SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
Reports 
One major goal in astrophysics is to extend previous successes in the
characterization and modeling of stellar atmospheres to the much cooler
atmospheres of extrasolar planets. A key pathway is the identification of
free-floating objects that not only share common temperatures with
exoplanets but that also share common masses and thus surface gravities.
In recent years, searches for ever colder free-floating brown dwarfs-
objects with masses below the hydrogen-fusing mass limit-have steadily
pushed the census of the solar neighborhood to ever lower masses and
finally perhaps into the planetary-mass regime ( 13 Jupiter masses).<
The detection of large samples of brown dwarfs at the beginning of
the last decade ushered in two, now widely accepted, spectral types de-
noted by the letters “L” and “T” that extend the canonical OBAFGKM
scheme for classifying stars that had stood untouched for nearly a centu-
ry. Over the last two years, candidates for a “Y” spectral class have been
uncovered in binary surveys (1, 2) and in all-sky imaging data from
WISE, the Wide-field Infrared Survey Explorer (3). The primary criterion
adopted to trigger this class has been the appearance of ammonia (NH3)
absorption in near-infrared (1-2.5 μm) spectra.
Y dwarfs probe colder atmospheric physics than before, with puta-
tive effective temperatures as low as Teff 300 K and masses of ≈ 5-20
Jupiter masses (3). If found orbiting a star, a Y dwarf would likely be
considered a gas-giant planet. However, these estimated properties of Y
dwarfs are speculative given the uncertainty in their temperatures, ages,
and luminosities. Temperatures have only been estimated from model
atmospheres that use incomplete molecular line lists and simple prescrip-
tions for complex processes like nonequilibrium chemistry and conden-
sate formation.
An independent approach for determining temperatures is to com-
bine bolometric luminosities (Lbol) with evolutionary model-predicted
radii (R ) and apply the Stefan-Boltzmann Law, Teff ≡ (4πσR 2
/Lbol)−1/4
.
Recent observations of transiting substellar objects generally support
evolutionary model radius predictions over a wide range of masses (4–
6). Although many may not be ideal test cases, since they may have
formed via core accretion or have been intensely irradiated, variations in
radii are expected to be relatively small and not strongly influence our
resulting temperatures given the weak
dependence on radius (Teff R −1/2
).
Therefore, the key measurements need-
ed to determine temperatures via lumi-
nosity are accurate distances to Y
dwarfs, along with a method for com-
puting Lbol from multi-wavelength pho-
tometry.
Trigonometric parallaxes provide
the only direct means of measuring
distances to stars. A star’s distance is
inversely proportional to the amplitude
of its apparent periodic motion on the
sky relative to more distant background
stars, which is due to the Earth’s orbital
motion around the Sun. The amplitude
of this effect is small, 0.1 arcseconds
for a star at 10 parsec, and thus measur-
ing parallaxes requires long-term, pre-
cise position measurements. We have
been using the Infrared Array Camera
(IRAC) on board the Spitzer Space
Telescope to obtain such astrometry of
late-T and Y dwarfs from 2011-2012.
Spitzer currently trails the Earth by ≈ 2
months in its solar orbit, and keeping its
solar shield directed at the Sun forces
the telescope to observe stars near par-
allax maximum. By maintaining a cold temperature Spitzer can obtain
sensitive images in the thermal mid-infrared, where Y dwarfs emit most
of their flux, giving it an advantage over ground-based near-infrared
observations of Y dwarfs. We also use an improved correction for the
nonlinear optical distortion of Spitzer/IRAC that enables 10× smaller
residual errors than the correction used by the standard data pipeline,
allowing us to unlock the precision astrometric capabilities of Spitzer.
Distances, Luminosities, and
Temperatures of the Coldest Known
Substellar Objects
Trent J. Dupuy1
and Adam L. Kraus1,2
1
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA.
2
Astronomy
epartment, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712, USA.D
Corresponding author. E-mail: tdupuy@cfa.harvard.edu
The coolest known brown dwarfs are our best analogs to extrasolar gas-giant
planets. The prolific detections of such cold substellar objects in the past two years
has spurred intensive followup, but the lack of accurate distances is a key gap in
our understanding. We present a large sample of precise distances based on
homogeneous mid-infrared astrometry that robustly establish absolute fluxes,
luminosities, and temperatures. The coolest brown dwarfs have temperatures of 400
to 450 kelvin and masses ≈5 to 20× that of Jupiter, showing they bridge the gap
between hotter brown dwarfs and gas-giant planets. At these extremes, spectral
energy distributions no longer follow a simple correspondence with temperature,
suggesting an increasing role of other physical parameters such as surface gravity,
vertical mixing, clouds, and metallicity.
By combining our parallaxes (Table S1, Fig. S1) with photometry
from the literature (7–9), we have determined absolute magnitudes in the
near-infrared YJHK bands (≈ 1.0-2.4 μm) and Spitzer’s mid-infrared
bands at 3.6 μm and 4.5 μm (Table S2, Fig. 1, Fig. 2). For each spectral
type bin, we computed the weighted mean absolute magnitude as well as
upper/lower limits on the amount of intrinsic scatter in the magnitudes
(Table S3).
Objects classified as normal Y0 dwarfs are ≈2 magnitudes (≈6×)
fainter in the near-infrared compared to the latest type T dwarfs, yet they
generally share very similar colors. The most notable exception is that
the Y−J colors become much bluer for Y dwarfs (9), which we find is
due to flux at ≈1.25 μm dropping by 5× while flux at ≈ 1.05 μm only
drops by 2.5×. This behavior is consistent with prior speculation that Y
dwarfs may be so cool that the alkali atoms that dominate absorption at
blue wavelengths for warmer brown dwarfs finally become locked into
molecules like Na2S and KCl, thereby reducing the opacity at 1.05 μm
relative to 1.25 μm (10). The appearance of such molecules could result
in the return of substantial condensate clouds (11) and corresponding
variability/weather.
In contrast to their near-infrared behavior, Y dwarfs show remarka-
ble diversity in their mid-infrared colors. Even though they are only ≈2×
fainter than the latest T dwarfs at these wavelengths, they range from the
same color as late-T dwarfs to much redder (≈0.8 magnitudes). One of
the reddest objects is WISEP J1405+5534, which has been typed as “Y0
peculiar?” because its H-band spectral peak is shifted 60 Å redder than
the Y0 standard WISEP J1738+2732 (3). We find that WISEP
J1405+5534 in fact has a very similar temperature to other Y0 dwarfs
(Table S5) indicating that its unusual spectrum is due to another physical
/ http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 1/ 10.1126/science.1241917
onSeptember9,2013www.sciencemag.orgDownloadedfrom
property. Both the mid-infrared color and peculiar spectrum may be
explained by a reduced level of nonequilibrium chemistry in the photo-
sphere, perhaps due to reduced vertical mixing. This would produce
enhanced NH3 absorption at H-band as compared to other Y0 dwarfs and
enhanced CH4 absorption relative to CO driving WISEP J1405+5534 to
redder [3.6]−[4.5] colors.
The coldest brown dwarfs also demonstrate unusual behavior in their
absolute fluxes as a function of spectral type. Despite the plummeting
near-infrared flux-normal Y0 dwarfs are ≈6× fainter than the latest T
dwarfs-Y0 dwarfs have indistinguishable fluxes compared to each other
to within 15%-25%. This is very unusual compared to warmer brown
dwarfs, which do not show such step-function behavior at any spectral
type transition and also show much larger intrinsic scatter (≈30%-50%)
in absolute fluxes for a given spectral type (12). This homogeneity
among the Y0 dwarfs is further unexpected because it reverses the trend
observed for the late-T dwarfs that the scatter increases substantially
with later type, cooler objects (Fig. 3). For example, here we double the
sample of T9 dwarfs with accurate distances and find that their near-
infrared fluxes typically have a scatter of 130%-210%.
Another unexpected result is that T9.5 dwarfs appear to be brighter
at all bandpasses than the mean for T9 dwarfs and the T9 standard UGPS
J0722−0540. Given the smaller sample of T9.5 dwarfs (three objects)
and their more uncertain distances, this brightening is currently a 2σ
result, i.e., the weighted means in Table S3 are consistent with being
equal at a p-value of 0.05. Such a brightening is reminiscent of the
change in near-infrared fluxes from late-L to early-T dwarfs (13, 14),
however we note that the brightening at the L/T transition only occurs at
blue near-infrared wavelengths whereas we see brightening at all bands
for the T9.5 dwarfs.
To derive bolometric luminosities from the absolute fluxes, we com-
puted “super-magnitudes” by summing the fluxes in near- and mid-
infrared bandpasses. This is an approximation to the standard method of
integrating the observed spectral energy distribution as a function of
wavelength, which is not possible for Y dwarfs given the current lack of
sensitive mid-infrared spectrographs. We derive a multiplicative correc-
tion to account for the remaining flux not captured in these bands from a
large grid of model atmospheres (11, 15). The weak dependence on these
models is highlighted by the 8% fractional uncertainty in this correction
factor (Fig. S4).
We used the Cond evolutionary models (16) to estimate radii and
thereby temperatures, masses, and surface gravities from the bolometric
luminosities of our sample (Fig. 4, Table S5). We assumed fiducial ages
of 1 Gyr and 5 Gyr as expected for the field population (17, 18). The
tangential velocities for our sample are consistent with having such typi-
cal ages. We find that the fractional change in temperature over this
narrow range of spectral types is remarkably large: the mean temperature
of T8 dwarfs is 685-745 K (for 1-5 Gyr), and this drops to 410-440 K for
Y0 dwarfs (Table S6). Thus, these two subtypes alone span the same
fractional range in temperature as the entire sequence of FGK stars
(7300-4400 K) that are 10× hotter.
Although much cooler than their late-T counterparts, Y0 dwarfs turn
out to be significantly warmer than previously suggested from model
atmosphere fitting (Fig. S5). The most common best-fit models of Y0
dwarfs in previous work have Teff = 350 K, with plausible model fits of
400 K in some cases (3). Thus, model fits are typically 60-90 K (≈15%-
25%) cooler than we find from our distances combined with evolution-
ary model radii. If the fault lies with our assumed radii, they would need
to be 30%-50% larger than expected because Teff R −1/2
. This would
require very young ages ( 100 Myr) or very large systematic errors in
the evolutionary models that are not likely given the aforementioned
empirical validation from transiting brown dwarfs. Rather, we suggest
that parameters derived from fitting model atmospheres to near-infrared
spectra, where < 5% of the flux emerges, are less likely to be accurate
because current atmospheres imperfectly reproduce observed spectra.
<
Using our luminosity measurements, we find that the coldest brown
dwarfs would be 6-10 Jupiter masses given an age of 1 Gyr. An older
age of 5 Gyr implies 16-25 Jupiter masses. These masses therefore
straddle the current demarcation of “planetary mass” set by the deuteri-
um-fusing mass limit of ≈ 13 Jupiter masses (19–21). Thus, it is possible
that the atmospheres of our objects harbor deuterated molecules such as
HDO or CH3D that have not yet been detected because of the observa-
tional challenges (22).
Given the interest in both identifying the coldest atmospheric
benchmarks and searching for the bottom of the initial mass function we
briefly consider the most extreme objects in our sample in terms of tem-
perature and mass. WISEP J1828+2650 has been dubbed the archetypal
Y dwarf with a model-atmosphere temperature of < 300 K, i.e., room
temperature, based on extremely red colors implying that the Wien tail
of its underlying blackbody distribution has moved into the near-infrared
(3). Our luminosity for this object is inconsistent with such a low tem-
perature, and we find it must be at least 420 K at 2σ; our calculations
give K at an age of 1 Gyr. (If WISEP J1828+2650 is a binary as
proposed by (9) the 2σ limit at 1 Gyr only drops to 360 K and 340 K for
the hypothetical two components.) Its atypical properties compared to
other Y dwarfs may simply be due to a slightly lower surface gravity,
i.e., slightly younger age, which qualitatively agrees with model predic-
tions that the collapse in near-infrared flux happens at warmer tempera-
tures for lower surface gravity (23). Ross 458C is a contender for the
lowest mass object, at 7 Jupiter masses, if its age is near the 150 Myr
lower limit of its proposed age range (24). However, WD 0806−661B is
the most secure case for both lowest temperature (330-375 K) and lowest
mass (6-10 Jupiter masses) object known, given that it has a precise age
