SlideShare a Scribd company logo
1 of 18
Download to read offline
A&A manuscript no.
                                       (will be inserted by hand later)                                                                           ASTRONOMY
                                                                                                                                                      AND
                                       Your thesaurus codes are:                                                                                 ASTROPHYSICS
                                       missing; you have not inserted them                                                                          1.2.2008




                                       The Observational Status of Stephan’s Quintet                                                         ⋆

                                       M. Moles1,2     ⋆⋆
                                                            , I. M´rquez3,4 , and J.W. Sulentic5
                                                                  a
                                       1
                                           Instituto de Matem´ticas y F´
                                                               a         ısica Fundamental, CSIC, C/ Serrano 121, 28006 Madrid, Spain
                                       2
                                           Observatorio Astron´mico Nacional, Apdo. 1143, 28800 Alcal´ de Henares, Madrid, Spain
                                                                o                                       a
                                       3
                                           Instituto de Astrof´
                                                              ısica de Andaluc´ (C.S.I.C.), Apdo. 3004, 18080 Granada, Spain
                                                                               ıa
                                       4
                                           Institut d’Astrophysique de Paris, 98 bis Bd Arago, 75014 Paris, France
                                       5
                                           Department of Physics and Astronomy, University of Alabama, Tuscaloosa, USA 35487
arXiv:astro-ph/9802328v1 26 Feb 1998




                                       Received, ; accepted,


                                       Abstract. We present new photometric and spectro-                is certainly the most intensely studied object of that class.
                                       scopic data for the galaxies in the compact group known as       After every new observational effort unexpected aspects
                                       Stephan’s Quintet. We find the strongest evidence for dy-         have emerged, adding to the puzzling nature of such ap-
                                       namical perturbation in the spiral component NGC 7319.           parently dense galaxy aggregate. SQ can be regarded as
                                       Most of the damage was apparently caused by nearby               a prototype of the compact group class (it is H92 in the
                                       NGC 7320C which passed through the group a few ×108              catalog of Hickson (1982).
                                       years ago. NGC 7318B is a spiral galaxy that shows evi-              The puzzles connected with SQ began when its com-
                                       dence consistent with being in the early stages of a colli-      ponent galaxy redshifts were first measured (Burbidge
                                       sion with the group. NGC 7317 and 18A are either ellip-          & Burbidge 1961). First, one of the four higher redshift
                                       tical galaxies or the stripped bulges of former spiral com-      galaxies (NGC 7318B) was found to have a velocity almost
                                       ponents. They show no evidence of past or present merger         1000 km s−1 lower than the other three raising questions
                                       activity but are embedded in a luminous halo which sug-          about the groups dynamical stability. Then, NGC 7320
                                       gests that they are interacting with the other members           was found to show a redshift ∼5700 km s−1 lower than the
                                       of the group. The low redshift galaxy NGC 7320 is most           mean of the other four. SQ became one of the key objects
                                       likely a late type, dwarf spiral projected along the same        in the debate about the nature of the redshift (Sulentic
                                       line of sight as the interacting quartet.                        1983).
                                                                                                            It was suggested that NGC 7320 might be a physical
                                       Key words: Galaxies - Dynamics - Interaction - Compact
                                                                                                        companion of NGC 7331 a large, nearby Sb galaxy with
                                       Groups
                                                                                                        similar redshift (van den Bergh 1961, Arp 1973). Possi-
                                                                                                        ble signs of this hypothesized interaction include a tidal
                                                                                                        tail that extends from NGC 7320 towards the SE and
                                                                                                        an HI deficiency noted by Sulentic and Arp (1983). At
                                                                                                        the same time Arp (1973) interpreted the tail as a sign
                                       1. Introduction                                                  of interaction between NGC 7320 and the higher red-
                                       Stephan’s Quintet (SQ: also known as Arp319 and VV228)           shift members of SQ. The question of the distance to
                                       is one of the most remarkable groupings of galaxies on the       the different galaxies in the group was specifically ad-
                                       sky. It was the first compact galaxy group discovered and         dressed by Balkowski et al. (1973) and Shostak (1974)
                                                                                                        who tried to use HI data to settle the question. The re-
                                       Send offprint requests to: M. Moles, moles@oan.es                 sults turned out to be contradictory and later observations
                                       ⋆
                                           Based on data obtained at the 1.5m telescope of the          (Allen and Sullivan 1980) showed that the HI in SQ was
                                       Estaci´n de Observaci´n de Calar Alto (EOCA), Instituto Ge-
                                              o               o                                         displaced from the optical galaxies. A summary of the
                                       ogr´fico Nacional, which is jointly operated by the Instituto
                                           a                                                            many papers dealing with distances to the SQ galaxies
                                       Geogr´fico Nacional and the Consejo Superior de Investiga-
                                              a                                                         can be found in Sulentic (1983).
                                       ciones Cient´ıficas through the Instituto de Astrof´
                                                                                         ısica de An-
                                       daluc´ıa                                                             This paper is concerned with the properties of the five
                                       ⋆⋆
                                           Visiting Astronomer, German-Spanish Astronomical Cen-        galaxies that comprise SQ. We consider both their optical
                                       ter, Calar Alto, operated by the Max-Planck-Institut fur As-     properties and the question of their normality, especially
                                       tronomie jointly with the Spanish National Commission for        their past/present interaction state. The analysis of the
                                       Astronomy                                                        properties of NGC 7318B are particularly relevant for the
2                                              Moles et al.: Stephan’s Quintet

understanding the dynamical state of SQ because they            timated from the comparison of the standards themselves
suggest that it is a recent arrival in the system (see Moles,   amount to 5%. The wavelength calibration accuracy is
Sulentic & M´rquez 1997; MSM). The observations are
               a                                                smaller for those data, and only a limited use of them
presented in section 2 and analyzed galaxy-by-galaxy in         will be made for kinematic analysis.
section 3. The results are combined and summarized in               We                used                cross-correlation
section 4.                                                      techniques (Tonry and Davis 1979) to measure the veloc-
                                                                ity distribution of the ionized gas, and to determine the
                                                                central velocity dispersion of the elliptical galaxies and
2. Observations and Data Reduction
                                                                of the bulges of the spiral members of the Quintet. The
The data were obtained at the Calar Alto (Almer´ Spain)
                                                   ıa,          Mg2 strength was measured using the line and continuum
and Roque de los Muchachos (La Palma, Spain) observa-           spectral bands defined in Burstein et al. (1984).
tories. CCD images were obtained at the prime focus of
the 3.5m telescope (BVR bands, with a TEK 1024×680
                                                                3. The properties of the individual galaxies in
CCD) and with the EOCA 1.5m telescope (BR bands,                   Stephan’s Quintet
with a Thompson 1024×1024 CCD) at Calar Alto. The
3.5m telescope was also used with the Twin Spectrograph         The data for the different galaxies are presented sepa-
(same detector as for the images) to obtain long slit spec-     rately. We begin with the brightest galaxy in the group,
tra of NGC 7317, NGC 7319, and through the knots seen           the low redshift member NGC 7320 and end with the pair
North of the central pair (see figure 1). Long slit spectra      NGC 7318A,B. An image of the SQ area is presented in
of the other galaxies were obtained with the Intermedi-         figure 1 with galaxy identification and slit orientations in-
ate Dispersion Spectrograph attached to the Cassegrain          dicated for spectra presented here. Positions of identified
focus of the 2.5m telescope in La Palma, equipped with          emission regions are also marked.
the IPCS. All the spectra were obtained using a slit of 1.5
arcsec width. The log of the observations is presented in       3.1. NGC 7320
table 1.
    The image were de-biased, flat-fielded and calibrated         SQ would not have satisfied the compact group selection
using the appropriate routines in the FIGARO package.           criteria adopted by Hickson (1982) if NGC 7320 were not
Extinction and calibration stars were observed in order to      superimposed. In this sense, it is a compact group by ac-
calibrate the 3.5m telescope data. Errors in the standard       cident. Without the superposed late type Sd galaxy, the
stars are always smaller than 3%. We plotted the standard       remaining four members would form a quintet with fainter
stars and stars in the frames in a color-color diagram in or-   NGC 7320C (it does not affect the isolation of the cata-
der to determine the accuracy of the calibration. The rms       logued SQ=HCG92 because it is more than three magni-
of the distance between the frame stars and the standards       tudes fainter than NGC 7320). Other field galaxies are suf-
was taken as the calibration error. This turned out to be       ficiently bright and nearby that this wider quintet would
similar or less than the errors in the standard stars them-     not be sufficiently isolated to pass into the (Hickson 1982)
selves. Total photometric parameters were determined for        compact group catalog. So the galaxies physically associ-
each galaxy. Indeed, the distortions and overlapping of the     ated in this system form a somewhat less compact/isolated
different galaxies make those determination rather uncer-        system than most Hickson groups. The core quartet is, of
tain and will be discussed case by case. Total magnitudes       course, highly concentrated with a mean galaxy separa-
were obtained from the curve of growth and total color          tion of 35 kpc. It is likely that many more groups of this
indices were derived. Color maps were produced to look          kind escaped inclusion in the HCG.
for the presence of peculiar features. Azimuthally aver-            We measure a redshift cz = 801 (±20)km s−1 for
aged light profiles were determined for the galaxies (see        NGC 7320 that is consistent with previous values. The
M´rquez and Moles 1996, for details about the data re-
  a                                                             corrected blue magnitude, taking into account galactic and
duction and analysis). As we will explain later, we used        internal extinction (Ai = 0.40 and Ag = 0.35, respectively;
an elliptical model fitted to NGC 7318A to deduce its pho-       RC3) is BT = 12.35 (12.53 in Hickson et al. 1989). The
tometric parameters. Once the model was subtracted, the         galaxy is rather blue with (corrected) indices (U−B)T =
remaining light distribution was considered to belong to        −0.11 (RC3), and (B − V)T = 0.46, consistent with its
NGC 7318B.                                                      late morphological type. Schombert et al. (1990) report a
    The spectroscopic data obtained at Calar Alto has a         similar B−V color in their grid photometric study where
high wavelength calibration accuracy and this data was          N 7320 is also misidentified as one of the accordant red-
used to derive kinematic properties. The accuracy was es-       shift components in SQ.
timated from the position of the main sky lines in the              No emission lines other than marginal [OII] are de-
frame. The rms values are always smaller than 0.1 ˚. The
                                                      A         tected from the weak central bulge (see figure 3). The
La Palma data were also flux calibrated. Several standard        long slit data show no or very weak emission except in
stars were observed for this purpose. The flux errors, es-       localized regions. Its distribution along the major axis of
Moles et al.: Stephan’s Quintet                                              3



