SlideShare uma empresa Scribd logo
1 de 34
Baixar para ler offline
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Propositional Equality and Identity Types
Ruy de Queiroz
(joint work with Anjolina de Oliveira)
Univ. Federal de Pernambuco, Recife, Brazil
Seminar at Logic Group, TU Darmstadt
19 Aug 2013
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Content
1 Identity Types in Type Theory
2 Heyting’s explanation via proofs
3 Direct Computations
4 The Functional Interpretation of Propositional Equality
5 Normal form for equality proofs
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
What is a proof of an equality statement?
What is the formal counterpart of a proof of an equality?
In talking about proofs of an equality statement, two dichotomies
arise:
1 definitional equality versus propositional equality
2 intensional equality versus extensional equality
First step on the formalisation of proofs of equality statements: Per
Martin-L¨of’s Intuitionistic Type Theory (Log Coll ’73, published 1975)
with the so-called Identity Type
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Identity Types - Topological and Categorical Structure
Workshop, Uppsala, November 13–14, 2006
“The identity type, the type of proof objects for the
fundamental propositional equality, is one of the most
intriguing constructions of intensional dependent type
theory (also known as Martin-L¨of type theory). Its
complexity became apparent with the Hofmann–Streicher
groupoid model of type theory. This model also hinted at
some possible connections between type theory and
homotopy theory and higher categories. Exploration of this
connection is intended to be the main theme of the
workshop.”
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Type Theory and Homotopy Theory
Indeed, a whole new research avenue has since 2005 been explored
by people like Vladimir Voevodsky and Steve Awodey in trying to
make a bridge between type theory and homotopy theory, mainly via
the groupoid structure exposed in the Hofmann–Streicher (1994)
countermodel to the principle of Uniqueness of Identity Proofs (UIP).
This has open the way to, in Awodey’s words,
“a new and surprising connection between Geometry,
Algebra, and Logic, which has recently come to light in the
form of an interpretation of the constructive type theory of
Per Martin-L¨of into homotopy theory, resulting in new
examples of certain algebraic structures which are
important in topology”. (“Type Theory and Homotopy”,
preprint, 2010.)
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Identity Types as Topological Spaces
According to B. van den Berg and R. Garner (“Topological and
simplicial models of identity types”, ACM Transactions on
Computational Logic, Jan 2012),
“All of this work can be seen as an elaboration of the
following basic idea: that in Martin-L¨of type theory, a type A
is analogous to a topological space; elements a, b ∈ A to
points of that space; and elements of an identity type
p, q ∈ IdA(a, b) to paths or homotopies p, q : a → b in A.”.
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types
Identity Types as Topological Spaces
From the Homotopy type theory collective book
(2013):
“In type theory, for every type A there is a (formerly
somewhat mysterious) type IdA of identifications of two
objects of A; in homotopy type theory, this is just the path
space AI
of all continuous maps I → A from the unit
interval. In this way, a term p : IdA(a, b) represents a path
p : a b in A.”
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types: Iteration
From Propositional to Predicate Logic and Beyond
In the same aforementioned workshop, B. van den Berg in his
contribution “Types as weak omega-categories” draws attention to the
power of the identity type in the iterating types to form a globular set:
“Fix a type X in a context Γ. Define a globular set as follows:
A0 consists of the terms of type X in context Γ,modulo
definitional equality; A1 consists of terms of the types
