SlideShare a Scribd company logo
1 of 42
Muscle Physiology
Muscle Tissue ,[object Object],[object Object],[object Object]
Skeletal Muscle ,[object Object],[object Object],[object Object],[object Object],[object Object]
Cardiac Muscle ,[object Object],[object Object],[object Object],[object Object],[object Object]
Smooth Muscle ,[object Object],[object Object],[object Object],[object Object],[object Object]
Microanatomy of Skeletal Muscle
 
Z line Z line
 
 
 
H Band
Sarcomere Relaxed
Sarcomere Partially Contracted
Sarcomere Completely Contracted
 
 
Neuromuscular Junction
 
Acetylcholine Opens Na +  Channel
 
Muscle Contraction Summary ,[object Object],[object Object],[object Object],[object Object]
Muscle Contraction Continued ,[object Object],[object Object],[object Object],[object Object]
Muscle Contraction Continued ,[object Object],[object Object],[object Object]
Motor Unit All the muscle cells controlled by one nerve cell
Motor Unit Ratios ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ATP
Creatine ,[object Object],Creatine + ATP Creatine phosphate  + ADP
Creatine Phosphate ,[object Object],Creatine phosphate   + ADP Creatine +  ATP
Muscle Fatigue ,[object Object],[object Object]
Muscle Atrophy ,[object Object],[object Object],[object Object],[object Object]
Muscle Hypertrophy ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Steroid Hormones ,[object Object]
Muscle Tonus ,[object Object],[object Object]
Tetany ,[object Object],[object Object]
Tetanus
Refractory Period ,[object Object]
Refractory
Refractory Periods Skeletal Muscle Cardiac Muscle
Isometric Contraction ,[object Object],[object Object],[object Object],[object Object],[object Object]
Isotonic Contraction ,[object Object],[object Object],[object Object],[object Object]
THE END

More Related Content

What's hot

Factors influencing force of contracton
Factors influencing force of contractonFactors influencing force of contracton
Factors influencing force of contracton
Rajesh Goit
 
Bone tissue
Bone tissueBone tissue
Bone tissue
abraml02
 
Muscle Contraction
Muscle ContractionMuscle Contraction
Muscle Contraction
guest12e21
 

What's hot (20)

Muscle contraction
Muscle contractionMuscle contraction
Muscle contraction
 
Skeletal muscle contraction
Skeletal muscle contractionSkeletal muscle contraction
Skeletal muscle contraction
 
Muscular System
Muscular SystemMuscular System
Muscular System
 
Smooth muscle
Smooth muscleSmooth muscle
Smooth muscle
 
Muscular system
Muscular  systemMuscular  system
Muscular system
 
Structure of skeletal muscle
Structure of skeletal muscleStructure of skeletal muscle
Structure of skeletal muscle
 
Physiology of muscle contraction
Physiology of muscle contractionPhysiology of muscle contraction
Physiology of muscle contraction
 
Physiology of the Muscular System
Physiology of the Muscular SystemPhysiology of the Muscular System
Physiology of the Muscular System
 
Histology of bone
Histology of boneHistology of bone
Histology of bone
 
Factors influencing force of contracton
Factors influencing force of contractonFactors influencing force of contracton
Factors influencing force of contracton
 
Muscle tissues
Muscle tissuesMuscle tissues
Muscle tissues
 
Muscular system Physiology
Muscular system PhysiologyMuscular system Physiology
Muscular system Physiology
 
Bone tissue
Bone tissueBone tissue
Bone tissue
 
Blood supply of long bones
Blood supply of long bonesBlood supply of long bones
Blood supply of long bones
 
REFLEX ( Physiology)
REFLEX ( Physiology)REFLEX ( Physiology)
REFLEX ( Physiology)
 
MUSCLE PHYSIOLOGY 1
MUSCLE PHYSIOLOGY 1MUSCLE PHYSIOLOGY 1
MUSCLE PHYSIOLOGY 1
 
Muscle Physiology
Muscle PhysiologyMuscle Physiology
Muscle Physiology
 
Muscle Contraction
Muscle ContractionMuscle Contraction
Muscle Contraction
 
Physiology of the Neuromuscular Junction
Physiology of the Neuromuscular JunctionPhysiology of the Neuromuscular Junction
Physiology of the Neuromuscular Junction
 
