTransformada de fourier y transformada inversa de fourier
Transformada de fourier y transformada inversa de fourierheyner20
 
correlacion-de-senales
correlacion-de-senalescorrelacion-de-senales
correlacion-de-senalescrico89
 
Tabla de propiedades de la transformada de laplace
Tabla de propiedades de la transformada de laplaceTabla de propiedades de la transformada de laplace
Tabla de propiedades de la transformada de laplaceAngel Perez
 
Sistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoSistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoMari Colmenares
 
Serie de Fourier
Serie de FourierSerie de Fourier
Serie de FourierNhynoska
 
Amplificadores operacionales con funciones de transferencia
Amplificadores operacionales con funciones de transferenciaAmplificadores operacionales con funciones de transferencia
Amplificadores operacionales con funciones de transferenciaMartín E
 
Electronica transitores efecto de cambio
Electronica transitores efecto de cambioElectronica transitores efecto de cambio
Electronica transitores efecto de cambioVelmuz Buzz
 
Apuntes y ejercicios Señales y sistemas (Borrador)
Apuntes y ejercicios Señales y sistemas (Borrador)Apuntes y ejercicios Señales y sistemas (Borrador)
Apuntes y ejercicios Señales y sistemas (Borrador)Julio Daniel Ruano
 
11 Transformada De Laplace
11 Transformada De Laplace11 Transformada De Laplace
11 Transformada De Laplacekahtya
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLCTRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLCJOe Torres Palomino
 
Señales Periódicas y Simetría Par e Impar
Señales Periódicas y Simetría Par e ImparSeñales Periódicas y Simetría Par e Impar
Señales Periódicas y Simetría Par e ImparSistemadeEstudiosMed
 
Transformada de fourier y convolucion
Transformada de fourier y convolucionTransformada de fourier y convolucion
Transformada de fourier y convolucionjesus vera
 
1.3.1 polarizacion del jfet
1.3.1 polarizacion del jfet1.3.1 polarizacion del jfet
1.3.1 polarizacion del jfetjosefer28051989
 
APLICACIONES DE LA SERIE DE FOURIER EN EL AREA DE LA INGENIERIA
APLICACIONES DE LA SERIE DE FOURIER EN EL AREA DE LA  INGENIERIAAPLICACIONES DE LA SERIE DE FOURIER EN EL AREA DE LA  INGENIERIA
APLICACIONES DE LA SERIE DE FOURIER EN EL AREA DE LA INGENIERIAwendybejarano02
 
Analisis de fourier para señales
Analisis de fourier para señalesAnalisis de fourier para señales
Analisis de fourier para señalesdoc digitus
 
Transformada de laplace (tablas)
Transformada de laplace (tablas)Transformada de laplace (tablas)
Transformada de laplace (tablas)MateoLeonidez
 
Filtro pasa bajas activo, inversor y no inversor
Filtro pasa bajas activo, inversor y no inversorFiltro pasa bajas activo, inversor y no inversor
Filtro pasa bajas activo, inversor y no inversorAlejandro Flores
 

Mais procurados (20)

Transformada de fourier y transformada inversa de fourier
Transformada de fourier y transformada inversa de fourierTransformada de fourier y transformada inversa de fourier
Transformada de fourier y transformada inversa de fourier
 
correlacion-de-senales
correlacion-de-senalescorrelacion-de-senales
correlacion-de-senales
 
Tabla de propiedades de la transformada de laplace
Tabla de propiedades de la transformada de laplaceTabla de propiedades de la transformada de laplace
Tabla de propiedades de la transformada de laplace
 
Sistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoSistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempo
 
Serie de Fourier
Serie de FourierSerie de Fourier
Serie de Fourier
 
Voltaje de rizado
Voltaje de rizadoVoltaje de rizado
Voltaje de rizado
 
Amplificadores operacionales con funciones de transferencia
Amplificadores operacionales con funciones de transferenciaAmplificadores operacionales con funciones de transferencia
Amplificadores operacionales con funciones de transferencia
 
Electronica transitores efecto de cambio
Electronica transitores efecto de cambioElectronica transitores efecto de cambio
Electronica transitores efecto de cambio
 
Apuntes y ejercicios Señales y sistemas (Borrador)
Apuntes y ejercicios Señales y sistemas (Borrador)Apuntes y ejercicios Señales y sistemas (Borrador)
Apuntes y ejercicios Señales y sistemas (Borrador)
 
11 Transformada De Laplace
11 Transformada De Laplace11 Transformada De Laplace
11 Transformada De Laplace
 
La función escalón unitario
La función escalón unitarioLa función escalón unitario
La función escalón unitario
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLCTRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
 
Señales Periódicas y Simetría Par e Impar
Señales Periódicas y Simetría Par e ImparSeñales Periódicas y Simetría Par e Impar
Señales Periódicas y Simetría Par e Impar
 
Funciones y gráficas en matlab
Funciones y gráficas en matlabFunciones y gráficas en matlab
Funciones y gráficas en matlab
 