Table 1. Log of the observations



             Object         Telescope    Spectral band    Exp. (s)   PA    FWHM(”)       ˚/pixel
                                                                                         A           Date


             SQ                3.5m        Johnson B       1200       -          0.9        -      08/20/88
             SQ                3.5m        Johnson V       1000       -          0.9        -      08/20/88
             SQ                3.5m        Johnson R        700       -          0.9        -      08/20/88
             SQ                1.5m        Johnson B       5400       -          1.2        -      10/12/92
             SQ                1.5m         Gunn r         2100       -          1.2        -      10/12/92
             NGC   7317        3.5m      4200˚- 5500˚
                                             A       A     2500      109         1.1       0.9     10/31/89
             NGC   7318A       2.5m      3200˚- 7000˚
                                             A       A     3000      109         1.2      2.04     08/04/89
             NGC   7318B       2.5m      3200˚- 7000˚
                                             A       A     3600      27          1.3      2.04     08/04/89
             NGC   7319        2.5m      3200˚- 7000˚
                                             A       A     1900      142         1.2      2.04     08/04/89
             NGC   7319        3.5m      6000˚- 7200˚
                                             A       A     2000      142         1.1       1.2     08/25/89
             NGC   7320        2.5m      3200˚- 7000˚
                                             A       A     5000      134         1.5      2.04     08/02/89




the galaxy is asymmetric (see figure 2a). Emission regions       the derived optical luminosity. Shostak et al. (1984) ap-
were only detected in the NW half of the disk. The Hα           plied a rotation amplitude vs. size relation and also found
image shown in MSM indicates that this is, in part an           that ∆V is too large for the observed optical diameter.
accident of slit positioning. A more symmetric HII region       Bottinelli et al. (1985) report a corrected width of 160
distribution is found with the brightest condensations, ad-     km s−1 while Sulentic and Arp (1983) give a value ∆V≈
mittedly, on the NW side. Two of these emission regions,        200km s−1 . The latter value agrees with the Westerbork
at 19” and 35” from the center (AR5 and AR4 in Figure           value of Shostak et al. Thus the latest determination fa-
1) have redshifts (730±40 and 760±25 respectively) con-         vor a somewhat too large value for the 21cm line width.
sistent with membership in NGC 7320. They correspond            This may support the contention of Sulentic & Arp (1983)
to the regions denoted A7 and A8, respectively, in Arp          that the HI emission in NGC 7320 is peculiar and ex-
(1973). They show line ratios (see figure 2b) typical for        tended. Low redshift HI synthesis observations with sen-
HII regions (with a metallicity of Z ∼0.5Z⊙, as frequently      sitivity to extended structure could prove interesting. We
found for late-type spiral galaxies). The other three de-       have re-applied the Tully-Fisher relation using the cali-
tected HII regions at 54”, 60”, and 75” from the center         bration given by Pierce & Tully (1992). Good agreement
(AR3, AR2 and AR1 in Figure 1) belong to the accordant          is found between BT and ∆V(21cm) consistent with a dis-
quartet.                                                        tance r≤12 Mpc for NGC 7320.
    Our photometric data shows no marked internal pe-
culiarities. As discussed in MSM, there is no clear evi-        3.2. NGC 7317
dence to suggest that the tail that seems to emerge from
                                                                The measured parameters for NGC 7317 are presented
NGC 7320 actually belongs to it. The low redshift Hα im-
                                                                in Table 2. The galaxy appears to be a normal
age presented in that paper shows no evidence for any
                                                                E2 system. It was also classified as an elliptical by
condensations in the tail though they are clearly seen on
                                                                Hickson, Kindl and Auman (1989), but Hickson (1994)
broad-band images. It is therefore most easily interpreted
                                                                assigns an Sa type. The observed light distribution is af-
as a background feature related to interactions in the ac-
                                                                fected by a nearby bright star plus (possibly) a back-
cordant redshift quartet. The fact that this tail is parallel
                                                                ground galaxy which can give the impression of an arc-
to a second brighter one located towards the NE supports
                                                                like structure resembling a spiral arm. We derived pho-
that assumption since the second tail is clearly not related
                                                                tometric properties for this galaxy by fitting ellipses to
to NGC 7320.
                                                                the inner parts where the starlight has no influence and
    The relatively undisturbed morphology of NGC 7320           then extrapolating the model through the outer regions.
suggest that it would be reasonable to apply criteria for       The adequacy of the fitting was judged by examining the
estimating redshift independent distances. Kent (1981)          residuals of the model subtraction. Only small amplitude
applied a ∆V(21cm) vs. log L relation to NGC 7320. It           residuals at the noise level were observed, indicating that
was found to fall “somewhat” (meaning far) off the cal-          the fit was satisfactory. The results are presented in figure
ibration relation in the sense that ∆V is too large for         4, where we plot the intensity, ellipticity and position angle
4                                              Moles et al.: Stephan’s Quintet

profiles. They appear typical for a normal elliptical galaxy.     to new activity is observed. In order to make a conserva-
The data are given in table 2. The ellipticity profile shows      tive estimate of the halo luminosity we chose the region
some structure but this is not unusual especially for ellipti-   between NGC 7317 and 7318A as “typical” with mean sur-
cals belonging to groups (Bettoni & Fasano 1993). Finally        face brightness 24.4 mag arcsec−2 . This average level was
the color map presented in figure 5a shows a smooth distri-       multiplied by the total area inside of the adopted bound-
bution of light for NGC 7317 without structure or well de-       ary . Using our assumption of constant surface brightness
lineated components. Thus NGC 7317 shows no evidence             we obtain Mhalo = -20.9 ≈ L∗ ≈ the average luminosity of
for past or present merger activity.                             an SQ component.
                                                                     The extension and surface brightness of this diffuse
    From our spectrum of the central region we mea-              light rules out the possibility that is produced by overlap
sure a redshift cz = 6563 (±29) km s−1 in good agree-            of individual galaxy haloes, especially NW of NGC 7317.
ment with the value reported by Hickson et al. (1992).           We note that NGC 7317 is not centered in the diffuse light
No rotation is seen along the slit at our posi-                  that extends in its direction. This may mean that it has
tion angle. The central velocity dispersion was mea-             a considerable transverse component in motion relative to
sured to be σ = 215 (±10) km s−1 compared to 299                 the rest of the group. This is almost required for the group
km s−1 reported by Kent (1981). The Mg2 strength is              to avoid collapse because the relative radial velocities of
0.28 which is typical for early-type galaxies. From the          NGC 7317, 18A and 19 are very small.
photometric and spectroscopic data we conclude that
NGC 7317 is a reasonably normal elliptical galaxy. Ap-           3.3. NGC 7319
plication of the Faber and Jackson (1976) relation as re-
vised by de Vaucouleurs and Olson (1982) gives D ∼ 65            This SBc galaxy shows the strongest evidence for tidal dis-
Mpc, in agreement with the photometric estimate of               turbance. It shows a strong bar at PA = 142 which is also
de Vaucouleurs and Olson (1984).                                 the position angle of the major axis. The arms show no
    This leaves open the question of whether NGC 7317            evidence for any emission regions or dust lanes. The gen-
is an active participant in the dynamical evolution of SQ.       eral aspect of the galaxy with its tails and arcs has been
There is no internal evidence for a past merger and no           described in the literature (Arp and Kormendy 1972,
obvious evidence for interaction. The single strong form         Schombert, Wallin and Struck-Marcell 1990). Our photo-
of evidence for active participation in SQ comes from            metric results are given in table 2. A blue (B−V=
the diffuse halo which clearly extends from the region of         0.57) tidal tail extends towards the SE from the edge of
NGC 7318A,B towards NGC 7317. This halo can be seen              NGC 7319. The connection to NGC 7319 is not unambigu-
on most deep images published over the past 25 years (Arp        ous as it shows no smooth connection to the spiral arms
1973, Arp and Kormendy 1972, Arp and Lorre 1976 and              in that galaxy. The tail is parallel to and brighter than
Schombert et al. 1990). Sandage and Katem (1976) sug-            the one that passes behind NGC 7320. Both tails curve in
gested that much of the faint emission could be due to           the direction of NGC 7320C. At the same time, HI map-
high latitude galactic cirrus. While this interpretation is      ping (Shostak et al. 1984) shows that NGC 7319 has been
probably true for much of the structure seen far from SQ,        completely stripped of its neutral hydrogen. Hα images
there is unambiguous diffuse structure associated with the        (Arp 1973 and MSM) show almost no emission from the
group that represents evidence for dynamical evolution.          galaxy as well. Recent CO mapping of NGC 7319 (Yun
We identify two components to the SQ halo: 1) a red-             et al. 1997) show only a few small molecular clouds that
der component that is particularly strong to the NW of           appear unrelated to the spiral structure. They match very
NGC 7317 and 2) a bluer component associated with the            well dust patches seen on deep optical photographs and
tidal tails extending towards the SE. The former compo-          may well represent stripped material above the disk. All
nent clearly links NGC 7317 with the rest of the accordant       those evidences support the view (Shostak et al. 1984) that
galaxies.                                                        NGC 7319 has suffered a strong collision/encounter that
    We estimated the extent and integrated luminosity of         has efficiently stripped its ISM. That tail points towards
the older halo component using IDL tasks after standard          NGC 7320C as the intruder responsible for the stripping
reductions and flat fielding. We removed the foreground            event (Shostak et al. 1984; MSM)
stars which are numerous in the SQ region. We determined             Despite the evidence for strong dynamical evolution
the boundary of the halo by smoothing the R band image           the galaxy retains reasonably symmetric spiral structure.
with various mean and median filters. Figure 5 shows the          It satisfies the Tully-Fisher relation when placed at its
adopted boundary (heavy solid line) of the diffuse light          redshift distance.
chosen as the last contour level above the noise (approx-            NGC 7319 is a well known Seyfert 2 galaxy (see
imate surface brightness level 25.6 mag/(”)2 ). Note that        Durret 1987) with emission lines that show strong blue
the halo boundary was interpolated across NGC 7320 and           wings. The spectrum obtained at Calar Alto shows ex-
the blue tidal tails. The halo becomes very nonuniform           tended emission especially towards the NW side. The bulk
north of NGC 7318AB where active star formation related          of the emission however is not Hα but [NII]. Figure 7a
Moles et al.: Stephan’s Quintet                                             5