Id(X; p; q) (in context Γ) for elements p, q in A0, modulo
definitional equality; A2 consists of terms of well-formed
types Id(Id(X; p; q); r; s) (in context Γ) for elements p, q in
A0, r, s in A1, modulo definitional equality; etcetera...”
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Identity Types: Iteration
The homotopy interpretation
Here is how we can see the connections between proofs of equality
and homotopies:
a, b : A
p, q : IdA(a, b)
α, β : IdIdA(a,b)(p, q)
· · · : IdIdId...
(· · · )
Now, consider the following
interpretation:
Types Spaces
Terms Maps
a : A Points a : 1 → A
p : IdA(a, b) Paths p : a ⇒ b
α : IdIdA(a,b)(p, q) Homotopies α : p q
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Propositional Equality
Proofs of equality as (rewriting) computational paths
Motivated by looking at equalities in type theory as arising from the
existence of computational paths between two formal objects, our
purpose here is to offer a different perspective on the role and the
power of the notion of propositional equality as formalised in the
so-called Curry–Howard functional interpretation. The main idea
goes back to a paper entitled “Equality in labelled deductive systems
and the functional interpretation of propositional equality”, , presented
in Dec 1993 at the 9th Amsterdam Colloquium, and published in the
proceedings in 1994.
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Brouwer–Heyting–Kolmogorov Interpretation
Proofs rather than truth-values
a proof of the proposition: is given by:
A ∧ B a proof of A and
a proof of B
A ∨ B a proof of A or
a proof of B
A → B a function that turns a proof of A
into a proof of B
∀xD
.P(x) a function that turns an element a
into a proof of P(a)
∃xD
.P(x) an element a (witness)
and a proof of P(a)
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Brouwer–Heyting–Kolmogorov Interpretation: Formally
Canonical proofs rather than truth-values
a proof of the proposition: has the canonical form of:
A ∧ B p, q where p is a proof of A and
q is a proof of B
A ∨ B inl(p) where p is a proof of A or
inr(q) where q is a proof of B
(‘inl’ and ‘inr’ abbreviate
‘into the left/right disjunct’)
A → B λx.b(x) where b(p) is a proof of B
provided p is a proof of A
∀xD
.P(x) Λx.f(x) where f(a) is a proof of P(a)
provided a is an arbitrary individual chosen
from the domain D
∃xD
.P(x) εx.(f(x), a) where a is a witness
from the domain D, f(a) is a proof of P(a)
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Brouwer–Heyting–Kolmogorov Interpretation
What is a proof of an equality statement?
a proof of the proposition: is given by:
t1 = t2 ?
(Perhaps a sequence of rewrites
starting from t1 and ending in t2?)
What is the logical status of the symbol “=”?
What would be a canonical/direct proof of t1 = t2?
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Statman’s Direct Computations
Terms, Equations, Measure
Definition (equations and systems of equations)
Let us consider equations E between individual terms
a, b, c, . . ., possibly containing function variables, and finite sets
of equations S.
Definition (measure)
A function M from terms to non-negative integers is called a
measure if M(a) ≤ M(b) implies M(c[a/x]) ≤ M(c[b/x]), and,
whenever x occurs in c, M(a) ≤ M(c[a/x]).
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Statman’s Direct Computations
Kreisel–Tait’s calculus K
Definition (calculus K)
The calculus K of Kreisel and Tait consists of the axioms a = a and
the rule of substituting equals for equals:
(1)
E[a/x] a
.
= b
E[b/x]
where a
.
= b is, ambiguously, a = b and b = a, together with the rules
(2)
sa = sb
a = b
(3)
0 = sa
b = c
(4)
a = sn
a
b = c
H will be the system consisting only of the rule (1)
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
Statman’s Direct Computations
Computations, Direct Computations
Definition (computation)
Computations T in K or H are binary trees of equation
occurrences built up from assumptions and axioms according