of 2.0 ± 0.5 Gyr (25).
60
50520+
−
Overall, our results strengthen the connection between the coolest
brown dwarfs and gas-giant exoplanets. We validate that they probe an
extreme physical regime that bridges the gap between previously known,
hotter brown dwarfs and Jupiter-like planets. We find that objects of
very similar temperatures can have widely varying spectral energy dis-
tributions and absorption features, e.g., a range of 0.8 magnitudes in
mid-IR colors for the same Teff. Along with the fact that the ≥Y2 dwarf is
warmer than the Y0 dwarfs, this implies that temperature is not the prin-
cipal determinant in shaping spectra but rather seems to be on compara-
ble footing with other physical properties such as surface gravity,
vertical mixing, clouds, and perhaps metallicity. Consequently, the cur-
rent spectral classification scheme used to identify Y dwarfs may not
strongly correlate with temperature as it generally does for L and T
dwarfs. This could explain the unusually homogeneous fluxes for Y0
dwarfs, unusually heterogeneous fluxes for T9 dwarfs, and plateau or
brightening of flux from T9 to T9.5.
References and Notes
1. K. L. Luhman, A. J. Burgasser, J. J. Bochanski, Discovery of a candidate for
the coolest known brown dwarf. Astrophys. J. 730, L9 (2011).
doi:10.1088/2041-8205/730/1/L9
2. M. C. Liu, P. Delorme, T. J. Dupuy, B. P. Bowler, L. Albert, E. Artigau, C.
Reylé, T. Forveille, X. Delfosse, CFBDSIR J1458+1013B: A very cold
(>T10) brown dwarf in a binary system. Astrophys. J. 740, 108 (2011).
doi:10.1088/0004-637X/740/2/108
3. M. C. Cushing, J. D. Kirkpatrick, C. R. Gelino, R. L. Griffith, M. F. Skrutskie,
A. Mainzer, K. A. Marsh, C. A. Beichman, A. J. Burgasser, L. A. Prato, R. A.
Simcoe, M. S. Marley, D. Saumon, R. S. Freedman, P. R. Eisenhardt, E. L.
Wright, The discovery of Y dwarfs using data from the Wide-Field Infrared
Survey Explorer (WISE). Astrophys. J. 743, 50 (2011). doi:10.1088/0004-
637X/743/1/50
4. M. Deleuil, H. J. Deeg, R. Alonso, F. Bouchy, D. Rouan, M. Auvergne, A.
Baglin, S. Aigrain, J. M. Almenara, M. Barbieri, P. Barge, H. Bruntt, P.
Bordé, A. Collier Cameron, S. Csizmadia, R. De la Reza, R. Dvorak, A.
/ http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 2/ 10.1126/science.1241917
onSeptember9,2013www.sciencemag.orgDownloadedfrom
Erikson, M. Fridlund, D. Gandolfi, M. Gillon, E. Guenther, T. Guillot, A.
Hatzes, G. Hébrard, L. Jorda, H. Lammer, A. Léger, A. Llebaria, B. Loeillet,
M. Mayor, T. Mazeh, C. Moutou, M. Ollivier, M. Pätzold, F. Pont, D. Queloz,
H. Rauer, J. Schneider, A. Shporer, G. Wuchterl, S. Zucker, Transiting
exoplanets from the CoRoT space mission. Astron. Astrophys. 491, 889–897
(2008). doi:10.1051/0004-6361:200810625
5. C. Hellier, D. R. Anderson, A. C. Cameron, M. Gillon, L. Hebb, P. F. Maxted,
D. Queloz, B. Smalley, A. H. Triaud, R. G. West, D. M. Wilson, S. J. Bentley,
B. Enoch, K. Horne, J. Irwin, T. A. Lister, M. Mayor, N. Parley, F. Pepe, D.
L. Pollacco, D. Segransan, S. Udry, P. J. Wheatley, An orbital period of 0.94
days for the hot-Jupiter planet WASP-18b. Nature 460, 1098–1100 (2009).
Medline doi:10.1038/nature08245
6. D. R. Anderson, A. Collier Cameron, C. Hellier, M. Lendl, P. F. L. Maxted, D.
Pollacco, D. Queloz, B. Smalley, A. M. S. Smith, I. Todd, A. H. M. J. Triaud,
R. G. West, S. C. C. Barros, B. Enoch, M. Gillon, T. A. Lister, F. Pepe, D.
Ségransan, R. A. Street, S. Udry, WASP-30b: A 61 MJup brown dwarf
transiting a V = 12, F8 star. Astrophys. J. 726, L19 (2011). doi:10.1088/2041-
8205/726/2/L19
7. J. D. Kirkpatrick M. C. Cushing, C. R. Gelino, R. L. Griffith, M. F. Skrutskie,
K. A. Marsh, E. L. Wright, A. Mainzer, P. R. Eisenhardt, I. S. McLean, M. A.
Thompson, J. M. Bauer, D. J. Benford, C. R. Bridge, S. E. Lake, S. M. Petty,
S. A. Stanford, C.-W. Tsai, V. Bailey, C. A. Beichman, J. S. Bloom, J. J.
Bochanski, A. J. Burgasser, P. L. Capak, K. L. Cruz, P. M. Hinz, J. S.
Kartaltepe, R. P. Knox, S. Manohar, D. Masters, M. Morales-Calderón, L. A.
Prato, T. J. Rodigas, M. Salvato, S. D. Schurr, N. Z. Scoville, R. A. Simcoe,
K. R. Stapelfeldt, D. Stern, N. D. Stock, W. D. Vacca, The first hundred
brown dwarfs discovered by the Wide-Field Infrared Survey Explorer (WISE).
Astrophys. J. Suppl. Ser. 197, 19 (2011). doi:10.1088/0067-0049/197/2/19
8. J. D. Kirkpatrick, C. R. Gelino, M. C. Cushing, G. N. Mace, R. L. Griffith, M.
F. Skrutskie, K. A. Marsh, E. L. Wright, P. R. Eisenhardt, I. S. McLean, A. K.
Mainzer, A. J. Burgasser, C. G. Tinney, S. Parker, G. Salter, Further defining
spectral type “Y” and exploring the low-mass end of the field brown dwarf
mass function. Astrophys. J. 753, 156 (2012). doi:10.1088/0004-
637X/753/2/156
9. S. K. Leggett, C. V. Morley, M. S. Marley, D. Saumon, J. J. Fortney, C.
Visscher, A comparison of near-infrared photometry and spectra for Y dwarfs
with a new generation of cool cloudy models. Astrophys. J. 763, 130 (2013).
doi:10.1088/0004-637X/763/2/130
10. M. C. Liu, T. J. Dupuy, B. P. Bowler, S. K. Leggett, W. M. J. Best, Two
extraordinary substellar binaries at the T/Y transition and the Y -band fluxes
of the coolest brown dwarfs. Astrophys. J. 758, 57 (2012). doi:10.1088/0004-
637X/758/1/57
11. C. V. Morley, J. J. Fortney, M. S. Marley, C. Visscher, D. Saumon, S. K.
Leggett, Neglected clouds in T and Y dwarf atmospheres. Astrophys. J. 756,
172 (2012). doi:10.1088/0004-637X/756/2/172
12. T. J. Dupuy, M. C. Liu, The Hawaii Infrared Parallax Program. I. Ultracool
binaries and the L/T transition. Astrophys. J. Suppl. Ser. 201, 19 (2012).
doi:10.1088/0067-0049/201/2/19
13. A. J. Burgasser, J. D. Kirkpatrick, K. L. Cruz, I. N. Reid, S. K. Leggett, J.
Liebert, A. Burrows, M. E. Brown, Hubble Space Telescope NICMOS
observations of T dwarfs: Brown dwarf multiplicity and new probes of the
L/T transition. Astrophys. J. Suppl. Ser. 166, 585–612 (2006).
doi:10.1086/506327
14. M. C. Liu, S. K. Leggett, D. A. Golimowski, K. Chiu, X. Fan, T. R. Geballe,
D. P. Schneider, J. Brinkmann, SDSS J1534+1615AB: A novel T dwarf
binary found with Keck laser guide star adaptive optics and the potential role
of binarity in the L/T transition. Astrophys. J. 647, 1393–1404 (2006).
doi:10.1086/505561
15. D. Saumon, M. S. Marley, M. Abel, L. Frommhold, R. S. Freedman, New H2
collision-induced absorption and NH 3 opacity and the spectra of the coolest
brown dwarfs. Astrophys. J. 750, 74 (2012). doi:10.1088/0004-637X/750/1/74
16. I. Baraffe, G. Chabrier, T. S. Barman, F. Allard, P. H. Hauschildt,
Evolutionary models for cool brown dwarfs and extrasolar giant planets. The
case of HD 209458. Astron. Astrophys. 402, 701–712 (2003).
doi:10.1051/0004-6361:20030252
17. A. J. Burgasser, T dwarfs and the substellar mass function. I. Monte Carlo
simulations. Astrophys. J. Suppl. Ser. 155, 191–207 (2004).
doi:10.1086/424386
18. P. R. Allen, D. W. Koerner, I. N. Reid, D. E. Trilling, The substellar mass
function: A Bayesian approach. Astrophys. J. 625, 385–397 (2005).
doi:10.1086/429548
19. D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, G. Chabrier,
A theory of extrasolar giant planets. Astrophys. J. 460, 993 (1996).
doi:10.1086/177027
20. G. Chabrier, I. Baraffe, Theory of low-mass stars and substellar objects. Annu.
Rev. Astron. Astrophys. 38, 337–377 (2000).
doi:10.1146/annurev.astro.38.1.337
21. P. Mollière, C. Mordasini, Deuterium burning in objects forming via the core
accretion scenario. Astron. Astrophys. 547, A105 (2012). doi:10.1051/0004-
6361/201219844
22. G. Chabrier, I. Baraffe, F. Allard, P. Hauschildt, Deuterium burning in
substellar objects. Astrophys. J. 542, L119–L122 (2000). doi:10.1086/312941
23. A. Burrows, D. Sudarsky, J. I. Lunine, Beyond the T dwarfs: Theoretical
spectra, colors, and detectability of the coolest brown dwarfs. Astrophys. J.
596, 587–596 (2003). doi:10.1086/377709
24. A. J. Burgasser, R. A. Simcoe, J. J. Bochanski, D. Saumon, E. E. Mamajek,
M. C. Cushing, M. S. Marley, C. McMurtry, J. L. Pipher, W. J. Forrest,
Clouds in the coldest brown dwarfs: Fire spectroscopy of Ross 458C.
Astrophys. J. 725, 1405–1420 (2010). doi:10.1088/0004-637X/725/2/1405
25. K. L. Luhman, A. J. Burgasser, I. Labbé, D. Saumon, M. S. Marley, J. J.
Bochanski, A. J. Monson, S. E. Persson, Confirmation of one of the coldest
known brown dwarfs. Astrophys. J. 744, 135 (2012). doi:10.1088/0004-
637X/744/2/135
26. G. G. Fazio, J. L. Hora, L. E. Allen, M. L. N. Ashby, P. Barmby, L. K.
Deutsch, J.-S. Huang, S. Kleiner, M. Marengo, S. T. Megeath, G. J. Melnick,
M. A. Pahre, B. M. Patten, J. Polizotti, H. A. Smith, R. S. Taylor, Z. Wang, S.
P. Willner, W. F. Hoffmann, J. L. Pipher, W. J. Forrest, C. W. McMurty, C.
R. McCreight, M. E. McKelvey, R. E. McMurray, D. G. Koch, S. H. Moseley,
R. G. Arendt, J. E. Mentzell, C. T. Marx, P. Losch, P. Mayman, W. Eichhorn,
D. Krebs, M. Jhabvala, D. Y. Gezari, D. J. Fixsen, J. Flores, K. Shakoorzadeh,
R. Jungo, C. Hakun, L. Workman, G. Karpati, R. Kichak, R. Whitley, S.
Mann, E. V. Tollestrup, P. Eisenhardt, D. Stern, V. Gorjian, B. Bhattacharya,
S. Carey, B. O. Nelson, W. J. Glaccum, M. Lacy, P. J. Lowrance, S. Laine,
W. T. Reach, J. A. Stauffer, J. A. Surace, G. Wilson, E. L. Wright, A.
Hoffman, G. Domingo, M. Cohen, The Infrared Array Camera (IRAC) for the
Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004).
doi:10.1086/422843
27. P. B. Stetson, DAOPHOT - A computer program for crowded-field stellar
photometry. Publ. Astron. Soc. Pac. 99, 191 (1987). doi:10.1086/131977
28. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri,
T. Jarrett, J. D. Kirkpatrick, D. Padgett, R. S. McMillan, M. Skrutskie, S. A.
Stanford, M. Cohen, R. G. Walker, J. C. Mather, D. Leisawitz, T. N. Gautier,
I. McLean, D. Benford, C. J. Lonsdale, A. Blain, B. Mendez, W. R. Irace, V.
Duval, F. Liu, D. Royer, I. Heinrichsen, J. Howard, M. Shannon, M. Kendall,
A. L. Walsh, M. Larsen, J. G. Cardon, S. Schick, M. Schwalm, M. Abid, B.
Fabinsky, L. Naes, C.-W. Tsai, The Wide-Field Infrared Survey Explorer
(WISE): Mission description and initial on-orbit performance. Astron. J. 140,
1868–1881 (2010). doi:10.1088/0004-6256/140/6/1868
29. C. B. Markwardt, Astronomical Society of the Pacific Conference Series, D.
A. Bohlender, D. Durand, & P. Dowler, ed. (2009), vol. 411, p. 251.
30. A. C. Robin, C. Reylé, S. Derrière, S. Picaud, A synthetic view on structure
and evolution of the Milky Way. Astron. Astrophys. 409, 523 (2003).
doi:10.1051/0004-6361:20031117
31. J. K. Faherty, A. J. Burgasser, F. M. Walter, N. Van der Bliek, M. M. Shara,
K. L. Cruz, A. A. West, F. J. Vrba, G. Anglada-Escudé, The brown dwarf
Kinematics Project (BDKP). III. Parallaxes for 70 ultracool dwarfs.
Astrophys. J. 752, 56 (2012). doi:10.1088/0004-637X/752/1/56
32. S. K. Leggett, D. Saumon, M. S. Marley, K. Lodders, J. Canty, P. Lucas, R. L.
Smart, C. G. Tinney, D. Homeier, F. Allard, B. Burningham, A. Day-Jones,
B. Fegley, M. Ishii, H. R. A. Jones, F. Marocco, D. J. Pinfield, M. Tamura,
The properties of the 500 K dwarf UGPS J072227.51–054031.2 and a study
of the far-red flux of cold brown dwarfs. Astrophys. J. 748, 74 (2012).
doi:10.1088/0004-637X/748/2/74
33. M. C. Liu, N. R. Deacon, E. A. Magnier, T. J. Dupuy, K. M. Aller, B. P.
Bowler, J. Redstone, B. Goldman, W. S. Burgett, K. C. Chambers, K. W.
Hodapp, N. Kaiser, R.-P. Kudritzki, J. S. Morgan, P. A. Price, J. L. Tonry, R.
J. Wainscoat, A search for high proper motion T dwarfs with Pan-STARRS1
+ 2MASS + WISE. Astrophys. J. 740, L32 (2011). doi:10.1088/2041-
/ http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 3/ 10.1126/science.1241917
onSeptember9,2013www.sciencemag.orgDownloadedfrom
8205/740/2/L32
34. F. van Leeuwen, Validation of the new Hipparcos reduction. Astron.
Astrophys. 474, 653–664 (2007). doi:10.1051/0004-6361:20078357
35. K. A. Marsh, E. L. Wright, J. D. Kirkpatrick, C. R. Gelino, M. C. Cushing, R.
L. Griffith, M. F. Skrutskie, P. R. Eisenhardt, Parallaxes and proper motions
of ultracool brown dwarfs of spectral types Y and late T. Astrophys. J. 762,
119 (2013). doi:10.1088/0004-637X/762/2/119
36. C. Beichman, C. R. Gelino, J. D. Kirkpatrick, T. S. Barman, K. A. Marsh, M.
C. Cushing, E. L. Wright, The coldest brown dwarf (or free-floating planet)?:
The Y dwarf WISE 1828+2650. Astrophys. J. 764, 101 (2013).
doi:10.1088/0004-637X/764/1/101
37. T. E. Lutz, D. H. Kelker, On the use of trigonometric parallaxes for the
calibration of luminosity systems: Theory. Publ. Astron. Soc. Pac. 85, 573
(1973). doi:10.1086/129506
38. J. R. Thorstensen, Parallaxes and distance estimates for 14 cataclysmic
variable stars. Astron. J. 126, 3017–3029 (2003). doi:10.1086/379308
39. D. Saumon, M. S. Marley, S. K. Leggett, T. R. Geballe, D. Stephens, D. A.
Golimowski, M. C. Cushing, X. Fan, J. T. Rayner, K. Lodders, R. S.
Freedman, Physical parameters of two very cool T dwarfs. Astrophys. J. 656,
1136–1149 (2007). doi:10.1086/510557
40. A. J. Burgasser, C. G. Tinney, M. C. Cushing, D. Saumon, M. S. Marley, C.
S. Bennett, J. D. Kirkpatrick, 2MASS J09393548-2448279: The coldest and
least luminous brown dwarf binary known? Astrophys. J. 689, L53–L56
(2008). doi:10.1086/595747
41. G. Chabrier, I. Baraffe, F. Allard, P. Hauschildt, Evolutionary models for very
low‐mass stars and brown dwarfs with dusty atmospheres. Astrophys. J. 542,
464–472 (2000). doi:10.1086/309513
42. B. Tingley, M. Endl, J.-C. Gazzano, R. Alonso, T. Mazeh, L. Jorda, S.