presents the observed Hα/[N II]λ6583 ratio along the slit.        ably attributed to the companion galaxy NGC 7318B. The
It can be seen that at some points only the [NII]λ6583 line       main parameters, which are presented in table 2, were
was detected and, in general, the line ratio is smaller than      measured from the fitted model. Comparison with val-
1. This suggests that residual gas in NGC 7319 is shocked         ues for NGC 7317 indicate that they are rather similar
–another manifestation of the past collision.                     galaxies. The result of the model fit and subtraction is
    The kinematic data are presented in figure 7b. The ve-         shown in figure 8. We notice that there is no sign of a bar
locity distribution is irregular (PA= 142◦ ). The observed        and little evidence, if any, for a disk but there is complex
velocity gradient, amounting to ∼ 200 km s−1 , suggests           residual structure. While not unprecedented in an ellip-
that this may also be the kinematic major axis. The value         tical galaxy, it could be evidence for a past interaction
we obtain for the redshift at the position of the active nu-      and/or merger event, related to the (hypothetical) earlier
cleus is 6770 (±25) km s−1 in good agreement with Hick-           passage of NGC 7320C.
son et al. (1992). However the kinematic center deduced               We measured a redshift of 6620 (±20) km s−1 , in ex-
from symmetrization of the central part of the observed           cellent agreement with Hickson et al. (1992) and slightly
velocity distribution, is slightly offset (∼4”) with respect       lower than RC3. We could not detect any rotation of the
to the active nucleus. The latter coincides with the con-         stellar component at the observed PA. On the other hand,
tinuum maximum while the kinematic center rests on the            the spectroscopic results strongly reinforce the view that
fainter knot shown in figure 6b. Therefore the systemic            NGC 7318A is an early type galaxy. The central spec-
redshift would be V= 6650 km s−1 rather than the value            trum, shown in figure 3, is much redder than that for
measured for the active nucleus.                                  NGC 7318B. The Mg2 index is 0.27 mag which is very
    An interesting result comes from the color map shown          similar to the value for NGC 7317. The central velocity
in figure 6. A well delineated structure appears in the            dispersion is σ = 230 (± 10) km s−1 again lower than the
very central region, in a direction perpendicular to the          value reported in Kent (1981). Application of the Faber–
bar, where the brightest (and reddest) knot coincides in          Jackson relation yields a most probable distance of ∼65
position with the active nucleus. That structure is coin-         Mpc, consistent with its redshift and the value obtained
cident with the jet-like continuum radio source reported          by de Vaucouleurs and Olson (1984).
by van der Hulst and Rots (1981) and with the extended                Bushouse (1987) reported detection of modest Hα
emission-line region. The large scale outflow recently re-         emission from the nuclear region of NGC 7318A. How-
ported by Aoki et al. (1996) also extends along the same          ever, higher resolution photometry by Keel et al. (1985)
direction (see figure 6b). A larger and broader red feature        reports only a more sensitive upper limits to that emis-
extends from the NGC 7319 nucleus and towards the nu-             sion. Our long slit data show no emission. In fact, only two
cleus of NGC 7318B. This feature was probably detected            emission regions were detected along the slit, located 25”
on the high redshift Hα image shown in MSM. Arp (1973)            and 34” East of the nucleus (BR1 and BR2 in figure 1).
had earlier reported detection of this structure in Hα. Per-      They correspond to regions B7 and B8 in Arp (1973). The
haps we are seeing the last remnants of the shocked emis-         first belongs to NGC 7318B. Only [OII] was detected in
sion associated with the passage of NGC 7320C through             the second region at a redshift ∼6300 km s−1 suggesting
SQ–that resulted in the complete stripping of HI from             that it could be part of the ISM stripped from NGC 7319.
NGC 7319.                                                         The same comment can be made for emission region AR3
                                                                  with V= 6460±40 km s−1 .
3.4. NGC 7318A
                                                                  3.5. NGC 7318B
The overlapping light distributions of NGC 7318AB
make it difficult to assign a morphological type to                 Subtraction of the elliptical model for NGC 7318A, leaves
each galaxy. Regarding component A, it is not even                a reasonably well defined barred spiral galaxy (figure 8).
a simple matter to decide whether it is an ellipti-               NGC 7318B is classified SBbc in RC3. Hickson et al.
cal or a late type spiral. This last possibility is mo-           (1989) assigned it an Sbc classification. The photometric
tivated by the presence of arm-like structures South              parameters are given in table 2. No emission was detected
and East of the central body that could be associated             in the long slit spectrum at PA = 27 (i.e. along the bar).
with it (see Shostak, Sullivan and Allen 1984). The type          This is compatible with the idea that it is an old pop-
given in RC3 is .E.2.P., but it was classified as Sc by            ulation II bulge+bar. The central velocity dispersion is
Hickson, Kindl and Auman (1989), and as SB0 by Hick-              220 (±10) km s−1 , which is not unusual for the bulge of
son (1994).                                                       an early-type galaxy. The Mg2 strength amounts to 0.22
    In order to help clarify the morphology of NGC 7318A          which is smaller than the values found for NGC 7317 and
we have followed the RC3 by considering the galaxy to             NGC 7318A.
be an elliptical, and tried to fit an elliptical light distribu-       Our photometric results support the idea that
tion to it. No objectively defined criteria were used, except      NGC 7318B is still relatively unperturbed as it still shows
that the residuals after model subtraction should reason-         a well defined spiral pattern. Its high relative veloc-
6                                            Moles et al.: Stephan’s Quintet

ity (∆V∼103 km s−1 ) and the radio/X-ray evidence for         distance. The other two spirals in the group also satisfy the
an ongoing collision on the eastern edge of this galaxy       Tully-Fisher relation at their respective redshift distances.
(Pietsch et al. 1997; van der Hulst and Rots 1981) strongly       The signs of interaction are mainly the two tidal tails
support the view (Shostak et al 1984) that NGC 7318B is       on the SE side of SQ, both pointing to NGC 7320C, the
now entering the group and for the first time. This col-       diffuse light surrounding the group, and the structure seen
lision is shocking the IGM of the group along with the        East of NGC 7318B. The data show that NGC 7318B still
ISM of the collider. The interface can be well seen on the    has a recognizable spiral structure and an HI disk, in-
high redshift Hα image shown in MSM. The idea that            dicating that its interaction with the other three accor-
NGC 7318B is still a reasonably intact disk galaxy is sup-    dant members of the group has begun only recently. A
ported by our reinterpretation of the HI data reported by     strong shock front appears to mark the interface of the
Shostak et al. (1984). We suggest that the two HI clouds      collision. This is best seen in radio continuum and X-ray
detected at ∼5700 km s−1 and ∼600 km s−1 actually be-         light but it is also visible in the high redshift Hα im-
long to NGC 7318B. When the HI profiles of the two             age shown in MSM. Some of the detached emission knots
clouds are superposed, the result is a double horn pro-       were detected in our slit spectra. We suggest that knots
file. The 2D HI distribution shows a hole in the center        AR3 (cz∼6460 km s−1 ), BR2 (cz∼ 6460 km s−1 ) and K3
that is coincident with the central bulge of the galaxy       (cz∼ 6680 km s−1 ) represented some of this new proto-
as is frequently found in spiral galaxies (figure 9). The      halo material. The first two show very weak Hα and well
central redshift of the combined profile agrees with the       detected [OII]λ3727. The region K3 corresponds to region
value of 5765 (± 30)km s−1 derived from the optical spec-     B10 in Arp (1973). It shows a high excitation spectrum,
trum. The (uncorrected) amplitude of the implied rotation     with [OIII]λ5007/Hβ = 2.6 and [NII]λ65847/Hα = 0.11.
amounts to 145 km s−1 .                                       These knots belong to a well defined structure in the inter-
     Our successful model subtraction of NGC 7318A sug-       galactic medium of the Quintet; the shock interface. The
gests that all of the spiral structure in the vicinity of     line ratios in knot K3 indicate a rather high excitation and
7318AB can be ascribed to component B. The outer arms         therefore a young age. Since these ratios are fully consis-
are somewhat chaotic and the region north of 7318B is         tent with photoionization by stars we conclude that there
confused at the intersection of the shock front and the       is some very recent star formation in the shocked zone.
northern spiral arm. Some of the detected HII regions         The gas is being shock heated and the emission regions
are almost certain members of NGC 7318B, in particu-          represent material that may already be cooling at optical
lar the two emission regions detected on the N edge of        wavelengths.
NGC 7320 (AR1 and AR2 in Figure 1) with V= 5540±40                In summary, the existing data suggest that SQ
and 5800±70 km s−1 and BR1 located 25” E from the cen-        is composed of: 1) a foreground dwarf spiral galaxy
ter of NGC 7318A with V = 5850 km s−1 . Finally two           (NGC 7320), 2) an interacting triplet composed of one spi-
of the detected emission knots North of the central pair      ral (NGC 7319) and two ellipticals (NGC 7317, 18A), and
(marked K1 and K2) could also be external HII regions         3) a recently arrived spiral (NGC 7318B) now entering the
associated with NGC 7318B. Both have the same redshift        group for the first time. The long structure seen east of
cz∼ 6020 km s−1 , and correspond to regions B13 and B11       the galaxy would witness this event, whereas the tidal tails
in Arp (1973). These velocities are consistent with our in-   support the idea that NGC 7320C probably collided with
terpretation of the HI in the sense that the higher veloci-   the group at least twice in the past. The detected diffuse
ties are towards the north side of the galaxy.                light detected in the SQ area, constitutes an argument for
     If we accept that the atomic gas component of the        the long term dynamical evolution of the group. In MSM
NGC 7318B is still largely in place we can apply the Tully-   we synthesize these observations and attempt to relate the
Fisher relation to it. The value we obtain from the (cor-     implications of SQ to the class of compact groups.
rected) observed parameters is ∼60 Mpc, similar to the
values we obtained for the other high redshift members of
the group.

