SlideShare uma empresa Scribd logo
1 de 89
‫معهد اعداد المدربين التقنيين‬
                                          ‫قسم المكائن والمعدات / السيارات‬




               ‫الثرموداينمك‬
                ‫الصف الول‬

                       ‫اعداد المدرِسة‬
                       ‫اوراد عبد الطيف‬




‫السبوع الول : ‪Measuring units , examples force , pressure ; specific‬‬
                                                               ‫‪volume‬‬

         ‫الهدف من الدرس : 1- ان يتعرف الطالب على وحدات القياس ، انواعها .‬
                          ‫2- ان يتعرف الطالب على معنى المفردات‬
           ‫‪Force‬‬                            ‫‪، Pressure ، ٍ pecific volume‬‬
                                                          ‫‪S‬‬

                      ‫‪Thermodynamic‬‬

                               ‫1‬
Definition :- The field of science , which deal with the energies possessed
              by gases and vapours . It also includes the conversion of
              these energies in term of heat and mechanical work and their
              relationship with properties of system .

Measuring units
S.I units [International System of units]
     Physical Qantity            Symbol               Unit     Symbol of unit
        ‫الكمية الفيزيائية‬           ‫الرمز‬         ‫الوحدة‬             ‫الوحدة‬
                                L                meter         M
Length ‫الطول‬
                                T                second        S
Time      ‫الزمن‬
                                M                kilogram      Kg
Mass ‫الكتلة‬
                                T                kelvin        K0
 Temperature ‫درجة الحرارة‬
                                A                Ampere        A
Electric current ‫تيار كهربائي‬

The secondary SI units
                                F                Newton        N
Force      ‫القوة‬
                                P                Pascal                   N
Pressure ‫الضغط‬                                                 Pa =       m2
                                                 Bar
                                                               Bar = 105 pa
                                ρ
                                                                kg
Density ‫كثافة‬                                                   m3

                                W                Joule         J = N.m
Work ‫شغل‬
                                P                watt          W=
                                                                      J
Power ‫قدرة‬                                                            S




British unit system ‫النظام البريطاني للوحدات‬
Physical Quantity        Symbol          Unit                Symbol of unit
Length                   L               Inch                In
Time                     T               Second              S
Mass                     M               Pound               T , bm
Temperature              T               Fahrenheit          F0
Force                    F               Pound               IbF
Pressure                 P               -                   IbF/in2 psi

                                      2
Density                     ρ
                                             -                    Ibm/in3
Work                      W                  -                    IbF. in
Power                                        horse power          h.p

Length : L       1m = 100 cm = 102 cm
                    = 1000 mm = 103 mm

                  1 in = 2.54 cm
                  1 foot = 1 ft = 12 in

Time : t :        1 hour = 60 minute = 3600 s

mass : m :        1 pound = 0.45 kg
                  1 ton = 1000 kg = 103 kg

Temperature : T :        F0 = 1.8 0C + 32

Force : F :      1 MN = 106 N , 1 KN = 103 N

                                                  N        KN
Pressure :        1 bar = 105 pa = 105            m2
                                                     =10 3
                                                           m2



Work : W           1 KJ = 1000 J = 103 J
                   J = N.m

Power :           1 h.p = 746 watt
                  1 KW = 1.34 h.p

                                   J              KJ
                    Watt =         S   , KW =     S


                            Definitions ‫تعاريف‬
1- Force : It is an agent which consider as a measure of mechanical
               effect on the bodies .

2- Pressure : It,s the force per unit area

                       Force   F                                N     N
                 P =
                       Area
                             =
                               A               ‫الوحدات‬          m2
                                                                   ,
                                                                     mm 2   ,
 KN
    =kpa
 m2


                                         3
3- Density : (   ρ
                      )            mass per unit volume
 ‫الكثافة‬
                           m
                     ρ=
                           V



                          kg
                    ‫الوحدات‬
                     ρ(
                          m3
                             )


4- Specific volume ( ) : the volume occupies by unit mass
                                   V




                                   V                      m3
                             V=
                                   m     ‫الوحدات‬          kg




5- power : It is work done per unit time
                   w
       Power = t
       Units watt , kw , h.p

6- Specific gravity ‫كثافة نوعية‬
                          ρ sub
     Sp . gr =            ρ H 2O



Questions
1- Define pressure , Specific volume .
2- Convert 20 kpa to at m .
3- Convert 50 ft      to m .

      Thermodynamic terms state , process , equilibrium in : ‫السبوع الثاني‬
                                 thermodynamic classification of system

                              ‫الهدف من الدرس :1- ان يتعلم الطالب المصطلحات الثرموداينميكية‬
                             ‫2- ان يتعرف الطالب على انواع النظمة الثرموداينميكية‬

             Thermodynamic terms ‫مصطلحات ثرموديناميكية‬
1-   State :- Determines the value of the thermodynamic properties for
              material at a certain time .

2- process :- It is that which changes the system from a certain state of
                                                 4
thermodynamic equilibrium into anther state .

3- Thermodynamic equilibrium :- means that the thermodynamic
            properties of amatter is the same and constant and do not
            change at all areas in the system .




            thermodynamic systems ‫النظمة الثرموديناميكية‬
Thermodynamic system is defined as :-

A definite area where some thermodynamic process is taking place .
Any thermodynamic system has its "boundaries" and any thing outside the
boundary is called "Surrounding"
‫غلف‬
Boundary : It is a surface that separtes between the system and its
           surrounding .
‫محيط‬
Surrounding : It is a region outside the boundary of the system.

Working Substance : It is amatter that transfer the energy through the
                      system as steam , g as …. etc .

                Classification of Systems ‫تصنيف النظمة‬

      The thermodynamic system may be classified into the following
three groups .

1- Closed System : In this system the working substance does not cross
                    the boundaries of the system , but heat and work can
                    cross it .

2- Open System : In this system the working substance crosses boundary
                  of the system . Heat and work may also cross the
                  boundary .



                                    5
3- Isolated System : It is a system of fixed mass and no heat or work cross
                           its boundary .

                                                                      wtuo       yradnuob
                                                                               w ni
                                                                  1
               boundary                                   `1 ni
  No heat
                                   piston                 1            metsyS
                 System                                                                           2
Q=0
                               boundary                                                         tuo

  N=0                                                                        Q ni   Q
            Isolated System
                  Isolate         cylinder   Closed Q
                                             Q in
                                                    System                      Opentuosystem
                                                    out




      Questions

      1- Define :   process ,      state .

      2- write the classification of systems .




                                                                : ‫السبوع الثالث‬
        1- Temperature , kind of temp. measuring and relations between them .
        2- Pressure measurements and relation between them .

         ‫الهدف من الدرس : 1- ان يفهم الطالب معنى درجة الحرارة وانواع مقاييس درجة الحرارة‬
                                                      . ‫والعلةقة بينهما‬
                  . ‫2- ان يتعلم الطالب معنى الضغط ومقاييس الضغط والعلةقة بينهم‬

      Temperature :- It is may be defined the degree of hot hess or the level of
                     heat intensity of a body .

      Measurement of Temperature
           The temperature of a body is measured by a thermometer . There are
      two scales for measuring the temp. of a body .

      1- Centigrade or Celsius Scale
                                               6
This scale is most used by engineers . The freezing point of water = 0 .
   The boiling point of water = 100
   We use symbol (C) to describe temp.

2- Fahrenheit Scale
   The freezing point of water = 32
   The boiling point of water = 212

     We use the symbol (F0) to describe temp.
* The relation between centigrade scale and Fahrenheit scale is given by

        F0 = 1.8 C0 + 32


Ex :     1) Convert    37C0      to F0
         2) Convert    50 F0    to Celsius scale




Absolute Temperature :

       The absolute centigrade scale is called degree "Kelvin"

           K0 = C0 + 273

Absolute Fahrenheit scale is called degree "Rankine"

           R0 = F0 + 460


Questions

1-   (20 C0) to Kelvin scale .
2- Convert (400 K0) to Rankine scale .
3- Convert (170 F0) to Kelvin scale .


                                      7
Pressure ‫ضغط‬

Pressure :- is the force exerted by the system on unit area .

Absolute Pressure :- is the guage pressure plus atmospheric pressure .

Gauge pressure :- A gauge for measuring pressure records the pressure
                   above atmospheric pressure .

Vaccume Pressure :- It is the pressure of the system below atmospheric
                  pressure .




                            Equations ‫المعادلت‬
     Pabs   = Patm      +   Pg

The positive guage pressure




                                          Patm = atmospheric pressure
                                          ‫الضغط الجوي‬


                                          h = height of the liquid
                                                  ‫ارتفاع السائل‬


     Pg = Pabs – Patm
                                      8
>0


The negative guage pressure :- [ vaccume pressure ]
                                     ‫ضغط الفراغ‬

Vaccume Pressure = Patm - Pabs         <0




                            Manometer and Barometer

Manometer :- An instrument for measuring a pressure difference in terms
             of the height of a liquid .
     ∆= 2
     P p     − 1
              p




          ∆
          p =  ρg   ∆
                    h




 ρ
          = Density of liquid
g =
     ∆h
          = Height of the liquid


Barometer : An instrument for measuring the atmospheric pressure .



                                       9
Units of pressure ‫وحدات الضغط‬
1      pat m = 76 cm . Hg = 760 mm Hg

                           N
1      pat m =      10 5
                           m2
                              = 10 5 pa




                           KN
1      pat m =      10 2
                           m2
                              = 10 2 Kpa




1      pat m   =    1.01325         bar


Examples

1- change a pressure about 1500 mm Hg to bar .

Sol.

760 mm Hg          = 1.0132 bar

                             1.0132
1500 mm Hg *               760 mm Hg
                                       = 1.999
                                                      bar

2- A compound gauge reads (65 cm Hg ) vaccume pressure . Compute
absolute pressure 14 bar .


Sol.

                                                 10
76 cm Hg = 1.0132 bar

                                  1.0132 bar
Pvacc = 65 cm Hg *                76 cm Hg     = 0.867 bar

Pvacc = 0.867 bar

Pvacc = Pat m - Pabs

0.867 = 1.0132 – Pabs

Pab = 1.0132 – 0.867 = 0.147 bar


Home work

1- Convert               pressure 5 Kpa to bar
                                                      KN
2- Convert               pressure 76 cm Hg to         m2

3- Convert               pressure      50 pa    to mmHg


Example (3)

A manometer is used to measure the pressure in a tank . The fluid is an 0.1
with a specific gravity of (0.87) and the liquid height  = 45.2 cm . If
                                                                  ∆h




                                                                             kg
the barometric pressure = 98.4 kpa , the density of water = 1000             m3   the
                         m
gravity = 9.78           s2   ,   Determine the absolute pressure with in the tank in
kpa , at m .


Solution

                ρ oil
Sp. Gr.        ρ water



                         kg       kg
 ρ = 0.87 * 1000
  oil                       = 870
                         m3       m3



                                                 11
p1abs = p 2   +∆p




    p1abs = p 2 + ρ ∆
                   g h



                             kg       m   45.2 cm
    ∆ = ρ ∆ = 870
     p   g h                    * 9.8 2 *
                             m3       s    100 cm
                                             1m

                         kg     1N             N
    ∆ = 3853.752
     p                        *     = 3853.752    = 3853.75
                        m.s 2   kgm            m2
                                 s2
                         1 kpa
    ∆ =
     p 3853.752 *                 = .853
                                   3
                        1000 pa




P1 = 98.4 kpa + 3.853              kpa
P1 = 102.253 kpa
                                     1 atm
P1 = 102.253 kpa *                  10 2 kpa        = 1.022 atm




Note

             kg .m
    1 N =
              s2

1      kpa = 1000 pa
1      atm = 102 kpa



Questions

                                                    KN
1- Convert 500 cm Hg to                             m2



2-       A barometer reads (735 mm Hg) at room temp.

Determine :- the atmospheric pressure 14 bar millibar , kpa ,
                                               kg
                         ρ
                             Hg = 13600        m3




                                                         12
3- Convert 2 kpa to mm Hg




      Work and kinds of work energy and forms of energy : ‫السبوع الرابع‬

                          . ‫الهدف من الدرس : 1- ان يتعرف الطالب على معنى الشغل وانواعه‬
                                . ‫2- ان يتعرف الطالب على انواع الطاةقة واشكالها‬

Work :
      Its may be defined as the product of a force with its corresponding
displacement

             x2

       W =   ∫F .
             x1
                    dx                     ------- (1)


                                                J       J = N.m ‫وحدات الشغل‬
      Work is one of energies types , that we can transform it to anther
types of energy such as (transform of mechanical work to electrical energy
, kinetic energy , heat energy

     W = Force * displacement
     W=F*            ∆x




                                             13
∆x
                          F    body



Notes                           x1                        x2


* If the work done by a thermodynamic system we say that is a positive
work      +W     or W > 0          Wout = + w

* If the work done on a thermodynamic system we say that is a negative w
or (-w)
            W<0            ex [compress or , generator]


Work of non of closed system




                                                                                 V2v



By taking a small element with length of p and width of dv
Area of element = dw = p . dv

        2          2
 W =    ∫dw
        1
               =   ∫ p.
                   1
                          dv



                                               ‫الشغل المنجز يساوي المساحة تحت المنحني‬
                                      ‫ولحالة حركة المكبس خلل الحجم التفاضلي للشريحة فال‬
 dv   = . dL
       A




Area = area of piston
dL = the dis placement traveled by a piston


                                            14
2
 W =       ∫p .
           1
                  A dL




F =p.A

           2
 W =       ∫F
           1
                  dL




F = exerted force
P = exerted pressure




                                         ‫ فان‬L ‫ملحظة ليجاد الشغل المنجز خلل شوط ةقدره طوله‬
W=F.L

L = strok length (m)


Flow work ‫شغل النسياب‬                          (open system)
Flow w on k = F . L

WF = F . L

WF = P . A . L

     WF = P . V                    ‫جول‬          ∆ F
                                                 W     = 2 V2
                                                        P       −1 V1
                                                                 P




The flow work (flow energy) per unit mass [specific flow work]
 WF = P . V              ÷     m


 WF    =P . V




 WF
               = flow work / unit mass  J/kg
                                    3
 V
               = specific volume m / kg
     ∆ F
      W        = F2
                W      −WF 1




                                                  15
∆F
 W      = 2 . V2
         P             − 1 V1
                        P
                                        J / kg


Types of Energies ‫انواع الطاقات‬
1- Potential energy (P.E)
    The energy that system possesses by virtue of its position relative to
the surface of the earth .

P.E=mgZ

m = mass
Z = elevation , m
 ∆E = P.E 2 ) 2
 P.  (                 − P.E ) 1
                        (




 ∆E =
 P.  mg ∆ =
        Z  mg ( Z 2              − 1)
                                  Z




2- Kinetic energy K.E
    The energy that a system possesses owing to its motion

           1
  K .E =
           2
             mV   2
                                        V
                                            = velocity m/sec
                                                       V12
            1
 ∆ .E =
  K
            2
              m (V22   − V12 )
                                                                  V22

 V2
      = Final velocity
 V1
      = initial velocity
  ∆ .E = . E 2
   K    K              − . E1
                        K                                1          2




3- Internal energy
   It is the energy stored in the substance total internal energy is given

U = m Cv T


Questions

                                            16
kg
1- A gas has a mass of (2 kg) and density =      21.6
                                                        m3   is transported by
pipe of height (30.25 m) from earth , the temp = 138 C0 the velocity .
                                     KJ
Flow = 6m / sec and Cv = 0.674      kg .K 0

Compute : 1- potertial energy
           2- kinetic energy
           3- Internal energy
           4- total energy

                          The First Law of Thermodynamic: ‫السبوع الخامس‬

       . ‫الهدف من الدرس : 1- ان يتعرف الطالب على القانون الول للثرموداينميك واهميته‬


The First Law of Thermodynamics

      The concept of energy and hypothes is that it can be neither created
nor destroyed this is principle of the conservation of energy . The first law
of thermodynamics is merly one statement of this general principle with
particular of this general principle with particular reference to heat energy
and work .

      When a system under goes at hermodynamics cycle then the net heat
supplied to the system from its surrounding is equal to the net work done
by the system on its surroundings .

       ∑
       dQ    =∑dw




 ∑
     : the sum for a complete cycle .




                                          17
Enthalpy : ‫السبوع السادس‬

                    . ‫الهدف من الدرس : 1- يتعرف الطالب على معنى النثالبي واهميتها‬

Enthalpy (H) ‫المحتوى الحراري‬
    Enthalpy is an extensive property is defined by the relation .
                                                        ‫خاصيته تعتمد على حجم النظام‬
H=U+P.V                     (J , kJ)
Specific enthalpy (h)
     h =+ .
        u P   V



 V
      = specific volume m3 / kg
 u
      = specific internal energy J/kg
 p
      = pressure


Heat energy (Q) ‫الطاقة الحرارية‬
     It is the type of energy that transfer due to the different in temp .
between the system and its surrounding .

Q : heat energy (J , kJ)
q : specific heat energy J/kg          kg/kg


Heat Sign ‫اشارة الحرارة‬
1- heat added input use ‫عكس اشارة الشغل‬

       Q +                                       (+)Q


                                        18                        (-)
                                                                   Q
2- heat rejected or out put us

     (-Q)



Net work (Wnet) & Net heat (Qnet)




Wnet = W0 – Win

W0 = out put work
Win = input work

Qnet = Qin – Qout

Qin = input heat
Qo = output heat




                                    19
Applying the first law on closed systems : ‫السبوع السابع‬

     ‫الهدف من الدرس : 1- ان يتعريف الطالب على تطبيق القانون الول للثرموداينميك على‬
                                               . ‫النظمة المغلقة‬

Energy equation ‫معادلة الطاقة‬
    By applying the first law of thermodynamic which state that the
energy can neither created nor destroid but transfer from one form to
another we obtain .


                              . ‫الطاقة ل تفتى ول تستحدث وانما تتحول من شكل الى آخر‬

Q + U1 + P1V1 + K. E1 + P . E1 = W + U2 + P2V2 + K . E2 + PE2
H = U1 + P1V1

Q–W=         ∆
             H + K .E
                ∆       + P.E
                         ∆
                                           equation of energy
‫معادلة الطاةقة‬

We can written thia equation

                           1
Q – W = m [(h2 – h1) +     2
                             (C 2 −C1 ) + g ( Z 2 −Z 1 )
                                2    2




                                          C1                        W
                                 PV 1
                                  1
                                    u,     1


                                  Entry
                                                                            P1   u1
                                                                            V1   C1

                                      N1
                                                                Q
                                                                          Exit
                                                                                 Z2


                                           20
1- Non – Flow energy equation (N. F. E. E)

Closed system
     For closed system                      PV , K.E , P.E = 0

The energy equation become :-

      Q   − =
          W ∆U




2- Steady state flow energy equation (S. F. E. E)

(open system)
    For open system and steady state

 min =m out
                    ‫الكتلة ل تتغير مع الزمن‬

By dividing the equation of energy by time we obtain

                                        1
  Q0 −W       0
                  = m 0 [( h2 −h1 ) +     (C 2 −C1 ) + ( Z 2 − 1 )]
                                                  2
                                                      g       Z
                                        2




‫معادلة الطاةقة للجريان المستقر‬                 S. F. E E

                                         kg   kg    kg
 m0
      = mass flow rate (                  S
                                            ,
                                              min
                                                  ,
                                                    hr    )
                                               J
 Q0
      = rate of heat transfer ( S = watt , kw)
 W0
      = rate of heat transfer (w , kw)




                                                         21
Examples

Closed system

Ex. 1

The change in the internal energy of closed system increase to (120 KJ)
while (150 KJ) of work , that go out of the system , Determine the amount
of heat transfer a cross system boundaries ?