Aigrain, J.-M. Almenara, M. Auvergne, A. Baglin, P. Barge, A. S. Bonomo,
P. Bordé, F. Bouchy, H. Bruntt, J. Cabrera, S. Carpano, L. Carone, W. D.
Cochran, S. Csizmadia, M. Deleuil, H. J. Deeg, R. Dvorak, A. Erikson, S.
Ferraz-Mello, M. Fridlund, D. Gandolfi, M. Gillon, E. W. Guenther, T.
Guillot, A. Hatzes, G. Hébrard, A. Léger, A. Llebaria, H. Lammer, C. Lovis,
P. J. MacQueen, C. Moutou, M. Ollivier, A. Ofir, M. Pätzold, F. Pepe, D.
Queloz, H. Rauer, D. Rouan, B. Samuel, J. Schneider, A. Shporer, G.
Wuchterl, Transiting exoplanets from the CoRoT space mission. Astron.
Astrophys. 528, A97 (2011). doi:10.1051/0004-6361/201015480
43. R. J. Siverd, T. G. Beatty, J. Pepper, J. D. Eastman, K. Collins, A. Bieryla, D.
W. Latham, L. A. Buchhave, E. L. N. Jensen, J. R. Crepp, R. Street, K. G.
Stassun, B. Scott Gaudi, P. Berlind, M. L. Calkins, D. L. DePoy, G. A.
Esquerdo, B. J. Fulton, G. Fűrész, J. C. Geary, A. Gould, L. Hebb, J. F.
Kielkopf, J. L. Marshall, R. Pogge, K. Z. Stanek, R. P. Stefanik, A. H.
Szentgyorgyi, M. Trueblood, P. Trueblood, A. M. Stutz, J. L. van Saders,
Kelt-1b: A strongly irradiated, highly inflated, short period, 27 Jupiter-mass
companion transiting a mid-F star. Astrophys. J. 761, 123 (2012).
doi:10.1088/0004-637X/761/2/123
44. J. A. Johnson, K. Apps, J. Z. Gazak, J. R. Crepp, I. J. Crossfield, A. W.
Howard, G. W. Marcy, T. D. Morton, C. Chubak, H. Isaacson, LHS 6343 C:
A transiting field brown dwarf discovered by the Kepler mission. Astrophys.
J. 73 , 79 (2011).0 doi:10.1088/0004-637X/730/2/79
45. D. Saumon, M. S. Marley, The evolution of L and T dwarfs in
color‐magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).
doi:10.1086/592734
46. B. Burningham, D. J. Pinfield, S. K. Leggett, C. G. Tinney, M. C. Liu, D.
Homeier, A. A. West, A. Day-Jones, N. Huelamo, T. J. Dupuy, Z. Zhang, D.
N. Murray, N. Lodieu, D. Barrado y Navascués, S. Folkes, M. C. Galvez-
Ortiz, H. R. A. Jones, P. W. Lucas, M. M. Calderon, M. Tamura, The
discovery of an M4+T8.5 binary system. Mon. Not. R. Astron. Soc. 395,
1237–1248 (2009). doi:10.1111/j.1365-2966.2009.14620.x
47. D. J. Pinfield, B. Burningham, N. Lodieu, S. K. Leggett, C. G. Tinney, L. van
Spaandonk, F. Marocco, R. Smart, J. Gomes, L. Smith, P. W. Lucas, A. C.
Day-Jones, D. N. Murray, A. C. Katsiyannis, S. Catalan, C. Cardoso, J. R. A.
Clarke, S. Folkes, M. C. Gálvez-Ortiz, D. Homeier, J. S. Jenkins, H. R. A.
Jones, Z. H. Zhang, Discovery of the benchmark metal-poor T8 dwarf BD
+01° 2920B. Mon. Not. R. Astron. Soc. 422, 1922–1932 (2012).
doi:10.1111/j.1365-2966.2012.20549.x
48. E. L. Wright, M. F. Skrutskie, J. D. Kirkpatrick, C. R. Gelino, R. L. Griffith,
K. A. Marsh, T. Jarrett, M. J. Nelson, H. J. Borish, G. Mace, A. K. Mainzer,
P. R. Eisenhardt, I. S. McLean, J. J. Tobin, M. C. Cushing, A T8.5 brown
dwarf member of the ξ URSAE Majoris system. Astron. J. 145, 84 (2013).
doi:10.1088/0004-6256/145/3/84
49. J. K. Faherty, A. J. Burgasser, K. L. Cruz, M. M. Shara, F. M. Walter, C. R.
Gelino, The brown dwarf kinematics project I. Proper motions and tangential
velocities for a large sample of late-type M, L, and T dwarfs. Astron. J. 137,
1–18 (2009). doi:10.1088/0004-6256/137/1/1
50. B. Burningham, C. V. Cardoso, L. Smith, S. K. Leggett, R. L. Smart, A. W.
Mann, S. Dhital, P. W. Lucas, C. G. Tinney, D. J. Pinfield, Z. Zhang, C.
Morley, D. Saumon, K. Aller, S. P. Littlefair, D. Homeier, N. Lodieu, N.
Deacon, M. S. Marley, L. van Spaandonk, D. Baker, F. Allard, A. H. Andrei,
J. Canty, J. Clarke, A. C. Day-Jones, T. Dupuy, J. J. Fortney, J. Gomes, M.
Ishii, H. R. A. Jones, M. Liu, A. Magazzu, F. Marocco, D. N. Murray, B.
Rojas-Ayala, M. Tamura, 76 T dwarfs from the UKIDSS LAS: benchmarks,
kinematics and an updated space density. Mon. Not. R. Astron. Soc. 433, 457–
497 (2013). doi:10.1093/mnras/stt740
51. A. J. Burgasser, J. D. Kirkpatrick, I. N. Reid, M. E. Brown, C. L. Miskey, J.
E. Gizis, Binarity in brown dwarfs: T dwarf binaries discovered with the
Hubble Space Telescope Wide Field Planetary Camera 2. Astrophys. J. 586,
512–526 (2003). doi:10.1086/346263
52. M. C. Liu, T. J. Dupuy, S. K. Leggett, Discovery of a highly unequal-mass
binary T dwarf with Keck laser Guide Star Adaptive Optics: A coevality test
of substellar theoretical models and effective temperatures. Astrophys. J. 722,
311–328 (2010). doi:10.1088/0004-637X/722/1/311
53. C. G. Tinney, J. K. Faherty, J. D. Kirkpatrick, E. L. Wright, C. R. Gelino, M.
C. Cushing, R. L. Griffith, G. Salter, WISE J163940.83–684738.6: A Y dwarf
identified by methane imaging. Astrophys. J. 759, 60 (2012).
doi:10.1088/0004-637X/759/1/60
54. A. J. Burgasser, T. R. Geballe, S. K. Leggett, J. D. Kirkpatrick, D. A.
Golimowski, A unified near‐infrared spectral classification scheme for t
dwarfs. Astrophys. J. 637, 1067–1093 (2006). doi:10.1086/498563
55. A. J. Burgasser, C. R. Gelino, M. C. Cushing, J. D. Kirkpatrick, Resolved
spectroscopy of a brown dwarf binary at the T dwarf/Y dwarf transition.
Astrophys. J. 745, 26 (2012). doi:10.1088/0004-637X/745/1/26
56. B. Burningham, D. J. Pinfield, S. K. Leggett, M. Tamura, P. W. Lucas, D.
Homeier, A. Day-Jones, H. R. A. Jones, J. R. A. Clarke, M. Ishii, M.
Kuzuhara, N. Lodieu, M. R. Zapatero Osorio, B. P. Venemans, D. J.
Mortlock, D. Barrado y Navascués, E. L. Martin, A. Magazzù, Exploring the
substellar temperature regime down to 550 K. Mon. Not. R. Astron. Soc.
391, 320–333 (2008). doi:10.1111/j.1365-2966.2008.13885.x
57. B. Burningham, S. K. Leggett, D. Homeier, D. Saumon, P. W. Lucas, D. J.
Pinfield, C. G. Tinney, F. Allard, M. S. Marley, H. R. A. Jones, D. N. Murray,
M. Ishii, A. Day-Jones, J. Gomes, Z. H. Zhang, The properties of the T8.5p
dwarf Ross 458C. Mon. Not. R. Astron. Soc. 414, 3590–3598 (2011).
doi:10.1111/j.1365-2966.2011.18664.x
58. P. Delorme, X. Delfosse, L. Albert, E. Artigau, T. Forveille, C. Reylé, F.
Allard, D. Homeier, A. C. Robin, C. J. Willott, M. C. Liu, T. J. Dupuy,
CFBDS J005910.90-011401.3: Reaching the T-Y brown dwarf transition?
Astron. Astrophys. 482, 961–971 (2008). doi:10.1051/0004-6361:20079317
59. G. R. Knapp, S. K. Leggett, X. Fan, M. S. Marley, T. R. Geballe, D. A.
Golimowski, D. Finkbeiner, J. E. Gunn, J. Hennawi, Z. Ivezić, R. H. Lupton,
D. J. Schlegel, M. A. Strauss, Z. I. Tsvetanov, K. Chiu, E. A. Hoversten, K.
Glazebrook, W. Zheng, M. Hendrickson, C. C. Williams, A. Uomoto, F. J.
Vrba, A. A. Henden, C. B. Luginbuhl, H. H. Guetter, J. A. Munn, B. Canzian,
D. P. Schneider, J. Brinkmann, Near-infrared photometry and spectroscopy of
L and T dwarfs: The effects of temperature, clouds, and gravity. Astron. J.
127, 3553–3578 (2004). doi:10.1086/420707
60. S. K. Leggett, M. C. Cushing, D. Saumon, M. S. Marley, T. L. Roellig, S. J.
Warren, B. Burningham, H. R. A. Jones, J. D. Kirkpatrick, N. Lodieu, P. W.
Lucas, A. K. Mainzer, E. L. Martín, M. J. McCaughrean, D. J. Pinfield, G. C.
Sloan, R. L. Smart, M. Tamura, J. Van Cleve, The physical properties of four
600 K T dwarfs. Astrophys. J. 695, 1517–1526 (2009). doi:10.1088/0004-
637X/695/2/1517
61. S. K. Leggett, B. Burningham, D. Saumon, M. S. Marley, S. J. Warren, R. L.
Smart, H. R. A. Jones, P. W. Lucas, D. J. Pinfield, M. Tamura, Mid-infrared
photometry of cold brown dwarfs: Diversity in age, mass, and metallicity.
Astrophys. J. 710, 1627–1640 (2010). doi:10.1088/0004-637X/710/2/1627
62. D. L. Looper, J. D. Kirkpatrick, A. J. Burgasser, Discovery of 11 new T
dwarfs in the two micron All Sky Survey, including a possible L/T transition
binary. Astron. J. 134, 1162–1182 (2007). doi:10.1086/520645
/ http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 4/ 10.1126/science.1241917
onSeptember9,2013www.sciencemag.orgDownloadedfrom
/ http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 5/ 10.1126/science.1241917
63. P. W. Lucas, C. G. Tinney, B. Burningham, S. K. Leggett, D. J. Pinfield, R.
Smart, H. R. A. Jones, F. Marocco, R. J. Barber, S. N. Yurchenko, J.
Tennyson, M. Ishii, M. Tamura, A. C. Day-Jones, A. Adamson, F. Allard, D.
Homeier, The discovery of a very cool, very nearby brown dwarf in the
Galactic plane. Mon. Not. R. Astron. Soc. 408, L56–L60 (2010).
doi:10.1111/j.1745-3933.2010.00927.x
64. B. M. Patten, J. R. Stauffer, A. Burrows, M. Marengo, J. L. Hora, K. L.
Luhman, S. M. Sonnett, T. J. Henry, D. Raghavan, S. T. Megeath, J. Liebert,
G. G. Fazio, Spitzer IRAC photometry of M, L, and T dwarfs. Astrophys. J.
651, 502–516 (2006). doi:10.1086/507264
65. J. P. Subasavage, W.-C. Jao, T. J. Henry, P. Bergeron, P. Dufour, P. A. Ianna,
E. Costa, R. A. Méndez, The solar neighborhood. XXI. Parallax results from
the CTIOPI 0.9 m program: 20 new members of the 25 parsec white dwarf
sample. Astron. J. 137, 4547–4560 (2009). doi:10.1088/0004-
6256/137/6/4547
66. C. G. Tinney, A. J. Burgasser, J. D. Kirkpatrick, Infrared parallaxes for
methane T dwarfs. Astron. J. 126, 975–992 (2003). doi:10.1086/376481
67. W. F. van Altena, J. T. Lee, E. D. Hoffleit, The General Catalogue of
Trigonometric Stellar Parallaxes, 4th ed., Yale University Observatory
(1995).
68. S. J. Warren, D. J. Mortlock, S. K. Leggett, D. J. Pinfield, D. Homeier, S.
Dye, R. F. Jameson, N. Lodieu, P. W. Lucas, A. J. Adamson, F. Allard, D.
Barrado y Navascues, M. Casali, K. Chiu, N. C. Hambly, P. C. Hewett, P.
Hirst, M. J. Irwin, A. Lawrence, M. C. Liu, E. L. Martin, R. L. Smart, L.
Valdivielso, B. P. Venemans, A very cool brown dwarf in UKIDSS DR1.
Mon. Not. R. Astron. Soc. 381, 1400–1412 (2007). doi:10.1111/j.1365-
2966.2007.12348.x
Acknowledgments: We thank M. C. Liu for many helpful suggestions for
improving this article; C. V. Morley for fruitful discussions regarding her and
collaborators’ model atmospheres, particularly the Vega zero points; M. C.
Cushing for making available published spectra of our targets; and K. N.
Allers for assistance in computing photometry from our IRAC data. This work
is based on observations made with the Spitzer Space Telescope, which is
operated by the Jet Propulsion Laboratory, California Institute of Technology
under a contract with NASA. T.J.D. acknowledges support from Hubble
Fellowship grant HST-HF-51271.01-A awarded by the Space Telescope
Science Institute, which is operated by AURA for NASA, under contract NAS
5-26555. A.L.K. is supported by a Clay Fellowship. Our imaging data are
available in the Spitzer Heritage Archive at
http://sha.ipac.caltech.edu/applications/Spitzer/SHA, and the astrometric
measurements we derived are given in Table S1.
Supplementary Materials
www.sciencemag.org/cgi/content/full/science.1241917/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S5
Tables S1 to S6
References (26–68)
13 June 2013; accepted 23 August 2013
Published online 05 September 2013
10.1126/science.1241917
onSeptember9,2013www.sciencemag.orgDownloadedfrom
Fig. 1. Color-magnitude diagrams for
all objects with spectral types T8 and
later that have direct distance
measurements. Data points are color
coded according to spectral type, with
open/white points indicating that no
spectra are available. Small gray points
are earlier type field brown dwarfs.
Near-infrared photometry is on the
Mauna Kea Observatory (MKO)
system.
Fig. 2. Absolute magnitude as a function of spectral type for near-infrared and mid-infrared bandpasses.
Objects typed as peculiar are shown as open white symbols. Objects with very uncertain distances are plotted
with smaller gray symbols. Error bars for spectral types are not plotted, and small x-axis offsets have been
added to the spectral types for clarity.
/ http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 6/ 10.1126/science.1241917
onSeptember9,2013www.sciencemag.orgDownloadedfrom
Fig. 4. Bolometric luminosities (Lbol) and effective temperatures
for objects of spectral type T8 and later; spectrally peculiar
objects are denoted by white symbols. Objects with Lbol
uncertainties larger than 0.2 dex are shown as smaller, gray
symbols. These are either objects with very uncertain distances
or the components of tight binaries where the lack of resolved
mid-infrared photometry results in a very uncertain bolometric
flux. Error bars for spectral types are not plotted, and small x-
axis offsets have been added to the spectral types for clarity.
Effective temperatures are derived from our Lbol measurements
and Cond evolutionary model radii. Upward and downward
pointing triangles correspond to the median Lbol and lower and
upper age limits used (see Table S5). Error bars show the range
of temperatures corresponding to the ±1σ range of Lbol over the
same age range.
Fig. 3. Intrinsic photometric scatter among objects at each spectral type; unfilled symbols are
upper limits where no scatter is detected. Y0 dwarfs show remarkably low intrinsic scatter in
the near-infrared, reversing the trend observed at the end of the T dwarf sequence that later
type T dwarfs show increasing dispersion in their near-infrared absolute magnitudes. The
much smaller sample of T9.5 dwarfs are also suggestive of this reversal at J and H bands.
There is no evidence for such a reversal in the mid-infrared where both late-T and Y dwarfs
show much less intrinsic scatter and distance uncertainties for Y dwarfs do not permit strong
enough upper limits.
/ http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 7/ 10.1126/science.1241917
onSeptember9,2013www.sciencemag.orgDownloadedfrom