4. Final remarks
                                                                  Acknowledgments.
The observational evidence suggests that the SQ galaxies          This research was partly supported by DGICYT
preserve a well defined identity in spite of strong signs      (Spain) grant PB93-0139. We acknowledge the support
of present and past interaction. NGC 7317 and 18A show        of the INT and the CAT for the allocation of observing
properties of elliptical galaxies. The data presented here    time. The Isaac Newton Telescope on the Island of La
has been used to estimate their distances through the use     Palma is operated by the Royal Greenwich Observatory
of the Faber & Jackson relation. The optical and HI data      at the Spanish Observatorio del Roque de los Muchachos
on NGC 7318B confirm that it is a relatively undisturbed       of the Instituto de Astrof´
                                                                                        ısica de Canarias. We acknowl-
spiral. The Tully-Fisher relation was applied to find its      edge J. Masegosa and A. del Olmo for their participation
Moles et al.: Stephan’s Quintet   7

in the observing runs. I.M. acknowledges financial support
from the Ministerio de Educaci´n y Ciencia through the
                                o
grant EX94 08826734.

References
Allen, R.J., & Sullivan III, W.T. 1980, A&A, 184, 181
Aoki, K., Ohtani, H., Yoshida, M., & Kosegi, G. 1996, AJ, 111,
   40
Arp, H. 1973, ApJ, 183, 411
Arp, H., and Kormendy, J. 1972, ApJL, 178, L111
Arp, H., and Lorre, J. 1976, ApJ 210, 58
Balkowski, C., Bottinelli, L., Gouguenheim, L., and Heidmann,
   J. 1973, A&A, 25, 319
Bettoni, D., & Fasano, G. 1993, AJ, 105, 1291
Bottinelli, L., Gouguenheim, L., Paturel, G., and de Vau-
   couleurs, G. 1985, A&ASS, 59, 43
Burbidge, E.M., and Burbidge, G.R. 1961 AJ, 66, 541
Burstein, D., Faber, S.M., Gaskell, C.M., and Krumm, N. 1984,
   ApJ, 287, 586
Bushouse, H. A. 1987, ApJ, 320, 49
de Vaucouleurs, G., and Olson, D.W. 1982, ApJ, 256, 346
de Vaucouleurs, G., and Olson, D.W. 1984, ApJSS, 56, 91
Durret, F. 1987, A&ASS, 105, 57
Faber, S.M., and Jackson, R.E. 1976, ApJ, 204, 668
Hickson, P. 1982 ApJ, 255, 382
Hickson, P. 1994, Atlas of Compact Groups of Galaxies, Gor-
   don and Breach, Switzerland
Hickson, P., Kindl, E., and Auman, J.R. 1989, ApJSS, 70, 687
Hickson, P., Mendes de Oliveira, C., Huchra, J.P., and
   Palumbo, G.G.C. 1992, ApJ, 399, 353
Kent, M. 1981, PASP, 93, 51
M´rquez, I., and Moles, M. 1996, A&ASS, 120, 1
  a
Moles, M., Sulentic, J.W., and M´rquez, I. 1997, ApJL, 485,
                                   a
   L69 (MSM)
Pierce, M.J. and Tully, R.B. 1992, ApJ 387, 47
Pietsch, W., Trincheri, G., Arp, H. and Sulentic, J.W. 1997, A
   & A 322, 89
Sandage, A. and Katem, B. 1976, AJ, 81, 954
Schombert, J.M., Wallin, J.F., and Struck-Marcell, C. 1990,
   AJ, 99, 497
Shostak, G.S. 1974, ApJL, 189, L1
Shostak, G.S., Sullivan III, W.T., and Allen, R.J. 1984, A&A,
   139,15
Sulentic, J.W. 1983, ApJ, 270, 417
Sulentic, J.W., and Arp, H. 1983, AJ, 88, 267
Tonry, and Davis, 1979, AJ, 84, 1511
van den Bergh, S. 1961, AJ66, 549
van der Hulst, J.M., and Rots, A.H. 1981, AJ, 86, 1775
Yun, M.S., Verdes-Montenegro, L., del Olmo, A. and Perea, J.
   1997, ApJL 475, 21
8                                             Moles et al.: Stephan’s Quintet




Table 2. Observed photometric and spectroscopic parameters.



                  Object         BT     (B−V)T       (B−R)T        PA      i       cz      σc       W     Mg2


                  NGC   7317    14.37      1.10         1.72       115     -     6563      215       -    0.28
                  NGC   7318A   14.33      0.94         1.65       105          6620       230       -    0.27
                  NGC   7318B   13.92                               22    51     5765      220      145   0.22
                  NGC   7319    14.23      1.00         1.68       140          6650a       -       200     -
                  NGC   7320    13.11      0.64         1.12       133    59     801        -      ≤100     -

                                  (a) This value corresponds to the systemic redshift, see text.
Moles et al.: Stephan’s Quintet   9

   Figure Captions

    Figure 1. R band image of the Quintet area taken with
the 1.5m telescope in Calar Alto. North is at the top and
East to the left. The slit positions for which detached emis-
sion knots were detected are shown. Identification is given
for those knots

    Figure 2. (a) The Hα (dashed line) and continuum
(solid line) flux distributions in NGC 7320 along the slit.
(b) Spectrum of its brightest detected HII region (AR4)

   Figure 3. The spectra of the bulges of NGC 7318A,B,
and NGC 7320

    Figure 4. Photometric profiles of NGC 7317, (a) the
intensity, (b) the ellipticity, and (c) the position angle

    Figure 5. Contour image of Stephan’s Quintet. The
solid and dashed lines represent the old and new halo,
respectively (see text)

    Figure 6. (B-R) color map of the galaxies in the Quin-
tet. Darker is bluer. The two inserts show (a) NGC 7317,
and (b) NGC 7319. The radio contours given in van der
Hulst and Rots (1981) have been plotted on the map of
the nuclear region of NGC 7319

   Figure 7. (a) The distribution of the Hα/[NII] line ratio
in NGC 7319 along the slit. (b) The velocity data along
the slit. The position of the active nucleus is marked with
AN

   Figure 8. B-band image of the pair NGC 7318A,B after
subtraction of an elliptical fit to component A

   Figure 9. Reconstruction of the HI profile of
NGC 7318B from the data reported by Shostak et al.
(1984)




This article was processed by the author using Springer-Verlag
L TEX A&A style file L-AA version 3.
a
The observational status_of_stephans_quintet
The observational status_of_stephans_quintet
The observational status_of_stephans_quintet
The observational status_of_stephans_quintet
The observational status_of_stephans_quintet
The observational status_of_stephans_quintet
The observational status_of_stephans_quintet
The observational status_of_stephans_quintet
The observational status_of_stephans_quintet

More Related Content

Viewers also liked

Viewers also liked (6)

Eso1134b
Eso1134bEso1134b
Eso1134b
 
0512351v1
0512351v10512351v1
0512351v1
 
Ngeo1212
Ngeo1212Ngeo1212
Ngeo1212
 
Eso1136
Eso1136Eso1136
Eso1136
 
1008.3907v1
1008.3907v11008.3907v1
1008.3907v1
 
A laboratory m_odel_for_saturn_hexagon
A laboratory m_odel_for_saturn_hexagonA laboratory m_odel_for_saturn_hexagon
A laboratory m_odel_for_saturn_hexagon
 

Similar to The observational status_of_stephans_quintet

The ara ob1a_association
The ara ob1a_associationThe ara ob1a_association
The ara ob1a_associationSérgio Sacani
 
The ara ob1_association
The ara ob1_associationThe ara ob1_association
The ara ob1_associationSérgio Sacani
 
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...Sérgio Sacani
 
Asymmetrical structure of_ionization_and_kinematics_in_the_seyfert_galaxy_ngc...
Asymmetrical structure of_ionization_and_kinematics_in_the_seyfert_galaxy_ngc...Asymmetrical structure of_ionization_and_kinematics_in_the_seyfert_galaxy_ngc...
Asymmetrical structure of_ionization_and_kinematics_in_the_seyfert_galaxy_ngc...Sérgio Sacani
 
Detection of the_central_star_of_the_planetary_nebula_ngc6302
Detection of the_central_star_of_the_planetary_nebula_ngc6302Detection of the_central_star_of_the_planetary_nebula_ngc6302
Detection of the_central_star_of_the_planetary_nebula_ngc6302Sérgio Sacani
 
Shaping the glowing_eye_planetary_nebula_ngc6751
Shaping the glowing_eye_planetary_nebula_ngc6751Shaping the glowing_eye_planetary_nebula_ngc6751
Shaping the glowing_eye_planetary_nebula_ngc6751Sérgio Sacani
 
Photometric distances to_young_stars_in_galactic_disk
Photometric distances to_young_stars_in_galactic_diskPhotometric distances to_young_stars_in_galactic_disk
Photometric distances to_young_stars_in_galactic_diskSérgio Sacani
 
The stellar content_of_the_ring_in_ngc660
The stellar content_of_the_ring_in_ngc660The stellar content_of_the_ring_in_ngc660
The stellar content_of_the_ring_in_ngc660Sérgio Sacani
 
Three newly discovered_globular_clusters_in_ngc6822
Three newly discovered_globular_clusters_in_ngc6822Three newly discovered_globular_clusters_in_ngc6822
Three newly discovered_globular_clusters_in_ngc6822Sérgio Sacani
 
Tidal disruption of_a_super_jupiter_by_a_massive_black_hole
Tidal disruption of_a_super_jupiter_by_a_massive_black_holeTidal disruption of_a_super_jupiter_by_a_massive_black_hole
Tidal disruption of_a_super_jupiter_by_a_massive_black_holeSérgio Sacani
 