Transformada de fourier y convolucion
Transformada de fourier y convolucionTransformada de fourier y convolucion
Transformada de fourier y convolucion
 
1.3.1 polarizacion del jfet
1.3.1 polarizacion del jfet1.3.1 polarizacion del jfet
1.3.1 polarizacion del jfet
 
APLICACIONES DE LA SERIE DE FOURIER EN EL AREA DE LA INGENIERIA
APLICACIONES DE LA SERIE DE FOURIER EN EL AREA DE LA  INGENIERIAAPLICACIONES DE LA SERIE DE FOURIER EN EL AREA DE LA  INGENIERIA
APLICACIONES DE LA SERIE DE FOURIER EN EL AREA DE LA INGENIERIA
 
Analisis de fourier para señales
Analisis de fourier para señalesAnalisis de fourier para señales
Analisis de fourier para señales
 
Transformada de laplace (tablas)
Transformada de laplace (tablas)Transformada de laplace (tablas)
Transformada de laplace (tablas)
 
Filtro pasa bajas activo, inversor y no inversor
Filtro pasa bajas activo, inversor y no inversorFiltro pasa bajas activo, inversor y no inversor
Filtro pasa bajas activo, inversor y no inversor
 

Semelhante a Fourier Series Explained

Semelhante a Fourier Series Explained (20)

52983063 series-de-fourier
52983063 series-de-fourier52983063 series-de-fourier
52983063 series-de-fourier
 
seriesdefourier-091023141421-phpapp02.pptx
seriesdefourier-091023141421-phpapp02.pptxseriesdefourier-091023141421-phpapp02.pptx
seriesdefourier-091023141421-phpapp02.pptx
 
Teleco1
Teleco1Teleco1
Teleco1
 
Series de fodsfjwslurier
Series de fodsfjwslurierSeries de fodsfjwslurier
Series de fodsfjwslurier
 
TRANF. FOURIER- Semana 11.pptx
TRANF. FOURIER- Semana 11.pptxTRANF. FOURIER- Semana 11.pptx
TRANF. FOURIER- Semana 11.pptx
 
Repaso senales Series de Fourier tipos señales.pdf
Repaso senales Series de Fourier tipos señales.pdfRepaso senales Series de Fourier tipos señales.pdf
Repaso senales Series de Fourier tipos señales.pdf
 
fourier
fourierfourier
fourier
 
Transformada de Fourier para ingenieria de sistemas
Transformada de Fourier para ingenieria de sistemasTransformada de Fourier para ingenieria de sistemas
Transformada de Fourier para ingenieria de sistemas
 
Serie trigonometrica de fourier
Serie trigonometrica de fourierSerie trigonometrica de fourier
Serie trigonometrica de fourier
 
oriana hidalgo
oriana hidalgooriana hidalgo
oriana hidalgo
 
calculo integral
calculo integralcalculo integral
calculo integral
 
FOURIER
FOURIERFOURIER
FOURIER
 
Transformada de Fourier.pptx
Transformada de Fourier.pptxTransformada de Fourier.pptx
Transformada de Fourier.pptx
 
Fourier jaime severiche
Fourier jaime severicheFourier jaime severiche
Fourier jaime severiche
 
Serie de Fourier
Serie de FourierSerie de Fourier
Serie de Fourier
 
Transformada de Fourier. Presentación por Ing Ana María Ugartemendía
Transformada de Fourier. Presentación  por Ing Ana María UgartemendíaTransformada de Fourier. Presentación  por Ing Ana María Ugartemendía
Transformada de Fourier. Presentación por Ing Ana María Ugartemendía
 
Presentación final
Presentación finalPresentación final
Presentación final
 
10 transformada fourier
10 transformada fourier10 transformada fourier
10 transformada fourier
 
Analisis fourier
Analisis fourierAnalisis fourier
Analisis fourier
 
Practica3
Practica3Practica3
Practica3
 

Último

La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosJonathanCovena1
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfenelcielosiempre
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Alejandrino Halire Ccahuana
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVGiustinoAdesso1
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularMooPandrea
 

Último (20)

La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdf
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circular
 