Mais conteúdo relacionado

Mais procurados

The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...Sérgio Sacani
 
On some structural_features_of_the_metagalaxy
On some structural_features_of_the_metagalaxyOn some structural_features_of_the_metagalaxy
On some structural_features_of_the_metagalaxySérgio Sacani
 
A 2 4_determination_of_the_local_value_of_the_hubble_constant
A 2 4_determination_of_the_local_value_of_the_hubble_constantA 2 4_determination_of_the_local_value_of_the_hubble_constant
A 2 4_determination_of_the_local_value_of_the_hubble_constantSérgio Sacani
 
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...Sérgio Sacani
 
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISPROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISSérgio Sacani
 
Exocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ringExocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ringSérgio Sacani
 
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanetWater vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanetSérgio Sacani
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Sérgio Sacani
 
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...Sérgio Sacani
 
Galaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeGalaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeSérgio Sacani
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе ХаронаAnatol Alizar
 
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...Sérgio Sacani
 
A highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeA highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeSérgio Sacani
 
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...Sérgio Sacani
 
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...Sérgio Sacani
 
Probing the jet_base_of_blazar_pks1830211_from_the_chromatic_variability_of_i...
Probing the jet_base_of_blazar_pks1830211_from_the_chromatic_variability_of_i...Probing the jet_base_of_blazar_pks1830211_from_the_chromatic_variability_of_i...
Probing the jet_base_of_blazar_pks1830211_from_the_chromatic_variability_of_i...Sérgio Sacani
 
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...Sérgio Sacani
 
Deep chandra observations_of_pictor_a
Deep chandra observations_of_pictor_aDeep chandra observations_of_pictor_a
Deep chandra observations_of_pictor_aSérgio Sacani
 
Rapid formation of large dust grains in the luminous supernova SN 2010jl
Rapid formation of large dust grains in the luminous supernova SN 2010jlRapid formation of large dust grains in the luminous supernova SN 2010jl
Rapid formation of large dust grains in the luminous supernova SN 2010jlGOASA
 
Exoplanet transit spectroscopy_using_wfc3
Exoplanet transit spectroscopy_using_wfc3Exoplanet transit spectroscopy_using_wfc3
Exoplanet transit spectroscopy_using_wfc3Sérgio Sacani
 

Mais procurados (20)

The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
 
On some structural_features_of_the_metagalaxy
On some structural_features_of_the_metagalaxyOn some structural_features_of_the_metagalaxy
On some structural_features_of_the_metagalaxy
 
A 2 4_determination_of_the_local_value_of_the_hubble_constant
A 2 4_determination_of_the_local_value_of_the_hubble_constantA 2 4_determination_of_the_local_value_of_the_hubble_constant
A 2 4_determination_of_the_local_value_of_the_hubble_constant
 
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
 
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISPROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
 
Exocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ringExocometary gas in_th_hd_181327_debris_ring
Exocometary gas in_th_hd_181327_debris_ring
 
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanetWater vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
Water vapour absorption_in_the_clear_atmosphere_of_a_neptune_sized_exoplanet
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
 
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
Kepler 1647b the_largest_and_longest_period_kepler_transiting_circumbinary_pl...
 
Galaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeGalaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universe
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе Харона
 
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
 
A highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black holeA highly magnetized twin-jet base pinpoints a supermassive black hole
A highly magnetized twin-jet base pinpoints a supermassive black hole
 
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
Magnetic interaction of_a_super_cme_with_the_earths_magnetosphere_scenario_fo...
 
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
 
Probing the jet_base_of_blazar_pks1830211_from_the_chromatic_variability_of_i...
Probing the jet_base_of_blazar_pks1830211_from_the_chromatic_variability_of_i...Probing the jet_base_of_blazar_pks1830211_from_the_chromatic_variability_of_i...
Probing the jet_base_of_blazar_pks1830211_from_the_chromatic_variability_of_i...
 
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
Spectral and morphological_analysis_of_the_remnant_of_supernova_1987_a_with_a...
 