Muscle
MuscleMuscle
Muscle
 

Viewers also liked (8)

Histology of muscle
Histology of muscle Histology of muscle
Histology of muscle
 
Anatomy and physiology of muscle
Anatomy and physiology of muscleAnatomy and physiology of muscle
Anatomy and physiology of muscle
 
Histology of Muscle Tissues
Histology of Muscle TissuesHistology of Muscle Tissues
Histology of Muscle Tissues
 
Skeletal Muscle Physiology Basics
Skeletal Muscle Physiology BasicsSkeletal Muscle Physiology Basics
Skeletal Muscle Physiology Basics
 
Skeletal muscle structure & function
Skeletal muscle structure & function  Skeletal muscle structure & function
Skeletal muscle structure & function
 
Contraction of skeletal and smooth muscles
Contraction of skeletal and smooth musclesContraction of skeletal and smooth muscles
Contraction of skeletal and smooth muscles
 
Lecture 10 muscle histology
Lecture 10 muscle histology Lecture 10 muscle histology
Lecture 10 muscle histology
 
Skeletal and Muscular System
Skeletal and Muscular System Skeletal and Muscular System
Skeletal and Muscular System
 

Similar to Muscle physiology

Muscle unit blog
Muscle unit blogMuscle unit blog
Muscle unit blog
jhadachek
 
Presentation 13 - Muscular System
Presentation 13 - Muscular SystemPresentation 13 - Muscular System
Presentation 13 - Muscular System
Ma'am Dawn
 
Controlling muscle contraction
Controlling muscle contractionControlling muscle contraction
Controlling muscle contraction
Personal
 
Muscular system
Muscular systemMuscular system
Muscular system
kimcoover
 

Similar to Muscle physiology (20)

physiology.ppt
physiology.pptphysiology.ppt
physiology.ppt
 
Muscle physio
Muscle physioMuscle physio
Muscle physio
 
5. muscular physiology
5. muscular physiology5. muscular physiology
5. muscular physiology
 
Anatomy & Physiology Lecture Notes - Muscles & muscle tissue
Anatomy & Physiology Lecture Notes - Muscles & muscle tissueAnatomy & Physiology Lecture Notes - Muscles & muscle tissue
Anatomy & Physiology Lecture Notes - Muscles & muscle tissue
 
Lec28
Lec28Lec28
Lec28
 
Muscle unit blog
Muscle unit blogMuscle unit blog
Muscle unit blog
 
Presentation 13 - Muscular System
Presentation 13 - Muscular SystemPresentation 13 - Muscular System
Presentation 13 - Muscular System
 
ANATOMY & PHYSIOLOGY OF MUSCULAR SYSTEM.ppt
ANATOMY & PHYSIOLOGY OF  MUSCULAR SYSTEM.pptANATOMY & PHYSIOLOGY OF  MUSCULAR SYSTEM.ppt
ANATOMY & PHYSIOLOGY OF MUSCULAR SYSTEM.ppt
 
The Muscular System
The Muscular SystemThe Muscular System
The Muscular System
 
muscles. explanation for kids. primary /elementary students
muscles. explanation for kids. primary /elementary studentsmuscles. explanation for kids. primary /elementary students
muscles. explanation for kids. primary /elementary students
 
muscle.ppt
muscle.pptmuscle.ppt
muscle.ppt
 
Controlling muscle contraction
Controlling muscle contractionControlling muscle contraction
Controlling muscle contraction
 
Muscular system
Muscular systemMuscular system
Muscular system
 
The Muscular System
The Muscular SystemThe Muscular System
The Muscular System
 
1587411978-skeletal-muscle.pptx
1587411978-skeletal-muscle.pptx1587411978-skeletal-muscle.pptx
1587411978-skeletal-muscle.pptx
 