The outer rings_of_sn1987a
The outer rings_of_sn1987aThe outer rings_of_sn1987a
The outer rings_of_sn1987aSérgio Sacani
 
Rings in the_haloes_of_planetary_nebulae
Rings in the_haloes_of_planetary_nebulaeRings in the_haloes_of_planetary_nebulae
Rings in the_haloes_of_planetary_nebulaeSérgio Sacani
 
The elusive active_nucleus_of_ngc_4945
The elusive active_nucleus_of_ngc_4945The elusive active_nucleus_of_ngc_4945
The elusive active_nucleus_of_ngc_4945Sérgio Sacani
 
Extended x ray emission in the h i cavity of ngc 4151- galaxy-scale active ga...
Extended x ray emission in the h i cavity of ngc 4151- galaxy-scale active ga...Extended x ray emission in the h i cavity of ngc 4151- galaxy-scale active ga...
Extended x ray emission in the h i cavity of ngc 4151- galaxy-scale active ga...Sérgio Sacani
 
The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...
The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...
The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...Sérgio Sacani
 
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...Sérgio Sacani
 
Proper-motion age dating of the progeny of Nova Scorpii ad 1437
Proper-motion age dating of the progeny of Nova Scorpii ad 1437Proper-motion age dating of the progeny of Nova Scorpii ad 1437
Proper-motion age dating of the progeny of Nova Scorpii ad 1437Sérgio Sacani
 

Similar to The observational status_of_stephans_quintet (20)

9805153v1
9805153v19805153v1
9805153v1
 
The ara ob1a_association
The ara ob1a_associationThe ara ob1a_association
The ara ob1a_association
 
The ara ob1_association
The ara ob1_associationThe ara ob1_association
The ara ob1_association
 
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
Off nuclear star_formation_and_obscured_activity_in_the_luminous_infrared_gal...
 
Asymmetrical structure of_ionization_and_kinematics_in_the_seyfert_galaxy_ngc...
Asymmetrical structure of_ionization_and_kinematics_in_the_seyfert_galaxy_ngc...Asymmetrical structure of_ionization_and_kinematics_in_the_seyfert_galaxy_ngc...
Asymmetrical structure of_ionization_and_kinematics_in_the_seyfert_galaxy_ngc...
 
Detection of the_central_star_of_the_planetary_nebula_ngc6302
Detection of the_central_star_of_the_planetary_nebula_ngc6302Detection of the_central_star_of_the_planetary_nebula_ngc6302
Detection of the_central_star_of_the_planetary_nebula_ngc6302
 
Shaping the glowing_eye_planetary_nebula_ngc6751
Shaping the glowing_eye_planetary_nebula_ngc6751Shaping the glowing_eye_planetary_nebula_ngc6751
Shaping the glowing_eye_planetary_nebula_ngc6751
 
Photometric distances to_young_stars_in_galactic_disk
Photometric distances to_young_stars_in_galactic_diskPhotometric distances to_young_stars_in_galactic_disk
Photometric distances to_young_stars_in_galactic_disk
 
The stellar content_of_the_ring_in_ngc660
The stellar content_of_the_ring_in_ngc660The stellar content_of_the_ring_in_ngc660
The stellar content_of_the_ring_in_ngc660
 
Three newly discovered_globular_clusters_in_ngc6822
Three newly discovered_globular_clusters_in_ngc6822Three newly discovered_globular_clusters_in_ngc6822
Three newly discovered_globular_clusters_in_ngc6822
 
Tidal disruption of_a_super_jupiter_by_a_massive_black_hole
Tidal disruption of_a_super_jupiter_by_a_massive_black_holeTidal disruption of_a_super_jupiter_by_a_massive_black_hole
Tidal disruption of_a_super_jupiter_by_a_massive_black_hole
 
The outer rings_of_sn1987a
The outer rings_of_sn1987aThe outer rings_of_sn1987a
The outer rings_of_sn1987a
 
Rings in the_haloes_of_planetary_nebulae
Rings in the_haloes_of_planetary_nebulaeRings in the_haloes_of_planetary_nebulae
Rings in the_haloes_of_planetary_nebulae
 
The elusive active_nucleus_of_ngc_4945
The elusive active_nucleus_of_ngc_4945The elusive active_nucleus_of_ngc_4945
The elusive active_nucleus_of_ngc_4945
 
Ic4663 wolf rayet
Ic4663 wolf rayetIc4663 wolf rayet
Ic4663 wolf rayet
 
1212.1169
1212.11691212.1169
1212.1169
 
Extended x ray emission in the h i cavity of ngc 4151- galaxy-scale active ga...
Extended x ray emission in the h i cavity of ngc 4151- galaxy-scale active ga...Extended x ray emission in the h i cavity of ngc 4151- galaxy-scale active ga...
Extended x ray emission in the h i cavity of ngc 4151- galaxy-scale active ga...
 
The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...
The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...
The massive relic galaxy NGC 1277 is dark matter deficient From dynamical mod...
 
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
 
Proper-motion age dating of the progeny of Nova Scorpii ad 1437
Proper-motion age dating of the progeny of Nova Scorpii ad 1437Proper-motion age dating of the progeny of Nova Scorpii ad 1437
Proper-motion age dating of the progeny of Nova Scorpii ad 1437
 

More from Sérgio Sacani

Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Sérgio Sacani
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Sérgio Sacani
 
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WayShiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WaySérgio Sacani
 
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Sérgio Sacani
 
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Sérgio Sacani
 
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoRevelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoSérgio Sacani
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterSérgio Sacani
 
Quasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxyQuasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxySérgio Sacani
 
A galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesA galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesSérgio Sacani
 
The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)Sérgio Sacani
 

More from Sérgio Sacani (20)

Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
 
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WayShiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
 
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
 
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
 
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoRevelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma cluster
 
Quasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxyQuasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our Galaxy
 
A galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesA galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxies
 
The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)The Search Of Nine Planet, Pluto (Artigo Histórico)
The Search Of Nine Planet, Pluto (Artigo Histórico)
 

Recently uploaded

"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 

Recently uploaded (20)