to the rules.
Definition (direct computation)
If M is a measure, we say that a computation T of E from S is
M-direct if for each term b occurring in T there is a term c
occurring in E or S with M(b) ≤ M(c).
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Propositional Equality
Curry–Howard and Labelled Deduction
Our aims:
Using Gentzen’s methods for equality reasoning
(Statman’77)
Addressing the dichotomy: definitional vs. propositional
Giving an alternative to the ‘Equality/Identity Type’ of
Martin-L¨of’s Type Theory
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Equality
Sequences of conversions
(λx.(λy.yx)(λw.zw))v η (λx.(λy.yx)z)v β (λy.yv)z β zv
(λx.(λy.yx)(λw.zw))v β (λx.(λw.zw)x)v η (λx.zx)v β zv
(λx.(λy.yx)(λw.zw))v β (λx.(λw.zw)x)v β (λw.zw)v η zv
There is at least one sequence of conversions from the initial term to
the final term. (In this case we have given three!) Thus, in the formal
theory of λ-calculus, the term (λx.(λy.yx)(λw.zw))v is declared to be
equal to zv.
Now, some natural questions arise:
1 Are the sequences themselves normal?
2 Are there non-normal sequences?
3 If yes, how are the latter to be identified and (possibly)
normalised?
4 What happens if general rules of equality are involved?Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Equality
Propositional equality
Definition (Hindley & Seldin 2008)
P is β-equal or β-convertible to Q (notation P =β Q) iff Q is
obtained from P by a finite (perhaps empty) series of
β-contractions and reversed β-contractions and changes of
bound variables. That is, P =β Q iff there exist P0, . . . , Pn
(n ≥ 0) such that
P0 ≡ P, Pn ≡ Q,
(∀i ≤ n − 1)(Pi 1β Pi+1 or Pi+1 1β Pi or Pi ≡α Pi+1).
NB: equality with an existential force.
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Equality
Gentzen’s ND for propositional equality
Remark
In setting up a set of Gentzen’s ND-style rules for equality we
need to account for:
1 definitional versus propositional equality;
2 there may be more than one normal proof of a certain
equality statement;
3 given a (possibly non-normal) proof, the process of
bringing it to a normal form should be finite and confluent.
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computation
Equality in Type Theory
Martin-L¨of’s Intuitionistic Type Theory:
Intensional (1975)
Extensional (1982(?), 1984)
Remark (Definitional vs. Propositional Equality)
definitional, i.e. those equalities that are given as rewrite
rules, orelse originate from general functional principles
(e.g. β, η, ξ, µ, ν, etc.);
propositional, i.e. the equalities that are supported (or
otherwise) by an evidence (a sequence of substitutions
and/or rewrites)
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computation
Definitional Equality
Definition (Hindley & Seldin 2008)
(α) λx.M = λy.[y/x]M (y /∈ FV(M))
(β) (λx.M)N = [N/x]M
(η) (λx.Mx) = M (x /∈ FV(M))
(ξ)
M = M
λx.M = λx.M
(µ)
M = M
NM = NM
(ν)
M = M
MN = M N
(ρ) M = M
(σ)
M = N
N = M
(τ)
M = N N = P
M = P
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computation
Intuitionistic Type Theory
→-introduction
[x : A]
f(x) = g(x) : B
λx.f(x) = λx.g(x) : A → B
(ξ)
→-elimination
x = y : A g : A → B
gx = gy : B
(µ)
x : A g = h : A → B
gx = hx : B
(ν)
→-reduction
a : A
[x : A]
b(x) : B
(λx.b(x))a = b(a/x) : B
(β)
c : A → B
λx.cx = c : A → B
(η)
Role of ξ: Bishop’s constructive principles.
Role of η: “[In CL] All it says is that every term is equal to an
abstraction” [Hindley & Seldin, 1986]
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Lessons from Curry–Howard and Type Theory
Harmonious combination of logic and λ-calculus;
Proof terms as ‘record of deduction steps’,
Function symbols as first class citizens.
Cp.
∃xP(x)
[P(t)]
C
C
with
∃xP(x)
[t : D, f(t) : P(t)]
g(f, t) : C
? : C
in the term ‘?’ the variable f gets abstracted from, and this enforces a
kind of generality to f, even if this is not brought to the ‘logical’ level.
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Labelled Deduction