Deep chandra observations_of_pictor_a
Deep chandra observations_of_pictor_aDeep chandra observations_of_pictor_a
Deep chandra observations_of_pictor_a
 
Rapid formation of large dust grains in the luminous supernova SN 2010jl
Rapid formation of large dust grains in the luminous supernova SN 2010jlRapid formation of large dust grains in the luminous supernova SN 2010jl
Rapid formation of large dust grains in the luminous supernova SN 2010jl
 
Exoplanet transit spectroscopy_using_wfc3
Exoplanet transit spectroscopy_using_wfc3Exoplanet transit spectroscopy_using_wfc3
Exoplanet transit spectroscopy_using_wfc3
 

Semelhante a Distances luminosities and_temperatures_of_the_coldest_known_substelar_objects

An irradiated-Jupiter analogue hotter than the Sun
An irradiated-Jupiter analogue hotter than the SunAn irradiated-Jupiter analogue hotter than the Sun
An irradiated-Jupiter analogue hotter than the SunSérgio Sacani
 
An irradiated-Jupiter analogue hotter than the Sun
An irradiated-Jupiter analogue hotter than the SunAn irradiated-Jupiter analogue hotter than the Sun
An irradiated-Jupiter analogue hotter than the SunSérgio Sacani
 
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanetWater vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanetGOASA
 
A continuum from_clear_to_cloudy_hot_jupiter_exoplanets_without_primordial_wa...
A continuum from_clear_to_cloudy_hot_jupiter_exoplanets_without_primordial_wa...A continuum from_clear_to_cloudy_hot_jupiter_exoplanets_without_primordial_wa...
A continuum from_clear_to_cloudy_hot_jupiter_exoplanets_without_primordial_wa...Sérgio Sacani
 
The formation of Charon’s red poles from seasonally cold-trapped volatiles
The formation of Charon’s red poles from seasonally cold-trapped volatilesThe formation of Charon’s red poles from seasonally cold-trapped volatiles
The formation of Charon’s red poles from seasonally cold-trapped volatilesSérgio Sacani
 
First discovery of_a_magnetic_field_in_a_main_sequence_delta_scuti_star_the_k...
First discovery of_a_magnetic_field_in_a_main_sequence_delta_scuti_star_the_k...First discovery of_a_magnetic_field_in_a_main_sequence_delta_scuti_star_the_k...
First discovery of_a_magnetic_field_in_a_main_sequence_delta_scuti_star_the_k...Sérgio Sacani
 
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_stateRadio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_stateSérgio Sacani
 
The deep blue_color_of_hd189733b_albedo_measurements_with_hst_stis_at_visible...
The deep blue_color_of_hd189733b_albedo_measurements_with_hst_stis_at_visible...The deep blue_color_of_hd189733b_albedo_measurements_with_hst_stis_at_visible...
The deep blue_color_of_hd189733b_albedo_measurements_with_hst_stis_at_visible...Sérgio Sacani
 
Herschel far infrared_spectroscopy_of_the_galactic_center
Herschel far infrared_spectroscopy_of_the_galactic_centerHerschel far infrared_spectroscopy_of_the_galactic_center
Herschel far infrared_spectroscopy_of_the_galactic_centerSérgio Sacani
 
Polarized reflected light from the Spica binary system
Polarized reflected light from the Spica binary systemPolarized reflected light from the Spica binary system
Polarized reflected light from the Spica binary systemSérgio Sacani
 
Discovery of carbon_radio_recombination_lines_in_m82
Discovery of carbon_radio_recombination_lines_in_m82Discovery of carbon_radio_recombination_lines_in_m82
Discovery of carbon_radio_recombination_lines_in_m82Sérgio Sacani
 
Planetary companions around_the_metal_poor_star_hip11952
Planetary companions around_the_metal_poor_star_hip11952Planetary companions around_the_metal_poor_star_hip11952
Planetary companions around_the_metal_poor_star_hip11952Sérgio Sacani
 
The yellow hypergiant_hr5171a_resolving_a_massive_interacting_binary_in_the_c...
The yellow hypergiant_hr5171a_resolving_a_massive_interacting_binary_in_the_c...The yellow hypergiant_hr5171a_resolving_a_massive_interacting_binary_in_the_c...
The yellow hypergiant_hr5171a_resolving_a_massive_interacting_binary_in_the_c...Sérgio Sacani
 
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...GOASA
 

Semelhante a Distances luminosities and_temperatures_of_the_coldest_known_substelar_objects (20)

An irradiated-Jupiter analogue hotter than the Sun
An irradiated-Jupiter analogue hotter than the SunAn irradiated-Jupiter analogue hotter than the Sun
An irradiated-Jupiter analogue hotter than the Sun
 
An irradiated-Jupiter analogue hotter than the Sun
An irradiated-Jupiter analogue hotter than the SunAn irradiated-Jupiter analogue hotter than the Sun
An irradiated-Jupiter analogue hotter than the Sun
 
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanetWater vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
 
72589.web
72589.web72589.web
72589.web
 
Eso1151
Eso1151Eso1151
Eso1151
 
A continuum from_clear_to_cloudy_hot_jupiter_exoplanets_without_primordial_wa...
A continuum from_clear_to_cloudy_hot_jupiter_exoplanets_without_primordial_wa...A continuum from_clear_to_cloudy_hot_jupiter_exoplanets_without_primordial_wa...
A continuum from_clear_to_cloudy_hot_jupiter_exoplanets_without_primordial_wa...
 
The formation of Charon’s red poles from seasonally cold-trapped volatiles
The formation of Charon’s red poles from seasonally cold-trapped volatilesThe formation of Charon’s red poles from seasonally cold-trapped volatiles
The formation of Charon’s red poles from seasonally cold-trapped volatiles
 
First discovery of_a_magnetic_field_in_a_main_sequence_delta_scuti_star_the_k...
First discovery of_a_magnetic_field_in_a_main_sequence_delta_scuti_star_the_k...First discovery of_a_magnetic_field_in_a_main_sequence_delta_scuti_star_the_k...
First discovery of_a_magnetic_field_in_a_main_sequence_delta_scuti_star_the_k...
 
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_stateRadio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
Radio imaging obserations_of_psr_j1023_0038_in_an_lmxb_state
 
Aa17043 11
Aa17043 11Aa17043 11
Aa17043 11
 
The deep blue_color_of_hd189733b_albedo_measurements_with_hst_stis_at_visible...
The deep blue_color_of_hd189733b_albedo_measurements_with_hst_stis_at_visible...The deep blue_color_of_hd189733b_albedo_measurements_with_hst_stis_at_visible...
The deep blue_color_of_hd189733b_albedo_measurements_with_hst_stis_at_visible...
 
An alma survey
An alma surveyAn alma survey
An alma survey
 
Herschel far infrared_spectroscopy_of_the_galactic_center
Herschel far infrared_spectroscopy_of_the_galactic_centerHerschel far infrared_spectroscopy_of_the_galactic_center
Herschel far infrared_spectroscopy_of_the_galactic_center
 
Polarized reflected light from the Spica binary system
Polarized reflected light from the Spica binary systemPolarized reflected light from the Spica binary system
Polarized reflected light from the Spica binary system
 
Brazil2
Brazil2Brazil2
Brazil2
 
Brazil1
Brazil1Brazil1
Brazil1
 
Discovery of carbon_radio_recombination_lines_in_m82
Discovery of carbon_radio_recombination_lines_in_m82Discovery of carbon_radio_recombination_lines_in_m82
Discovery of carbon_radio_recombination_lines_in_m82
 
Planetary companions around_the_metal_poor_star_hip11952
Planetary companions around_the_metal_poor_star_hip11952Planetary companions around_the_metal_poor_star_hip11952
Planetary companions around_the_metal_poor_star_hip11952
 
The yellow hypergiant_hr5171a_resolving_a_massive_interacting_binary_in_the_c...
The yellow hypergiant_hr5171a_resolving_a_massive_interacting_binary_in_the_c...The yellow hypergiant_hr5171a_resolving_a_massive_interacting_binary_in_the_c...
The yellow hypergiant_hr5171a_resolving_a_massive_interacting_binary_in_the_c...
 
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
 

Mais de Sérgio Sacani

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Sérgio Sacani
 

Mais de Sérgio Sacani (20)

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
 

Último

CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 

Último (20)

CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 

Distances luminosities and_temperatures_of_the_coldest_known_substelar_objects

  • 1. Reports  One major goal in astrophysics is to extend previous successes in the characterization and modeling of stellar atmospheres to the much cooler atmospheres of extrasolar planets. A key pathway is the identification of free-floating objects that not only share common temperatures with exoplanets but that also share common masses and thus surface gravities. In recent years, searches for ever colder free-floating brown dwarfs- objects with masses below the hydrogen-fusing mass limit-have steadily pushed the census of the solar neighborhood to ever lower masses and finally perhaps into the planetary-mass regime ( 13 Jupiter masses).< The detection of large samples of brown dwarfs at the beginning of the last decade ushered in two, now widely accepted, spectral types de- noted by the letters “L” and “T” that extend the canonical OBAFGKM scheme for classifying stars that had stood untouched for nearly a centu- ry. Over the last two years, candidates for a “Y” spectral class have been uncovered in binary surveys (1, 2) and in all-sky imaging data from WISE, the Wide-field Infrared Survey Explorer (3). The primary criterion adopted to trigger this class has been the appearance of ammonia (NH3) absorption in near-infrared (1-2.5 μm) spectra. Y dwarfs probe colder atmospheric physics than before, with puta- tive effective temperatures as low as Teff 300 K and masses of ≈ 5-20 Jupiter masses (3). If found orbiting a star, a Y dwarf would likely be considered a gas-giant planet. However, these estimated properties of Y dwarfs are speculative given the uncertainty in their temperatures, ages, and luminosities. Temperatures have only been estimated from model atmospheres that use incomplete molecular line lists and simple prescrip- tions for complex processes like nonequilibrium chemistry and conden- sate formation. An independent approach for determining temperatures is to com- bine bolometric luminosities (Lbol) with evolutionary model-predicted radii (R ) and apply the Stefan-Boltzmann Law, Teff ≡ (4πσR 2 /Lbol)−1/4 . Recent observations of transiting substellar objects generally support evolutionary model radius predictions over a wide range of masses (4– 6). Although many may not be ideal test cases, since they may have formed via core accretion or have been intensely irradiated, variations in radii are expected to be relatively small and not strongly influence our resulting temperatures given the weak dependence on radius (Teff R −1/2 ). Therefore, the key measurements need- ed to determine temperatures via lumi- nosity are accurate distances to Y dwarfs, along with a method for com- puting Lbol from multi-wavelength pho- tometry. Trigonometric parallaxes provide the only direct means of measuring distances to stars. A star’s distance is inversely proportional to the amplitude of its apparent periodic motion on the sky relative to more distant background stars, which is due to the Earth’s orbital motion around the Sun. The amplitude of this effect is small, 0.1 arcseconds for a star at 10 parsec, and thus measur- ing parallaxes requires long-term, pre- cise position measurements. We have been using the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope to obtain such astrometry of late-T and Y dwarfs from 2011-2012. Spitzer currently trails the Earth by ≈ 2 months in its solar orbit, and keeping its solar shield directed at the Sun forces the telescope to observe stars near par- allax maximum. By maintaining a cold temperature Spitzer can obtain sensitive images in the thermal mid-infrared, where Y dwarfs emit most of their flux, giving it an advantage over ground-based near-infrared observations of Y dwarfs. We also use an improved correction for the nonlinear optical distortion of Spitzer/IRAC that enables 10× smaller residual errors than the correction used by the standard data pipeline, allowing us to unlock the precision astrometric capabilities of Spitzer. Distances, Luminosities, and Temperatures of the Coldest Known Substellar Objects Trent J. Dupuy1 and Adam L. Kraus1,2 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. 2 Astronomy epartment, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712, USA.D Corresponding author. E-mail: tdupuy@cfa.harvard.edu The coolest known brown dwarfs are our best analogs to extrasolar gas-giant planets. The prolific detections of such cold substellar objects in the past two years has spurred intensive followup, but the lack of accurate distances is a key gap in our understanding. We present a large sample of precise distances based on homogeneous mid-infrared astrometry that robustly establish absolute fluxes, luminosities, and temperatures. The coolest brown dwarfs have temperatures of 400 to 450 kelvin and masses ≈5 to 20× that of Jupiter, showing they bridge the gap between hotter brown dwarfs and gas-giant planets. At these extremes, spectral energy distributions no longer follow a simple correspondence with temperature, suggesting an increasing role of other physical parameters such as surface gravity, vertical mixing, clouds, and metallicity. By combining our parallaxes (Table S1, Fig. S1) with photometry from the literature (7–9), we have determined absolute magnitudes in the near-infrared YJHK bands (≈ 1.0-2.4 μm) and Spitzer’s mid-infrared bands at 3.6 μm and 4.5 μm (Table S2, Fig. 1, Fig. 2). For each spectral type bin, we computed the weighted mean absolute magnitude as well as upper/lower limits on the amount of intrinsic scatter in the magnitudes (Table S3). Objects classified as normal Y0 dwarfs are ≈2 magnitudes (≈6×) fainter in the near-infrared compared to the latest type T dwarfs, yet they generally share very similar colors. The most notable exception is that the Y−J colors become much bluer for Y dwarfs (9), which we find is due to flux at ≈1.25 μm dropping by 5× while flux at ≈ 1.05 μm only drops by 2.5×. This behavior is consistent with prior speculation that Y dwarfs may be so cool that the alkali atoms that dominate absorption at blue wavelengths for warmer brown dwarfs finally become locked into molecules like Na2S and KCl, thereby reducing the opacity at 1.05 μm relative to 1.25 μm (10). The appearance of such molecules could result in the return of substantial condensate clouds (11) and corresponding variability/weather. In contrast to their near-infrared behavior, Y dwarfs show remarka- ble diversity in their mid-infrared colors. Even though they are only ≈2× fainter than the latest T dwarfs at these wavelengths, they range from the same color as late-T dwarfs to much redder (≈0.8 magnitudes). One of the reddest objects is WISEP J1405+5534, which has been typed as “Y0 peculiar?” because its H-band spectral peak is shifted 60 Å redder than the Y0 standard WISEP J1738+2732 (3). We find that WISEP J1405+5534 in fact has a very similar temperature to other Y0 dwarfs (Table S5) indicating that its unusual spectrum is due to another physical / http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 1/ 10.1126/science.1241917 onSeptember9,2013www.sciencemag.orgDownloadedfrom
  • 2. property. Both the mid-infrared color and peculiar spectrum may be explained by a reduced level of nonequilibrium chemistry in the photo- sphere, perhaps due to reduced vertical mixing. This would produce enhanced NH3 absorption at H-band as compared to other Y0 dwarfs and enhanced CH4 absorption relative to CO driving WISEP J1405+5534 to redder [3.6]−[4.5] colors. The coldest brown dwarfs also demonstrate unusual behavior in their absolute fluxes as a function of spectral type. Despite the plummeting near-infrared flux-normal Y0 dwarfs are ≈6× fainter than the latest T dwarfs-Y0 dwarfs have indistinguishable fluxes compared to each other to within 15%-25%. This is very unusual compared to warmer brown dwarfs, which do not show such step-function behavior at any spectral type transition and also show much larger intrinsic scatter (≈30%-50%) in absolute fluxes for a given spectral type (12). This homogeneity among the Y0 dwarfs is further unexpected because it reverses the trend observed for the late-T dwarfs that the scatter increases substantially with later type, cooler objects (Fig. 3). For example, here we double the sample of T9 dwarfs with accurate distances and find that their near- infrared fluxes typically have a scatter of 130%-210%. Another unexpected result is that T9.5 dwarfs appear to be brighter at all bandpasses than the mean for T9 dwarfs and the T9 standard UGPS J0722−0540. Given the smaller sample of T9.5 dwarfs (three objects) and their more uncertain distances, this brightening is currently a 2σ result, i.e., the weighted means in Table S3 are consistent with being equal at a p-value of 0.05. Such a brightening is reminiscent of the change in near-infrared fluxes from late-L to early-T dwarfs (13, 14), however we note that the brightening at the L/T transition only occurs at blue near-infrared wavelengths whereas we see brightening at all bands for the T9.5 dwarfs. To derive bolometric luminosities from the absolute fluxes, we com- puted “super-magnitudes” by summing the fluxes in near- and mid- infrared bandpasses. This is an approximation to the standard method of integrating the observed spectral energy distribution as a function of wavelength, which is not possible for Y dwarfs given the current lack of sensitive mid-infrared spectrographs. We derive a multiplicative correc- tion to account for the remaining flux not captured in these bands from a large grid of model atmospheres (11, 15). The weak dependence on these models is highlighted by the 8% fractional uncertainty in this correction factor (Fig. S4). We used the Cond evolutionary models (16) to estimate radii and thereby temperatures, masses, and surface gravities from the bolometric luminosities of our sample (Fig. 4, Table S5). We assumed fiducial ages of 1 Gyr and 5 Gyr as expected for the field population (17, 18). The tangential velocities for our sample are consistent with having such typi- cal ages. We find that the fractional change in temperature over this narrow range of spectral types is remarkably large: the mean temperature of T8 dwarfs is 685-745 K (for 1-5 Gyr), and this drops to 410-440 K for Y0 dwarfs (Table S6). Thus, these two subtypes alone span the same fractional range in temperature as the entire sequence of FGK stars (7300-4400 K) that are 10× hotter. Although much cooler than their late-T counterparts, Y0 dwarfs turn out to be significantly warmer than previously suggested from model atmosphere fitting (Fig. S5). The most common best-fit models of Y0 dwarfs in previous work have Teff = 350 K, with plausible model fits of 400 K in some cases (3). Thus, model fits are typically 60-90 K (≈15%- 25%) cooler than we find from our distances combined with evolution- ary model radii. If the fault lies with our assumed radii, they would need to be 30%-50% larger than expected because Teff R −1/2 . This would require very young ages ( 100 Myr) or very large systematic errors in the evolutionary models that are not likely given the aforementioned empirical validation from transiting brown dwarfs. Rather, we suggest that parameters derived from fitting model atmospheres to near-infrared spectra, where < 5% of the flux emerges, are less likely to be accurate because current atmospheres imperfectly reproduce observed spectra. < Using our luminosity measurements, we find that the coldest brown dwarfs would be 6-10 Jupiter masses given an age of 1 Gyr. An older age of 5 Gyr implies 16-25 Jupiter masses. These masses therefore straddle the current demarcation of “planetary mass” set by the deuteri- um-fusing mass limit of ≈ 13 Jupiter masses (19–21). Thus, it is possible that the atmospheres of our objects harbor deuterated molecules such as HDO or CH3D that have not yet been detected because of the observa- tional challenges (22). Given the interest in both identifying the coldest atmospheric benchmarks and searching for the bottom of the initial mass function we briefly consider the most extreme objects in our sample in terms of tem- perature and mass. WISEP J1828+2650 has been dubbed the archetypal Y dwarf with a model-atmosphere temperature of < 300 K, i.e., room temperature, based on extremely red colors implying that the Wien tail of its underlying blackbody distribution has moved into the near-infrared (3). Our luminosity for this object is inconsistent with such a low tem- perature, and we find it must be at least 420 K at 2σ; our calculations give K at an age of 1 Gyr. (If WISEP J1828+2650 is a binary as proposed by (9) the 2σ limit at 1 Gyr only drops to 360 K and 340 K for the hypothetical two components.) Its atypical properties compared to other Y dwarfs may simply be due to a slightly lower surface gravity, i.e., slightly younger age, which qualitatively agrees with model predic- tions that the collapse in near-infrared flux happens at warmer tempera- tures for lower surface gravity (23). Ross 458C is a contender for the lowest mass object, at 7 Jupiter masses, if its age is near the 150 Myr lower limit of its proposed age range (24). However, WD 0806−661B is the most secure case for both lowest temperature (330-375 K) and lowest mass (6-10 Jupiter masses) object known, given that it has a precise age of 2.0 ± 0.5 Gyr (25). 