L.7.MUSCULAR TISSUES.pdf
L.7.MUSCULAR TISSUES.pdfL.7.MUSCULAR TISSUES.pdf
L.7.MUSCULAR TISSUES.pdf
 
MUSCULAR TISSUES.pdf
MUSCULAR TISSUES.pdfMUSCULAR TISSUES.pdf
MUSCULAR TISSUES.pdf
 
MUSCULAR TISSUE.pdf
MUSCULAR TISSUE.pdfMUSCULAR TISSUE.pdf
MUSCULAR TISSUE.pdf
 
Msd for pspd 2015
Msd for pspd 2015Msd for pspd 2015
Msd for pspd 2015
 
The Muscular system
The Muscular systemThe Muscular system
The Muscular system
 

Muscle physiology

Editor's Notes

  1.   This is the presentation for Muscle Physiology for Human Anatomy and Physiology II at Oklahoma City Community College.
  2. There are three types of muscle tissue in the body. Skeletal muscle is the type that attaches to our bones and is used for movement and maintaining posture. Cardiac muscle is only found in the heart. It pumps blood. Smooth muscle is found in organs of the body such as the GI tract. Smooth muscle in the GI tract moves food and its digested products.
  3. Skeletal muscle attaches to our skeleton. *The muscle cells a long and cylindrical. *Each muscle cell has many nuclei. *Skeletal muscle tissue is striated. It has tiny bands that run across the muscle cells. *Skeletal muscle is voluntary. We can move them when we want to. *Skeletal muscle is capable of rapid contractions. It is the most rapid of the muscle types.
  4. Cardiac muscle tissue is only found in the heart. *Cardiac cells are arranged in a branching pattern. * Only one or two nuclei are present each cardiac cell. *Like skeletal muscle, cardiac muscle is striated. *Cardiac muscle is involuntary. *Its speed of contraction is not as fast as skeletal, but faster than that of smooth muscle.
  5. Smooth muscle is found in the walls of hollow organs. *Their muscle cells are fusiform in shape. *Smooth muscle cells have just on nucleus per cell. *Smooth muscle is nonstriated. *Smooth muscle is involuntary. *The contractions of smooth muscle are slow and wave-like.
  6. In this unit we will primarily study skeletal muscle. Each muscle cell is called a muscle fiber. Within each muscle fiber are many myofibrils.
  7. Dark and light bands can be seen in the muscle fiber and also in the smaller myofibrils. An enlargement of the myofibril reveals that they are made of smaller filaments or myofilaments. *There is a thick filament called myosin and *a thin filament called actin. Note the I band, A band H zone or band and Z disc or line. These will be discussed shortly.  
  8. A small section of a myofibril is illustrated here. Note the thick myosin filaments are arranged between overlapping actin filaments. *The two Z lines mark the boundary of a sarcomere. The sarcomere is the functional unit of a muscle cell .We will examine how sarcomeres function to help us better understand how muscles work.
  9. A myosin molecule is elongated with an enlarged head at the end.
  10. Many myosin molecules form the thick myosin filament. It has many heads projecting away from the main molecule.
  11. The thinner actin filament is composed of three parts: actin, tropomyosin and troponin.
  12. Here is a sarcomere illustrating the thin actin and thick myosin filaments. The area of the sarcomere has only myosin is called the H band.
  13. Here is another diagram of a sarcomere. Note the A band. It is formed by both myosin and actin filaments. The part of the sarcomere with only actin filaments is called the I band. This is a sarcomere that is relaxed.
  14. This sarcomere is partially contracted. Notice than the I bands are getting shorter.
  15. The sarcomere is completely contracted in this slide. The I and H bands have almost disappeared.
  16. Which filament has moved as the sarcomere contracted? Note the thick myosin filaments have not changed, but the thin actin filaments have moved closer together.
  17. This diagram shows the microanatomy of skeletal muscle tissue again. *The blue sarcoplasmic reticulum is actually the endoplasmic reticulum. It stores calcium. *The mitochondria are illustrated in orange. They generate ATP, which provides the energy for muscle contractions.
  18. The next few slides will summarize the events of a muscle contraction. The nerve impulse reaches the neuromuscular junction (myoneural junction).
  19. Acetylcholine is released from the motor neuron.
  20. Acetylcholine binds with receptors in the muscle membrane to allow sodium ions to enter the muscle.