Is the heat added or rejected ?

Solution

From N. F. E.E
 Q1− − 1− = u
   2  W 2  ∆




 Q−150 =120

 Q = 270 KJ




The sign (+270) therefore the heat added to the system


Note ‫ملحظة‬
If the change in the internal energy increase we use (+    ∆u
                                                                )
If the change in the internal energy decrease we use (    − u
                                                           ∆
                                                                 )




                                     22
Ex . 2

A tank containing a fluid is stirred by a paddle wheel the work input to the
paddle wheel is (5090 KJ) . The heat from the tank is (1500 KJ) .
Determine the change in the internal energy .



Sol.

From N. F.E.E
 Q   −=
     W ∆
       u




Q = - 1500 KJ        (The heat out)

W = - 5090 KJ        (the work input to the system)

- 1500 – (-5090) =    ∆U




 ∆ = 1500 +5090
  U −

 ∆ = 3590
  U         KJ




Questions

1- A mass of oxygen is compressed with out friction from initial state
volume = 0.14 m3 pressure = 1.5 bar ; the temp = 15 C0 to final state the
volume = 0.06 m3 and the pressure = 1.5 bar at this process the oxygen
losses quantity of heat = 0.6 KJ to the surrounding Cv = 0.649 KJ/Kg.k
R = 0.25 KJ/Kg.k0 .

Find : 1) the change of internal energy .
       2) the final temp.




                                      23
Applying the first Law on opened systems , : ‫السبوع الثامن والتاسع‬
                                                                      examples

          ‫الهدف من الدرس : 1- ان يتعلم الطالب كيفية تطبيق القانون الول للثرموداينميك على‬
                                                        . ‫النظمة المفتوحة‬

Application of energy equation on open system :- S. F. E. E

1) The Boiler ‫المرجل‬
    The boiler is a heat exchange which convert the liquid water to steam
at constant pressure . P = C
                                                                 steam
                      1
 Q −W =m [( h2 − 1 ) + (C 2 − 1 ) + ( Z 2 −Z 1 )
                h         2
                             C2    g
                      2



   Q = m (h2 – h1)
                                                                        1
 h2 > h1                 heat added                                  water


        Q (+)    ‫حرارة مضافة‬



2) The Condenser ‫المكثف‬
     It is a heat exchanger work on condenser steam of water and converted
it into a liquid by cooling the steam under constant pressure .
                                                                         1
                      1
 Q −W =m [( h2 − 1 ) + (C 2 − 1 ) + ( Z 2 −Z 1 )
                h         2
                             C2    g
                      2




Q = m (h2 – h1)
                                                                                 2     ter
                                                                                     wa
h1 > h2

Q (-1)              rejected (heat out) ‫حرارة مسحوبة‬



Ex. 1

                                            24
A boiler is generate steam with rate of 8 kg/s the enthalpy of liquid water
         KJ                                      KJ
is 271 kg and the enthalpy of steam is 3150 kg . For steady state
conditions and by neglecting the change in K.E and P.E . Determine the
rate of heat added to the steam in Boiler .


Solution

Q = m (h2 – h1)

                                                  KJ
h1 = 271 KJ/kg                   h2 = 3150        kg


m = 8 kg/s

Q = m (h2 – h1)

                                      KJ
  = 8 (3150 – 271) = 23032            S    = 23032 KW


                                                        ‫ ( لنها حرارة مضافة‬T ) ‫الحرارة‬

3- The Turbine
   It is a mechanical device used to convert the kinetic energy of fluid into
mechanical work
                                                               input
T1 > T2                h1 > h2               P1 > P 2

                       1
  Q −W =m [( h2 − 1 ) + (C 2 − 1 ) + ( Z 2 −Z 1 )
                 h         2
                              C2    g
                       2



                                                                       2
- W = m (h2 – h1)                                                          output

                                  W = (+) work output
  (W = m (h1 – h2



4- The Compressor


                                             25
It is a mechanical device used to increase fluid pressure by using on
external mechanical work .

h1 > h2            T2 > T1
                                                                  2
P2 > P 1

                      1
 Q −W =m [( h2 − 1 ) + (C 2 − 1 ) + ( Z 2 −Z 1 )
                h         2
                             C2    g
                      2



                                                                               1
- W = m (h2 – h1)

  (W = m (h1 – h2

W = (-) work input


Ex.
Air enters a compressor at enthalpy (5000 J/kg) and leave with enthalpy
(250 KJ / kg) the mass flow rate = 0.25 kg/s , Determine the work done .

Sol.

                             5000   KJ
h1 = 5000 J / kg =           1000   kg




              KJ
h2 = 250 kg
m = 0.25 kg / s
w = m (h1 – h2) = - 0.25 (5 – 250)
w = 0.25 (-245) = - 61.25 KW

                                                   ‫الشارة سالبة لنه شغل داخل الى النظام‬



Specific heat kinds of specific heat and relations between them       :‫السبوع العاشر‬

  ‫الهدف من الدرس : 1- ان يتعرف الطالب على الحرارة النوعية وانواعها والعلةقة فيما بينها‬

                                            26
Specific Heat ‫الحرارة النوعية‬
      Is the a mount of heat required to rise the temperature of a unit mass
of substance one degree .


Types of Specific heat

1- Specific heat at constant pressure ‫الحرارة النوعية عند ثبوت الضغط‬
                         ∆h
              Cp =
                         ∆T                *


 Cp
        = Specific heat at constant pressure.

                     KJ                     J
Unit         [      kg.k 0
                                or
                                         kg . k 0   ]


                          = change in enthalpy ‫تغير النثالبي‬
 ∆
 h      = h2 −h1




             KJ            J
Unit [       kg
                    or
                          kg         ]


                               = change in temp. ‫تغير في درجة الحرارة‬
 ∆ =2 −
 T  T T1




Unit [ k0 ]




  Q1-2 = m        ∆h
                                           *

      Q1-2 = m cp         ∆T
                                            *


m = mass (kg) ‫كتلة‬
                                                        27
T2 = Final temp. (k0) ‫درجة حرارة ثنائية‬
T1 = initial temp. (k0) ‫درجة حرارة ابتدائية‬
Q = heat           ‫حرارة‬             (KJ , J)


2- Specific heat at constant volume ‫الحرارة النوعية بثبوت الحجم‬

V = constant ‫حجم ثابت‬                           closed system ‫نظام مغلق‬

              ∆u
       Cv =
              ∆T




       = Specific heat at constant volume ‫الحرارة النوعية بثبوت الحجم‬
 Cv




           KJ                       J
Unit (    kg .k 0
                  ) or       (
                                 kg . k
                                        )




      = change in internal energy ‫التغير في الطاةقة الداخلية‬
 ∆u




 ∆ = u 2 −1
 u        u




          KJ         J
Unit [    kg
             or
                    kg           ]

 ∆T
      = change in temp. (k0) = T2 - T1

For m = 1 kg


      ∆= v .
      u C          ∆
                   T             *
                                                                          ‫نحصل على‬        ‫وبتعويض‬
                                                                                     ∆u




 Q1− = C v
   2  m            ∆
                   T




      Q1− = C v
           m           (T2       −1 )
                                  T

                                            *
        2




                                                          28
The relation between (               C p & Cv
                                                )

                Cp
          γ =
                                    ‫بدون وحدات‬
                            γ
                Cv




    Cama (‫ -: )كاما‬Is the adiabatic expone which represent the ratio
 γ




between specific heat at constant pressure and specific heat at constant
volume .
     γ   >1                         Cp   > Cv




Examples

1- compute the constant pressure specific heat of steam if the change in
enthalpy is (104.2) KJ and the change in temp. is (50 KJ) .


Solution

         ∆h  104.2
     Cp =
         ∆T
            =
              50
                   = 2.084                 KJ / kg . k0




2- Example (2)

 Compute the change of enthalpy as (1 kg) of a gasis heated from 300 k0
                                                        KJ
to 1500 k0           γ
                     =
                     1 .4
                                ,        C v = 0.718
                                                       kg.k 0   .

Sol.



                                                         29
∆h
 Cp =             ⇒        ∆ =C p ∆
                            h      T
               ∆T

          Cp
 γ =            ⇒ C p = γ * Cv
          Cv

                                        KJ
 C p = .4 * 0.718 = 1.005
      1
                                       kg .k 0

                                                       KJ
 ∆ = 1.005 * [1500 −
  h                 300] =1206.240
                                                       kg




3- Example (3)

     1-    Compute the change of internal energy as (219) of a gas is heated .
                                                                       KJ
     2-    Compute the amount of heat added . γ         , C =1.0714 kg
                                                                 =
                                                                 1.39
                                                                        p




Sol.
                 Cp     1.0714          KJ
1-        Cv =
                  γ
                       =
                         1.39
                               =0.7708
                                       kg .k 0



           ∆
           u =v
              C        ∆ 0.7708 *[
                       T =        1000 −
                                       280]




                             KJ
           ∆ =
            u 554.976
                             kg



           Q =m    C   p   ∆
                           T




           Q    =
                2 *    554.976    =
                                  1109.952       KJ




The relation between (R and Cp & Cv)
       h   =
           u +
             pv




     ∆∆ p ∆
     h = +v
        u


                                                 (1)


We know that

     ∆= p
     h C         ∆
                 T
                                                 (2)

     ∆= v ∆
     u C  T
                                                 (3)
                                                            30
And for ideal gas               ⇒
                                     p.v = m . R. T

For m = 1 kg

p.v = R . T
      p ∆
        v = ∆
           R T

                                                (4)


Sub . equations (2) , (3) , (4) in eq. (1)
                                                                  (1) ‫عوض المعادلت 2 ، 3 ، 4 في معادلة‬
   Cp      ∆ = v ∆= ∆
           T  C  T R T




   Cp      = v
            C    +R




       R =p
         C       −v
                 C




Home work
                                    R =p
                                      C    −v
                                           C


Prove that : -




The relation between R and (                          γ,   C p , Cv
                                                                      )

R=             Cp - Cv                      (1)


      Cp                Cp   = v .
                              C      γ
 γ=
      Cv
           ⇒                                    (2)


                                                           ‫بتعويض معادلة )2( في معادلة )1( نحصل على‬
 R= v .
   C        γ−
             C      v




 R = v
    C       (γ 1)
              −




                                                           31
Cv =
          R
         γ −1
                                           (3)


                                                     ‫بتعويض معادلة )3( في معادلة )2( نحصل على‬
 Cp   = v .
       C      γ



         R           γ. R
 Cp =         .γ =
        γ−1          γ −1



              γR
      Cp =
              γ−1




Home work
                                    R
Prove that            1)    Cv =
                                   γ −1

                                     γR
                      2)    Cp =
                                    γ −1




       Gas Constant , the universal gas constant and : ‫السبوع الحادي عشر‬
                                                     specific , Examples

                               ‫الهدف من الدرس : 1- ان يفهم الطالب معنى ثابت الغاز وانواعه‬

The general equation of Ideal Gas

                                                                  ‫المعادلة العامة للغاز المثالي‬
 P .V
  T
      =C =          constant                ----- (1)


                                           ‫( نحصل على‬m) ‫بقسمة طرفي المعادلة )1( على الكتلة‬
 P .V  C                                         C
 m .T
      =
       m                    Let            R=
                                                 m




                                                     32
P .V
     m .T
             ≠      R
                                             ----- (2)


                                           constant gas R = characteristic ‫ثابت الغاز النحاس‬

                                                              ‫المعادلة العامة للغاز المثالي‬
             P. V       =m     .   R . T


                                              ----- (3)


Units

                                             N
 P
          = absolute pressure                m2

V = volume (m3)
T = temp. (k0)
 m
  = mass (kg)
                  KJ                J
R =              kg .k 0
                           ,
                                   kg .k




     R0 = R * M



R0 = universal gas constant                       ‫ثابت الغاز العام‬
M = Molecular weight (k mole) ‫)الوزن الجزيئي )كيلو مول‬

                           KJ
     R0     = 8.314
                        k mole . k 0




Example :- A tank has a volume of (0.5 in3) and contains (10 kg) of an
ideal gas having a molecular weight = 24 , the temp = 25 C0 compute the
pressure


Solution

R0 = R . M



                                                         33
KJ
     P   8.3144   k mole . k 0          KJ
 R =   =        =              = 0.346
     M     24         kg               kg.k 0
                    k mole
 P . V     =m    .R . T




                                         KJ
 P   *    0.5 m 3     = 10 kg * 0.346              * ( 25 +273) k 0
                                        kg . k 0



    10 * 0.346 * 298
 P =
           0.5
                     =2066                kpa




Ex . (5) :-
one kg of a perfect gas accupies a volume of (0.85 m3) at (15C0) and at a
constant pressure of (1 bar) . The gas is first heated at a constant volume
and then at a constant pressure .
Compute : 1) the specific heat at constant volume (Cv).
            2) the specific heat at constant pressure (Cp)         γ  = 4
                                                                       1.




Solution

P1 V1 = m . R . T1

          KN
 1*10 9
          m2
             * 0.85 m 3        =   1 (kg) * R * (15 +273) k0

          1 * 10 5 * 0.85
 R =
             1 * 288

                     KJ
 R = 0.295
                    kg . k 0

           R        0.295
 Cv =           =
         γ−1        1.4 −1




                                                       34
KJ
1)     C v = 0.788
                               kg . k 0

                Cp
        γ ≠
                Cv

        Cp      =    γ.   Cv


        C   p   = 4 (0.788)
                 1.


                                     KJ
        C p = 1.033
                                    kg . k 0




Questions

What is the mass of air contained a room (6m x 10m x 4m) If the pressure
is (100 kpa) and the temp. is 25 C0 , Assume air to be an ideal gas
                  KJ
 R = .287
    0
                 kg . k




Ideal gas, boyle,s law, chal,s law , examples: ‫السبوع الثاني عشر والثالث عشر‬
    ‫الهدف من الدرس : 1- ان يتعرف الطالب على مسخن الغاز المثالي وةقانون بويل وشارل‬
                                                     . ‫للغازات المثالية‬

                                               Ideal gas ‫الغاز المثالي‬
The ideal gas is defined as the state of substance that follows well – know
Bolyle,s and charle,s laws .

                                               ‫الغاز المثالي : هو حالة المادة التي تخضع لقانوني بويل وشارل‬

Laws of Ideal gas

The physical properties of a gas are controlled by the following variables :-

     • pressure (P) exerted by the gas .
     • Volume ( ) occupied by the gas .
                                υ



     • Temperature (T) of the gas .

The behaviour of perfect gas is governed by the following laws :-

1) Boyle,s Law
                                                           35
The absolute pressure of a given mass of ideal gas varies inversely of
its volume when the temp. remain constant

      ‫الضغط المطلق لكتلة معينة من الغاز المثالي يتناسب عكسيا مع حجم الغاز عند ثبوت درجة‬
                                                                                 . ‫الحرارة‬
          1
 Pα
          V        T=C       ‫ثابت‬


 PV = C




 P1 V1 = P2 V2 = C                  T=C


Unit of pressure (Pa)
                                                         (pressure) (1)
                                                             (P)               PV = C

                                                                                    (2)


                                                                          V)     volume(



Charle,s Law

The volume of a given mass of ideal gas varies directly with the temp.
when the absolute pressure remain constant .
 V   αT




 V
 T
   = C
                                      P = constant ‫ثابت‬

                                                              P
     V1  V
     T1
        = 2 =C
         T2          P=C

                                                          P1 = P2
Units                                                               (1)                 (2)


                                            36

                                                                                          V
V (m 3 )
 T (k 0 )
 P ( pa )




V1 = initial volume ‫الحجم البتدائي‬
V2 = final volume ‫الحجم الثاني‬




Gay Lussac Law ‫قانون غاي لوساك‬
      The absolute pressure of a given mass of ideal gas is proportional
directly with the temp. at constant volume .

       . ‫يتناسب الضغط المطلق لكتلة غاز مثالي تناسبا طرديا مع درجة الحرارة عند ثبوت الحجم‬
                                        ً 
 P   αT



 P
 T
   =C
            ‫ثابت‬

     P   P
        = 2 =C
                                                                   ‫ثابت‬
      1

     T1  T2                                  V = constant



General Process

      It is transition of a substance from state (1) [ P1 , V1 , T1] to state (2)
[P2 , V2 , T2] a cross a certain path .

                   . ‫وهي تغير المادة من الحالة )1( الولية الى الحالة )2( النهائية باتباع مسار معين‬

                   P .V= constant
                        =C
                    T




                                                  37
N
P = pressure (        m2   )
V = volume m3
T = temperature (k0)

                                                                   ‫ولكثر من حالة‬
                                                            2 ←
                                                              1




         P V1  P V
          1
              = 2 2
          T1    T2




Examples (1)

   An air compress or is compress (2.8 m3) of air from initial pressure of
(1 bar) to final , pressure of (14 bar) calculate the final volume of air if
temp. is constant .

Solution :-

P1 V1 = P2 V2 ‫قانون بويل‬                 T=C

1 bar * 2.8 m3 = 14 bar * V2

        1 * 2.8
 V2 =           =     m3
          14




Examples (2)

(0.2 m3) of a gas at (50 C0) the gas is heated at a constant pressure until its
volume reached (0.4 m3) compute the final temp.

Solution :-

 V1  V
    = 2     =C
 T1  T2



    0.2     0.4
          ≠
 50 + 273   T2




                                       38
0.2 T2 = 0.4 [ 50 + 273]

        0.4 (323)
 T2 =             = 646 k 0
           0.2




Examples (3)

(2 kg) of a gas at initial pressure of (1.4 bar) and temp. = 40 C0 , R =
                J
188.34        kg .k 0    , Determine (a) the volume of the gas
(b) If the gas is heated at constant pressure to have a volume of (1.5 m3) .
Find the final temp.