"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 

The observational status_of_stephans_quintet

  • 1. A&A manuscript no. (will be inserted by hand later) ASTRONOMY AND Your thesaurus codes are: ASTROPHYSICS missing; you have not inserted them 1.2.2008 The Observational Status of Stephan’s Quintet ⋆ M. Moles1,2 ⋆⋆ , I. M´rquez3,4 , and J.W. Sulentic5 a 1 Instituto de Matem´ticas y F´ a ısica Fundamental, CSIC, C/ Serrano 121, 28006 Madrid, Spain 2 Observatorio Astron´mico Nacional, Apdo. 1143, 28800 Alcal´ de Henares, Madrid, Spain o a 3 Instituto de Astrof´ ısica de Andaluc´ (C.S.I.C.), Apdo. 3004, 18080 Granada, Spain ıa 4 Institut d’Astrophysique de Paris, 98 bis Bd Arago, 75014 Paris, France 5 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, USA 35487 arXiv:astro-ph/9802328v1 26 Feb 1998 Received, ; accepted, Abstract. We present new photometric and spectro- is certainly the most intensely studied object of that class. scopic data for the galaxies in the compact group known as After every new observational effort unexpected aspects Stephan’s Quintet. We find the strongest evidence for dy- have emerged, adding to the puzzling nature of such ap- namical perturbation in the spiral component NGC 7319. parently dense galaxy aggregate. SQ can be regarded as Most of the damage was apparently caused by nearby a prototype of the compact group class (it is H92 in the NGC 7320C which passed through the group a few ×108 catalog of Hickson (1982). years ago. NGC 7318B is a spiral galaxy that shows evi- The puzzles connected with SQ began when its com- dence consistent with being in the early stages of a colli- ponent galaxy redshifts were first measured (Burbidge sion with the group. NGC 7317 and 18A are either ellip- & Burbidge 1961). First, one of the four higher redshift tical galaxies or the stripped bulges of former spiral com- galaxies (NGC 7318B) was found to have a velocity almost ponents. They show no evidence of past or present merger 1000 km s−1 lower than the other three raising questions activity but are embedded in a luminous halo which sug- about the groups dynamical stability. Then, NGC 7320 gests that they are interacting with the other members was found to show a redshift ∼5700 km s−1 lower than the of the group. The low redshift galaxy NGC 7320 is most mean of the other four. SQ became one of the key objects likely a late type, dwarf spiral projected along the same in the debate about the nature of the redshift (Sulentic line of sight as the interacting quartet. 1983). It was suggested that NGC 7320 might be a physical Key words: Galaxies - Dynamics - Interaction - Compact companion of NGC 7331 a large, nearby Sb galaxy with Groups similar redshift (van den Bergh 1961, Arp 1973). Possi- ble signs of this hypothesized interaction include a tidal tail that extends from NGC 7320 towards the SE and an HI deficiency noted by Sulentic and Arp (1983). At the same time Arp (1973) interpreted the tail as a sign 1. Introduction of interaction between NGC 7320 and the higher red- Stephan’s Quintet (SQ: also known as Arp319 and VV228) shift members of SQ. The question of the distance to is one of the most remarkable groupings of galaxies on the the different galaxies in the group was specifically ad- sky. It was the first compact galaxy group discovered and dressed by Balkowski et al. (1973) and Shostak (1974) who tried to use HI data to settle the question. The re- Send offprint requests to: M. Moles, moles@oan.es sults turned out to be contradictory and later observations ⋆ Based on data obtained at the 1.5m telescope of the (Allen and Sullivan 1980) showed that the HI in SQ was Estaci´n de Observaci´n de Calar Alto (EOCA), Instituto Ge- o o displaced from the optical galaxies. A summary of the ogr´fico Nacional, which is jointly operated by the Instituto a many papers dealing with distances to the SQ galaxies Geogr´fico Nacional and the Consejo Superior de Investiga- a can be found in Sulentic (1983). ciones Cient´ıficas through the Instituto de Astrof´ ısica de An- daluc´ıa This paper is concerned with the properties of the five ⋆⋆ Visiting Astronomer, German-Spanish Astronomical Cen- galaxies that comprise SQ. We consider both their optical ter, Calar Alto, operated by the Max-Planck-Institut fur As- properties and the question of their normality, especially tronomie jointly with the Spanish National Commission for their past/present interaction state. The analysis of the Astronomy properties of NGC 7318B are particularly relevant for the
  • 2. 2 Moles et al.: Stephan’s Quintet understanding the dynamical state of SQ because they timated from the comparison of the standards themselves suggest that it is a recent arrival in the system (see Moles, amount to 5%. The wavelength calibration accuracy is Sulentic & M´rquez 1997; MSM). The observations are a smaller for those data, and only a limited use of them presented in section 2 and analyzed galaxy-by-galaxy in will be made for kinematic analysis. section 3. The results are combined and summarized in We used cross-correlation section 4. techniques (Tonry and Davis 1979) to measure the veloc- ity distribution of the ionized gas, and to determine the central velocity dispersion of the elliptical galaxies and 2. Observations and Data Reduction of the bulges of the spiral members of the Quintet. The The data were obtained at the Calar Alto (Almer´ Spain) ıa, Mg2 strength was measured using the line and continuum and Roque de los Muchachos (La Palma, Spain) observa- spectral bands defined in Burstein et al. (1984). tories. CCD images were obtained at the prime focus of the 3.5m telescope (BVR bands, with a TEK 1024×680 3. The properties of the individual galaxies in CCD) and with the EOCA 1.5m telescope (BR bands, Stephan’s Quintet with a Thompson 1024×1024 CCD) at Calar Alto. The 3.5m telescope was also used with the Twin Spectrograph The data for the different galaxies are presented sepa- (same detector as for the images) to obtain long slit spec- rately. We begin with the brightest galaxy in the group, tra of NGC 7317, NGC 7319, and through the knots seen the low redshift member NGC 7320 and end with the pair North of the central pair (see figure 1). Long slit spectra NGC 7318A,B. An image of the SQ area is presented in of the other galaxies were obtained with the Intermedi- figure 1 with galaxy identification and slit orientations in- ate Dispersion Spectrograph attached to the Cassegrain dicated for spectra presented here. Positions of identified focus of the 2.5m telescope in La Palma, equipped with emission regions are also marked. the IPCS. All the spectra were obtained using a slit of 1.5 arcsec width. The log of the observations is presented in 3.1. NGC 7320 table 1. The image were de-biased, flat-fielded and calibrated SQ would not have satisfied the compact group selection using the appropriate routines in the FIGARO package. criteria adopted by Hickson (1982) if NGC 7320 were not Extinction and calibration stars were observed in order to superimposed. In this sense, it is a compact group by ac- calibrate the 3.5m telescope data. Errors in the standard cident. Without the superposed late type Sd galaxy, the stars are always smaller than 3%. We plotted the standard remaining four members would form a quintet with fainter stars and stars in the frames in a color-color diagram in or- NGC 7320C (it does not affect the isolation of the cata- der to determine the accuracy of the calibration. The rms logued SQ=HCG92 because it is more than three magni- of the distance between the frame stars and the standards tudes fainter than NGC 7320). Other field galaxies are suf- was taken as the calibration error. This turned out to be ficiently bright and nearby that this wider quintet would similar or less than the errors in the standard stars them- not be sufficiently isolated to pass into the (Hickson 1982) selves. Total photometric parameters were determined for compact group catalog. So the galaxies physically associ- each galaxy. Indeed, the distortions and overlapping of the ated in this system form a somewhat less compact/isolated different galaxies make those determination rather uncer- system than most Hickson groups. The core quartet is, of tain and will be discussed case by case. Total magnitudes course, highly concentrated with a mean galaxy separa- were obtained from the curve of growth and total color tion of 35 kpc. It is likely that many more groups of this indices were derived. Color maps were produced to look kind escaped inclusion in the HCG. for the presence of peculiar features. Azimuthally aver- We measure a redshift cz = 801 (±20)km s−1 for aged light profiles were determined for the galaxies (see NGC 7320 that is consistent with previous values. The M´rquez and Moles 1996, for details about the data re- a corrected blue magnitude, taking into account galactic and duction and analysis). As we will explain later, we used internal extinction (Ai = 0.40 and Ag = 0.35, respectively; an elliptical model fitted to NGC 7318A to deduce its pho- RC3) is BT = 12.35 (12.53 in Hickson et al. 1989). The tometric parameters. Once the model was subtracted, the galaxy is rather blue with (corrected) indices (U−B)T = remaining light distribution was considered to belong to −0.11 (RC3), and (B − V)T = 0.46, consistent with its NGC 7318B. late morphological type. Schombert et al. (1990) report a The spectroscopic data obtained at Calar Alto has a similar B−V color in their grid photometric study where high wavelength calibration accuracy and this data was N 7320 is also misidentified as one of the accordant red- used to derive kinematic properties. The accuracy was es- shift components in SQ. timated from the position of the main sky lines in the No emission lines other than marginal [OII] are de- frame. The rms values are always smaller than 0.1 ˚. The A tected from the weak central bulge (see figure 3). The La Palma data were also flux calibrated. Several standard long slit data show no or very weak emission except in stars were observed for this purpose. The flux errors, es- localized regions. Its distribution along the major axis of