to find a unifying framework factoring out meta- from
object- level features;
to keep the logic (and logical steps, for that matter) simple,
handling meta-level features via a separate, yet
harmonious calculus;
to make sure the relevant assumptions in a deduction are
uncovered, paying more attention to the explicitation and
use of resources.
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Equality in Intensional Type Theory
A type a : A b : A
Idint
A (a, b) type
Idint
-formation
a : A
r(a) : Idint
A (a, a)
Idint
-introduction
a = b : A
r(a) : Idint
A (a, b)
Idint
-introduction
a : A b : A c : Idint
A (a, b)
[x : A]
d(x) : C(x, x, r(x))
[x : A, y : A, z : Idint
A (x, y)]
C(x, y, z) type
J(c, d) : C(a, b, c)
Idint
-
a : A
[x : A]
d(x) : C(x, x, r(x))
[x : A, y : A, z : Idint
A (x, y)]
C(x, y, z) type
J(r(a), d(x)) = d(a/x) : C(a, a, r(a))
Idint
-equality
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Equality in Extensional Type Theory
A type a : A b : A
Idext
A (a, b) type
Idext
-formation
a = b : A
r : Idext
A (a, b)
Idext
-introduction
c : Idext
A (a, b)
a = b : A
Idext
-elimination
c : Idext
A (a, b)
c = r : Idext
A (a, b)
Idext
-elimination
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
The missing entity
Considering the lessons learned from Type Theory, the
judgement of the form:
a = b : A
which says that a and b are equal elements from domain D, let
us add a function symbol:
a =s b : A
where one is to read: a is equal to b because of ‘s’ (‘s’ being
the rewrite reason); ‘s’ is a term denoting a sequence of
equality identifiers (β, η, ξ, etc.), i.e. a composition of rewrites.
In other words, ‘s’ is the computational path from a to b.
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Propositional Equality
Id-introduction
a =s b : A
s(a, b) : IdA(a, b)
Id-elimination
m : IdA(a, b)
[a =g b : A]
h(g) : C
REWR(m, ´g.h(g)) : C
Id-reduction
a =s b : A
s(a, b) : IdA(a, b)
Id-intr
[a =g b : A]
h(g) : C
REWR(s(a, b), ´g.h(g)) : C
Id-elim
β
[a =s b : A]
h(s/g) : C
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Propositional Equality: A Simple Example of a Proof
By way of example, let us prove
Πx : AΠy : A(IdA(x, y) → IdA(y, x))
[p : IdA(x, y)]
[x =t y : A]
y =σ(t) x : A
(σ(t))(y, x) : IdA(y, x)
REWR(p,´t(σ(t))(y, x)) : IdA(y, x)
λp.REWR(p,´t(σ(t))(y, x)) : IdA(x, y) → IdA(y, x)
λy.λp.REWR(p,´t(σ(t))(y, x)) : Πy : A(IdA(x, y) → IdA(y, x))
λx.λy.λp.REWR(p,´t(σ(t))(y, x)) : Πx : AΠy : A(IdA(x, y) → IdA(y, x))
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Rule of Substitution
x =g y : A f(x) : P(x)
g(x, y) · f(x) : P(y)
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Normal form for the rewrite reasons
Strategy:
Analyse possibilities of redundancy
Construct a rewriting system
Prove termination and confluence
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Normal form for the rewrite reasons
Definition (equation)
An equation in our LNDEQ is of the form:
s =r t : A
where s and t are terms, r is the identifier for the rewrite reason, and
A is the type (formula).
Definition (system of equations)
A system of equations S is a set of equations:
{s1 =r1
t1 : A1, . . . , sn =rn
tn : An}
where ri is the rewrite reason identifier for the ith equation in S.
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types
Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E
The Functional Interpretation of Direct Computations
Normal form for the rewrite reasons
Definition (rewrite reason)
Given a system of equations S and an equation s =r t : A, if
S s =r t : A, i.e. there is a deduction/computation of the
equation starting from the equations in S, then the rewrite
reason r is built up from:
(i) the constants for rewrite reasons: { ρ, σ, τ, β, η, ν, ξ, µ };
(ii) the ri’s;
using the substitution operations:
(iii) subL;
(iv) subR;
and the operations for building new rewrite reasons:
(v) σ, τ, ξ, µ.
Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil
Propositional Equality and Identity Types