Solution

P1 V1 = m R T1

              N                           J
 1.4 * 10 5      * V1 = 2 kg * 188.34           * ( 40 +273) k 0
              m2                        kg .k 0

        2 * 188.34
 V1 =
        1.4 * 10 5

 V1 = .842
     0
                        m3


b)    P = C ‫ثابت‬

      V1  V
         = 2
      T1  T2

       0.842    1.5
              =
      40 +273   T2




     T2 = 557.6 k0


                                                39
Thermodynamic Processes and applications : ‫السبوع الرابع عشر‬

        . ‫الهدف من الدرس : 1- ان يتعرف الطالب على الجراءات الثرموداينمكية وتطبيقاتها‬


Some Processes for closed systems

1- Constant pressure process (Isobaric)
                                                                P
    Q   =
        W      +∆
                u




           2
                                                                    1         2
        ∫
     W = p dv = p (V2 − 1 ) =m R (T2 − 1 ) P2 = 1
           1
                       V              T        P

                                                                         WD
     Q1− =1− = u1−
       2 W 2  ∆ 2



                                                                                   V
     Q1− = C
       2  m      p   [T2 −1 ]
                          T                                         V1        V2


     ∆
     u = C v [T2 − ]
        m        T1




     Q1− = [V 2 −] + C v [T2 −]
       2  p     V1  m        T1




     P V1  PV
          = 2 2
                                              ‫المعادلة العامة‬
      1
                                P = 2
                                 1 P
      T1    T2



        V1 V2
          =
        T1 T2




                                         40
Constant volume process (Isometric)                     P

                                                            2
    Q1− = 1− = u1−
      2  W 2  ∆ 2                                 P2


    W1− =0
                                                            1
       2



                                                   P1

   Q1− =
     2 u2         − = C v [T2 − ]
                   u1 m        T1


                                                                             V
                                                                V1 = V2



                                           ‫ليجاد العلةقة بين درجة الحرارة والضغط‬
 P V1  PV
  1
      = 2 2                              V1 = 2
                                             V
  T1    T2




   P   P
    1
      = 2
   T1  T2




3- Constant temp. process [Isothermal]

T=C

             V2

 W1−2 = A = ∫ p dv
             V1


 Q1− − 12
   2  W      = u
              ∆




 ∆ m
 u =        CV [T2 − ] =
                    T1  0




 Q12 = 12
      W




                                    41
V2
   W12 = P V1 ln
                         ‫باجراء التكامل على المعادلة‬
          1
                   V1




                                                          ‫ليجاد العلةقة بين الضغط والحجم‬
 P V1  P V
  1
      = 2 2
  T1    T2



 T1 = 2
     T




   P V1 = V 2
    1    P2




Ex. 1

The pressure of a gas = 1.5 bar at 18 C0 temp. compute
1- the volume of (1 kg) of the gas .
If the gas is heated at constant pressure until the volume become [1m3]
Compute : a- the a mount of added heat .
             b- the work done .

                                                   KJ
Cp = 1.005 KJ/kg.k                 Cv = 0.718     kg .k




Solution

R = Cp - Cv

                                   KJ
R = 1.005 – 0.718 = 0.278         kg .k


P1 V1 = m R T1

        mRT1   1 * 0.278 * (18 + 273)
 V1 =        =
         P1           10 2 *1.5



V1 = 0.556 m3


                                           42
Q12 = m Cp [T2 – T1]

 V1  V
    = 2
 T1  T2



 0.556   1
       =
  291    T2




T2 = 526.2 k0

Q = 1 * 1.005 * [526.2 – 291] = 243.4 KJ

W = P [V2 – V1] = 1.5 x 102 [1- 0.556] = 66.48 KJ


Adiabatic Process
 P V γ=C




       Cp
 γ =
       CV

 Q1− =
    2 0




 Q1− −
   2  W          = u1−
                  ∆ 2




 − 1− = u1−
 W 2   ∆ 2




 − 1− =
 W 2   m C v (T2         −1)
                          T




            V2

 W1−2 = ∫ p dv
            V1




       P V1γ = P 2 V2
        1
                     γ




                 P V1 −P2 V2  m R (T1 − 2 )
                                        T
       W =        1
                             =
                    γ− 1         γ−   1




                                              43
Ex. 1 : Given [ the mass of the gas = 1 kg , the pressure = 1.5 bar ,
                                                            KJ                      KJ
            the temp = 18C0 ] Cv = 0.718                   kg .k 0   , Cp= 1.005   kg .k 0




compute : 1- the volume of the gas , the gas is heated at constant pressure
              until the volume become (1m3).
           2- the added heat .
           3- the work done .

Solution
 C   p   −v =
         C   R



                              KJ
1.005 – 0.718 = 0.278        kg .k 0

P1 V1 = m R T1
                                             KJ
1.5 * 102 * V1 = 1 kg * 0.278               kg .k 0   * [18 +273] .
     1* 0.278 * 291
 V1 =
       1.5 * 100
                    = 0.556
                                       m3

Q = m Cp [T2 – T1]
                                                                                             T2 ‫ليجاد‬
 V1  V
    = 2
 T1  T2



 0.556   1
       =
  291    T2



           291
 T2 =           =526.2 k 0
          0.556




Q = 1 * 1.005 (526.2 – 291)
Q = 243.4 KJ

W = P [ V2 – V1]
W = 1.5 * 102 [1 - 0.566]
W = 66.48 KJ


Ex . 2 :


                                                      44
Given [ the pressure of air = 1.013 bar , the volume = 0.827 m3 and the
temp. = 25 C0 , the air is compressed with constant temp. until the pressure
becomes = 13.78 bar .
Compute :- the work done to compress the air .


Solution

                V2
 W12 =P V1 ln
       1
                V1                         ----- (1)

                                                           ‫ مجهولة‬V2 ‫ل يمكن ايجاد الشغل لن‬
P1 V1 = P2 V2                T=C                V2 ‫ليجاد‬
                                           ⇐




1.013 * 0.827 = 13.78 V2

     1.013 * 0.827
 V2 =
         13.78
                   = 0.060          m3


                                                            (1) ‫ في معادلة‬V2 ‫عوض عن ةقيمة‬
                                   0.060
 W12 = .013 * 10 2 * 0.827
      1                       ln
                                   0.827



 W12 =83.775    ln   0.073




 W12   = .775
       83       ( −61
                  2. )




 W12   =−218.653
                      KJ

                                               . ‫الشارة سالبة تدل على ان الشغل داخل الى النظام‬




                                                 45
Ex . 3 : Given [ the volume of gas = 0.12 m3 , the temp. = 20 C0 and the
pressure = 1.013 bar is compressed adibatically until the volume become =
                                  KJ                                  KJ
0.024 m3 Cv = 0.718              kg .k 0   , Cp = 1.005              kg.k 0   .
Compute : 1) the mass of the gas .
          2) the final pressure and temp.
          3) the work done .

Solution

                                                            KJ
R = Cp – Cv = 1.005 – 0.718 = 0.287                        kg .k 0

P1 V1 = m R T1
                                                      KJ
1.013 * 102 * 0.12 m3 = m * 0.287                    kg .k 0     * [20 + 273]
            1.013 * 10 2 * 0.12
1)    m =
               0.287 * 293
                                =0.145
                                                 kg

            Cp       1.005
      γ =        =         = 1.4
            CV       0.718



      P V1γ =P2 V2γ
       1




     1.013 (0.12)1.4 = P2 (0.024)1.4

                      0.12 
2) P2 = 1.013               
                      0.024     = 9.64 bar          ‫الضغط النهائي‬

      P V1  P V
           = 2 2
                        ] ‫ ] النهائية‬T2 ‫ليجاد‬
       1

       T1    T2



     1.013 * 0.12   9.64 * 0.024
                  =
         293             T2



         293 * 9.64 * 0.024
     T2 =
           1.013 * 0.12
                            =557.7
                                                k0




3)
                                                     46
‫ليجاد الشغل المنجز‬
         ‫2‪P V1 − P2 V‬‬
 ‫= 21‪W‬‬    ‫1‬

            ‫−‪γ‬‬  ‫1‬




      ‫420.0 * 2 01* 46. − 21.0 * 2 01 * 310.1‬
                           ‫9‬
 ‫= 21‪W‬‬
                      ‫− 4.1‬‫1‬




‫‪W12 = - 85.282 KJ‬‬




                           ‫السبوع الخامس عشر : ‪Reversible and irreversibility‬‬

‫الهدف من الدرس : 1- ان يتعرف الطالب على منحني النعكاسية او الرجاعية واللانعكاسية‬
                                          ‫74‬
. ‫او اللارجاعية‬

                    Reversible and Irreversible Process

                                            : ‫الجراء الرجاعي والجراء اللارجاعي‬
                                              : ‫الجراء النعكاسي والجراء اللانعكاسي‬

Reversible process : ‫الجراء النعكاسي‬
     The process in which the system and surrounding can be restored to
the initial state without producing any change in the thermodynamic
properties :-


Conditions of reversible process

  1- All the initial and final state of system should be in equilibrium with
     the each other .

  2- The process should occur in very small




Reversible processes ‫الجراءات الرجاعية‬

  1-   Friction relative motion ‫حركة نسبية بدون احتكاك‬


                                       48
2-   Extension of spring ‫تمدد النوابض‬




  3-   Slow frictionless adiabatic expansion ‫تمدد اديباتي بدون احتكاك‬




Irreversible process ‫الجراء اللانعكاسي‬

It is state that both the system and surrounding cannot return to original
state .




                                        : ‫السبوع السادس عشر والسابع عشر‬
           The second law of thermodynamic
  Results of the second law of thermodynamic


The second law of thermodynamic



                                       49
The first law of thermodynamic indicates that the net heat supplied in a
cycle is equal to the net work done the gross heat supplied must be greater
than the net work done some of heat must be rejected by the system .



Kelven blank definition :-

  It is impossible for heat engine to produce net work in a complete cycle
if it exchange heat only with bodies at a single fixed temperature .

The second law has been stated in several ways .

(1) The principle of Thomson (Lord Kelvin) states :

     It is impossible by a cyclic process to take heat from a reservoir and
to convert it into work without simultaneously transferring heat from a hot
to a cold reservoir . This statement of the second law is related to
equilibrium , i.e. work can be obtained from a system only when the
system is not already at equilibrium . If a system is at equilibrium , no
spontaneous process occurs and no work is produced .
Evidently , Kelvin's principle indicates that the spontaneous process is the
heat flow from a higher to a lower temperature , and that only from such a
spontaneous process can work be obtained .




(2) The principle of Clausius States :
     It is impossible to devise an engine which , working in a cycle , shall
produce no effect other than the transfer of heat from a colder to a hotter
body . A good example of this principle is the operation of a refrigerator .

                                      50
(3) The principle of Planck states :
    It is impossible to construct an engine which , working in a complete
cycle , will produce no effect other than raising of a weight and the cooling
of a heat reservoir .


(4) The Kelvin – Planck Principle :
     May be obtained by combining the principles of Kelvin and of Planck
into one equivalent statement as the Kelvin – Planck statement of the
second law . It states : No process is possible whose sole result is the
absorption of heat from a reservoir and the conversion this heat into work .




                                                      Heat engine

                                                         Source
                                                                Q1

                                                Heat engine          W
                            Heat engine , heat pump : ‫السبوع الثامن عشر‬
                                                                Q2
         . ‫الهدف من الدرس : ان يتعرف الطالب على الماكنة الحرارية والمضخة الحرارية‬
                                                            Sin k


Heat engine ‫الماكنة الحرارية‬                         T hot
     A heat engine is a system operating in a complete cycle and
                                                          Qin
developing net work from supply heat .
                                                                         W0
      The second law implies that a source
                                       51                Qout

                                                           T cold
of heat supply and sink for the rejection
of heat are both necessary since some
heat must be always be rejected by
the system .
By first law
 ∑ ∑
 Q= W




Net heat supplied = network done
Q1 – Q2 = W
Q1 > W      the second law of thermodynamic




The thermal efficiency of heat engine ‫الكفاءة الحرارية للماكنة الحرارية‬
      W
 η=
      Q1


      Q1 − Q2         Q2
 η=             =1−
        Q1            Q1




                           Boiler
       One good example in practice of heat engine is a simple steam cycle
in this cycle heat is supplied in boiler work is developed in yurbine heat is
                                             condenser
rejected in a condenser and small amount of work is required for the
pump .

                                      52
                                     pump
Simple steam cycle


Heat Pump ‫المضخة الحرارية‬
   The heat pump is reversed heat engine in the heat pump (or
refrigerator)cycle an amount of heat Q2 is supplied from the cold reservoir
and an amount of heat Q1 is rejected to the hot reservoir and there must be
a work done on the cycle W



                                    T hot
                                  Qout

                                                    Win

                                   Qin
                                   T cold


                         Heat pump (refrigerator)


Q1 = Q2 = W



                                     53
There for W > 0 , the heat pump requires an input energy in order to
transfer heat from the cold chamber and reject it at higher temp .




                                 Expansion valve
                                    ‫صمام التمدد‬

                              Heat pump system




      Entropy , changes on closed systems and temp - : ‫السبوع التاسع عشر‬
                                                                     Entropy plan
  . ‫الهدف من الدرس : 1- ان يتعلم الطالب معنى النتروبي وتغير النتروبي بالنظمة المغلقة‬

              . ‫2- يتعرف الطالب على العلةقة بين النتروبي ودرجة الحرارة‬
Entropy
   It is define as thermodynamic property that express the amount of
storage energy in the system also represent measure of reversible and
Irreversible process .



                                        54
Temp. – Entropy Plane




For the reversible process the area under (T-S) plane = the heat (1)

dQ = T ds            --------- (1)
       2
 Q =   ∫T
       1
              ds




From equation (1)

              dQ
       ds =
              T      J / k0



1- The entropy at constant volume

                   T2            P2
    ∆ = m C v ln
     S                = m C v ln
                   T1            P1




2- The entropy at constant pressure

                   T2            V2
    ∆ = m C p ln
     S                = m C p ln
                   T1            V1

       Cp   > v
             C




                                      55
∆
    s at   v=
            c   > sp=
                 ∆ c




Ex : 1
  Comput the entropy for reversible process at constant pressure the temp
                                        KJ
vary from 120 C0 to 270 C0    C = 2. 1p
                                       kg .k




Solution

                  T2
 ∆ = m C p ln
  s
                  T1



                  KJ      270 +273
 ∆ = * 2.1
  s 1                  ln
                 kg .k    120 + 273



 ∆
 s =1
    2.      ln   1.38




                             KJ
 ∆ = 2.1* 0.322 = 0.676
  s
                             k0




                                               Carnot Cycle : ‫السبوع العشرون‬

       ‫الهدف من الدرس : 1- ان يتعرف الطالب على دورة كارنوت مبدأ عملها واهميتها مع‬
                                                    . ‫المخطط والكفاءة‬

Carnot Cycle
   A Carnot gas cycle operating in a given temperature range is shown in
the T-s diagram in Fig. 1(a) . One way to carry out the processes of this
cycle is through the use of steady – state , steady – flow devices as shown
in Fig. 1(b) . The isentropic expansion process 2-3 and the isentropic
compression process 4-1 can be simulated quite well by a well – designed
turbine and compressor respectively , but the isothermal expansion process
1-2 and the isothermal compression process 3-4 are most difficult to



                                          56
achieve . Because of these difficulties , a steady – flow Carnot gas cycle is
not practical .
    The Carnot gas cycle could also be achieved in a cylinder – piston
apparatus (a reciprocating engine) as shown in Fig. 4.2 (b) . The Carnot
cycle on the p-v diagram is as shown in Fig 4.2 (a) , in which processes
1-2 and 3-4 are isothermal while processes 2-3 and 4-1 are isentropic . We
know that the Carnot cycle efficiency is given by the expression .
                  TL     T       T
      η =1 −
       th            = 1− 4 = 1 − 3
                  TH     T1      T2




                      Fig. 1 . Steady flow Carnot engine




                                      57
Fig. 2. Reciprocating Carnot engine




                58
59
Fig. 3. Carnot cycle on P-v and T-s diagrams




                     60
Fig. 4. Working of Carnot engine


Since the working fluid is an ideal gas with constant specific heats , we
have , for the isentropic process ,
                   γ−1                      γ−1
         T1  V                T2    V    
            = 4
             V    
                          ;         = 3
                                      V    
                                            
         T4   1               T3     3   



Now , T1 = T2 and T4 = T3 , therefore

          V4  V
          V1
             = 3 = r
              V2
                               =     compression or expansion ratio

Carnot cycle efficiency may be written as ,

                         1
           η =1 −
                       r γ−
            th             1




                                                  61
From the above equation , it can be observed that the Carnot cycle
efficiency increases as "r" increases . This implies that the high thermal
efficiency of a Carnot cycle is obtained at the expense of large piston
displacement . Also, for isentropic processes we have ,
                         γ−1                                γ−1
                   P    γ                           P    γ
               T1
               T4
                  = 1
                   P
                    4
                         
                         
                         
                                          and     T2
                                                  T3
                                                     = 2
                                                      P
                                                       3
                                                            
                                                            
                                                            




Since , T1 = T2       and T4 = T3 , we have


               P   P
                1

               P4
                  = 2 = rp =
                   P3                      pressure ratio


Therefore , Carnot cycle efficiency may be written as ,


                               1
                ηth = 1 −          γ −1
                              rp    γ




From the above equation , it can be observed that , the Carnot cycle
efficiency can be increased by increasing the pressure ratio . This means
that Carnot cycle should be operated at high peak pressure to obtain large
efficiency .




                                                  62
Ex. 1
The highes theortical efficiency of gasoline engine based on the Carnot
cycle is 30 y0 if this engine expels its gases into at m . which has temp of
300k . compute
1) the temp in the cylinder immediately after combustion .
2) if the engine absorbs (837 J) of heat from the hot reservoir during each
cycle how much work can it perform in each cycle ,


Solution


                   Tc
1)       η =1 −
                   Th   ‫كفاءة كارنون‬

              Tc   300
         Th =    =      =429 k 0
             1−η 1 −0.3




              W
2)       η=
              Qh
                        ⇒    W =η * Qh = 0.3 * 837 = 251 J




Ex . 2


                                              63
A Carnot engine is operated between two heat reservoirs at temp of 450 k0
and 350 k0 , if the engine receive (1000 J) of heat in each cycle .
Compute : 1) the amount of heat reject .
                  2) the efficiency of the engine .
                  3) the work done by the engine in each cycle .