60 50520+ − Overall, our results strengthen the connection between the coolest brown dwarfs and gas-giant exoplanets. We validate that they probe an extreme physical regime that bridges the gap between previously known, hotter brown dwarfs and Jupiter-like planets. We find that objects of very similar temperatures can have widely varying spectral energy dis- tributions and absorption features, e.g., a range of 0.8 magnitudes in mid-IR colors for the same Teff. Along with the fact that the ≥Y2 dwarf is warmer than the Y0 dwarfs, this implies that temperature is not the prin- cipal determinant in shaping spectra but rather seems to be on compara- ble footing with other physical properties such as surface gravity, vertical mixing, clouds, and perhaps metallicity. Consequently, the cur- rent spectral classification scheme used to identify Y dwarfs may not strongly correlate with temperature as it generally does for L and T dwarfs. This could explain the unusually homogeneous fluxes for Y0 dwarfs, unusually heterogeneous fluxes for T9 dwarfs, and plateau or brightening of flux from T9 to T9.5. References and Notes 1. K. L. Luhman, A. J. Burgasser, J. J. Bochanski, Discovery of a candidate for the coolest known brown dwarf. Astrophys. J. 730, L9 (2011). doi:10.1088/2041-8205/730/1/L9 2. M. C. Liu, P. Delorme, T. J. Dupuy, B. P. Bowler, L. Albert, E. Artigau, C. Reylé, T. Forveille, X. Delfosse, CFBDSIR J1458+1013B: A very cold (>T10) brown dwarf in a binary system. Astrophys. J. 740, 108 (2011). doi:10.1088/0004-637X/740/2/108 3. M. C. Cushing, J. D. Kirkpatrick, C. R. Gelino, R. L. Griffith, M. F. Skrutskie, A. Mainzer, K. A. Marsh, C. A. Beichman, A. J. Burgasser, L. A. Prato, R. A. Simcoe, M. S. Marley, D. Saumon, R. S. Freedman, P. R. Eisenhardt, E. L. Wright, The discovery of Y dwarfs using data from the Wide-Field Infrared Survey Explorer (WISE). Astrophys. J. 743, 50 (2011). doi:10.1088/0004- 637X/743/1/50 4. M. Deleuil, H. J. Deeg, R. Alonso, F. Bouchy, D. Rouan, M. Auvergne, A. Baglin, S. Aigrain, J. M. Almenara, M. Barbieri, P. Barge, H. Bruntt, P. Bordé, A. Collier Cameron, S. Csizmadia, R. De la Reza, R. Dvorak, A. / http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 2/ 10.1126/science.1241917 onSeptember9,2013www.sciencemag.orgDownloadedfrom
  • 3. Erikson, M. Fridlund, D. Gandolfi, M. Gillon, E. Guenther, T. Guillot, A. Hatzes, G. Hébrard, L. Jorda, H. Lammer, A. Léger, A. Llebaria, B. Loeillet, M. Mayor, T. Mazeh, C. Moutou, M. Ollivier, M. Pätzold, F. Pont, D. Queloz, H. Rauer, J. Schneider, A. Shporer, G. Wuchterl, S. Zucker, Transiting exoplanets from the CoRoT space mission. Astron. Astrophys. 491, 889–897 (2008). doi:10.1051/0004-6361:200810625 5. C. Hellier, D. R. Anderson, A. C. Cameron, M. Gillon, L. Hebb, P. F. Maxted, D. Queloz, B. Smalley, A. H. Triaud, R. G. West, D. M. Wilson, S. J. Bentley, B. Enoch, K. Horne, J. Irwin, T. A. Lister, M. Mayor, N. Parley, F. Pepe, D. L. Pollacco, D. Segransan, S. Udry, P. J. Wheatley, An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b. Nature 460, 1098–1100 (2009). Medline doi:10.1038/nature08245 6. D. R. Anderson, A. Collier Cameron, C. Hellier, M. Lendl, P. F. L. Maxted, D. Pollacco, D. Queloz, B. Smalley, A. M. S. Smith, I. Todd, A. H. M. J. Triaud, R. G. West, S. C. C. Barros, B. Enoch, M. Gillon, T. A. Lister, F. Pepe, D. Ségransan, R. A. Street, S. Udry, WASP-30b: A 61 MJup brown dwarf transiting a V = 12, F8 star. Astrophys. J. 726, L19 (2011). doi:10.1088/2041- 8205/726/2/L19 7. J. D. Kirkpatrick M. C. Cushing, C. R. Gelino, R. L. Griffith, M. F. Skrutskie, K. A. Marsh, E. L. Wright, A. Mainzer, P. R. Eisenhardt, I. S. McLean, M. A. Thompson, J. M. Bauer, D. J. Benford, C. R. Bridge, S. E. Lake, S. M. Petty, S. A. Stanford, C.-W. Tsai, V. Bailey, C. A. Beichman, J. S. Bloom, J. J. Bochanski, A. J. Burgasser, P. L. Capak, K. L. Cruz, P. M. Hinz, J. S. Kartaltepe, R. P. Knox, S. Manohar, D. Masters, M. Morales-Calderón, L. A. Prato, T. J. Rodigas, M. Salvato, S. D. Schurr, N. Z. Scoville, R. A. Simcoe, K. R. Stapelfeldt, D. Stern, N. D. Stock, W. D. Vacca, The first hundred brown dwarfs discovered by the Wide-Field Infrared Survey Explorer (WISE). Astrophys. J. Suppl. Ser. 197, 19 (2011). doi:10.1088/0067-0049/197/2/19 8. J. D. Kirkpatrick, C. R. Gelino, M. C. Cushing, G. N. Mace, R. L. Griffith, M. F. Skrutskie, K. A. Marsh, E. L. Wright, P. R. Eisenhardt, I. S. McLean, A. K. Mainzer, A. J. Burgasser, C. G. Tinney, S. Parker, G. Salter, Further defining spectral type “Y” and exploring the low-mass end of the field brown dwarf mass function. Astrophys. J. 753, 156 (2012). doi:10.1088/0004- 637X/753/2/156 9. S. K. Leggett, C. V. Morley, M. S. Marley, D. Saumon, J. J. Fortney, C. Visscher, A comparison of near-infrared photometry and spectra for Y dwarfs with a new generation of cool cloudy models. Astrophys. J. 763, 130 (2013). doi:10.1088/0004-637X/763/2/130 10. M. C. Liu, T. J. Dupuy, B. P. Bowler, S. K. Leggett, W. M. J. Best, Two extraordinary substellar binaries at the T/Y transition and the Y -band fluxes of the coolest brown dwarfs. Astrophys. J. 758, 57 (2012). doi:10.1088/0004- 637X/758/1/57 11. C. V. Morley, J. J. Fortney, M. S. Marley, C. Visscher, D. Saumon, S. K. Leggett, Neglected clouds in T and Y dwarf atmospheres. Astrophys. J. 756, 172 (2012). doi:10.1088/0004-637X/756/2/172 12. T. J. Dupuy, M. C. Liu, The Hawaii Infrared Parallax Program. I. Ultracool binaries and the L/T transition. Astrophys. J. Suppl. Ser. 201, 19 (2012). doi:10.1088/0067-0049/201/2/19 13. A. J. Burgasser, J. D. Kirkpatrick, K. L. Cruz, I. N. Reid, S. K. Leggett, J. Liebert, A. Burrows, M. E. Brown, Hubble Space Telescope NICMOS observations of T dwarfs: Brown dwarf multiplicity and new probes of the L/T transition. Astrophys. J. Suppl. Ser. 166, 585–612 (2006). doi:10.1086/506327 14. M. C. Liu, S. K. Leggett, D. A. Golimowski, K. Chiu, X. Fan, T. R. Geballe, D. P. Schneider, J. Brinkmann, SDSS J1534+1615AB: A novel T dwarf binary found with Keck laser guide star adaptive optics and the potential role of binarity in the L/T transition. Astrophys. J. 647, 1393–1404 (2006). doi:10.1086/505561 15. D. Saumon, M. S. Marley, M. Abel, L. Frommhold, R. S. Freedman, New H2 collision-induced absorption and NH 3 opacity and the spectra of the coolest brown dwarfs. Astrophys. J. 750, 74 (2012). doi:10.1088/0004-637X/750/1/74 16. I. Baraffe, G. Chabrier, T. S. Barman, F. Allard, P. H. Hauschildt, Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. Astron. Astrophys. 402, 701–712 (2003). doi:10.1051/0004-6361:20030252 17. A. J. Burgasser, T dwarfs and the substellar mass function. I. Monte Carlo simulations. Astrophys. J. Suppl. Ser. 155, 191–207 (2004). doi:10.1086/424386 18. P. R. Allen, D. W. Koerner, I. N. Reid, D. E. Trilling, The substellar mass function: A Bayesian approach. Astrophys. J. 625, 385–397 (2005). doi:10.1086/429548 19. D. Saumon, W. B. Hubbard, A. Burrows, T. Guillot, J. I. Lunine, G. Chabrier, A theory of extrasolar giant planets. Astrophys. J. 460, 993 (1996). doi:10.1086/177027 20. G. Chabrier, I. Baraffe, Theory of low-mass stars and substellar objects. Annu. Rev. Astron. Astrophys. 38, 337–377 (2000). doi:10.1146/annurev.astro.38.1.337 21. P. Mollière, C. Mordasini, Deuterium burning in objects forming via the core accretion scenario. Astron. Astrophys. 547, A105 (2012). doi:10.1051/0004- 6361/201219844 22. G. Chabrier, I. Baraffe, F. Allard, P. Hauschildt, Deuterium burning in substellar objects. Astrophys. J. 542, L119–L122 (2000). doi:10.1086/312941 23. A. Burrows, D. Sudarsky, J. I. Lunine, Beyond the T dwarfs: Theoretical spectra, colors, and detectability of the coolest brown dwarfs. Astrophys. J. 596, 587–596 (2003). doi:10.1086/377709 24. A. J. Burgasser, R. A. Simcoe, J. J. Bochanski, D. Saumon, E. E. Mamajek, M. C. Cushing, M. S. Marley, C. McMurtry, J. L. Pipher, W. J. Forrest, Clouds in the coldest brown dwarfs: Fire spectroscopy of Ross 458C. Astrophys. J. 725, 1405–1420 (2010). doi:10.1088/0004-637X/725/2/1405 25. K. L. Luhman, A. J. Burgasser, I. Labbé, D. Saumon, M. S. Marley, J. J. Bochanski, A. J. Monson, S. E. Persson, Confirmation of one of the coldest known brown dwarfs. Astrophys. J. 744, 135 (2012). doi:10.1088/0004- 637X/744/2/135 26. G. G. Fazio, J. L. Hora, L. E. Allen, M. L. N. Ashby, P. Barmby, L. K. Deutsch, J.-S. Huang, S. Kleiner, M. Marengo, S. T. Megeath, G. J. Melnick, M. A. Pahre, B. M. Patten, J. Polizotti, H. A. Smith, R. S. Taylor, Z. Wang, S. P. Willner, W. F. Hoffmann, J. L. Pipher, W. J. Forrest, C. W. McMurty, C. R. McCreight, M. E. McKelvey, R. E. McMurray, D. G. Koch, S. H. Moseley, R. G. Arendt, J. E. Mentzell, C. T. Marx, P. Losch, P. Mayman, W. Eichhorn, D. Krebs, M. Jhabvala, D. Y. Gezari, D. J. Fixsen, J. Flores, K. Shakoorzadeh, R. Jungo, C. Hakun, L. Workman, G. Karpati, R. Kichak, R. Whitley, S. Mann, E. V. Tollestrup, P. Eisenhardt, D. Stern, V. Gorjian, B. Bhattacharya, S. Carey, B. O. Nelson, W. J. Glaccum, M. Lacy, P. J. Lowrance, S. Laine, W. T. Reach, J. A. Stauffer, J. A. Surace, G. Wilson, E. L. Wright, A. Hoffman, G. Domingo, M. Cohen, The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004). doi:10.1086/422843 27. P. B. Stetson, DAOPHOT - A computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191 (1987). doi:10.1086/131977 28. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, J. D. Kirkpatrick, D. Padgett, R. S. McMillan, M. Skrutskie, S. A. Stanford, M. Cohen, R. G. Walker, J. C. Mather, D. Leisawitz, T. N. Gautier, I. McLean, D. Benford, C. J. Lonsdale, A. Blain, B. Mendez, W. R. Irace, V. Duval, F. Liu, D. Royer, I. Heinrichsen, J. Howard, M. Shannon, M. Kendall, A. L. Walsh, M. Larsen, J. G. Cardon, S. Schick, M. Schwalm, M. Abid, B. Fabinsky, L. Naes, C.-W. Tsai, The Wide-Field Infrared Survey Explorer (WISE): Mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010). doi:10.1088/0004-6256/140/6/1868 29. C. B. Markwardt, Astronomical Society of the Pacific Conference Series, D. A. Bohlender, D. Durand, & P. Dowler, ed. (2009), vol. 411, p. 251. 30. A. C. Robin, C. Reylé, S. Derrière, S. Picaud, A synthetic view on structure and evolution of the Milky Way. Astron. Astrophys. 409, 523 (2003). doi:10.1051/0004-6361:20031117 31. J. K. Faherty, A. J. Burgasser, F. M. Walter, N. Van der Bliek, M. M. Shara, K. L. Cruz, A. A. West, F. J. Vrba, G. Anglada-Escudé, The brown dwarf Kinematics Project (BDKP). III. Parallaxes for 70 ultracool dwarfs. Astrophys. J. 752, 56 (2012). doi:10.1088/0004-637X/752/1/56 32. S. K. Leggett, D. Saumon, M. S. Marley, K. Lodders, J. Canty, P. Lucas, R. L. Smart, C. G. Tinney, D. Homeier, F. Allard, B. Burningham, A. Day-Jones, B. Fegley, M. Ishii, H. R. A. Jones, F. Marocco, D. J. Pinfield, M. Tamura, The properties of the 500 K dwarf UGPS J072227.51–054031.2 and a study of the far-red flux of cold brown dwarfs. Astrophys. J. 748, 74 (2012). doi:10.1088/0004-637X/748/2/74 33. M. C. Liu, N. R. Deacon, E. A. Magnier, T. J. Dupuy, K. M. Aller, B. P. Bowler, J. Redstone, B. Goldman, W. S. Burgett, K. C. Chambers, K. W. Hodapp, N. Kaiser, R.-P. Kudritzki, J. S. Morgan, P. A. Price, J. L. Tonry, R. J. Wainscoat, A search for high proper motion T dwarfs with Pan-STARRS1 + 2MASS + WISE. Astrophys. J. 740, L32 (2011). doi:10.1088/2041- / http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 3/ 10.1126/science.1241917 onSeptember9,2013www.sciencemag.orgDownloadedfrom