Mais conteúdo relacionado

Mais procurados

Category Theory for All (NASSLLI 2012)
Category Theory for All (NASSLLI 2012)Category Theory for All (NASSLLI 2012)
Category Theory for All (NASSLLI 2012)Valeria de Paiva
 
Constructive Modal and Linear Logics
Constructive Modal and Linear LogicsConstructive Modal and Linear Logics
Constructive Modal and Linear LogicsValeria de Paiva
 
Game Semantics Intuitions
Game Semantics IntuitionsGame Semantics Intuitions
Game Semantics IntuitionsValeria de Paiva
 
Point-free semantics of dependent type theories
Point-free semantics of dependent type theoriesPoint-free semantics of dependent type theories
Point-free semantics of dependent type theoriesMarco Benini
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its roleValeria de Paiva
 
Dialectica Categories... and Lax Topological Spaces?
Dialectica Categories... and Lax Topological Spaces?Dialectica Categories... and Lax Topological Spaces?
Dialectica Categories... and Lax Topological Spaces?Valeria de Paiva
 
Dialectica Categories Surprising Application: Cardinalities of the Continuum
Dialectica Categories Surprising Application: Cardinalities of the ContinuumDialectica Categories Surprising Application: Cardinalities of the Continuum
Dialectica Categories Surprising Application: Cardinalities of the ContinuumValeria de Paiva
 
Dialectica Categories: the mathematical version
Dialectica Categories: the mathematical versionDialectica Categories: the mathematical version
Dialectica Categories: the mathematical versionValeria de Paiva
 
Categorical Semantics for Explicit Substitutions
Categorical Semantics for Explicit SubstitutionsCategorical Semantics for Explicit Substitutions
Categorical Semantics for Explicit SubstitutionsValeria de Paiva
 
Categorical Explicit Substitutions
Categorical Explicit SubstitutionsCategorical Explicit Substitutions
Categorical Explicit SubstitutionsValeria de Paiva
 
Dialectica Categories and Petri Nets
Dialectica Categories and Petri NetsDialectica Categories and Petri Nets
Dialectica Categories and Petri NetsValeria de Paiva
 
Lecture 2: From Semantics To Semantic-Oriented Applications
Lecture 2: From Semantics To Semantic-Oriented ApplicationsLecture 2: From Semantics To Semantic-Oriented Applications
Lecture 2: From Semantics To Semantic-Oriented ApplicationsMarina Santini
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its roleValeria de Paiva
 
A Dialectica Model of Relevant Type Theory
A Dialectica Model of Relevant Type TheoryA Dialectica Model of Relevant Type Theory
A Dialectica Model of Relevant Type TheoryValeria de Paiva
 
Intuitive Semantics for Full Intuitionistic Linear Logic (2014)
Intuitive Semantics for Full Intuitionistic Linear Logic (2014)Intuitive Semantics for Full Intuitionistic Linear Logic (2014)
Intuitive Semantics for Full Intuitionistic Linear Logic (2014)Valeria de Paiva
 
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic TurnESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic TurnDaisuke BEKKI
 
Modal Syllogistic - Master Thesis
Modal Syllogistic - Master ThesisModal Syllogistic - Master Thesis
Modal Syllogistic - Master ThesisTsvetan Vasilev
 
Dialectica Categories for the Lambek Calculus
Dialectica Categories for the Lambek CalculusDialectica Categories for the Lambek Calculus
Dialectica Categories for the Lambek CalculusValeria de Paiva
 

Mais procurados (20)

Category Theory for All (NASSLLI 2012)
Category Theory for All (NASSLLI 2012)Category Theory for All (NASSLLI 2012)
Category Theory for All (NASSLLI 2012)
 
Constructive Modal and Linear Logics
Constructive Modal and Linear LogicsConstructive Modal and Linear Logics
Constructive Modal and Linear Logics
 
Game Semantics Intuitions
Game Semantics IntuitionsGame Semantics Intuitions
Game Semantics Intuitions
 
Point-free semantics of dependent type theories
Point-free semantics of dependent type theoriesPoint-free semantics of dependent type theories
Point-free semantics of dependent type theories
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its role
 
Dialectica Categories... and Lax Topological Spaces?
Dialectica Categories... and Lax Topological Spaces?Dialectica Categories... and Lax Topological Spaces?
Dialectica Categories... and Lax Topological Spaces?
 