Solution


1)      Th =450    k0
                           ,     Tc = 350   k0
                                                 ,        Qh   =1000   J




        Qc  T
           = c
        Qh  Th


                    Tc          350
         Qc = Qh       = 1000 *     = 777.7 k 0
                    Th          450




                    Tc
2)       η = 1 −
                    Th


                     350
          η= 1 −
                     450
                           = 0.22 = 22 %
                                            ‫الكفاءة‬


3)       the work done = Qh – Qc = 1000 – 777.7
                                                 = 222.3 J




                                                 : ‫السبوع الحادي والعشرون والثاني والعشرون‬
     ‫الهدف من الدرس : 1- ان يتعلم الطالب معنى دورة اوتو والحرارة المرجعة وصافي الشغل‬
                                                     64
‫.‬       ‫وكفاءة الدورة‬

‫] ‪Otto Cycle : [ Constant Volume Cycle‬‬
‫‪The cycle consist of four reversible process‬‬

                                               ‫تتالف الدورة من اربعة اجراءات انعكاسية‬

‫مرحلة النضغاط ‪1-2 Adibatic Compression‬‬
‫يتم ضغط الغاز في عملية اديباتية يقل الحجم من 1‪ V‬الى 2‪ V‬وترتفع درجة الحرارة من 1‪ T‬الى‬
                                                                                  ‫2‪. T‬‬
                                               ‫ويكون مقدار الشغل المبذول على الغاز ‪Win‬‬
         ‫2‪P V1 −P2 V‬‬
 ‫= ‪Win‬‬    ‫1‬

            ‫−‪γ‬‬ ‫1‬




‫شوط التحتراق ‪2–3 Combustion stroke‬‬
     ‫‪Constant volume , heat addition‬‬

  ‫تسمى مرحلة الحتراق يزداد كل من الضغط ودرجة الحرارة من 2‪ T‬الى 3‪ T‬ويمتص النظام‬
                           ‫كمية حرارة من الشتعال ‪ (Qh (added heat‬الحرارة المضافة .‬
‫)2‪Added heat Qh = m Cv (T3 – T‬‬




‫‪3-4 Power stroke Adibatic expansion‬‬

 ‫يتمدد الغاز في عملية اديباتية يوداد الحجم من 2‪ V‬الى 1‪ V‬وتقل الحرارة من 3‪ T‬الى 4‪) T‬تسمى‬
                                                                          ‫مرحلة القوة (‬


                                          ‫56‬
‫4‪P V3 − P4 V‬‬
 ‫= ‪Wout‬‬    ‫3‬

              ‫−‪γ‬‬ ‫1‬



                              ‫‪P‬‬




                         ‫0‪P‬‬




                                  ‫2‪V‬‬                     ‫1‪V‬‬


                                  ‫‪A standard dtt cycle‬‬




 ‫شوط العادم ‪Exhaust stroke‬‬
 ‫‪4-1 Constant volume , heat rejection‬‬

                                                ‫اجراء ثبوت الحجم )التخلص من الحرارة(‬
   ‫ويسمى )مرحلة صمام العادم( تنخفض درجة الحرارة من 4‪ T‬الى 1‪ T‬وينخفض الضغط نتيجة‬
            ‫لفتح صمام العادم ويعود الضغط الى الضغط الجوي ويفقد النظام كمية حرارة ‪. Qc‬‬

‫‪Rejected heat‬‬       ‫] 4‪Q c = m C v [ T1 – T‬‬

                                          ‫66‬
‫الحرارة المنعكسة‬


‫‪The Heat efficiency (eff.) of otto cycle‬‬

                   ‫‪Qc‬‬      ‫1‪T4 −T‬‬
      ‫− 1= ‪η‬‬          ‫− 1=‬
                   ‫‪Qh‬‬      ‫2‪T3 − T‬‬




‫معادلة الكفاءة لدورة اوتو الحرارية‬

 ‫الجمالي ‪Wnet‬‬        ‫الشغل‬     ‫صافي‬
           ‫‪Wnet = Wout − Win‬‬



       ‫) 2 ‪( P V3 − 4V 4 ) − P V1 − 2V‬‬
               ‫‪P‬‬         ‫1 (‬   ‫‪P‬‬
 ‫= ‪Wnet‬‬   ‫3‬

                    ‫−‪γ‬‬  ‫1‬




‫1-5‬
                                        ‫ملحظة : في المخطط يلحظ خط افقي وهو )مرحلة العادم(‬
                                      ‫و 5-1 )مرحلة الخذ( تكونان غير مؤثرتان لنهما متعاكستان .‬




                                     ‫السبوع الثالث والعشرين والرابع والعشرين :‬
‫.‪Diesel Cycle net work out put and its eff‬‬

    ‫الهدف من الدرس : 1- ان يتعرف الطالب على منحنى دورة ديزل وصافي الشغل الخارج‬
                                                       ‫والكفاءة .‬

‫‪Diesel Cycle‬‬

‫)‪The Diesel cycle is a compression ignition (rather than spark ignition‬‬
‫‪engine . Fuel is sprayed into the cylinder at P2 (high pressure) when the‬‬



                                                  ‫76‬
compression is complete , and there is ignition without spark . An
idealized Diesel engine cycle is shown in figure 1.




                         Figure 1. The ideal Diesel cycle


The thermal efficiency is given by :
                     QL     C (T − 4 )
                                     T
     η Dicsel =1 +      =1 + v 1
                     QH     C p (T3 − 2 )
                                     T


                T1 (T4 / T1 − )
                             1
            =   T2 (T3 / T2 − )
                             1




This cycle can operate with a higher compression ratio than the Otto cycle
because only air is compressed and there is no risk of auto – ignition of the
fuel . Although for a given compression ratio the Otto cycle has higher
efficiency , because the Diesel engine can be operated to higher
compression ratio , the engine can actually have higher efficiency than an
Otto cycle when both are operated at compression ratios that might be
achieved in practice .


Muddy Points


                                            68
When and where do we use Cv and Cp ? Some definitions use dU=Cv dT is
it ever dU = Cp dT ? (MP 3.8)
Explanation of the above comparison between Diesel and Otto. (MP 3.9)




                              Air standard diesel engine cycle

The term "compression ignition" is typically used in technical literature to
describe the modern engines commonly called "Diesel engines" . This is in
contrast to "spark ignition" for the typical automobile gasoline engines that
operate on a cycle derived from the Otto cycle . Rudolph Diesel patented
the compression – ignition cycle which bears his name in the 1890s.

              1 rE λ − rC γ
                 −       −
     η= 1 −
              γ rE 1 − rc−1
                  −




                                 Design of a Diesel Cycle


                                             69
The General Idea

      The Diesel cycle is very similar to the Otto cycle in that both are
closed cycles commonly used to model internal combustion engines . The
difference between them is that the Diesel cycle is a compression –
ignition cycle use fuels that begin combustion when they reach a
temperature and pressure that occurs naturally at some point during the
cycle and , therefore , do not require a separate energy source (e.g. from a
spark plug) to burn . Diesel fuels are mixed so as to combust reliably at the
proper thermal state so that Diesel cycle engines run well .
      (We might note that most fuels will start combustion on their own at
some temperature and pressure . But this is often not intended to occur and
can result in the fuel combustion occurring too early in the cycle . For
instance , when a gasoline engine – ordinarily an Otto cycle device – is run
at overly high compression ratios , it can start "dieseling" where the fuel
ignites before the spark is generated . It is often difficult to get such an
engine to turn off since the usual method of simply depriving it of a spark
may not work .




Stages of Diesel Cycles
      Diesel Cycles have four stages : compression , combustion ,
expansion , and cooling .


Compression
      We start out with air at ambient conditions – often just outside air
drawn into the engine . In preparation for adding heat to the air , we

                                       70
compress it by moving the piston down the cylinder . It is in this part of
the cycle that we contribute work to the air . In the ideal Diesel cycle , this
compression is considered to be isentropic .
      It is at this stage that we set the volumetric compression ratio , r
which is the ratio of the volume of the working fluid before the
compression process to its volume after .
Piston : moving from top dead center to bottom dead center .


Combustion
      Next , heat is added to the air by fuel combustion . This process
begins just as the piston leaves its bottom dead center position . Because
the piston is moving during this part of the cycle , we say that the heat
addition is isochoric , like the cooling process .
Piston : starts at bottom dead center , begins moving up .




Expansion
      In the Diesel cycle , fuel is burned to heat compressed air and the hot
gas expands forcing the piston to travel up in the cylinder . It is in this
phase that the cycle contributes its useful work , rotating the automobile 's
crankshaft . We make the ideal assumption that this stage in an ideal
Diesel cycle is isentropic .


Piston : moving from bottom dead center to top dead center .

                                       71
Cooling
      Next , the expanded air is cooled down to ambient conditions . In an
actual automobile engine , this corresponds to exhausting the air from the
engine to the environment and replacing it with fresh air . Since this
happens when the piston is at the top dead center position in the cycle and
is not moving , we say this process is isochoric (no change in volume) .


Piston : at top dead center .




                                        Dual Cycle : ‫السبوع الخامس والعشرون‬
          . ‫الهدف من الدرس : 1- يتعرف الطالب على منحنى دورة ديول والمخطط والكفاءة‬


Limited Pressure Cycle (or Dual Cycle) :
      This cycle is also called as the dual cycle , which is shown in Fig. 1
Here the heat addition occurs partly at constant volume and partly at
constant pressure . This cycle is a closer approximation to the behavior of
the actual Otto and Diesel engines because in the actual engines , the
                                       72
combustion process does not occur exactly at constant volume or at
constant pressure but rather as in the dual cycle .


Process 1-2 : Reversible adiabatic compression .
Process 2-3 : Constant volume heat addition .
Process 3-4 : Constant pressure heat addition .
Process 4-5 : Reversible adiabatic expansion .
Process 5-1 : Constant volume heat rejection .




                                      73
Fig. 1 Dual cycle on p-v and T-s diagrams




Air Standard Efficiency

Heat supplied = m Cv (T3 – T2) + m Cp (T4 – T3)

Heat rejected = m Cv (T5 – T1)

Net work done = m Cv (T3 – T2) + m Cp (T4 – T3) – m Cv (T5 – T1)

       m C v (T3 − 2 ) +m C
                  T               (T4 −T3 ) − m C v (T5 − 1 )
                                                         T
 η =
  th
                              p

               m C v (T3 − T2 ) +m C p (T4 − 3 )
                                            T



               T5 −T1
 η =−1
        (T3 −T2 ) +γ (T4 −T3 )
  th




                                              74
P3                            V4                            V1
Let ,         P2
                 = rp                ;
                                            V3
                                               =rc              ;
                                                                          V2
                                                                             =r




 T2   =T1     r γ−
                 1




 T3   = 2 r p =1 r γ 1 r p
       T       T    −




 T4   = rc = r γ 1 r p rc
      T3    T1  −




                 γ−1                             γ−1                γ−1
 T5  V                V   V                         r 
    = 4
     V         
                      = 4 . 2
                        V                    
                                                      = c 
 T4   5                2  V5                        r 



                       γ−1
         r 
 T5 = T4  c                  = 1 r p rcγ
                                T
         r 




                                                        T1 rp rcγ − 1
                                                                   T
 η =1 −
  th
                 {(T   1   r γ − r p − 1 r γ − ) + γ (T1 r γ − rp rc − T1 r γ − rp )}
                                1
                                      T       1               1                1




                                                  ( rp rcγ − )
                                                            1
      =     1−
                 {(r   p   r   γ−1
                                     −r    γ−1
                                                 ) + γ (r   p       rc r γ −1 − rp r γ −1   )}

                                1        
                                                r p rcγ −1         
                                                                    
      =   η 1 −
           th
                             r γ−1       
                                         (     1                1 
                                                                    
                                          r p − ) + γ r p ( rc − ) 



From the above equation , it is observed that , a value of rp > 1 results in
an increased efficiency for a given value of rc and                                              γ
                                                                                                     . Thus the efficiency
of the dual cycle lies between that of the Otto cycle and the Diesel cycle
having the same compression ratio .


Mean Effective Pressure


                      Workdone
 mep      =
                 Displacement volume




                                                                                  75
m C v (T3 − 2 ) +m C p (T4 − 3 ) −m C v (T5 − 1 )
                         T                T                T
       =                                        V1 − 2
                                                    V




             m C v (γ − ) T1 r − 
                       1         1
 V1 − 2 =
     V                            
                    P1        r 




                p1 r      3− 2
                          T   T   γ(T4 − 3 )
                                        T     T − 1T
 map =                         +            − 5      
           ( r − )(γ − )  T1
                1     1              T1          T1   




   =
                p1 r
           ( r − )(γ − )
                1     1
                           {r γ
                              −1
                                       ( r p − ) +γ r γ− r p ( rc − ) − r p rcγ − )}
                                              1         1
                                                                   1   (         1




   =
                p1 r
           ( r − )(γ − )
                1     1
                           {r γ {(r
                                  −1
                                          p   − ) +γ rp ( rc − )} − r p rcγ − )}
                                               1              1    (         1




                                                                                   : ‫السبوع السادس والعشرون‬
Comparing between Fuel – air and the air standard cycles
   ‫الهدف من الدرس : 1- ان يتعرف الطالب على المقارنة بين دورة وتود – هواء ودورة الهواء‬
                                                                             . ‫القياسية‬


Fuel – air cycle
   The simple ideal air standard cycles overestimate the engine efficiency
by a factor of about 2. A significant simplification in the air standard
cycles is the assumption of constant specific heat capacities . Heat



                                                             76
capacities of gases are strongly temperature dependent , as shown by
figure (1) .
    The molar constant – volume heat capacity will also vary , as will     γ




the ratio of heat capacities :
      C   p   − v
               C    =0
                     R   ,   γ=C   p   / Cv




    If this is allowed for , air standard Otto cycle efficiency falls from 57
per cent to 49.4 per cent for a compression ratio of 8 .
    When allowance is made for the presence of fuel and combustion
products , there is an even greater reduction in cycle efficiency . This leads
to the concept of a fuel – air cycle which is the same as the ideal air
standard Otto cycle , except that allowance is made for the real
thermodynamic behaviour of the gases . The cycle assumes instantaneous
complete combustion , no heat transfer , and reversible compression and
expansion . Taylor (1966) discusses these matters in detail and provides
results in graphical form . Figure (2) and (3) .




                    INTRODUCTION TO INTERNAL COMBUSTION ENGINES




                                              77
Figure (1) : Molar heat capacity at constant pressure of gases above 150C
        quoted as averages between 150C and abscissa temperature



Show the variation in fuel –air cycle efficiency as a function of
equivalence ratio for a range of compression ratios . Equivalence ratio     φ




is defined as the chemically correct (stoichiometric)air / fuel ratio divided
by the actual air / fuel ratio . The datum conditions at the start of the
compression stroke are pressure (p1) 1.013 bar , temperature (T1) 1150C ,
mass fraction of combustion residuals (f) 0.05 , and specific humidity (        ω
                                                                                    )
0.02 – the mass fraction of water vapour .



       The fuel 1- octane has the formula C8H16 , and structure


                                       78
Figure (2) shows the pronounced reduction in efficiency of the fuel – air
cycle for rich mixtures . The improvement in cycle efficiency with
increasing compression ratio is shown in figure 3 , where the ideal air
standard Otto cycle efficiency has been included for comparison .

 In order to make allowances for the losses due to phenomena such as
heat transfer and finite combustion time , it is necessary to develop
computer models .

 Prior to the development of computer models , estimates were made for
the various losses that occur in real operating cycles . Again considering
the Otto




                                     79
Figure (2) : Variation of efficiency with equivalence ratio for a constant –
  volume fuel – air cycle with 1 – octane fuel for different compression
                   ratios ( adapted from Taylor (1966))




Cycle , these are as follows :



                                     80
(a) "Finite piston speed losses" occur since combustion takes a finite time
and cannot occur at constant volume . This leads to the rounding of the
indicator diagram and Taylor (1960) estimates these losses as being about
6 per cent .




 Figure (3) : Variation of efficiency with compression ratio for a constant
volume fuel – air cycle with 1 – octane fuel for different equivalence ratios
                      (adapted from Taylor (1966))




                                     81
(b) "Heat losses" , in particular between the end of the compression stroke
and the beginning of the expansion stroke . Estimates of up to 12 per cent
have been made by both Taylor (1966) and Ricardo and Hempson (1968) .
However, with no heat transfer the cycle temperatures would be raised and
the fuel – air cycle efficiencies would be reduced slightly because of
increasing gas specific heats and dissociation .


(c ) Exhaust losses due to the exhaust valve opening before the end of the
expansion stroke . This promotes gas exchange but reduces the expansion
work . Taylor (1966) estimates these losses as 2 per cent .


    Since the fuel is injected towards the end of the compression stroke in
compression ignition engines (unlike the spark ignition engine where it is
pre-mixed with the air) the compression process will be closer to ideal in
the compression ignition engine than in the spark ignition engine . This is
another reason for the better fuel economy of the compression ignition
engine .




                      The actual cycle : ‫السبوع السابع والعشرين والثامن والعشرين‬

                                      82
Comparing between actual cycles and air standard cycles


                         . ‫الهدف من الدرس : 1- ان يتعرف الطالب مفهوم الدراسة الحقيقية‬
               . ‫2- يقارن بين الدراسة الحقيقية ودورات الهواء القياسية‬




The Actual Cycle


     The eff of the actual cycle is low than the air standard cycle .
1- The fluid used is a mixture of air and fuel and the exhaust gases .
2- Energy loss is caused by time when the valves are opened or closed .
3- The specific heat varies with temp.
4- Due to the chemical dissociation there will energy loss .
5- The combustion isn't complete
6- The engine loses heat directly .
7- There are heat losses with exhaust gases .
8- The engine loses heat directly .




                                          83
Air Standard Cycle


1- The efficiency is high .
2- The fluid used in the cycle is air follows the ideal gas PV= m R T
3- The used gas has a constant mass of air in the closed system or moves
  with constant flourate in closed cycle .
4- The value of specific heat is constant .
5- Chemical reactions don't occur .
6- The compression and expansion occurs with constant entropy .
7- The received heat and rejected heat occurs reversibly .
8- There is no change I the kinetic & the potential energies that is why
  they are neglected .
9- The engine works without friction .




                                Gas Turbine :‫السبوع التاسع والعشرين والثلثون‬

                                      84
‫الهدف من الدرس : يتعلم الطالب معنى التوربين الغازي واستخداماته ومكوناته‬

Gas Turbine

    Gas turbine . types which burn fuels such as oil and natural gas .
Instead of using heat to produce steam , as in steam turbines , the gas
turbine hot gas is used directly . Used for the operation of gas turbine
generators , ships , race cars , as used in jet engines .

    Most of the gas turbine systems of the three main parts

1- the air compressor , 2- the combustion chamber , 3- turbine

    The so–called air compressor with the combustion chamber , usually ,
the gas generator . In most systems , gas turbine , the air compressor and
turbine boats on both sides of a horizontal axis , located between the
combustion chamber . And is part of the power turbine air compressor .
    Absorbs quantity of air compressor and air ldguetha , so pressure is
increasing . In the combustion chamber , compressed air mixes with fuel
and burning the mixture . The more air pressure , improved combustion of
fuel mixed with air . The burning gases expand rapidly and to flow into the
turbine , leading to the rotation of the wheels of the turbine . And moving
hot gases through the various stages in the same manner as the gas turbine
flows through the steam turbine vapor . The Downs fixed mobile gas resat
member to change the rotor speed .