  • 4. 8205/740/2/L32 34. F. van Leeuwen, Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007). doi:10.1051/0004-6361:20078357 35. K. A. Marsh, E. L. Wright, J. D. Kirkpatrick, C. R. Gelino, M. C. Cushing, R. L. Griffith, M. F. Skrutskie, P. R. Eisenhardt, Parallaxes and proper motions of ultracool brown dwarfs of spectral types Y and late T. Astrophys. J. 762, 119 (2013). doi:10.1088/0004-637X/762/2/119 36. C. Beichman, C. R. Gelino, J. D. Kirkpatrick, T. S. Barman, K. A. Marsh, M. C. Cushing, E. L. Wright, The coldest brown dwarf (or free-floating planet)?: The Y dwarf WISE 1828+2650. Astrophys. J. 764, 101 (2013). doi:10.1088/0004-637X/764/1/101 37. T. E. Lutz, D. H. Kelker, On the use of trigonometric parallaxes for the calibration of luminosity systems: Theory. Publ. Astron. Soc. Pac. 85, 573 (1973). doi:10.1086/129506 38. J. R. Thorstensen, Parallaxes and distance estimates for 14 cataclysmic variable stars. Astron. J. 126, 3017–3029 (2003). doi:10.1086/379308 39. D. Saumon, M. S. Marley, S. K. Leggett, T. R. Geballe, D. Stephens, D. A. Golimowski, M. C. Cushing, X. Fan, J. T. Rayner, K. Lodders, R. S. Freedman, Physical parameters of two very cool T dwarfs. Astrophys. J. 656, 1136–1149 (2007). doi:10.1086/510557 40. A. J. Burgasser, C. G. Tinney, M. C. Cushing, D. Saumon, M. S. Marley, C. S. Bennett, J. D. Kirkpatrick, 2MASS J09393548-2448279: The coldest and least luminous brown dwarf binary known? Astrophys. J. 689, L53–L56 (2008). doi:10.1086/595747 41. G. Chabrier, I. Baraffe, F. Allard, P. Hauschildt, Evolutionary models for very low‐mass stars and brown dwarfs with dusty atmospheres. Astrophys. J. 542, 464–472 (2000). doi:10.1086/309513 42. B. Tingley, M. Endl, J.-C. Gazzano, R. Alonso, T. Mazeh, L. Jorda, S. Aigrain, J.-M. Almenara, M. Auvergne, A. Baglin, P. Barge, A. S. Bonomo, P. Bordé, F. Bouchy, H. Bruntt, J. Cabrera, S. Carpano, L. Carone, W. D. Cochran, S. Csizmadia, M. Deleuil, H. J. Deeg, R. Dvorak, A. Erikson, S. Ferraz-Mello, M. Fridlund, D. Gandolfi, M. Gillon, E. W. Guenther, T. Guillot, A. Hatzes, G. Hébrard, A. Léger, A. Llebaria, H. Lammer, C. Lovis, P. J. MacQueen, C. Moutou, M. Ollivier, A. Ofir, M. Pätzold, F. Pepe, D. Queloz, H. Rauer, D. Rouan, B. Samuel, J. Schneider, A. Shporer, G. Wuchterl, Transiting exoplanets from the CoRoT space mission. Astron. Astrophys. 528, A97 (2011). doi:10.1051/0004-6361/201015480 43. R. J. Siverd, T. G. Beatty, J. Pepper, J. D. Eastman, K. Collins, A. Bieryla, D. W. Latham, L. A. Buchhave, E. L. N. Jensen, J. R. Crepp, R. Street, K. G. Stassun, B. Scott Gaudi, P. Berlind, M. L. Calkins, D. L. DePoy, G. A. Esquerdo, B. J. Fulton, G. Fűrész, J. C. Geary, A. Gould, L. Hebb, J. F. Kielkopf, J. L. Marshall, R. Pogge, K. Z. Stanek, R. P. Stefanik, A. H. Szentgyorgyi, M. Trueblood, P. Trueblood, A. M. Stutz, J. L. van Saders, Kelt-1b: A strongly irradiated, highly inflated, short period, 27 Jupiter-mass companion transiting a mid-F star. Astrophys. J. 761, 123 (2012). doi:10.1088/0004-637X/761/2/123 44. J. A. Johnson, K. Apps, J. Z. Gazak, J. R. Crepp, I. J. Crossfield, A. W. Howard, G. W. Marcy, T. D. Morton, C. Chubak, H. Isaacson, LHS 6343 C: A transiting field brown dwarf discovered by the Kepler mission. Astrophys. J. 73 , 79 (2011).0 doi:10.1088/0004-637X/730/2/79 45. D. Saumon, M. S. Marley, The evolution of L and T dwarfs in color‐magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008). doi:10.1086/592734 46. B. Burningham, D. J. Pinfield, S. K. Leggett, C. G. Tinney, M. C. Liu, D. Homeier, A. A. West, A. Day-Jones, N. Huelamo, T. J. Dupuy, Z. Zhang, D. N. Murray, N. Lodieu, D. Barrado y Navascués, S. Folkes, M. C. Galvez- Ortiz, H. R. A. Jones, P. W. Lucas, M. M. Calderon, M. Tamura, The discovery of an M4+T8.5 binary system. Mon. Not. R. Astron. Soc. 395, 1237–1248 (2009). doi:10.1111/j.1365-2966.2009.14620.x 47. D. J. Pinfield, B. Burningham, N. Lodieu, S. K. Leggett, C. G. Tinney, L. van Spaandonk, F. Marocco, R. Smart, J. Gomes, L. Smith, P. W. Lucas, A. C. Day-Jones, D. N. Murray, A. C. Katsiyannis, S. Catalan, C. Cardoso, J. R. A. Clarke, S. Folkes, M. C. Gálvez-Ortiz, D. Homeier, J. S. Jenkins, H. R. A. Jones, Z. H. Zhang, Discovery of the benchmark metal-poor T8 dwarf BD +01° 2920B. Mon. Not. R. Astron. Soc. 422, 1922–1932 (2012). doi:10.1111/j.1365-2966.2012.20549.x 48. E. L. Wright, M. F. Skrutskie, J. D. Kirkpatrick, C. R. Gelino, R. L. Griffith, K. A. Marsh, T. Jarrett, M. J. Nelson, H. J. Borish, G. Mace, A. K. Mainzer, P. R. Eisenhardt, I. S. McLean, J. J. Tobin, M. C. Cushing, A T8.5 brown dwarf member of the ξ URSAE Majoris system. Astron. J. 145, 84 (2013). doi:10.1088/0004-6256/145/3/84 49. J. K. Faherty, A. J. Burgasser, K. L. Cruz, M. M. Shara, F. M. Walter, C. R. Gelino, The brown dwarf kinematics project I. Proper motions and tangential velocities for a large sample of late-type M, L, and T dwarfs. Astron. J. 137, 1–18 (2009). doi:10.1088/0004-6256/137/1/1 50. B. Burningham, C. V. Cardoso, L. Smith, S. K. Leggett, R. L. Smart, A. W. Mann, S. Dhital, P. W. Lucas, C. G. Tinney, D. J. Pinfield, Z. Zhang, C. Morley, D. Saumon, K. Aller, S. P. Littlefair, D. Homeier, N. Lodieu, N. Deacon, M. S. Marley, L. van Spaandonk, D. Baker, F. Allard, A. H. Andrei, J. Canty, J. Clarke, A. C. Day-Jones, T. Dupuy, J. J. Fortney, J. Gomes, M. Ishii, H. R. A. Jones, M. Liu, A. Magazzu, F. Marocco, D. N. Murray, B. Rojas-Ayala, M. Tamura, 76 T dwarfs from the UKIDSS LAS: benchmarks, kinematics and an updated space density. Mon. Not. R. Astron. Soc. 433, 457– 497 (2013). doi:10.1093/mnras/stt740 51. A. J. Burgasser, J. D. Kirkpatrick, I. N. Reid, M. E. Brown, C. L. Miskey, J. E. Gizis, Binarity in brown dwarfs: T dwarf binaries discovered with the Hubble Space Telescope Wide Field Planetary Camera 2. Astrophys. J. 586, 512–526 (2003). doi:10.1086/346263 52. M. C. Liu, T. J. Dupuy, S. K. Leggett, Discovery of a highly unequal-mass binary T dwarf with Keck laser Guide Star Adaptive Optics: A coevality test of substellar theoretical models and effective temperatures. Astrophys. J. 722, 311–328 (2010). doi:10.1088/0004-637X/722/1/311 53. C. G. Tinney, J. K. Faherty, J. D. Kirkpatrick, E. L. Wright, C. R. Gelino, M. C. Cushing, R. L. Griffith, G. Salter, WISE J163940.83–684738.6: A Y dwarf identified by methane imaging. Astrophys. J. 759, 60 (2012). doi:10.1088/0004-637X/759/1/60 54. A. J. Burgasser, T. R. Geballe, S. K. Leggett, J. D. Kirkpatrick, D. A. Golimowski, A unified near‐infrared spectral classification scheme for t dwarfs. Astrophys. J. 637, 1067–1093 (2006). doi:10.1086/498563 55. A. J. Burgasser, C. R. Gelino, M. C. Cushing, J. D. Kirkpatrick, Resolved spectroscopy of a brown dwarf binary at the T dwarf/Y dwarf transition. Astrophys. J. 745, 26 (2012). doi:10.1088/0004-637X/745/1/26 56. B. Burningham, D. J. Pinfield, S. K. Leggett, M. Tamura, P. W. Lucas, D. Homeier, A. Day-Jones, H. R. A. Jones, J. R. A. Clarke, M. Ishii, M. Kuzuhara, N. Lodieu, M. R. Zapatero Osorio, B. P. Venemans, D. J. Mortlock, D. Barrado y Navascués, E. L. Martin, A. Magazzù, Exploring the substellar temperature regime down to 550 K. Mon. Not. R. Astron. Soc. 391, 320–333 (2008). doi:10.1111/j.1365-2966.2008.13885.x 57. B. Burningham, S. K. Leggett, D. Homeier, D. Saumon, P. W. Lucas, D. J. Pinfield, C. G. Tinney, F. Allard, M. S. Marley, H. R. A. Jones, D. N. Murray, M. Ishii, A. Day-Jones, J. Gomes, Z. H. Zhang, The properties of the T8.5p dwarf Ross 458C. Mon. Not. R. Astron. Soc. 414, 3590–3598 (2011). doi:10.1111/j.1365-2966.2011.18664.x 58. P. Delorme, X. Delfosse, L. Albert, E. Artigau, T. Forveille, C. Reylé, F. Allard, D. Homeier, A. C. Robin, C. J. Willott, M. C. Liu, T. J. Dupuy, CFBDS J005910.90-011401.3: Reaching the T-Y brown dwarf transition? Astron. Astrophys. 482, 961–971 (2008). doi:10.1051/0004-6361:20079317 59. G. R. Knapp, S. K. Leggett, X. Fan, M. S. Marley, T. R. Geballe, D. A. Golimowski, D. Finkbeiner, J. E. Gunn, J. Hennawi, Z. Ivezić, R. H. Lupton, D. J. Schlegel, M. A. Strauss, Z. I. Tsvetanov, K. Chiu, E. A. Hoversten, K. Glazebrook, W. Zheng, M. Hendrickson, C. C. Williams, A. Uomoto, F. J. Vrba, A. A. Henden, C. B. Luginbuhl, H. H. Guetter, J. A. Munn, B. Canzian, D. P. Schneider, J. Brinkmann, Near-infrared photometry and spectroscopy of L and T dwarfs: The effects of temperature, clouds, and gravity. Astron. J. 127, 3553–3578 (2004). doi:10.1086/420707 60. S. K. Leggett, M. C. Cushing, D. Saumon, M. S. Marley, T. L. Roellig, S. J. Warren, B. Burningham, H. R. A. Jones, J. D. Kirkpatrick, N. Lodieu, P. W. Lucas, A. K. Mainzer, E. L. Martín, M. J. McCaughrean, D. J. Pinfield, G. C. Sloan, R. L. Smart, M. Tamura, J. Van Cleve, The physical properties of four 600 K T dwarfs. Astrophys. J. 695, 1517–1526 (2009). doi:10.1088/0004- 637X/695/2/1517 61. S. K. Leggett, B. Burningham, D. Saumon, M. S. Marley, S. J. Warren, R. L. Smart, H. R. A. Jones, P. W. Lucas, D. J. Pinfield, M. Tamura, Mid-infrared photometry of cold brown dwarfs: Diversity in age, mass, and metallicity. Astrophys. J. 710, 1627–1640 (2010). doi:10.1088/0004-637X/710/2/1627 62. D. L. Looper, J. D. Kirkpatrick, A. J. Burgasser, Discovery of 11 new T dwarfs in the two micron All Sky Survey, including a possible L/T transition binary. Astron. J. 134, 1162–1182 (2007). doi:10.1086/520645 / http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 4/ 10.1126/science.1241917 onSeptember9,2013www.sciencemag.orgDownloadedfrom
  • 5. / http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 5/ 10.1126/science.1241917 63. P. W. Lucas, C. G. Tinney, B. Burningham, S. K. Leggett, D. J. Pinfield, R. Smart, H. R. A. Jones, F. Marocco, R. J. Barber, S. N. Yurchenko, J. Tennyson, M. Ishii, M. Tamura, A. C. Day-Jones, A. Adamson, F. Allard, D. Homeier, The discovery of a very cool, very nearby brown dwarf in the Galactic plane. Mon. Not. R. Astron. Soc. 408, L56–L60 (2010). doi:10.1111/j.1745-3933.2010.00927.x 64. B. M. Patten, J. R. Stauffer, A. Burrows, M. Marengo, J. L. Hora, K. L. Luhman, S. M. Sonnett, T. J. Henry, D. Raghavan, S. T. Megeath, J. Liebert, G. G. Fazio, Spitzer IRAC photometry of M, L, and T dwarfs. Astrophys. J. 651, 502–516 (2006). doi:10.1086/507264 65. J. P. Subasavage, W.-C. Jao, T. J. Henry, P. Bergeron, P. Dufour, P. A. Ianna, E. Costa, R. A. Méndez, The solar neighborhood. XXI. Parallax results from the CTIOPI 0.9 m program: 20 new members of the 25 parsec white dwarf sample. Astron. J. 137, 4547–4560 (2009). doi:10.1088/0004- 6256/137/6/4547 66. C. G. Tinney, A. J. Burgasser, J. D. Kirkpatrick, Infrared parallaxes for methane T dwarfs. Astron. J. 126, 975–992 (2003). doi:10.1086/376481 67. W. F. van Altena, J. T. Lee, E. D. Hoffleit, The General Catalogue of Trigonometric Stellar Parallaxes, 4th ed., Yale University Observatory (1995). 68. S. J. Warren, D. J. Mortlock, S. K. Leggett, D. J. Pinfield, D. Homeier, S. Dye, R. F. Jameson, N. Lodieu, P. W. Lucas, A. J. Adamson, F. Allard, D. Barrado y Navascues, M. Casali, K. Chiu, N. C. Hambly, P. C. Hewett, P. Hirst, M. J. Irwin, A. Lawrence, M. C. Liu, E. L. Martin, R. L. Smart, L. Valdivielso, B. P. Venemans, A very cool brown dwarf in UKIDSS DR1. Mon. Not. R. Astron. Soc. 381, 1400–1412 (2007). doi:10.1111/j.1365- 2966.2007.12348.x Acknowledgments: We thank M. C. Liu for many helpful suggestions for improving this article; C. V. Morley for fruitful discussions regarding her and collaborators’ model atmospheres, particularly the Vega zero points; M. C. Cushing for making available published spectra of our targets; and K. N. Allers for assistance in computing photometry from our IRAC data. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. T.J.D. acknowledges support from Hubble Fellowship grant HST-HF-51271.01-A awarded by the Space Telescope Science Institute, which is operated by AURA for NASA, under contract NAS 5-26555. A.L.K. is supported by a Clay Fellowship. Our imaging data are available in the Spitzer Heritage Archive at http://sha.ipac.caltech.edu/applications/Spitzer/SHA, and the astrometric measurements we derived are given in Table S1. Supplementary Materials www.sciencemag.org/cgi/content/full/science.1241917/DC1 Materials and Methods Supplementary Text Figs. S1 to S5 Tables S1 to S6 References (26–68) 13 June 2013; accepted 23 August 2013 Published online 05 September 2013 10.1126/science.1241917 onSeptember9,2013www.sciencemag.orgDownloadedfrom
  • 6. Fig. 1. Color-magnitude diagrams for all objects with spectral types T8 and later that have direct distance measurements. Data points are color coded according to spectral type, with open/white points indicating that no spectra are available. Small gray points are earlier type field brown dwarfs. Near-infrared photometry is on the Mauna Kea Observatory (MKO) system. Fig. 2. Absolute magnitude as a function of spectral type for near-infrared and mid-infrared bandpasses. Objects typed as peculiar are shown as open white symbols. Objects with very uncertain distances are plotted with smaller gray symbols. Error bars for spectral types are not plotted, and small x-axis offsets have been added to the spectral types for clarity. / http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 6/ 10.1126/science.1241917 onSeptember9,2013www.sciencemag.orgDownloadedfrom
  • 7. Fig. 4. Bolometric luminosities (Lbol) and effective temperatures for objects of spectral type T8 and later; spectrally peculiar objects are denoted by white symbols. Objects with Lbol uncertainties larger than 0.2 dex are shown as smaller, gray symbols. These are either objects with very uncertain distances or the components of tight binaries where the lack of resolved mid-infrared photometry results in a very uncertain bolometric flux. Error bars for spectral types are not plotted, and small x- axis offsets have been added to the spectral types for clarity. Effective temperatures are derived from our Lbol measurements and Cond evolutionary model radii. Upward and downward pointing triangles correspond to the median Lbol and lower and upper age limits used (see Table S5). Error bars show the range of temperatures corresponding to the ±1σ range of Lbol over the same age range. Fig. 3. Intrinsic photometric scatter among objects at each spectral type; unfilled symbols are upper limits where no scatter is detected. Y0 dwarfs show remarkably low intrinsic scatter in the near-infrared, reversing the trend observed at the end of the T dwarf sequence that later type T dwarfs show increasing dispersion in their near-infrared absolute magnitudes. The much smaller sample of T9.5 dwarfs are also suggestive of this reversal at J and H bands. There is no evidence for such a reversal in the mid-infrared where both late-T and Y dwarfs show much less intrinsic scatter and distance uncertainties for Y dwarfs do not permit strong enough upper limits. / http://www.sciencemag.org/content/early/recent / 5 September 2013 / Page 7/ 10.1126/science.1241917 onSeptember9,2013www.sciencemag.orgDownloadedfrom