Dialectica Categories Surprising Application: Cardinalities of the Continuum
Dialectica Categories Surprising Application: Cardinalities of the ContinuumDialectica Categories Surprising Application: Cardinalities of the Continuum
Dialectica Categories Surprising Application: Cardinalities of the Continuum
 
Dialectica Categories: the mathematical version
Dialectica Categories: the mathematical versionDialectica Categories: the mathematical version
Dialectica Categories: the mathematical version
 
Categorical Semantics for Explicit Substitutions
Categorical Semantics for Explicit SubstitutionsCategorical Semantics for Explicit Substitutions
Categorical Semantics for Explicit Substitutions
 
Categorical Explicit Substitutions
Categorical Explicit SubstitutionsCategorical Explicit Substitutions
Categorical Explicit Substitutions
 
Constructive Modalities
Constructive ModalitiesConstructive Modalities
Constructive Modalities
 
Dialectica Categories and Petri Nets
Dialectica Categories and Petri NetsDialectica Categories and Petri Nets
Dialectica Categories and Petri Nets
 
Constructive Modalities
Constructive ModalitiesConstructive Modalities
Constructive Modalities
 
Lecture 2: From Semantics To Semantic-Oriented Applications
Lecture 2: From Semantics To Semantic-Oriented ApplicationsLecture 2: From Semantics To Semantic-Oriented Applications
Lecture 2: From Semantics To Semantic-Oriented Applications
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its role
 
A Dialectica Model of Relevant Type Theory
A Dialectica Model of Relevant Type TheoryA Dialectica Model of Relevant Type Theory
A Dialectica Model of Relevant Type Theory
 
Intuitive Semantics for Full Intuitionistic Linear Logic (2014)
Intuitive Semantics for Full Intuitionistic Linear Logic (2014)Intuitive Semantics for Full Intuitionistic Linear Logic (2014)
Intuitive Semantics for Full Intuitionistic Linear Logic (2014)
 
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic TurnESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
 
Modal Syllogistic - Master Thesis
Modal Syllogistic - Master ThesisModal Syllogistic - Master Thesis
Modal Syllogistic - Master Thesis
 
Dialectica Categories for the Lambek Calculus
Dialectica Categories for the Lambek CalculusDialectica Categories for the Lambek Calculus
Dialectica Categories for the Lambek Calculus
 

Semelhante a Propositional Equality and Identity Types

Computations, Paths, Types and Proofs
Computations, Paths, Types and ProofsComputations, Paths, Types and Proofs
Computations, Paths, Types and ProofsRuy De Queiroz
 
Computation, Paths, Types and Proofs
Computation, Paths, Types and ProofsComputation, Paths, Types and Proofs
Computation, Paths, Types and ProofsRuy De Queiroz
 
Homotopic Foundations of the Theory of Computation
Homotopic Foundations of the Theory of ComputationHomotopic Foundations of the Theory of Computation
Homotopic Foundations of the Theory of ComputationRuy De Queiroz
 
Computational Paths in Type Theory
Computational Paths in Type TheoryComputational Paths in Type Theory
Computational Paths in Type TheoryRuy De Queiroz
 
Computational Paths and the Calculation of Fundamental Groups
 Computational Paths and the Calculation of Fundamental Groups Computational Paths and the Calculation of Fundamental Groups
Computational Paths and the Calculation of Fundamental GroupsRuy De Queiroz
 