  • 3. Moles et al.: Stephan’s Quintet 3 Table 1. Log of the observations Object Telescope Spectral band Exp. (s) PA FWHM(”) ˚/pixel A Date SQ 3.5m Johnson B 1200 - 0.9 - 08/20/88 SQ 3.5m Johnson V 1000 - 0.9 - 08/20/88 SQ 3.5m Johnson R 700 - 0.9 - 08/20/88 SQ 1.5m Johnson B 5400 - 1.2 - 10/12/92 SQ 1.5m Gunn r 2100 - 1.2 - 10/12/92 NGC 7317 3.5m 4200˚- 5500˚ A A 2500 109 1.1 0.9 10/31/89 NGC 7318A 2.5m 3200˚- 7000˚ A A 3000 109 1.2 2.04 08/04/89 NGC 7318B 2.5m 3200˚- 7000˚ A A 3600 27 1.3 2.04 08/04/89 NGC 7319 2.5m 3200˚- 7000˚ A A 1900 142 1.2 2.04 08/04/89 NGC 7319 3.5m 6000˚- 7200˚ A A 2000 142 1.1 1.2 08/25/89 NGC 7320 2.5m 3200˚- 7000˚ A A 5000 134 1.5 2.04 08/02/89 the galaxy is asymmetric (see figure 2a). Emission regions the derived optical luminosity. Shostak et al. (1984) ap- were only detected in the NW half of the disk. The Hα plied a rotation amplitude vs. size relation and also found image shown in MSM indicates that this is, in part an that ∆V is too large for the observed optical diameter. accident of slit positioning. A more symmetric HII region Bottinelli et al. (1985) report a corrected width of 160 distribution is found with the brightest condensations, ad- km s−1 while Sulentic and Arp (1983) give a value ∆V≈ mittedly, on the NW side. Two of these emission regions, 200km s−1 . The latter value agrees with the Westerbork at 19” and 35” from the center (AR5 and AR4 in Figure value of Shostak et al. Thus the latest determination fa- 1) have redshifts (730±40 and 760±25 respectively) con- vor a somewhat too large value for the 21cm line width. sistent with membership in NGC 7320. They correspond This may support the contention of Sulentic & Arp (1983) to the regions denoted A7 and A8, respectively, in Arp that the HI emission in NGC 7320 is peculiar and ex- (1973). They show line ratios (see figure 2b) typical for tended. Low redshift HI synthesis observations with sen- HII regions (with a metallicity of Z ∼0.5Z⊙, as frequently sitivity to extended structure could prove interesting. We found for late-type spiral galaxies). The other three de- have re-applied the Tully-Fisher relation using the cali- tected HII regions at 54”, 60”, and 75” from the center bration given by Pierce & Tully (1992). Good agreement (AR3, AR2 and AR1 in Figure 1) belong to the accordant is found between BT and ∆V(21cm) consistent with a dis- quartet. tance r≤12 Mpc for NGC 7320. Our photometric data shows no marked internal pe- culiarities. As discussed in MSM, there is no clear evi- 3.2. NGC 7317 dence to suggest that the tail that seems to emerge from The measured parameters for NGC 7317 are presented NGC 7320 actually belongs to it. The low redshift Hα im- in Table 2. The galaxy appears to be a normal age presented in that paper shows no evidence for any E2 system. It was also classified as an elliptical by condensations in the tail though they are clearly seen on Hickson, Kindl and Auman (1989), but Hickson (1994) broad-band images. It is therefore most easily interpreted assigns an Sa type. The observed light distribution is af- as a background feature related to interactions in the ac- fected by a nearby bright star plus (possibly) a back- cordant redshift quartet. The fact that this tail is parallel ground galaxy which can give the impression of an arc- to a second brighter one located towards the NE supports like structure resembling a spiral arm. We derived pho- that assumption since the second tail is clearly not related tometric properties for this galaxy by fitting ellipses to to NGC 7320. the inner parts where the starlight has no influence and The relatively undisturbed morphology of NGC 7320 then extrapolating the model through the outer regions. suggest that it would be reasonable to apply criteria for The adequacy of the fitting was judged by examining the estimating redshift independent distances. Kent (1981) residuals of the model subtraction. Only small amplitude applied a ∆V(21cm) vs. log L relation to NGC 7320. It residuals at the noise level were observed, indicating that was found to fall “somewhat” (meaning far) off the cal- the fit was satisfactory. The results are presented in figure ibration relation in the sense that ∆V is too large for 4, where we plot the intensity, ellipticity and position angle
  • 4. 4 Moles et al.: Stephan’s Quintet profiles. They appear typical for a normal elliptical galaxy. to new activity is observed. In order to make a conserva- The data are given in table 2. The ellipticity profile shows tive estimate of the halo luminosity we chose the region some structure but this is not unusual especially for ellipti- between NGC 7317 and 7318A as “typical” with mean sur- cals belonging to groups (Bettoni & Fasano 1993). Finally face brightness 24.4 mag arcsec−2 . This average level was the color map presented in figure 5a shows a smooth distri- multiplied by the total area inside of the adopted bound- bution of light for NGC 7317 without structure or well de- ary . Using our assumption of constant surface brightness lineated components. Thus NGC 7317 shows no evidence we obtain Mhalo = -20.9 ≈ L∗ ≈ the average luminosity of for past or present merger activity. an SQ component. The extension and surface brightness of this diffuse From our spectrum of the central region we mea- light rules out the possibility that is produced by overlap sure a redshift cz = 6563 (±29) km s−1 in good agree- of individual galaxy haloes, especially NW of NGC 7317. ment with the value reported by Hickson et al. (1992). We note that NGC 7317 is not centered in the diffuse light No rotation is seen along the slit at our posi- that extends in its direction. This may mean that it has tion angle. The central velocity dispersion was mea- a considerable transverse component in motion relative to sured to be σ = 215 (±10) km s−1 compared to 299 the rest of the group. This is almost required for the group km s−1 reported by Kent (1981). The Mg2 strength is to avoid collapse because the relative radial velocities of 0.28 which is typical for early-type galaxies. From the NGC 7317, 18A and 19 are very small. photometric and spectroscopic data we conclude that NGC 7317 is a reasonably normal elliptical galaxy. Ap- 3.3. NGC 7319 plication of the Faber and Jackson (1976) relation as re- vised by de Vaucouleurs and Olson (1982) gives D ∼ 65 This SBc galaxy shows the strongest evidence for tidal dis- Mpc, in agreement with the photometric estimate of turbance. It shows a strong bar at PA = 142 which is also de Vaucouleurs and Olson (1984). the position angle of the major axis. The arms show no This leaves open the question of whether NGC 7317 evidence for any emission regions or dust lanes. The gen- is an active participant in the dynamical evolution of SQ. eral aspect of the galaxy with its tails and arcs has been There is no internal evidence for a past merger and no described in the literature (Arp and Kormendy 1972, obvious evidence for interaction. The single strong form Schombert, Wallin and Struck-Marcell 1990). Our photo- of evidence for active participation in SQ comes from metric results are given in table 2. A blue (B−V= the diffuse halo which clearly extends from the region of 0.57) tidal tail extends towards the SE from the edge of NGC 7318A,B towards NGC 7317. This halo can be seen NGC 7319. The connection to NGC 7319 is not unambigu- on most deep images published over the past 25 years (Arp ous as it shows no smooth connection to the spiral arms 1973, Arp and Kormendy 1972, Arp and Lorre 1976 and in that galaxy. The tail is parallel to and brighter than Schombert et al. 1990). Sandage and Katem (1976) sug- the one that passes behind NGC 7320. Both tails curve in gested that much of the faint emission could be due to the direction of NGC 7320C. At the same time, HI map- high latitude galactic cirrus. While this interpretation is ping (Shostak et al. 1984) shows that NGC 7319 has been probably true for much of the structure seen far from SQ, completely stripped of its neutral hydrogen. Hα images there is unambiguous diffuse structure associated with the (Arp 1973 and MSM) show almost no emission from the group that represents evidence for dynamical evolution. galaxy as well. Recent CO mapping of NGC 7319 (Yun We identify two components to the SQ halo: 1) a red- et al. 1997) show only a few small molecular clouds that der component that is particularly strong to the NW of appear unrelated to the spiral structure. They match very NGC 7317 and 2) a bluer component associated with the well dust patches seen on deep optical photographs and tidal tails extending towards the SE. The former compo- may well represent stripped material above the disk. All nent clearly links NGC 7317 with the rest of the accordant those evidences support the view (Shostak et al. 1984) that galaxies. NGC 7319 has suffered a strong collision/encounter that We estimated the extent and integrated luminosity of has efficiently stripped its ISM. That tail points towards the older halo component using IDL tasks after standard NGC 7320C as the intruder responsible for the stripping reductions and flat fielding. We removed the foreground event (Shostak et al. 1984; MSM) stars which are numerous in the SQ region. We determined Despite the evidence for strong dynamical evolution the boundary of the halo by smoothing the R band image the galaxy retains reasonably symmetric spiral structure. with various mean and median filters. Figure 5 shows the It satisfies the Tully-Fisher relation when placed at its adopted boundary (heavy solid line) of the diffuse light redshift distance. chosen as the last contour level above the noise (approx- NGC 7319 is a well known Seyfert 2 galaxy (see imate surface brightness level 25.6 mag/(”)2 ). Note that Durret 1987) with emission lines that show strong blue the halo boundary was interpolated across NGC 7320 and wings. The spectrum obtained at Calar Alto shows ex- the blue tidal tails. The halo becomes very nonuniform tended emission especially towards the NW side. The bulk north of NGC 7318AB where active star formation related of the emission however is not Hα but [NII]. Figure 7a
  • 5. Moles et al.: Stephan’s Quintet 5 presents the observed Hα/[N II]λ6583 ratio along the slit. ably attributed to the companion galaxy NGC 7318B. The It can be seen that at some points only the [NII]λ6583 line main parameters, which are presented in table 2, were was detected and, in general, the line ratio is smaller than measured from the fitted model. Comparison with val- 1. This suggests that residual gas in NGC 7319 is shocked ues for NGC 7317 indicate that they are rather similar –another manifestation of the past collision. galaxies. The result of the model fit and subtraction is The kinematic data are presented in figure 7b. The ve- shown in figure 8. We notice that there is no sign of a bar locity distribution is irregular (PA= 142◦ ). The observed and little evidence, if any, for a disk but there is complex velocity gradient, amounting to ∼ 200 km s−1 , suggests residual structure. While not unprecedented in an ellip- that this may also be the kinematic major axis. The value tical galaxy, it could be evidence for a past interaction we obtain for the redshift at the position of the active nu- and/or merger event, related to the (hypothetical) earlier cleus is 6770 (±25) km s−1 in good agreement with Hick- passage of NGC 7320C. son et al. (1992). However the kinematic center deduced We measured a redshift of 6620 (±20) km s−1 , in ex- from symmetrization of the central part of the observed cellent agreement with Hickson et al. (1992) and slightly velocity distribution, is slightly offset (∼4”) with respect lower than RC3. We could not detect any rotation of the to the active nucleus. The latter coincides with the con- stellar component at the observed PA. On the other hand, tinuum maximum while the kinematic center rests on the the spectroscopic results strongly reinforce the view that fainter knot shown in figure 6b. Therefore the systemic NGC 7318A is an early type galaxy. The central spec- redshift would be V= 6650 km s−1 rather than the value trum, shown in figure 3, is much redder than that for measured for the active nucleus. NGC 7318B. The Mg2 index is 0.27 mag which is very An interesting result comes from the color map shown similar to the value for NGC 7317. The central velocity in figure 6. A well delineated structure appears in the dispersion is σ = 230 (± 10) km s−1 again lower than the very central region, in a direction perpendicular to the value reported in Kent (1981). Application of the Faber– bar, where the brightest (and reddest) knot coincides in Jackson relation yields a most probable distance of ∼65 position with the active nucleus. That structure is coin- Mpc, consistent with its redshift and the value obtained cident with the jet-like continuum radio source reported by de Vaucouleurs and Olson (1984). by van der Hulst and Rots (1981) and with the extended Bushouse (1987) reported detection of modest Hα emission-line region. The large scale outflow recently re- emission from the nuclear region of NGC 7318A. How- ported by Aoki et al. (1996) also extends along the same ever, higher resolution photometry by Keel et al. (1985) direction (see figure 6b). A larger and broader red feature reports only a more sensitive upper limits to that emis- extends from the NGC 7319 nucleus and towards the nu- sion. Our long slit data show no emission. In fact, only two cleus of NGC 7318B. This feature was probably detected emission regions were detected along the slit, located 25” on the high redshift Hα image shown in MSM. Arp (1973) and 34” East of the nucleus (BR1 and BR2 in figure 1). had earlier reported detection of this structure in Hα. Per- They correspond to regions B7 and B8 in Arp (1973). The haps we are seeing the last remnants of the shocked emis- first belongs to NGC 7318B. Only [OII] was detected in sion associated with the passage of NGC 7320C through the second region at a redshift ∼6300 km s−1 suggesting SQ–that resulted in the complete stripping of HI from that it could be part of the ISM stripped from NGC 7319. NGC 7319. The same comment can be made for emission region AR3 with V= 6460±40 km s−1 . 