      And benefit most from the gas turbine systems , the hot gases
emerging from the turbine . In some systems are some of these gases , and
go to a so – called renewed . And these gases are used to heat the
                                        85
ثرموداينمك
ثرموداينمك
ثرموداينمك
ثرموداينمك

Mais conteúdo relacionado

Destaque

To disband the unit sixth science
To disband the unit sixth scienceTo disband the unit sixth science
To disband the unit sixth scienceMalek Shouman
 
اختبار كفايات كيمياء للمعلمين
اختبار كفايات كيمياء للمعلميناختبار كفايات كيمياء للمعلمين
اختبار كفايات كيمياء للمعلمينMohammad Alfatayri
 
الطبيعة المادية للضوء
الطبيعة المادية للضوءالطبيعة المادية للضوء
الطبيعة المادية للضوءamelrara
 
الأشعة تحت الحمراء0000
الأشعة تحت الحمراء0000الأشعة تحت الحمراء0000
الأشعة تحت الحمراء0000Mona Hamada
 
Dr.wael elhelece electrochemistry 331chem
Dr.wael elhelece electrochemistry 331chemDr.wael elhelece electrochemistry 331chem
Dr.wael elhelece electrochemistry 331chemWael Elhelece
 
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديريالاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديريOnline
 
الكيماء الكهربائية
الكيماء الكهربائيةالكيماء الكهربائية
الكيماء الكهربائيةalord111
 
جميع ملخصات الكيمياء السادس العلمي 2015
جميع ملخصات الكيمياء السادس العلمي 2015جميع ملخصات الكيمياء السادس العلمي 2015
جميع ملخصات الكيمياء السادس العلمي 2015Online
 
المعادن والصخوور
المعادن والصخوورالمعادن والصخوور
المعادن والصخوور9876541230
 
Ciclo diesel
Ciclo dieselCiclo diesel
Ciclo dieseltoons1233
 
atomic absorption spectroscopy and mass spectroscopy
atomic absorption spectroscopy and mass spectroscopyatomic absorption spectroscopy and mass spectroscopy
atomic absorption spectroscopy and mass spectroscopyvanitha gopal
 

Destaque (14)

To disband the unit sixth science
To disband the unit sixth scienceTo disband the unit sixth science
To disband the unit sixth science
 
اختبار كفايات كيمياء للمعلمين
اختبار كفايات كيمياء للمعلميناختبار كفايات كيمياء للمعلمين
اختبار كفايات كيمياء للمعلمين
 
الطبيعة المادية للضوء
الطبيعة المادية للضوءالطبيعة المادية للضوء
الطبيعة المادية للضوء
 
Unit3
Unit3Unit3
Unit3
 
الأشعة تحت الحمراء0000
الأشعة تحت الحمراء0000الأشعة تحت الحمراء0000
الأشعة تحت الحمراء0000
 
Dr.wael elhelece electrochemistry 331chem
Dr.wael elhelece electrochemistry 331chemDr.wael elhelece electrochemistry 331chem
Dr.wael elhelece electrochemistry 331chem
 
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديريالاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
 
الالكانات
الالكاناتالالكانات
الالكانات
 
الكيمياء 1
الكيمياء 1الكيمياء 1
الكيمياء 1
 
الكيماء الكهربائية
الكيماء الكهربائيةالكيماء الكهربائية
الكيماء الكهربائية
 
جميع ملخصات الكيمياء السادس العلمي 2015
جميع ملخصات الكيمياء السادس العلمي 2015جميع ملخصات الكيمياء السادس العلمي 2015
جميع ملخصات الكيمياء السادس العلمي 2015
 
المعادن والصخوور
المعادن والصخوورالمعادن والصخوور
المعادن والصخوور
 
Ciclo diesel
Ciclo dieselCiclo diesel
Ciclo diesel
 
atomic absorption spectroscopy and mass spectroscopy
atomic absorption spectroscopy and mass spectroscopyatomic absorption spectroscopy and mass spectroscopy
atomic absorption spectroscopy and mass spectroscopy
 

Semelhante a ثرموداينمك

002 basic properties_of_thermodynamics
002 basic properties_of_thermodynamics002 basic properties_of_thermodynamics
002 basic properties_of_thermodynamicsphysics101
 
O level physics formula sheet
O level physics formula sheetO level physics formula sheet
O level physics formula sheetsrhyder21
 
Energy conversion
Energy conversionEnergy conversion
Energy conversionSaif Azhar
 
001 thermodynamic system
001 thermodynamic system001 thermodynamic system
001 thermodynamic systemphysics101
 
Onr (Italy) Review On Blast Resistance
Onr (Italy) Review On Blast ResistanceOnr (Italy) Review On Blast Resistance
Onr (Italy) Review On Blast ResistanceNazrul
 
000 introduction
000 introduction000 introduction
000 introductionphysics101
 
Introductiontothermodynamicsdrkatte
IntroductiontothermodynamicsdrkatteIntroductiontothermodynamicsdrkatte
Introductiontothermodynamicsdrkattedrkatte
 
Chapter 1 [compatibility mode]
Chapter 1 [compatibility mode]Chapter 1 [compatibility mode]
Chapter 1 [compatibility mode]krishn_desai
 
Physics Units & Definitions
Physics Units & DefinitionsPhysics Units & Definitions
Physics Units & DefinitionsNicholas Teh
 
Tabla magnitudes y unidades
Tabla magnitudes y unidadesTabla magnitudes y unidades
Tabla magnitudes y unidadesdanirg
 
Quarter 1 Lesson 1 - Physical Quantities and Measurements
Quarter 1 Lesson 1 - Physical Quantities and MeasurementsQuarter 1 Lesson 1 - Physical Quantities and Measurements
Quarter 1 Lesson 1 - Physical Quantities and MeasurementsMarkNicholzSimporios
 
Physical Quantities and Measurements
Physical Quantities and MeasurementsPhysical Quantities and Measurements
Physical Quantities and MeasurementsMarkNicholzSimporios
 

Semelhante a ثرموداينمك (20)

002 basic properties_of_thermodynamics
002 basic properties_of_thermodynamics002 basic properties_of_thermodynamics
002 basic properties_of_thermodynamics
 
001
001001
001
 
O level physics formula sheet
O level physics formula sheetO level physics formula sheet
O level physics formula sheet
 
Scientific units
Scientific unitsScientific units
Scientific units
 
Energy conversion
Energy conversionEnergy conversion
Energy conversion
 
001 thermodynamic system
001 thermodynamic system001 thermodynamic system
001 thermodynamic system
 
Onr (Italy) Review On Blast Resistance
Onr (Italy) Review On Blast ResistanceOnr (Italy) Review On Blast Resistance
Onr (Italy) Review On Blast Resistance
 
000 introduction
000 introduction000 introduction
000 introduction
 
Sistema internacional
Sistema internacionalSistema internacional
Sistema internacional
 
Introductiontothermodynamicsdrkatte
IntroductiontothermodynamicsdrkatteIntroductiontothermodynamicsdrkatte
Introductiontothermodynamicsdrkatte
 
001
001001
001
 
Chapter 1 [compatibility mode]
Chapter 1 [compatibility mode]Chapter 1 [compatibility mode]
Chapter 1 [compatibility mode]
 
Chapter 4 Summary
Chapter 4 SummaryChapter 4 Summary
Chapter 4 Summary
 
Physics Units & Definitions
Physics Units & DefinitionsPhysics Units & Definitions
Physics Units & Definitions
 
Tabla magnitudes y unidades
Tabla magnitudes y unidadesTabla magnitudes y unidades
Tabla magnitudes y unidades
 
Quarter 1 Lesson 1 - Physical Quantities and Measurements
Quarter 1 Lesson 1 - Physical Quantities and MeasurementsQuarter 1 Lesson 1 - Physical Quantities and Measurements
Quarter 1 Lesson 1 - Physical Quantities and Measurements
 
Physical Quantities and Measurements
Physical Quantities and MeasurementsPhysical Quantities and Measurements
Physical Quantities and Measurements
 
Lecture 1_1
Lecture 1_1Lecture 1_1
Lecture 1_1
 
Lecture 1_1
Lecture 1_1Lecture 1_1
Lecture 1_1
 
Physics formulae
Physics formulaePhysics formulae
Physics formulae
 

Mais de Salah Khaleel

مجلة رحيق اعداد المدربين التقنيين العدد بعد التنضيد الثالث
مجلة رحيق اعداد المدربين التقنيين العدد بعد التنضيد الثالثمجلة رحيق اعداد المدربين التقنيين العدد بعد التنضيد الثالث
مجلة رحيق اعداد المدربين التقنيين العدد بعد التنضيد الثالثSalah Khaleel
 
استمارة استيبان الزي الموحد
استمارة استيبان الزي الموحداستمارة استيبان الزي الموحد
استمارة استيبان الزي الموحدSalah Khaleel
 
مجلة رحيق اعداد المدربين التقنيين العدد الثاني ملون
مجلة رحيق اعداد المدربين التقنيين العدد الثاني ملونمجلة رحيق اعداد المدربين التقنيين العدد الثاني ملون
مجلة رحيق اعداد المدربين التقنيين العدد الثاني ملونSalah Khaleel
 
نتائج القبول المركزي للدور الثالث والمتاخرين عن الدورين الاول والثاني العلمي...
نتائج القبول المركزي للدور الثالث والمتاخرين عن الدورين الاول والثاني  العلمي...نتائج القبول المركزي للدور الثالث والمتاخرين عن الدورين الاول والثاني  العلمي...
نتائج القبول المركزي للدور الثالث والمتاخرين عن الدورين الاول والثاني العلمي...Salah Khaleel
 
القبول المركزي علمي 2012-2013
القبول المركزي   علمي 2012-2013القبول المركزي   علمي 2012-2013
القبول المركزي علمي 2012-2013Salah Khaleel
 
automotive electric 1
automotive electric 1 automotive electric 1
automotive electric 1 Salah Khaleel
 
automotive electric 2
automotive electric 2 automotive electric 2
automotive electric 2 Salah Khaleel
 
educationl breifcase - car electric
educationl breifcase - car electric educationl breifcase - car electric
educationl breifcase - car electric Salah Khaleel
 
محركات احتراق داخلي معهد اعداد المدربين-مكائن ومعدات
محركات احتراق داخلي معهد اعداد المدربين-مكائن ومعداتمحركات احتراق داخلي معهد اعداد المدربين-مكائن ومعدات
محركات احتراق داخلي معهد اعداد المدربين-مكائن ومعداتSalah Khaleel
 
Mechanic second year
Mechanic second yearMechanic second year
Mechanic second yearSalah Khaleel
 

Mais de Salah Khaleel (11)

مجلة رحيق اعداد المدربين التقنيين العدد بعد التنضيد الثالث
مجلة رحيق اعداد المدربين التقنيين العدد بعد التنضيد الثالثمجلة رحيق اعداد المدربين التقنيين العدد بعد التنضيد الثالث
مجلة رحيق اعداد المدربين التقنيين العدد بعد التنضيد الثالث
 
استمارة استيبان الزي الموحد
استمارة استيبان الزي الموحداستمارة استيبان الزي الموحد
استمارة استيبان الزي الموحد
 
مجلة رحيق اعداد المدربين التقنيين العدد الثاني ملون
مجلة رحيق اعداد المدربين التقنيين العدد الثاني ملونمجلة رحيق اعداد المدربين التقنيين العدد الثاني ملون
مجلة رحيق اعداد المدربين التقنيين العدد الثاني ملون
 
نتائج القبول المركزي للدور الثالث والمتاخرين عن الدورين الاول والثاني العلمي...
نتائج القبول المركزي للدور الثالث والمتاخرين عن الدورين الاول والثاني  العلمي...نتائج القبول المركزي للدور الثالث والمتاخرين عن الدورين الاول والثاني  العلمي...
نتائج القبول المركزي للدور الثالث والمتاخرين عن الدورين الاول والثاني العلمي...
 
القبول المركزي علمي 2012-2013
القبول المركزي   علمي 2012-2013القبول المركزي   علمي 2012-2013
القبول المركزي علمي 2012-2013
 
automotive electric 1
automotive electric 1 automotive electric 1
automotive electric 1
 
automotive electric 2
automotive electric 2 automotive electric 2
automotive electric 2
 
educationl breifcase - car electric
educationl breifcase - car electric educationl breifcase - car electric
educationl breifcase - car electric
 
محركات احتراق داخلي معهد اعداد المدربين-مكائن ومعدات
محركات احتراق داخلي معهد اعداد المدربين-مكائن ومعداتمحركات احتراق داخلي معهد اعداد المدربين-مكائن ومعدات
محركات احتراق داخلي معهد اعداد المدربين-مكائن ومعدات
 
ابدان نظري
ابدان نظريابدان نظري
ابدان نظري
 
Mechanic second year
Mechanic second yearMechanic second year
Mechanic second year
 

Último

Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024The Digital Insurer
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024SynarionITSolutions
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesBoston Institute of Analytics
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 

Último (20)

Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 

ثرموداينمك

  • 1. ‫معهد اعداد المدربين التقنيين‬ ‫قسم المكائن والمعدات / السيارات‬ ‫الثرموداينمك‬ ‫الصف الول‬ ‫اعداد المدرِسة‬ ‫اوراد عبد الطيف‬ ‫السبوع الول : ‪Measuring units , examples force , pressure ; specific‬‬ ‫‪volume‬‬ ‫الهدف من الدرس : 1- ان يتعرف الطالب على وحدات القياس ، انواعها .‬ ‫2- ان يتعرف الطالب على معنى المفردات‬ ‫‪Force‬‬ ‫‪، Pressure ، ٍ pecific volume‬‬ ‫‪S‬‬ ‫‪Thermodynamic‬‬ ‫1‬
  • 2. Definition :- The field of science , which deal with the energies possessed by gases and vapours . It also includes the conversion of these energies in term of heat and mechanical work and their relationship with properties of system . Measuring units S.I units [International System of units] Physical Qantity Symbol Unit Symbol of unit ‫الكمية الفيزيائية‬ ‫الرمز‬ ‫الوحدة‬ ‫الوحدة‬ L meter M Length ‫الطول‬ T second S Time ‫الزمن‬ M kilogram Kg Mass ‫الكتلة‬ T kelvin K0 Temperature ‫درجة الحرارة‬ A Ampere A Electric current ‫تيار كهربائي‬ The secondary SI units F Newton N Force ‫القوة‬ P Pascal N Pressure ‫الضغط‬ Pa = m2 Bar Bar = 105 pa ρ kg Density ‫كثافة‬ m3 W Joule J = N.m Work ‫شغل‬ P watt W= J Power ‫قدرة‬ S British unit system ‫النظام البريطاني للوحدات‬ Physical Quantity Symbol Unit Symbol of unit Length L Inch In Time T Second S Mass M Pound T , bm Temperature T Fahrenheit F0 Force F Pound IbF Pressure P - IbF/in2 psi 2
  • 3. Density ρ - Ibm/in3 Work W - IbF. in Power horse power h.p Length : L 1m = 100 cm = 102 cm = 1000 mm = 103 mm 1 in = 2.54 cm 1 foot = 1 ft = 12 in Time : t : 1 hour = 60 minute = 3600 s mass : m : 1 pound = 0.45 kg 1 ton = 1000 kg = 103 kg Temperature : T : F0 = 1.8 0C + 32 Force : F : 1 MN = 106 N , 1 KN = 103 N N KN Pressure : 1 bar = 105 pa = 105 m2 =10 3 m2 Work : W 1 KJ = 1000 J = 103 J J = N.m Power : 1 h.p = 746 watt 1 KW = 1.34 h.p J KJ Watt = S , KW = S Definitions ‫تعاريف‬ 1- Force : It is an agent which consider as a measure of mechanical effect on the bodies . 2- Pressure : It,s the force per unit area Force F N N P = Area = A ‫الوحدات‬ m2 , mm 2 , KN =kpa m2 3
  • 4. 3- Density : ( ρ ) mass per unit volume ‫الكثافة‬ m ρ= V kg ‫الوحدات‬ ρ( m3 ) 4- Specific volume ( ) : the volume occupies by unit mass V V m3 V= m ‫الوحدات‬ kg 5- power : It is work done per unit time w Power = t Units watt , kw , h.p 6- Specific gravity ‫كثافة نوعية‬ ρ sub Sp . gr = ρ H 2O Questions 1- Define pressure , Specific volume . 2- Convert 20 kpa to at m . 3- Convert 50 ft to m . Thermodynamic terms state , process , equilibrium in : ‫السبوع الثاني‬ thermodynamic classification of system ‫الهدف من الدرس :1- ان يتعلم الطالب المصطلحات الثرموداينميكية‬ ‫2- ان يتعرف الطالب على انواع النظمة الثرموداينميكية‬ Thermodynamic terms ‫مصطلحات ثرموديناميكية‬ 1- State :- Determines the value of the thermodynamic properties for material at a certain time . 2- process :- It is that which changes the system from a certain state of 4
  • 5. thermodynamic equilibrium into anther state . 3- Thermodynamic equilibrium :- means that the thermodynamic properties of amatter is the same and constant and do not change at all areas in the system . thermodynamic systems ‫النظمة الثرموديناميكية‬ Thermodynamic system is defined as :- A definite area where some thermodynamic process is taking place . Any thermodynamic system has its "boundaries" and any thing outside the boundary is called "Surrounding" ‫غلف‬ Boundary : It is a surface that separtes between the system and its surrounding . ‫محيط‬ Surrounding : It is a region outside the boundary of the system. Working Substance : It is amatter that transfer the energy through the system as steam , g as …. etc . Classification of Systems ‫تصنيف النظمة‬ The thermodynamic system may be classified into the following three groups . 1- Closed System : In this system the working substance does not cross the boundaries of the system , but heat and work can cross it . 2- Open System : In this system the working substance crosses boundary of the system . Heat and work may also cross the boundary . 5
  • 6. 3- Isolated System : It is a system of fixed mass and no heat or work cross its boundary . wtuo yradnuob w ni 1 boundary `1 ni No heat piston 1 metsyS System 2 Q=0 boundary tuo N=0 Q ni Q Isolated System Isolate cylinder Closed Q Q in System Opentuosystem out Questions 1- Define : process , state . 2- write the classification of systems . : ‫السبوع الثالث‬ 1- Temperature , kind of temp. measuring and relations between them . 2- Pressure measurements and relation between them . ‫الهدف من الدرس : 1- ان يفهم الطالب معنى درجة الحرارة وانواع مقاييس درجة الحرارة‬ . ‫والعلةقة بينهما‬ . ‫2- ان يتعلم الطالب معنى الضغط ومقاييس الضغط والعلةقة بينهم‬ Temperature :- It is may be defined the degree of hot hess or the level of heat intensity of a body . Measurement of Temperature The temperature of a body is measured by a thermometer . There are two scales for measuring the temp. of a body . 1- Centigrade or Celsius Scale 6
  • 7. This scale is most used by engineers . The freezing point of water = 0 . The boiling point of water = 100 We use symbol (C) to describe temp. 2- Fahrenheit Scale The freezing point of water = 32 The boiling point of water = 212 We use the symbol (F0) to describe temp. * The relation between centigrade scale and Fahrenheit scale is given by F0 = 1.8 C0 + 32 Ex : 1) Convert 37C0 to F0 2) Convert 50 F0 to Celsius scale Absolute Temperature : The absolute centigrade scale is called degree "Kelvin" K0 = C0 + 273 Absolute Fahrenheit scale is called degree "Rankine" R0 = F0 + 460 Questions 1- (20 C0) to Kelvin scale . 2- Convert (400 K0) to Rankine scale . 3- Convert (170 F0) to Kelvin scale . 7
  • 8. Pressure ‫ضغط‬ Pressure :- is the force exerted by the system on unit area . Absolute Pressure :- is the guage pressure plus atmospheric pressure . Gauge pressure :- A gauge for measuring pressure records the pressure above atmospheric pressure . Vaccume Pressure :- It is the pressure of the system below atmospheric pressure . Equations ‫المعادلت‬ Pabs = Patm + Pg The positive guage pressure Patm = atmospheric pressure ‫الضغط الجوي‬ h = height of the liquid ‫ارتفاع السائل‬ Pg = Pabs – Patm 8
  • 9. >0 The negative guage pressure :- [ vaccume pressure ] ‫ضغط الفراغ‬ Vaccume Pressure = Patm - Pabs <0 Manometer and Barometer Manometer :- An instrument for measuring a pressure difference in terms of the height of a liquid . ∆= 2 P p − 1 p ∆ p = ρg ∆ h ρ = Density of liquid g = ∆h = Height of the liquid Barometer : An instrument for measuring the atmospheric pressure . 9
  • 10. Units of pressure ‫وحدات الضغط‬ 1 pat m = 76 cm . Hg = 760 mm Hg N 1 pat m = 10 5 m2 = 10 5 pa KN 1 pat m = 10 2 m2 = 10 2 Kpa 1 pat m = 1.01325 bar Examples 1- change a pressure about 1500 mm Hg to bar . Sol. 760 mm Hg = 1.0132 bar 1.0132 1500 mm Hg * 760 mm Hg = 1.999 bar 2- A compound gauge reads (65 cm Hg ) vaccume pressure . Compute absolute pressure 14 bar . Sol. 10
  • 11. 76 cm Hg = 1.0132 bar 1.0132 bar Pvacc = 65 cm Hg * 76 cm Hg = 0.867 bar Pvacc = 0.867 bar Pvacc = Pat m - Pabs 0.867 = 1.0132 – Pabs Pab = 1.0132 – 0.867 = 0.147 bar Home work 1- Convert pressure 5 Kpa to bar KN 2- Convert pressure 76 cm Hg to m2 3- Convert pressure 50 pa to mmHg Example (3) A manometer is used to measure the pressure in a tank . The fluid is an 0.1 with a specific gravity of (0.87) and the liquid height = 45.2 cm . If ∆h kg the barometric pressure = 98.4 kpa , the density of water = 1000 m3 the m gravity = 9.78 s2 , Determine the absolute pressure with in the tank in kpa , at m . Solution ρ oil Sp. Gr. ρ water kg kg ρ = 0.87 * 1000 oil = 870 m3 m3 11
  • 12. p1abs = p 2 +∆p p1abs = p 2 + ρ ∆ g h kg m 45.2 cm ∆ = ρ ∆ = 870 p g h * 9.8 2 * m3 s 100 cm 1m kg 1N N ∆ = 3853.752 p * = 3853.752 = 3853.75 m.s 2 kgm m2 s2 1 kpa ∆ = p 3853.752 * = .853 3 1000 pa P1 = 98.4 kpa + 3.853 kpa P1 = 102.253 kpa 1 atm P1 = 102.253 kpa * 10 2 kpa = 1.022 atm Note kg .m 1 N = s2 1 kpa = 1000 pa 1 atm = 102 kpa Questions KN 1- Convert 500 cm Hg to m2 2- A barometer reads (735 mm Hg) at room temp. Determine :- the atmospheric pressure 14 bar millibar , kpa , kg ρ Hg = 13600 m3 12
  • 13. 3- Convert 2 kpa to mm Hg Work and kinds of work energy and forms of energy : ‫السبوع الرابع‬ . ‫الهدف من الدرس : 1- ان يتعرف الطالب على معنى الشغل وانواعه‬ . ‫2- ان يتعرف الطالب على انواع الطاةقة واشكالها‬ Work : Its may be defined as the product of a force with its corresponding displacement x2 W = ∫F . x1 dx ------- (1) J J = N.m ‫وحدات الشغل‬ Work is one of energies types , that we can transform it to anther types of energy such as (transform of mechanical work to electrical energy , kinetic energy , heat energy W = Force * displacement W=F* ∆x 13
  • 14. ∆x F body Notes x1 x2 * If the work done by a thermodynamic system we say that is a positive work +W or W > 0 Wout = + w * If the work done on a thermodynamic system we say that is a negative w or (-w) W<0 ex [compress or , generator] Work of non of closed system V2v By taking a small element with length of p and width of dv Area of element = dw = p . dv 2 2 W = ∫dw 1 = ∫ p. 1 dv ‫الشغل المنجز يساوي المساحة تحت المنحني‬ ‫ولحالة حركة المكبس خلل الحجم التفاضلي للشريحة فال‬ dv = . dL A Area = area of piston dL = the dis placement traveled by a piston 14
  • 15. 2 W = ∫p . 1 A dL F =p.A 2 W = ∫F 1 dL F = exerted force P = exerted pressure ‫ فان‬L ‫ملحظة ليجاد الشغل المنجز خلل شوط ةقدره طوله‬ W=F.L L = strok length (m) Flow work ‫شغل النسياب‬ (open system) Flow w on k = F . L WF = F . L WF = P . A . L WF = P . V ‫جول‬ ∆ F W = 2 V2 P −1 V1 P The flow work (flow energy) per unit mass [specific flow work] WF = P . V ÷ m WF =P . V WF = flow work / unit mass J/kg 3 V = specific volume m / kg ∆ F W = F2 W −WF 1 15
  • 16. ∆F W = 2 . V2 P − 1 V1 P J / kg Types of Energies ‫انواع الطاقات‬ 1- Potential energy (P.E) The energy that system possesses by virtue of its position relative to the surface of the earth . P.E=mgZ m = mass Z = elevation , m ∆E = P.E 2 ) 2 P. ( − P.E ) 1 ( ∆E = P. mg ∆ = Z mg ( Z 2 − 1) Z 2- Kinetic energy K.E The energy that a system possesses owing to its motion 1 K .E = 2 mV 2 V = velocity m/sec V12 1 ∆ .E = K 2 m (V22 − V12 ) V22 V2 = Final velocity V1 = initial velocity ∆ .E = . E 2 K K − . E1 K 1 2 3- Internal energy It is the energy stored in the substance total internal energy is given U = m Cv T Questions 16
  • 17. kg 1- A gas has a mass of (2 kg) and density = 21.6 m3 is transported by pipe of height (30.25 m) from earth , the temp = 138 C0 the velocity . KJ Flow = 6m / sec and Cv = 0.674 kg .K 0 Compute : 1- potertial energy 2- kinetic energy 3- Internal energy 4- total energy The First Law of Thermodynamic: ‫السبوع الخامس‬ . ‫الهدف من الدرس : 1- ان يتعرف الطالب على القانون الول للثرموداينميك واهميته‬ The First Law of Thermodynamics The concept of energy and hypothes is that it can be neither created nor destroyed this is principle of the conservation of energy . The first law of thermodynamics is merly one statement of this general principle with particular of this general principle with particular reference to heat energy and work . When a system under goes at hermodynamics cycle then the net heat supplied to the system from its surrounding is equal to the net work done by the system on its surroundings . ∑ dQ =∑dw ∑ : the sum for a complete cycle . 17
  • 18. Enthalpy : ‫السبوع السادس‬ . ‫الهدف من الدرس : 1- يتعرف الطالب على معنى النثالبي واهميتها‬ Enthalpy (H) ‫المحتوى الحراري‬ Enthalpy is an extensive property is defined by the relation . ‫خاصيته تعتمد على حجم النظام‬ H=U+P.V (J , kJ) Specific enthalpy (h) h =+ . u P V V = specific volume m3 / kg u = specific internal energy J/kg p = pressure Heat energy (Q) ‫الطاقة الحرارية‬ It is the type of energy that transfer due to the different in temp . between the system and its surrounding . Q : heat energy (J , kJ) q : specific heat energy J/kg kg/kg Heat Sign ‫اشارة الحرارة‬ 1- heat added input use ‫عكس اشارة الشغل‬ Q + (+)Q 18 (-) Q
  • 19. 2- heat rejected or out put us (-Q) Net work (Wnet) & Net heat (Qnet) Wnet = W0 – Win W0 = out put work Win = input work Qnet = Qin – Qout Qin = input heat Qo = output heat 19
  • 20. Applying the first law on closed systems : ‫السبوع السابع‬ ‫الهدف من الدرس : 1- ان يتعريف الطالب على تطبيق القانون الول للثرموداينميك على‬ . ‫النظمة المغلقة‬ Energy equation ‫معادلة الطاقة‬ By applying the first law of thermodynamic which state that the energy can neither created nor destroid but transfer from one form to another we obtain . . ‫الطاقة ل تفتى ول تستحدث وانما تتحول من شكل الى آخر‬ Q + U1 + P1V1 + K. E1 + P . E1 = W + U2 + P2V2 + K . E2 + PE2 H = U1 + P1V1 Q–W= ∆ H + K .E ∆ + P.E ∆ equation of energy ‫معادلة الطاةقة‬ We can written thia equation 1 Q – W = m [(h2 – h1) + 2 (C 2 −C1 ) + g ( Z 2 −Z 1 ) 2 2 C1 W PV 1 1 u, 1 Entry P1 u1 V1 C1 N1 Q Exit Z2 20
  • 21. 1- Non – Flow energy equation (N. F. E. E) Closed system For closed system PV , K.E , P.E = 0 The energy equation become :- Q − = W ∆U 2- Steady state flow energy equation (S. F. E. E) (open system) For open system and steady state min =m out ‫الكتلة ل تتغير مع الزمن‬ By dividing the equation of energy by time we obtain 1 Q0 −W 0 = m 0 [( h2 −h1 ) + (C 2 −C1 ) + ( Z 2 − 1 )] 2 g Z 2 ‫معادلة الطاةقة للجريان المستقر‬ S. F. E E kg kg kg m0 = mass flow rate ( S , min , hr ) J Q0 = rate of heat transfer ( S = watt , kw) W0 = rate of heat transfer (w , kw) 21
  • 22. Examples Closed system Ex. 1 The change in the internal energy of closed system increase to (120 KJ) while (150 KJ) of work , that go out of the system , Determine the amount of heat transfer a cross system boundaries ? Is the heat added or rejected ? Solution From N. F. E.E Q1− − 1− = u 2 W 2 ∆ Q−150 =120 Q = 270 KJ The sign (+270) therefore the heat added to the system Note ‫ملحظة‬ If the change in the internal energy increase we use (+ ∆u ) If the change in the internal energy decrease we use ( − u ∆ ) 22
  • 23. Ex . 2 A tank containing a fluid is stirred by a paddle wheel the work input to the paddle wheel is (5090 KJ) . The heat from the tank is (1500 KJ) . Determine the change in the internal energy . Sol. From N. F.E.E Q −= W ∆ u Q = - 1500 KJ (The heat out) W = - 5090 KJ (the work input to the system) - 1500 – (-5090) = ∆U ∆ = 1500 +5090 U − ∆ = 3590 U KJ Questions 1- A mass of oxygen is compressed with out friction from initial state volume = 0.14 m3 pressure = 1.5 bar ; the temp = 15 C0 to final state the volume = 0.06 m3 and the pressure = 1.5 bar at this process the oxygen losses quantity of heat = 0.6 KJ to the surrounding Cv = 0.649 KJ/Kg.k R = 0.25 KJ/Kg.k0 . Find : 1) the change of internal energy . 2) the final temp. 23
  • 24. Applying the first Law on opened systems , : ‫السبوع الثامن والتاسع‬ examples ‫الهدف من الدرس : 1- ان يتعلم الطالب كيفية تطبيق القانون الول للثرموداينميك على‬ . ‫النظمة المفتوحة‬ Application of energy equation on open system :- S. F. E. E 1) The Boiler ‫المرجل‬ The boiler is a heat exchange which convert the liquid water to steam at constant pressure . P = C steam 1 Q −W =m [( h2 − 1 ) + (C 2 − 1 ) + ( Z 2 −Z 1 ) h 2 C2 g 2 Q = m (h2 – h1) 1 h2 > h1 heat added water Q (+) ‫حرارة مضافة‬ 2) The Condenser ‫المكثف‬ It is a heat exchanger work on condenser steam of water and converted it into a liquid by cooling the steam under constant pressure . 1 1 Q −W =m [( h2 − 1 ) + (C 2 − 1 ) + ( Z 2 −Z 1 ) h 2 C2 g 2 Q = m (h2 – h1) 2 ter wa h1 > h2 Q (-1) rejected (heat out) ‫حرارة مسحوبة‬ Ex. 1 24
  • 25. A boiler is generate steam with rate of 8 kg/s the enthalpy of liquid water KJ KJ is 271 kg and the enthalpy of steam is 3150 kg . For steady state conditions and by neglecting the change in K.E and P.E . Determine the rate of heat added to the steam in Boiler . Solution Q = m (h2 – h1) KJ h1 = 271 KJ/kg h2 = 3150 kg m = 8 kg/s Q = m (h2 – h1) KJ = 8 (3150 – 271) = 23032 S = 23032 KW ‫ ( لنها حرارة مضافة‬T ) ‫الحرارة‬ 3- The Turbine It is a mechanical device used to convert the kinetic energy of fluid into mechanical work input T1 > T2 h1 > h2 P1 > P 2 1 Q −W =m [( h2 − 1 ) + (C 2 − 1 ) + ( Z 2 −Z 1 ) h 2 C2 g 2 2 - W = m (h2 – h1) output W = (+) work output (W = m (h1 – h2 4- The Compressor 25
  • 26. It is a mechanical device used to increase fluid pressure by using on external mechanical work . h1 > h2 T2 > T1 2 P2 > P 1 1 Q −W =m [( h2 − 1 ) + (C 2 − 1 ) + ( Z 2 −Z 1 ) h 2 C2 g 2 1 - W = m (h2 – h1) (W = m (h1 – h2 W = (-) work input Ex. Air enters a compressor at enthalpy (5000 J/kg) and leave with enthalpy (250 KJ / kg) the mass flow rate = 0.25 kg/s , Determine the work done . Sol. 5000 KJ h1 = 5000 J / kg = 1000 kg KJ h2 = 250 kg m = 0.25 kg / s w = m (h1 – h2) = - 0.25 (5 – 250) w = 0.25 (-245) = - 61.25 KW ‫الشارة سالبة لنه شغل داخل الى النظام‬ Specific heat kinds of specific heat and relations between them :‫السبوع العاشر‬ ‫الهدف من الدرس : 1- ان يتعرف الطالب على الحرارة النوعية وانواعها والعلةقة فيما بينها‬ 26
  • 27. Specific Heat ‫الحرارة النوعية‬ Is the a mount of heat required to rise the temperature of a unit mass of substance one degree . Types of Specific heat 1- Specific heat at constant pressure ‫الحرارة النوعية عند ثبوت الضغط‬ ∆h Cp = ∆T * Cp = Specific heat at constant pressure. KJ J Unit [ kg.k 0 or kg . k 0 ] = change in enthalpy ‫تغير النثالبي‬ ∆ h = h2 −h1 KJ J Unit [ kg or kg ] = change in temp. ‫تغير في درجة الحرارة‬ ∆ =2 − T T T1 Unit [ k0 ] Q1-2 = m ∆h * Q1-2 = m cp ∆T * m = mass (kg) ‫كتلة‬ 27
  • 28. T2 = Final temp. (k0) ‫درجة حرارة ثنائية‬ T1 = initial temp. (k0) ‫درجة حرارة ابتدائية‬ Q = heat ‫حرارة‬ (KJ , J) 2- Specific heat at constant volume ‫الحرارة النوعية بثبوت الحجم‬ V = constant ‫حجم ثابت‬ closed system ‫نظام مغلق‬ ∆u Cv = ∆T = Specific heat at constant volume ‫الحرارة النوعية بثبوت الحجم‬ Cv KJ J Unit ( kg .k 0 ) or ( kg . k ) = change in internal energy ‫التغير في الطاةقة الداخلية‬ ∆u ∆ = u 2 −1 u u KJ J Unit [ kg or kg ] ∆T = change in temp. (k0) = T2 - T1 For m = 1 kg ∆= v . u C ∆ T * ‫نحصل على‬ ‫وبتعويض‬ ∆u Q1− = C v 2 m ∆ T Q1− = C v m (T2 −1 ) T * 2 28