  21. The influx of sodium will create an action potential in the sarcolemma. Note: This is the same mechanism for generating action potentials for the nerve impulse. The action potential travels down a T tubule. As the action potential passes through the sarcoplamic reticulum it stimulates the release of calcium ions. Calcium binds with troponin to move tropomyosin and expose the binding sites. Myosin heads attach to the binding sites of the actin filament and create a power stroke. ATP detaches the myosin heads and energizes them for another contraction. The process will continue until the action potentials cease. Without action potentials the calcium ions will return to the sarcoplasmic reticulum.  
  22. A motor unit is all the muscle cells controlled by one nerve cell. This diagram represents two motor units. Motor unit one illustrates two muscle cells controlled by one nerve cell. When the nerve sends a message it will cause both muscle cells to contract. Motor unit two has three muscle cells innervated by one nerve cell.
  23. Motor units come indifferent sizes. *The ratio is about one nerve cell to 100 muscle cells in the back. *Finger muscles have a much smaller ratio of 1:10. *Eye muscles have a 1:1 ratio because of the precise control needed in vision.
  24. ATP or adenosine triphosphate is the form of energy that muscles and all cells of the body use. *The chemical bond between the last two phosphates has just the right amount of energy to unhook myosin heads and energize them for another contraction. Pulling of the end phosphate from ATP will release the energy. ADP and a single phosphate will be left over. New ATP can be regenerated by reconnecting the phosphate with the ADP with energy from our food.
  25. Creatine is a molecule capable of storing ATP energy. It can combine with ATP to produce creatine phosphate and ADP. The third phosphate and the energy from ATP attaches to creatine to form creatine phosphate.
  26. Creatine phosphate is an important chemical to muscles. *It is a molecule that is able to store ATP energy. *Creatine phosphate can combine with an ADP * to produce creatine and ATP. This process occurs faster than the synthesis of ATP from food.
  27. Muscle fatigue is often due to a lack of oxygen that causes ATP deficit. Lactic acid builds up from anaerobic respiration in the absence of oxygen. Lactic acid fatigues the muscle.
  28. Muscle atrophy is a weakening and shrinking of a muscle. It can be caused by immobilization or loss of neural stimulation.
  29. Hypertrophy is the enlargement of a muscle. Hypertrophied muscles have more capillaries and more mitochondria to help them generate more energy. Strenuous exercise and steroid hormones can induce muscle hypertrophy. Since men produce more steroid hormones than women, they usually have more hypertrophied muscles.
  30. Steroid hormones such as testosterone stimulate muscle growth and hypertrophy.
  31. Muscle tonus or muscle tone refers to the tightness of a muscle. In a muscle some fibers are always contracted to add tension or tone to the muscle.
  32. Tetany is a sustained contraction of a muscle. It results from a rapid succession of nerve impulses delivered to the muscle.
  33. This slide illustrates how a muscle can go into a sustained contraction by rapid neural stimulation. In number four the muscle is in a complete sustained contraction or tetanus.
  34. The refractory period is a brief time in which muscle cells will not respond to stimulus.
  35. The area to the left of the red line is the refractory period for the muscle contraction. If the muscle is stimulated at any time to the left of the line, it will not respond. However, stimulating the muscle to the right of the red line will produce a second contraction on top of the first contraction. Repeated stimulations can result in tetany.
  36. Cardiac muscle tissue has a longer refractory period than skeletal muscle. This prevents the heart from going into tetany.
  37. Isometric contractions produce no movement. They are used in standing, sitting and maintaining our posture. For example, when you are standing muscles in your back and abdomen pull against each other to keep you upright. They do not produce movement, but enable you to stand.
  38. Isotonic contractions are the types that produce movement. Isotonic contractions are used in walking and moving any part of the body.  
  39. This concludes the presentation on Muscle Physiology