3.4. NGC 7318A 3.5. NGC 7318B The overlapping light distributions of NGC 7318AB make it difficult to assign a morphological type to Subtraction of the elliptical model for NGC 7318A, leaves each galaxy. Regarding component A, it is not even a reasonably well defined barred spiral galaxy (figure 8). a simple matter to decide whether it is an ellipti- NGC 7318B is classified SBbc in RC3. Hickson et al. cal or a late type spiral. This last possibility is mo- (1989) assigned it an Sbc classification. The photometric tivated by the presence of arm-like structures South parameters are given in table 2. No emission was detected and East of the central body that could be associated in the long slit spectrum at PA = 27 (i.e. along the bar). with it (see Shostak, Sullivan and Allen 1984). The type This is compatible with the idea that it is an old pop- given in RC3 is .E.2.P., but it was classified as Sc by ulation II bulge+bar. The central velocity dispersion is Hickson, Kindl and Auman (1989), and as SB0 by Hick- 220 (±10) km s−1 , which is not unusual for the bulge of son (1994). an early-type galaxy. The Mg2 strength amounts to 0.22 In order to help clarify the morphology of NGC 7318A which is smaller than the values found for NGC 7317 and we have followed the RC3 by considering the galaxy to NGC 7318A. be an elliptical, and tried to fit an elliptical light distribu- Our photometric results support the idea that tion to it. No objectively defined criteria were used, except NGC 7318B is still relatively unperturbed as it still shows that the residuals after model subtraction should reason- a well defined spiral pattern. Its high relative veloc-
  • 6. 6 Moles et al.: Stephan’s Quintet ity (∆V∼103 km s−1 ) and the radio/X-ray evidence for distance. The other two spirals in the group also satisfy the an ongoing collision on the eastern edge of this galaxy Tully-Fisher relation at their respective redshift distances. (Pietsch et al. 1997; van der Hulst and Rots 1981) strongly The signs of interaction are mainly the two tidal tails support the view (Shostak et al 1984) that NGC 7318B is on the SE side of SQ, both pointing to NGC 7320C, the now entering the group and for the first time. This col- diffuse light surrounding the group, and the structure seen lision is shocking the IGM of the group along with the East of NGC 7318B. The data show that NGC 7318B still ISM of the collider. The interface can be well seen on the has a recognizable spiral structure and an HI disk, in- high redshift Hα image shown in MSM. The idea that dicating that its interaction with the other three accor- NGC 7318B is still a reasonably intact disk galaxy is sup- dant members of the group has begun only recently. A ported by our reinterpretation of the HI data reported by strong shock front appears to mark the interface of the Shostak et al. (1984). We suggest that the two HI clouds collision. This is best seen in radio continuum and X-ray detected at ∼5700 km s−1 and ∼600 km s−1 actually be- light but it is also visible in the high redshift Hα im- long to NGC 7318B. When the HI profiles of the two age shown in MSM. Some of the detached emission knots clouds are superposed, the result is a double horn pro- were detected in our slit spectra. We suggest that knots file. The 2D HI distribution shows a hole in the center AR3 (cz∼6460 km s−1 ), BR2 (cz∼ 6460 km s−1 ) and K3 that is coincident with the central bulge of the galaxy (cz∼ 6680 km s−1 ) represented some of this new proto- as is frequently found in spiral galaxies (figure 9). The halo material. The first two show very weak Hα and well central redshift of the combined profile agrees with the detected [OII]λ3727. The region K3 corresponds to region value of 5765 (± 30)km s−1 derived from the optical spec- B10 in Arp (1973). It shows a high excitation spectrum, trum. The (uncorrected) amplitude of the implied rotation with [OIII]λ5007/Hβ = 2.6 and [NII]λ65847/Hα = 0.11. amounts to 145 km s−1 . These knots belong to a well defined structure in the inter- Our successful model subtraction of NGC 7318A sug- galactic medium of the Quintet; the shock interface. The gests that all of the spiral structure in the vicinity of line ratios in knot K3 indicate a rather high excitation and 7318AB can be ascribed to component B. The outer arms therefore a young age. Since these ratios are fully consis- are somewhat chaotic and the region north of 7318B is tent with photoionization by stars we conclude that there confused at the intersection of the shock front and the is some very recent star formation in the shocked zone. northern spiral arm. Some of the detected HII regions The gas is being shock heated and the emission regions are almost certain members of NGC 7318B, in particu- represent material that may already be cooling at optical lar the two emission regions detected on the N edge of wavelengths. NGC 7320 (AR1 and AR2 in Figure 1) with V= 5540±40 In summary, the existing data suggest that SQ and 5800±70 km s−1 and BR1 located 25” E from the cen- is composed of: 1) a foreground dwarf spiral galaxy ter of NGC 7318A with V = 5850 km s−1 . Finally two (NGC 7320), 2) an interacting triplet composed of one spi- of the detected emission knots North of the central pair ral (NGC 7319) and two ellipticals (NGC 7317, 18A), and (marked K1 and K2) could also be external HII regions 3) a recently arrived spiral (NGC 7318B) now entering the associated with NGC 7318B. Both have the same redshift group for the first time. The long structure seen east of cz∼ 6020 km s−1 , and correspond to regions B13 and B11 the galaxy would witness this event, whereas the tidal tails in Arp (1973). These velocities are consistent with our in- support the idea that NGC 7320C probably collided with terpretation of the HI in the sense that the higher veloci- the group at least twice in the past. The detected diffuse ties are towards the north side of the galaxy. light detected in the SQ area, constitutes an argument for If we accept that the atomic gas component of the the long term dynamical evolution of the group. In MSM NGC 7318B is still largely in place we can apply the Tully- we synthesize these observations and attempt to relate the Fisher relation to it. The value we obtain from the (cor- implications of SQ to the class of compact groups. rected) observed parameters is ∼60 Mpc, similar to the values we obtained for the other high redshift members of the group. 4. Final remarks Acknowledgments. The observational evidence suggests that the SQ galaxies This research was partly supported by DGICYT preserve a well defined identity in spite of strong signs (Spain) grant PB93-0139. We acknowledge the support of present and past interaction. NGC 7317 and 18A show of the INT and the CAT for the allocation of observing properties of elliptical galaxies. The data presented here time. The Isaac Newton Telescope on the Island of La has been used to estimate their distances through the use Palma is operated by the Royal Greenwich Observatory of the Faber & Jackson relation. The optical and HI data at the Spanish Observatorio del Roque de los Muchachos on NGC 7318B confirm that it is a relatively undisturbed of the Instituto de Astrof´ ısica de Canarias. We acknowl- spiral. The Tully-Fisher relation was applied to find its edge J. Masegosa and A. del Olmo for their participation
  • 7. Moles et al.: Stephan’s Quintet 7 in the observing runs. I.M. acknowledges financial support from the Ministerio de Educaci´n y Ciencia through the o grant EX94 08826734. References Allen, R.J., & Sullivan III, W.T. 1980, A&A, 184, 181 Aoki, K., Ohtani, H., Yoshida, M., & Kosegi, G. 1996, AJ, 111, 40 Arp, H. 1973, ApJ, 183, 411 Arp, H., and Kormendy, J. 1972, ApJL, 178, L111 Arp, H., and Lorre, J. 1976, ApJ 210, 58 Balkowski, C., Bottinelli, L., Gouguenheim, L., and Heidmann, J. 1973, A&A, 25, 319 Bettoni, D., & Fasano, G. 1993, AJ, 105, 1291 Bottinelli, L., Gouguenheim, L., Paturel, G., and de Vau- couleurs, G. 1985, A&ASS, 59, 43 Burbidge, E.M., and Burbidge, G.R. 1961 AJ, 66, 541 Burstein, D., Faber, S.M., Gaskell, C.M., and Krumm, N. 1984, ApJ, 287, 586 Bushouse, H. A. 1987, ApJ, 320, 49 de Vaucouleurs, G., and Olson, D.W. 1982, ApJ, 256, 346 de Vaucouleurs, G., and Olson, D.W. 1984, ApJSS, 56, 91 Durret, F. 1987, A&ASS, 105, 57 Faber, S.M., and Jackson, R.E. 1976, ApJ, 204, 668 Hickson, P. 1982 ApJ, 255, 382 Hickson, P. 1994, Atlas of Compact Groups of Galaxies, Gor- don and Breach, Switzerland Hickson, P., Kindl, E., and Auman, J.R. 1989, ApJSS, 70, 687 Hickson, P., Mendes de Oliveira, C., Huchra, J.P., and Palumbo, G.G.C. 1992, ApJ, 399, 353 Kent, M. 1981, PASP, 93, 51 M´rquez, I., and Moles, M. 1996, A&ASS, 120, 1 a Moles, M., Sulentic, J.W., and M´rquez, I. 1997, ApJL, 485, a L69 (MSM) Pierce, M.J. and Tully, R.B. 1992, ApJ 387, 47 Pietsch, W., Trincheri, G., Arp, H. and Sulentic, J.W. 1997, A & A 322, 89 Sandage, A. and Katem, B. 1976, AJ, 81, 954 Schombert, J.M., Wallin, J.F., and Struck-Marcell, C. 1990, AJ, 99, 497 Shostak, G.S. 1974, ApJL, 189, L1 Shostak, G.S., Sullivan III, W.T., and Allen, R.J. 1984, A&A, 139,15 Sulentic, J.W. 1983, ApJ, 270, 417 Sulentic, J.W., and Arp, H. 1983, AJ, 88, 267 Tonry, and Davis, 1979, AJ, 84, 1511 van den Bergh, S. 1961, AJ66, 549 van der Hulst, J.M., and Rots, A.H. 1981, AJ, 86, 1775 Yun, M.S., Verdes-Montenegro, L., del Olmo, A. and Perea, J. 1997, ApJL 475, 21
  • 8. 8 Moles et al.: Stephan’s Quintet Table 2. Observed photometric and spectroscopic parameters. Object BT (B−V)T (B−R)T PA i cz σc W Mg2 NGC 7317 14.37 1.10 1.72 115 - 6563 215 - 0.28 NGC 7318A 14.33 0.94 1.65 105 6620 230 - 0.27 NGC 7318B 13.92 22 51 5765 220 145 0.22 NGC 7319 14.23 1.00 1.68 140 6650a - 200 - NGC 7320 13.11 0.64 1.12 133 59 801 - ≤100 - (a) This value corresponds to the systemic redshift, see text.
  • 9. Moles et al.: Stephan’s Quintet 9 Figure Captions Figure 1. R band image of the Quintet area taken with the 1.5m telescope in Calar Alto. North is at the top and East to the left. The slit positions for which detached emis- sion knots were detected are shown. Identification is given for those knots Figure 2. (a) The Hα (dashed line) and continuum (solid line) flux distributions in NGC 7320 along the slit. (b) Spectrum of its brightest detected HII region (AR4) Figure 3. The spectra of the bulges of NGC 7318A,B, and NGC 7320 Figure 4. Photometric profiles of NGC 7317, (a) the intensity, (b) the ellipticity, and (c) the position angle Figure 5. Contour image of Stephan’s Quintet. The solid and dashed lines represent the old and new halo, respectively (see text) Figure 6. (B-R) color map of the galaxies in the Quin- tet. Darker is bluer. The two inserts show (a) NGC 7317, and (b) NGC 7319. The radio contours given in van der Hulst and Rots (1981) have been plotted on the map of the nuclear region of NGC 7319 Figure 7. (a) The distribution of the Hα/[NII] line ratio in NGC 7319 along the slit. (b) The velocity data along the slit. The position of the active nucleus is marked with AN Figure 8. B-band image of the pair NGC 7318A,B after subtraction of an elliptical fit to component A Figure 9. Reconstruction of the HI profile of NGC 7318B from the data reported by Shostak et al. (1984) This article was processed by the author using Springer-Verlag L TEX A&A style file L-AA version 3. a