  • 29. The relation between ( C p & Cv ) Cp γ = ‫بدون وحدات‬ γ Cv Cama (‫ -: )كاما‬Is the adiabatic expone which represent the ratio γ between specific heat at constant pressure and specific heat at constant volume . γ >1 Cp > Cv Examples 1- compute the constant pressure specific heat of steam if the change in enthalpy is (104.2) KJ and the change in temp. is (50 KJ) . Solution ∆h 104.2 Cp = ∆T = 50 = 2.084 KJ / kg . k0 2- Example (2) Compute the change of enthalpy as (1 kg) of a gasis heated from 300 k0 KJ to 1500 k0 γ = 1 .4 , C v = 0.718 kg.k 0 . Sol. 29
  • 30. ∆h Cp = ⇒ ∆ =C p ∆ h T ∆T Cp γ = ⇒ C p = γ * Cv Cv KJ C p = .4 * 0.718 = 1.005 1 kg .k 0 KJ ∆ = 1.005 * [1500 − h 300] =1206.240 kg 3- Example (3) 1- Compute the change of internal energy as (219) of a gas is heated . KJ 2- Compute the amount of heat added . γ , C =1.0714 kg = 1.39 p Sol. Cp 1.0714 KJ 1- Cv = γ = 1.39 =0.7708 kg .k 0 ∆ u =v C ∆ 0.7708 *[ T = 1000 − 280] KJ ∆ = u 554.976 kg Q =m C p ∆ T Q = 2 * 554.976 = 1109.952 KJ The relation between (R and Cp & Cv) h = u + pv ∆∆ p ∆ h = +v u (1) We know that ∆= p h C ∆ T (2) ∆= v ∆ u C T (3) 30
  • 31. And for ideal gas ⇒ p.v = m . R. T For m = 1 kg p.v = R . T p ∆ v = ∆ R T (4) Sub . equations (2) , (3) , (4) in eq. (1) (1) ‫عوض المعادلت 2 ، 3 ، 4 في معادلة‬ Cp ∆ = v ∆= ∆ T C T R T Cp = v C +R R =p C −v C Home work R =p C −v C Prove that : - The relation between R and ( γ, C p , Cv ) R= Cp - Cv (1) Cp Cp = v . C γ γ= Cv ⇒ (2) ‫بتعويض معادلة )2( في معادلة )1( نحصل على‬ R= v . C γ− C v R = v C (γ 1) − 31
  • 32. Cv = R γ −1 (3) ‫بتعويض معادلة )3( في معادلة )2( نحصل على‬ Cp = v . C γ R γ. R Cp = .γ = γ−1 γ −1 γR Cp = γ−1 Home work R Prove that 1) Cv = γ −1 γR 2) Cp = γ −1 Gas Constant , the universal gas constant and : ‫السبوع الحادي عشر‬ specific , Examples ‫الهدف من الدرس : 1- ان يفهم الطالب معنى ثابت الغاز وانواعه‬ The general equation of Ideal Gas ‫المعادلة العامة للغاز المثالي‬ P .V T =C = constant ----- (1) ‫( نحصل على‬m) ‫بقسمة طرفي المعادلة )1( على الكتلة‬ P .V C C m .T = m Let R= m 32
  • 33. P .V m .T ≠ R ----- (2) constant gas R = characteristic ‫ثابت الغاز النحاس‬ ‫المعادلة العامة للغاز المثالي‬ P. V =m . R . T ----- (3) Units N P = absolute pressure m2 V = volume (m3) T = temp. (k0) m = mass (kg) KJ J R = kg .k 0 , kg .k R0 = R * M R0 = universal gas constant ‫ثابت الغاز العام‬ M = Molecular weight (k mole) ‫)الوزن الجزيئي )كيلو مول‬ KJ R0 = 8.314 k mole . k 0 Example :- A tank has a volume of (0.5 in3) and contains (10 kg) of an ideal gas having a molecular weight = 24 , the temp = 25 C0 compute the pressure Solution R0 = R . M 33
  • 34. KJ P 8.3144 k mole . k 0 KJ R = = = = 0.346 M 24 kg kg.k 0 k mole P . V =m .R . T KJ P * 0.5 m 3 = 10 kg * 0.346 * ( 25 +273) k 0 kg . k 0 10 * 0.346 * 298 P = 0.5 =2066 kpa Ex . (5) :- one kg of a perfect gas accupies a volume of (0.85 m3) at (15C0) and at a constant pressure of (1 bar) . The gas is first heated at a constant volume and then at a constant pressure . Compute : 1) the specific heat at constant volume (Cv). 2) the specific heat at constant pressure (Cp) γ = 4 1. Solution P1 V1 = m . R . T1 KN 1*10 9 m2 * 0.85 m 3 = 1 (kg) * R * (15 +273) k0 1 * 10 5 * 0.85 R = 1 * 288 KJ R = 0.295 kg . k 0 R 0.295 Cv = = γ−1 1.4 −1 34
  • 35. KJ 1) C v = 0.788 kg . k 0 Cp γ ≠ Cv Cp = γ. Cv C p = 4 (0.788) 1. KJ C p = 1.033 kg . k 0 Questions What is the mass of air contained a room (6m x 10m x 4m) If the pressure is (100 kpa) and the temp. is 25 C0 , Assume air to be an ideal gas KJ R = .287 0 kg . k Ideal gas, boyle,s law, chal,s law , examples: ‫السبوع الثاني عشر والثالث عشر‬ ‫الهدف من الدرس : 1- ان يتعرف الطالب على مسخن الغاز المثالي وةقانون بويل وشارل‬ . ‫للغازات المثالية‬ Ideal gas ‫الغاز المثالي‬ The ideal gas is defined as the state of substance that follows well – know Bolyle,s and charle,s laws . ‫الغاز المثالي : هو حالة المادة التي تخضع لقانوني بويل وشارل‬ Laws of Ideal gas The physical properties of a gas are controlled by the following variables :- • pressure (P) exerted by the gas . • Volume ( ) occupied by the gas . υ • Temperature (T) of the gas . The behaviour of perfect gas is governed by the following laws :- 1) Boyle,s Law 35
  • 36. The absolute pressure of a given mass of ideal gas varies inversely of its volume when the temp. remain constant ‫الضغط المطلق لكتلة معينة من الغاز المثالي يتناسب عكسيا مع حجم الغاز عند ثبوت درجة‬ . ‫الحرارة‬ 1 Pα V T=C ‫ثابت‬ PV = C P1 V1 = P2 V2 = C T=C Unit of pressure (Pa) (pressure) (1) (P) PV = C (2) V) volume( Charle,s Law The volume of a given mass of ideal gas varies directly with the temp. when the absolute pressure remain constant . V αT V T = C P = constant ‫ثابت‬ P V1 V T1 = 2 =C T2 P=C P1 = P2 Units (1) (2) 36 V
  • 37. V (m 3 ) T (k 0 ) P ( pa ) V1 = initial volume ‫الحجم البتدائي‬ V2 = final volume ‫الحجم الثاني‬ Gay Lussac Law ‫قانون غاي لوساك‬ The absolute pressure of a given mass of ideal gas is proportional directly with the temp. at constant volume . . ‫يتناسب الضغط المطلق لكتلة غاز مثالي تناسبا طرديا مع درجة الحرارة عند ثبوت الحجم‬ ً P αT P T =C ‫ثابت‬ P P = 2 =C ‫ثابت‬ 1 T1 T2 V = constant General Process It is transition of a substance from state (1) [ P1 , V1 , T1] to state (2) [P2 , V2 , T2] a cross a certain path . . ‫وهي تغير المادة من الحالة )1( الولية الى الحالة )2( النهائية باتباع مسار معين‬ P .V= constant =C T 37
  • 38. N P = pressure ( m2 ) V = volume m3 T = temperature (k0) ‫ولكثر من حالة‬ 2 ← 1 P V1 P V 1 = 2 2 T1 T2 Examples (1) An air compress or is compress (2.8 m3) of air from initial pressure of (1 bar) to final , pressure of (14 bar) calculate the final volume of air if temp. is constant . Solution :- P1 V1 = P2 V2 ‫قانون بويل‬ T=C 1 bar * 2.8 m3 = 14 bar * V2 1 * 2.8 V2 = = m3 14 Examples (2) (0.2 m3) of a gas at (50 C0) the gas is heated at a constant pressure until its volume reached (0.4 m3) compute the final temp. Solution :- V1 V = 2 =C T1 T2 0.2 0.4 ≠ 50 + 273 T2 38
  • 39. 0.2 T2 = 0.4 [ 50 + 273] 0.4 (323) T2 = = 646 k 0 0.2 Examples (3) (2 kg) of a gas at initial pressure of (1.4 bar) and temp. = 40 C0 , R = J 188.34 kg .k 0 , Determine (a) the volume of the gas (b) If the gas is heated at constant pressure to have a volume of (1.5 m3) . Find the final temp. Solution P1 V1 = m R T1 N J 1.4 * 10 5 * V1 = 2 kg * 188.34 * ( 40 +273) k 0 m2 kg .k 0 2 * 188.34 V1 = 1.4 * 10 5 V1 = .842 0 m3 b) P = C ‫ثابت‬ V1 V = 2 T1 T2 0.842 1.5 = 40 +273 T2 T2 = 557.6 k0 39
  • 40. Thermodynamic Processes and applications : ‫السبوع الرابع عشر‬ . ‫الهدف من الدرس : 1- ان يتعرف الطالب على الجراءات الثرموداينمكية وتطبيقاتها‬ Some Processes for closed systems 1- Constant pressure process (Isobaric) P Q = W +∆ u 2 1 2 ∫ W = p dv = p (V2 − 1 ) =m R (T2 − 1 ) P2 = 1 1 V T P WD Q1− =1− = u1− 2 W 2 ∆ 2 V Q1− = C 2 m p [T2 −1 ] T V1 V2 ∆ u = C v [T2 − ] m T1 Q1− = [V 2 −] + C v [T2 −] 2 p V1 m T1 P V1 PV = 2 2 ‫المعادلة العامة‬ 1 P = 2 1 P T1 T2 V1 V2 = T1 T2 40
  • 41. Constant volume process (Isometric) P 2 Q1− = 1− = u1− 2 W 2 ∆ 2 P2 W1− =0 1 2 P1 Q1− = 2 u2 − = C v [T2 − ] u1 m T1 V V1 = V2 ‫ليجاد العلةقة بين درجة الحرارة والضغط‬ P V1 PV 1 = 2 2 V1 = 2 V T1 T2 P P 1 = 2 T1 T2 3- Constant temp. process [Isothermal] T=C V2 W1−2 = A = ∫ p dv V1 Q1− − 12 2 W = u ∆ ∆ m u = CV [T2 − ] = T1 0 Q12 = 12 W 41
  • 42. V2 W12 = P V1 ln ‫باجراء التكامل على المعادلة‬ 1 V1 ‫ليجاد العلةقة بين الضغط والحجم‬ P V1 P V 1 = 2 2 T1 T2 T1 = 2 T P V1 = V 2 1 P2 Ex. 1 The pressure of a gas = 1.5 bar at 18 C0 temp. compute 1- the volume of (1 kg) of the gas . If the gas is heated at constant pressure until the volume become [1m3] Compute : a- the a mount of added heat . b- the work done . KJ Cp = 1.005 KJ/kg.k Cv = 0.718 kg .k Solution R = Cp - Cv KJ R = 1.005 – 0.718 = 0.278 kg .k P1 V1 = m R T1 mRT1 1 * 0.278 * (18 + 273) V1 = = P1 10 2 *1.5 V1 = 0.556 m3 42
  • 43. Q12 = m Cp [T2 – T1] V1 V = 2 T1 T2 0.556 1 = 291 T2 T2 = 526.2 k0 Q = 1 * 1.005 * [526.2 – 291] = 243.4 KJ W = P [V2 – V1] = 1.5 x 102 [1- 0.556] = 66.48 KJ Adiabatic Process P V γ=C Cp γ = CV Q1− = 2 0 Q1− − 2 W = u1− ∆ 2 − 1− = u1− W 2 ∆ 2 − 1− = W 2 m C v (T2 −1) T V2 W1−2 = ∫ p dv V1 P V1γ = P 2 V2 1 γ P V1 −P2 V2 m R (T1 − 2 ) T W = 1 = γ− 1 γ− 1 43
  • 44. Ex. 1 : Given [ the mass of the gas = 1 kg , the pressure = 1.5 bar , KJ KJ the temp = 18C0 ] Cv = 0.718 kg .k 0 , Cp= 1.005 kg .k 0 compute : 1- the volume of the gas , the gas is heated at constant pressure until the volume become (1m3). 2- the added heat . 3- the work done . Solution C p −v = C R KJ 1.005 – 0.718 = 0.278 kg .k 0 P1 V1 = m R T1 KJ 1.5 * 102 * V1 = 1 kg * 0.278 kg .k 0 * [18 +273] . 1* 0.278 * 291 V1 = 1.5 * 100 = 0.556 m3 Q = m Cp [T2 – T1] T2 ‫ليجاد‬ V1 V = 2 T1 T2 0.556 1 = 291 T2 291 T2 = =526.2 k 0 0.556 Q = 1 * 1.005 (526.2 – 291) Q = 243.4 KJ W = P [ V2 – V1] W = 1.5 * 102 [1 - 0.566] W = 66.48 KJ Ex . 2 : 44
  • 45. Given [ the pressure of air = 1.013 bar , the volume = 0.827 m3 and the temp. = 25 C0 , the air is compressed with constant temp. until the pressure becomes = 13.78 bar . Compute :- the work done to compress the air . Solution V2 W12 =P V1 ln 1 V1 ----- (1) ‫ مجهولة‬V2 ‫ل يمكن ايجاد الشغل لن‬ P1 V1 = P2 V2 T=C V2 ‫ليجاد‬ ⇐ 1.013 * 0.827 = 13.78 V2 1.013 * 0.827 V2 = 13.78 = 0.060 m3 (1) ‫ في معادلة‬V2 ‫عوض عن ةقيمة‬ 0.060 W12 = .013 * 10 2 * 0.827 1 ln 0.827 W12 =83.775 ln 0.073 W12 = .775 83 ( −61 2. ) W12 =−218.653 KJ . ‫الشارة سالبة تدل على ان الشغل داخل الى النظام‬ 45
  • 46. Ex . 3 : Given [ the volume of gas = 0.12 m3 , the temp. = 20 C0 and the pressure = 1.013 bar is compressed adibatically until the volume become = KJ KJ 0.024 m3 Cv = 0.718 kg .k 0 , Cp = 1.005 kg.k 0 . Compute : 1) the mass of the gas . 2) the final pressure and temp. 3) the work done . Solution KJ R = Cp – Cv = 1.005 – 0.718 = 0.287 kg .k 0 P1 V1 = m R T1 KJ 1.013 * 102 * 0.12 m3 = m * 0.287 kg .k 0 * [20 + 273] 1.013 * 10 2 * 0.12 1) m = 0.287 * 293 =0.145 kg Cp 1.005 γ = = = 1.4 CV 0.718 P V1γ =P2 V2γ 1 1.013 (0.12)1.4 = P2 (0.024)1.4  0.12  2) P2 = 1.013    0.024  = 9.64 bar ‫الضغط النهائي‬ P V1 P V = 2 2 ] ‫ ] النهائية‬T2 ‫ليجاد‬ 1 T1 T2 1.013 * 0.12 9.64 * 0.024 = 293 T2 293 * 9.64 * 0.024 T2 = 1.013 * 0.12 =557.7 k0 3) 46
  • 47. ‫ليجاد الشغل المنجز‬ ‫2‪P V1 − P2 V‬‬ ‫= 21‪W‬‬ ‫1‬ ‫−‪γ‬‬ ‫1‬ ‫420.0 * 2 01* 46. − 21.0 * 2 01 * 310.1‬ ‫9‬ ‫= 21‪W‬‬ ‫− 4.1‬‫1‬ ‫‪W12 = - 85.282 KJ‬‬ ‫السبوع الخامس عشر : ‪Reversible and irreversibility‬‬ ‫الهدف من الدرس : 1- ان يتعرف الطالب على منحني النعكاسية او الرجاعية واللانعكاسية‬ ‫74‬
  • 48. . ‫او اللارجاعية‬ Reversible and Irreversible Process : ‫الجراء الرجاعي والجراء اللارجاعي‬ : ‫الجراء النعكاسي والجراء اللانعكاسي‬ Reversible process : ‫الجراء النعكاسي‬ The process in which the system and surrounding can be restored to the initial state without producing any change in the thermodynamic properties :- Conditions of reversible process 1- All the initial and final state of system should be in equilibrium with the each other . 2- The process should occur in very small Reversible processes ‫الجراءات الرجاعية‬ 1- Friction relative motion ‫حركة نسبية بدون احتكاك‬ 48
  • 49. 2- Extension of spring ‫تمدد النوابض‬ 3- Slow frictionless adiabatic expansion ‫تمدد اديباتي بدون احتكاك‬ Irreversible process ‫الجراء اللانعكاسي‬ It is state that both the system and surrounding cannot return to original state . : ‫السبوع السادس عشر والسابع عشر‬ The second law of thermodynamic Results of the second law of thermodynamic The second law of thermodynamic 49
  • 50. The first law of thermodynamic indicates that the net heat supplied in a cycle is equal to the net work done the gross heat supplied must be greater than the net work done some of heat must be rejected by the system . Kelven blank definition :- It is impossible for heat engine to produce net work in a complete cycle if it exchange heat only with bodies at a single fixed temperature . The second law has been stated in several ways . (1) The principle of Thomson (Lord Kelvin) states : It is impossible by a cyclic process to take heat from a reservoir and to convert it into work without simultaneously transferring heat from a hot to a cold reservoir . This statement of the second law is related to equilibrium , i.e. work can be obtained from a system only when the system is not already at equilibrium . If a system is at equilibrium , no spontaneous process occurs and no work is produced . Evidently , Kelvin's principle indicates that the spontaneous process is the heat flow from a higher to a lower temperature , and that only from such a spontaneous process can work be obtained . (2) The principle of Clausius States : It is impossible to devise an engine which , working in a cycle , shall produce no effect other than the transfer of heat from a colder to a hotter body . A good example of this principle is the operation of a refrigerator . 50
  • 51. (3) The principle of Planck states : It is impossible to construct an engine which , working in a complete cycle , will produce no effect other than raising of a weight and the cooling of a heat reservoir . (4) The Kelvin – Planck Principle : May be obtained by combining the principles of Kelvin and of Planck into one equivalent statement as the Kelvin – Planck statement of the second law . It states : No process is possible whose sole result is the absorption of heat from a reservoir and the conversion this heat into work . Heat engine Source Q1 Heat engine W Heat engine , heat pump : ‫السبوع الثامن عشر‬ Q2 . ‫الهدف من الدرس : ان يتعرف الطالب على الماكنة الحرارية والمضخة الحرارية‬ Sin k Heat engine ‫الماكنة الحرارية‬ T hot A heat engine is a system operating in a complete cycle and Qin developing net work from supply heat . W0 The second law implies that a source 51 Qout T cold
  • 52. of heat supply and sink for the rejection of heat are both necessary since some heat must be always be rejected by the system . By first law ∑ ∑ Q= W Net heat supplied = network done Q1 – Q2 = W Q1 > W the second law of thermodynamic The thermal efficiency of heat engine ‫الكفاءة الحرارية للماكنة الحرارية‬ W η= Q1 Q1 − Q2 Q2 η= =1− Q1 Q1 Boiler One good example in practice of heat engine is a simple steam cycle in this cycle heat is supplied in boiler work is developed in yurbine heat is condenser rejected in a condenser and small amount of work is required for the pump . 52 pump
  • 53. Simple steam cycle Heat Pump ‫المضخة الحرارية‬ The heat pump is reversed heat engine in the heat pump (or refrigerator)cycle an amount of heat Q2 is supplied from the cold reservoir and an amount of heat Q1 is rejected to the hot reservoir and there must be a work done on the cycle W T hot Qout Win Qin T cold Heat pump (refrigerator) Q1 = Q2 = W 53
  • 54. There for W > 0 , the heat pump requires an input energy in order to transfer heat from the cold chamber and reject it at higher temp . Expansion valve ‫صمام التمدد‬ Heat pump system Entropy , changes on closed systems and temp - : ‫السبوع التاسع عشر‬ Entropy plan . ‫الهدف من الدرس : 1- ان يتعلم الطالب معنى النتروبي وتغير النتروبي بالنظمة المغلقة‬ . ‫2- يتعرف الطالب على العلةقة بين النتروبي ودرجة الحرارة‬ Entropy It is define as thermodynamic property that express the amount of storage energy in the system also represent measure of reversible and Irreversible process . 54
  • 55. Temp. – Entropy Plane For the reversible process the area under (T-S) plane = the heat (1) dQ = T ds --------- (1) 2 Q = ∫T 1 ds From equation (1) dQ ds = T J / k0 1- The entropy at constant volume T2 P2 ∆ = m C v ln S = m C v ln T1 P1 2- The entropy at constant pressure T2 V2 ∆ = m C p ln S = m C p ln T1 V1 Cp > v C 55
  • 56. s at v= c > sp= ∆ c Ex : 1 Comput the entropy for reversible process at constant pressure the temp KJ vary from 120 C0 to 270 C0 C = 2. 1p kg .k Solution T2 ∆ = m C p ln s T1 KJ 270 +273 ∆ = * 2.1 s 1 ln kg .k 120 + 273 ∆ s =1 2. ln 1.38 KJ ∆ = 2.1* 0.322 = 0.676 s k0 Carnot Cycle : ‫السبوع العشرون‬ ‫الهدف من الدرس : 1- ان يتعرف الطالب على دورة كارنوت مبدأ عملها واهميتها مع‬ . ‫المخطط والكفاءة‬ Carnot Cycle A Carnot gas cycle operating in a given temperature range is shown in the T-s diagram in Fig. 1(a) . One way to carry out the processes of this cycle is through the use of steady – state , steady – flow devices as shown in Fig. 1(b) . The isentropic expansion process 2-3 and the isentropic compression process 4-1 can be simulated quite well by a well – designed turbine and compressor respectively , but the isothermal expansion process 1-2 and the isothermal compression process 3-4 are most difficult to 56
  • 57. achieve . Because of these difficulties , a steady – flow Carnot gas cycle is not practical . The Carnot gas cycle could also be achieved in a cylinder – piston apparatus (a reciprocating engine) as shown in Fig. 4.2 (b) . The Carnot cycle on the p-v diagram is as shown in Fig 4.2 (a) , in which processes 1-2 and 3-4 are isothermal while processes 2-3 and 4-1 are isentropic . We know that the Carnot cycle efficiency is given by the expression . TL T T η =1 − th = 1− 4 = 1 − 3 TH T1 T2 Fig. 1 . Steady flow Carnot engine 57
  • 58. Fig. 2. Reciprocating Carnot engine 58
  • 59. 59
  • 60. Fig. 3. Carnot cycle on P-v and T-s diagrams 60
  • 61. Fig. 4. Working of Carnot engine Since the working fluid is an ideal gas with constant specific heats , we have , for the isentropic process , γ−1 γ−1 T1 V  T2 V  = 4 V   ; = 3 V   T4  1  T3  3  Now , T1 = T2 and T4 = T3 , therefore V4 V V1 = 3 = r V2 = compression or expansion ratio Carnot cycle efficiency may be written as , 1 η =1 − r γ− th 1 61