Fourier Series Explained

  • 1. 1 Series de Fourier "Series de Fourier, Transformadas de Fourier y Aplicaciones", Genaro González
  • 2. 2 Serie trigonométrica de Fourier Algunas funciones periódicas f(t) de periodo T pueden expresarse por la siguiente serie, llamada serie trigonométrica de Fourier f(t) = ½ a0 + a1cos(w0t) + a2cos(2w0t) + ... + b1sen(w0t) + b2sen(2w0t) + ... Donde w0 = 2p/T se denomina frecuencia fundamental.
  • 3. 3 Ortogonalidad Se dice que las funciones del conjunto {fk(t)} son ortogonales en el intervalo a < t < b si dos funciones cualesquiera fm(t), fn(t) de dicho conjunto cumplen: Ejemplo: Demostrar que las funciones sen t y cos t son ortogonales en el intervalo –p < t <p:
  • 4. 4 Funciones Pares e Impares Una función es par si su gráfica es simétrica respecto al eje vertical, es decir f(t) = f(-t) una función es impar si su gráfica es simétrica respecto al origen, es decir, -f(t) = f(-t)
  • 5. 5 ¿Cómo calcular los coeficientes de la serie?
  • 6. 6 f(t) 1 t . . . -T/2 0T/2 T . . . -1 w0= 2p/T Encontrar la serie de Fourier para la función de onda cuadrada de periodo T: La expresión para f(t) en –T/2< t < T/2 es:
  • 10. 10 Finalmente, la serie de Fourier queda como En la siguiente figura se muestran: la componente fundamental y los armónicos 3, 5 y 7, así como la suma parcial de estos primeros cuatro términos de la serie para w0 = p (w0= 2p/T), es decir, T = 2:
  • 11. 11 Componentes de la Serie de Fourier 1.5 1 0.5 0 Componentes -0.5 Suma fundamental -1 tercer armónico quinto armónico séptimo armónico -1.5 -1 -0.5 0 0.5 1 t Fourier series java applet (http://www.falstad.com/fourier/)
  • 12. 12 Nota: Para expresarse como serie de Fourier f(t), no necesita estar centrada en el origen. Simplemente debemos tomar el intervalo, donde está definida, como el periodo de la serie. La ortogonalidad de las funciones seno y coseno no sólo se da en el intervalo de –T/2 a T/2, sino en cualquier intervalo que cubra un periodo completo: de t0 a t0 + T, con t0 arbitrario, con el mismo resultado.
  • 13. 13 f(t) 1 t . . . -T/2 0T/2 T . . . -1 f(t) Habíamos calculado los coeficientes para: 1 t . . . -T/2 0T/2 T . . . -1 Si los calculamos para la misma función desplazada tienen que ser los mismos:
  • 14. 14 f(t) De hecho si repetimos para cualquier intervalo de longitud el periodo T de la función, será lo mismo: 1 t -1 . . . t0 t0 +T . . .
  • 15. Actividad 1 Calcular la serie de Fourier de la función periódica:
  • 16. 16 Como la función sen(nw0t) es una función impar para todo n y la función cos(nw0t) es una función par para todo n, es de esperar que: Si f(t) es par, su serie de Fourier no contendrá términos seno, por lo tanto bn= 0 para todo n. Si f(t) es impar, su serie de Fourier no contendrá términos coseno, por lo tanto an= 0 para todo n.
  • 17. 17 f(t) 1 t . . . -T/2 0T/2 T . . . -1 Por ejemplo, la señal cuadrada, que hemos analizado: Es una función impar, por ello su serie de Fourier no contiene términos coseno:
  • 18. 18 f(t) t Simetría de media onda Una función periodica de periodo T se dice simétrica de media onda, si cumple la propiedad Es decir, si en su gráfica las partes negativas son un reflejo de las positivas pero desplazadas medio periodo:
  • 19. 19 Simetrías y Coeficientes de Fourier
  • 20. 20
  • 21. 21
  • 23. 23 Forma compleja de la serie de Fourier Consideremos la serie de Fourier para una función periódica f(t), con periodo T = 2p/w0. Es posible obtener una forma alternativa usando las fórmulas de Euler:
  • 24. 24 Sustituyendo: Y usando el hecho de que 1/i = -i: Y definiendo:
  • 25. 25 A la expresión obtenida se le llama forma compleja de la serie de Fourier y sus coeficientes cn pueden obtenerse a partir de los coeficientes an, bn como ya se dijo, o bien: Para n = 0, 1, 2, 3, ...
  • 26. 26 f(t) 1 t . . . -T/2 0T/2 T . . . -1 Ejemplo. Encontrar la forma compleja de la serie de Fourier para la función ya tratada: Solución 1. Como ya se calcularon los coeficientes de la forma trigonométrica (an y bn), que eran an= 0 para todo n y
  • 27. 27 0 Entonces la serie compleja de Fourier queda:
  • 28. 28 Solución 2. También podemos calcular los coeficientes cn mediante la integral:
  • 29. 29 Como w0T = 2p y : que coincide con el resultado ya obtenido.
  • 30. 30 Actividad 3 Calcular la serie de Fourier de la función de Heaviside, usando la forma compleja,
  • 31. 31 d(t) d(t) f3(t) f2(t) t La función impulso o delta de Dirac f1(t) t Podemos pensar en la delta de Dirac como el límite de una serie de funciones:
  • 32. 32 d(t) t Propiedades de la función d
  • 33. 33 Calcular la serie de Fourier de d(x):
  • 34. 34 Calcular la serie de Fourier de d(x): Para todas las x ≠ 0 la función delta vale 0
  • 35. 35
  • 36. 36
  • 37. 37
  • 38. 38
  • 39. 39
  • 40. 40
  • 41. 41
  • 42. 42
  • 43. 43
  • 44. 44