  • 62. From the above equation , it can be observed that the Carnot cycle efficiency increases as "r" increases . This implies that the high thermal efficiency of a Carnot cycle is obtained at the expense of large piston displacement . Also, for isentropic processes we have , γ−1 γ−1 P γ P γ T1 T4 = 1 P  4    and T2 T3 = 2 P  3    Since , T1 = T2 and T4 = T3 , we have P P 1 P4 = 2 = rp = P3 pressure ratio Therefore , Carnot cycle efficiency may be written as , 1 ηth = 1 − γ −1 rp γ From the above equation , it can be observed that , the Carnot cycle efficiency can be increased by increasing the pressure ratio . This means that Carnot cycle should be operated at high peak pressure to obtain large efficiency . 62
  • 63. Ex. 1 The highes theortical efficiency of gasoline engine based on the Carnot cycle is 30 y0 if this engine expels its gases into at m . which has temp of 300k . compute 1) the temp in the cylinder immediately after combustion . 2) if the engine absorbs (837 J) of heat from the hot reservoir during each cycle how much work can it perform in each cycle , Solution Tc 1) η =1 − Th ‫كفاءة كارنون‬ Tc 300 Th = = =429 k 0 1−η 1 −0.3 W 2) η= Qh ⇒ W =η * Qh = 0.3 * 837 = 251 J Ex . 2 63
  • 64. A Carnot engine is operated between two heat reservoirs at temp of 450 k0 and 350 k0 , if the engine receive (1000 J) of heat in each cycle . Compute : 1) the amount of heat reject . 2) the efficiency of the engine . 3) the work done by the engine in each cycle . Solution 1) Th =450 k0 , Tc = 350 k0 , Qh =1000 J Qc T = c Qh Th Tc 350 Qc = Qh = 1000 * = 777.7 k 0 Th 450 Tc 2) η = 1 − Th 350 η= 1 − 450 = 0.22 = 22 % ‫الكفاءة‬ 3) the work done = Qh – Qc = 1000 – 777.7 = 222.3 J : ‫السبوع الحادي والعشرون والثاني والعشرون‬ ‫الهدف من الدرس : 1- ان يتعلم الطالب معنى دورة اوتو والحرارة المرجعة وصافي الشغل‬ 64
  • 65. ‫.‬ ‫وكفاءة الدورة‬ ‫] ‪Otto Cycle : [ Constant Volume Cycle‬‬ ‫‪The cycle consist of four reversible process‬‬ ‫تتالف الدورة من اربعة اجراءات انعكاسية‬ ‫مرحلة النضغاط ‪1-2 Adibatic Compression‬‬ ‫يتم ضغط الغاز في عملية اديباتية يقل الحجم من 1‪ V‬الى 2‪ V‬وترتفع درجة الحرارة من 1‪ T‬الى‬ ‫2‪. T‬‬ ‫ويكون مقدار الشغل المبذول على الغاز ‪Win‬‬ ‫2‪P V1 −P2 V‬‬ ‫= ‪Win‬‬ ‫1‬ ‫−‪γ‬‬ ‫1‬ ‫شوط التحتراق ‪2–3 Combustion stroke‬‬ ‫‪Constant volume , heat addition‬‬ ‫تسمى مرحلة الحتراق يزداد كل من الضغط ودرجة الحرارة من 2‪ T‬الى 3‪ T‬ويمتص النظام‬ ‫كمية حرارة من الشتعال ‪ (Qh (added heat‬الحرارة المضافة .‬ ‫)2‪Added heat Qh = m Cv (T3 – T‬‬ ‫‪3-4 Power stroke Adibatic expansion‬‬ ‫يتمدد الغاز في عملية اديباتية يوداد الحجم من 2‪ V‬الى 1‪ V‬وتقل الحرارة من 3‪ T‬الى 4‪) T‬تسمى‬ ‫مرحلة القوة (‬ ‫56‬
  • 66. ‫4‪P V3 − P4 V‬‬ ‫= ‪Wout‬‬ ‫3‬ ‫−‪γ‬‬ ‫1‬ ‫‪P‬‬ ‫0‪P‬‬ ‫2‪V‬‬ ‫1‪V‬‬ ‫‪A standard dtt cycle‬‬ ‫شوط العادم ‪Exhaust stroke‬‬ ‫‪4-1 Constant volume , heat rejection‬‬ ‫اجراء ثبوت الحجم )التخلص من الحرارة(‬ ‫ويسمى )مرحلة صمام العادم( تنخفض درجة الحرارة من 4‪ T‬الى 1‪ T‬وينخفض الضغط نتيجة‬ ‫لفتح صمام العادم ويعود الضغط الى الضغط الجوي ويفقد النظام كمية حرارة ‪. Qc‬‬ ‫‪Rejected heat‬‬ ‫] 4‪Q c = m C v [ T1 – T‬‬ ‫66‬
  • 67. ‫الحرارة المنعكسة‬ ‫‪The Heat efficiency (eff.) of otto cycle‬‬ ‫‪Qc‬‬ ‫1‪T4 −T‬‬ ‫− 1= ‪η‬‬ ‫− 1=‬ ‫‪Qh‬‬ ‫2‪T3 − T‬‬ ‫معادلة الكفاءة لدورة اوتو الحرارية‬ ‫الجمالي ‪Wnet‬‬ ‫الشغل‬ ‫صافي‬ ‫‪Wnet = Wout − Win‬‬ ‫) 2 ‪( P V3 − 4V 4 ) − P V1 − 2V‬‬ ‫‪P‬‬ ‫1 (‬ ‫‪P‬‬ ‫= ‪Wnet‬‬ ‫3‬ ‫−‪γ‬‬ ‫1‬ ‫1-5‬ ‫ملحظة : في المخطط يلحظ خط افقي وهو )مرحلة العادم(‬ ‫و 5-1 )مرحلة الخذ( تكونان غير مؤثرتان لنهما متعاكستان .‬ ‫السبوع الثالث والعشرين والرابع والعشرين :‬ ‫.‪Diesel Cycle net work out put and its eff‬‬ ‫الهدف من الدرس : 1- ان يتعرف الطالب على منحنى دورة ديزل وصافي الشغل الخارج‬ ‫والكفاءة .‬ ‫‪Diesel Cycle‬‬ ‫)‪The Diesel cycle is a compression ignition (rather than spark ignition‬‬ ‫‪engine . Fuel is sprayed into the cylinder at P2 (high pressure) when the‬‬ ‫76‬
  • 68. compression is complete , and there is ignition without spark . An idealized Diesel engine cycle is shown in figure 1. Figure 1. The ideal Diesel cycle The thermal efficiency is given by : QL C (T − 4 ) T η Dicsel =1 + =1 + v 1 QH C p (T3 − 2 ) T T1 (T4 / T1 − ) 1 = T2 (T3 / T2 − ) 1 This cycle can operate with a higher compression ratio than the Otto cycle because only air is compressed and there is no risk of auto – ignition of the fuel . Although for a given compression ratio the Otto cycle has higher efficiency , because the Diesel engine can be operated to higher compression ratio , the engine can actually have higher efficiency than an Otto cycle when both are operated at compression ratios that might be achieved in practice . Muddy Points 68
  • 69. When and where do we use Cv and Cp ? Some definitions use dU=Cv dT is it ever dU = Cp dT ? (MP 3.8) Explanation of the above comparison between Diesel and Otto. (MP 3.9) Air standard diesel engine cycle The term "compression ignition" is typically used in technical literature to describe the modern engines commonly called "Diesel engines" . This is in contrast to "spark ignition" for the typical automobile gasoline engines that operate on a cycle derived from the Otto cycle . Rudolph Diesel patented the compression – ignition cycle which bears his name in the 1890s. 1 rE λ − rC γ − − η= 1 − γ rE 1 − rc−1 − Design of a Diesel Cycle 69
  • 70. The General Idea The Diesel cycle is very similar to the Otto cycle in that both are closed cycles commonly used to model internal combustion engines . The difference between them is that the Diesel cycle is a compression – ignition cycle use fuels that begin combustion when they reach a temperature and pressure that occurs naturally at some point during the cycle and , therefore , do not require a separate energy source (e.g. from a spark plug) to burn . Diesel fuels are mixed so as to combust reliably at the proper thermal state so that Diesel cycle engines run well . (We might note that most fuels will start combustion on their own at some temperature and pressure . But this is often not intended to occur and can result in the fuel combustion occurring too early in the cycle . For instance , when a gasoline engine – ordinarily an Otto cycle device – is run at overly high compression ratios , it can start "dieseling" where the fuel ignites before the spark is generated . It is often difficult to get such an engine to turn off since the usual method of simply depriving it of a spark may not work . Stages of Diesel Cycles Diesel Cycles have four stages : compression , combustion , expansion , and cooling . Compression We start out with air at ambient conditions – often just outside air drawn into the engine . In preparation for adding heat to the air , we 70
  • 71. compress it by moving the piston down the cylinder . It is in this part of the cycle that we contribute work to the air . In the ideal Diesel cycle , this compression is considered to be isentropic . It is at this stage that we set the volumetric compression ratio , r which is the ratio of the volume of the working fluid before the compression process to its volume after . Piston : moving from top dead center to bottom dead center . Combustion Next , heat is added to the air by fuel combustion . This process begins just as the piston leaves its bottom dead center position . Because the piston is moving during this part of the cycle , we say that the heat addition is isochoric , like the cooling process . Piston : starts at bottom dead center , begins moving up . Expansion In the Diesel cycle , fuel is burned to heat compressed air and the hot gas expands forcing the piston to travel up in the cylinder . It is in this phase that the cycle contributes its useful work , rotating the automobile 's crankshaft . We make the ideal assumption that this stage in an ideal Diesel cycle is isentropic . Piston : moving from bottom dead center to top dead center . 71
  • 72. Cooling Next , the expanded air is cooled down to ambient conditions . In an actual automobile engine , this corresponds to exhausting the air from the engine to the environment and replacing it with fresh air . Since this happens when the piston is at the top dead center position in the cycle and is not moving , we say this process is isochoric (no change in volume) . Piston : at top dead center . Dual Cycle : ‫السبوع الخامس والعشرون‬ . ‫الهدف من الدرس : 1- يتعرف الطالب على منحنى دورة ديول والمخطط والكفاءة‬ Limited Pressure Cycle (or Dual Cycle) : This cycle is also called as the dual cycle , which is shown in Fig. 1 Here the heat addition occurs partly at constant volume and partly at constant pressure . This cycle is a closer approximation to the behavior of the actual Otto and Diesel engines because in the actual engines , the 72
  • 73. combustion process does not occur exactly at constant volume or at constant pressure but rather as in the dual cycle . Process 1-2 : Reversible adiabatic compression . Process 2-3 : Constant volume heat addition . Process 3-4 : Constant pressure heat addition . Process 4-5 : Reversible adiabatic expansion . Process 5-1 : Constant volume heat rejection . 73
  • 74. Fig. 1 Dual cycle on p-v and T-s diagrams Air Standard Efficiency Heat supplied = m Cv (T3 – T2) + m Cp (T4 – T3) Heat rejected = m Cv (T5 – T1) Net work done = m Cv (T3 – T2) + m Cp (T4 – T3) – m Cv (T5 – T1) m C v (T3 − 2 ) +m C T (T4 −T3 ) − m C v (T5 − 1 ) T η = th p m C v (T3 − T2 ) +m C p (T4 − 3 ) T T5 −T1 η =−1 (T3 −T2 ) +γ (T4 −T3 ) th 74
  • 75. P3 V4 V1 Let , P2 = rp ; V3 =rc ; V2 =r T2 =T1 r γ− 1 T3 = 2 r p =1 r γ 1 r p T T − T4 = rc = r γ 1 r p rc T3 T1 − γ−1 γ−1 γ−1 T5 V  V V  r  = 4 V   = 4 . 2 V   = c  T4  5   2 V5  r  γ−1 r  T5 = T4  c  = 1 r p rcγ T r  T1 rp rcγ − 1 T η =1 − th {(T 1 r γ − r p − 1 r γ − ) + γ (T1 r γ − rp rc − T1 r γ − rp )} 1 T 1 1 1 ( rp rcγ − ) 1 = 1− {(r p r γ−1 −r γ−1 ) + γ (r p rc r γ −1 − rp r γ −1 )} 1   r p rcγ −1   = η 1 − th r γ−1  ( 1 1    r p − ) + γ r p ( rc − )  From the above equation , it is observed that , a value of rp > 1 results in an increased efficiency for a given value of rc and γ . Thus the efficiency of the dual cycle lies between that of the Otto cycle and the Diesel cycle having the same compression ratio . Mean Effective Pressure Workdone mep = Displacement volume 75
  • 76. m C v (T3 − 2 ) +m C p (T4 − 3 ) −m C v (T5 − 1 ) T T T = V1 − 2 V m C v (γ − ) T1 r −  1 1 V1 − 2 = V   P1  r  p1 r  3− 2 T T γ(T4 − 3 ) T T − 1T map =  + − 5  ( r − )(γ − )  T1 1 1 T1 T1  = p1 r ( r − )(γ − ) 1 1 {r γ −1 ( r p − ) +γ r γ− r p ( rc − ) − r p rcγ − )} 1 1 1 ( 1 = p1 r ( r − )(γ − ) 1 1 {r γ {(r −1 p − ) +γ rp ( rc − )} − r p rcγ − )} 1 1 ( 1 : ‫السبوع السادس والعشرون‬ Comparing between Fuel – air and the air standard cycles ‫الهدف من الدرس : 1- ان يتعرف الطالب على المقارنة بين دورة وتود – هواء ودورة الهواء‬ . ‫القياسية‬ Fuel – air cycle The simple ideal air standard cycles overestimate the engine efficiency by a factor of about 2. A significant simplification in the air standard cycles is the assumption of constant specific heat capacities . Heat 76
  • 77. capacities of gases are strongly temperature dependent , as shown by figure (1) . The molar constant – volume heat capacity will also vary , as will γ the ratio of heat capacities : C p − v C =0 R , γ=C p / Cv If this is allowed for , air standard Otto cycle efficiency falls from 57 per cent to 49.4 per cent for a compression ratio of 8 . When allowance is made for the presence of fuel and combustion products , there is an even greater reduction in cycle efficiency . This leads to the concept of a fuel – air cycle which is the same as the ideal air standard Otto cycle , except that allowance is made for the real thermodynamic behaviour of the gases . The cycle assumes instantaneous complete combustion , no heat transfer , and reversible compression and expansion . Taylor (1966) discusses these matters in detail and provides results in graphical form . Figure (2) and (3) . INTRODUCTION TO INTERNAL COMBUSTION ENGINES 77
  • 78. Figure (1) : Molar heat capacity at constant pressure of gases above 150C quoted as averages between 150C and abscissa temperature Show the variation in fuel –air cycle efficiency as a function of equivalence ratio for a range of compression ratios . Equivalence ratio φ is defined as the chemically correct (stoichiometric)air / fuel ratio divided by the actual air / fuel ratio . The datum conditions at the start of the compression stroke are pressure (p1) 1.013 bar , temperature (T1) 1150C , mass fraction of combustion residuals (f) 0.05 , and specific humidity ( ω ) 0.02 – the mass fraction of water vapour . The fuel 1- octane has the formula C8H16 , and structure 78
  • 79. Figure (2) shows the pronounced reduction in efficiency of the fuel – air cycle for rich mixtures . The improvement in cycle efficiency with increasing compression ratio is shown in figure 3 , where the ideal air standard Otto cycle efficiency has been included for comparison . In order to make allowances for the losses due to phenomena such as heat transfer and finite combustion time , it is necessary to develop computer models . Prior to the development of computer models , estimates were made for the various losses that occur in real operating cycles . Again considering the Otto 79
  • 80. Figure (2) : Variation of efficiency with equivalence ratio for a constant – volume fuel – air cycle with 1 – octane fuel for different compression ratios ( adapted from Taylor (1966)) Cycle , these are as follows : 80
  • 81. (a) "Finite piston speed losses" occur since combustion takes a finite time and cannot occur at constant volume . This leads to the rounding of the indicator diagram and Taylor (1960) estimates these losses as being about 6 per cent . Figure (3) : Variation of efficiency with compression ratio for a constant volume fuel – air cycle with 1 – octane fuel for different equivalence ratios (adapted from Taylor (1966)) 81
  • 82. (b) "Heat losses" , in particular between the end of the compression stroke and the beginning of the expansion stroke . Estimates of up to 12 per cent have been made by both Taylor (1966) and Ricardo and Hempson (1968) . However, with no heat transfer the cycle temperatures would be raised and the fuel – air cycle efficiencies would be reduced slightly because of increasing gas specific heats and dissociation . (c ) Exhaust losses due to the exhaust valve opening before the end of the expansion stroke . This promotes gas exchange but reduces the expansion work . Taylor (1966) estimates these losses as 2 per cent . Since the fuel is injected towards the end of the compression stroke in compression ignition engines (unlike the spark ignition engine where it is pre-mixed with the air) the compression process will be closer to ideal in the compression ignition engine than in the spark ignition engine . This is another reason for the better fuel economy of the compression ignition engine . The actual cycle : ‫السبوع السابع والعشرين والثامن والعشرين‬ 82
  • 83. Comparing between actual cycles and air standard cycles . ‫الهدف من الدرس : 1- ان يتعرف الطالب مفهوم الدراسة الحقيقية‬ . ‫2- يقارن بين الدراسة الحقيقية ودورات الهواء القياسية‬ The Actual Cycle The eff of the actual cycle is low than the air standard cycle . 1- The fluid used is a mixture of air and fuel and the exhaust gases . 2- Energy loss is caused by time when the valves are opened or closed . 3- The specific heat varies with temp. 4- Due to the chemical dissociation there will energy loss . 5- The combustion isn't complete 6- The engine loses heat directly . 7- There are heat losses with exhaust gases . 8- The engine loses heat directly . 83
  • 84. Air Standard Cycle 1- The efficiency is high . 2- The fluid used in the cycle is air follows the ideal gas PV= m R T 3- The used gas has a constant mass of air in the closed system or moves with constant flourate in closed cycle . 4- The value of specific heat is constant . 5- Chemical reactions don't occur . 6- The compression and expansion occurs with constant entropy . 7- The received heat and rejected heat occurs reversibly . 8- There is no change I the kinetic & the potential energies that is why they are neglected . 9- The engine works without friction . Gas Turbine :‫السبوع التاسع والعشرين والثلثون‬ 84
  • 85. ‫الهدف من الدرس : يتعلم الطالب معنى التوربين الغازي واستخداماته ومكوناته‬ Gas Turbine Gas turbine . types which burn fuels such as oil and natural gas . Instead of using heat to produce steam , as in steam turbines , the gas turbine hot gas is used directly . Used for the operation of gas turbine generators , ships , race cars , as used in jet engines . Most of the gas turbine systems of the three main parts 1- the air compressor , 2- the combustion chamber , 3- turbine The so–called air compressor with the combustion chamber , usually , the gas generator . In most systems , gas turbine , the air compressor and turbine boats on both sides of a horizontal axis , located between the combustion chamber . And is part of the power turbine air compressor . Absorbs quantity of air compressor and air ldguetha , so pressure is increasing . In the combustion chamber , compressed air mixes with fuel and burning the mixture . The more air pressure , improved combustion of fuel mixed with air . The burning gases expand rapidly and to flow into the turbine , leading to the rotation of the wheels of the turbine . And moving hot gases through the various stages in the same manner as the gas turbine flows through the steam turbine vapor . The Downs fixed mobile gas resat member to change the rotor speed . And benefit most from the gas turbine systems , the hot gases emerging from the turbine . In some systems are some of these gases , and go to a so – called renewed . And these gases are used to heat the 85