Computational Paths and the Calculation of Fundamental Groups
Computational Paths and the Calculation of Fundamental GroupsComputational Paths and the Calculation of Fundamental Groups
Computational Paths and the Calculation of Fundamental GroupsRuy De Queiroz
 
Abstract Singular Terms And Thin Reference
Abstract Singular Terms And Thin ReferenceAbstract Singular Terms And Thin Reference
Abstract Singular Terms And Thin ReferenceWendy Belieu
 

Semelhante a Propositional Equality and Identity Types (8)

Computations, Paths, Types and Proofs
Computations, Paths, Types and ProofsComputations, Paths, Types and Proofs
Computations, Paths, Types and Proofs
 
Computation, Paths, Types and Proofs
Computation, Paths, Types and ProofsComputation, Paths, Types and Proofs
Computation, Paths, Types and Proofs
 
Homotopic Foundations of the Theory of Computation
Homotopic Foundations of the Theory of ComputationHomotopic Foundations of the Theory of Computation
Homotopic Foundations of the Theory of Computation
 
Computational Paths in Type Theory
Computational Paths in Type TheoryComputational Paths in Type Theory
Computational Paths in Type Theory
 
Computational Paths and the Calculation of Fundamental Groups
 Computational Paths and the Calculation of Fundamental Groups Computational Paths and the Calculation of Fundamental Groups
Computational Paths and the Calculation of Fundamental Groups
 
Computational Paths and the Calculation of Fundamental Groups
Computational Paths and the Calculation of Fundamental GroupsComputational Paths and the Calculation of Fundamental Groups
Computational Paths and the Calculation of Fundamental Groups
 
Abstract Singular Terms And Thin Reference
Abstract Singular Terms And Thin ReferenceAbstract Singular Terms And Thin Reference
Abstract Singular Terms And Thin Reference
 
Csf Russo Seminar1
Csf Russo Seminar1Csf Russo Seminar1
Csf Russo Seminar1
 

Mais de Ruy De Queiroz

What formal equalities between rewriting paths have in common with homotopies...
What formal equalities between rewriting paths have in common with homotopies...What formal equalities between rewriting paths have in common with homotopies...
What formal equalities between rewriting paths have in common with homotopies...Ruy De Queiroz
 
Connections between Logic and Geometry via Term Rewriting
 Connections between Logic and Geometry via Term Rewriting Connections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term RewritingRuy De Queiroz
 
Law and Legal uses for blockchain technologies
Law and Legal uses for blockchain technologiesLaw and Legal uses for blockchain technologies
Law and Legal uses for blockchain technologiesRuy De Queiroz
 
Criptografia como aliado
Criptografia como aliadoCriptografia como aliado
Criptografia como aliadoRuy De Queiroz
 
Privacidade, Segurança, Identidade
Privacidade, Segurança, IdentidadePrivacidade, Segurança, Identidade
Privacidade, Segurança, IdentidadeRuy De Queiroz
 
From Tractatus to Later Writings and Back
From Tractatus to Later Writings and BackFrom Tractatus to Later Writings and Back
From Tractatus to Later Writings and BackRuy De Queiroz
 
Desafios na Interseção entre Direito e Tecnologia
Desafios na Interseção entre  Direito e TecnologiaDesafios na Interseção entre  Direito e Tecnologia
Desafios na Interseção entre Direito e TecnologiaRuy De Queiroz
 
Connections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term RewritingConnections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term RewritingRuy De Queiroz
 
Teoria da Computação: Histórias e Perspectivas, (TeoComp-NE)
Teoria da Computação:  Histórias e Perspectivas,  (TeoComp-NE)Teoria da Computação:  Histórias e Perspectivas,  (TeoComp-NE)
Teoria da Computação: Histórias e Perspectivas, (TeoComp-NE)Ruy De Queiroz
 
Consensus in Permissionless Decentralized Networks
Consensus in Permissionless Decentralized NetworksConsensus in Permissionless Decentralized Networks
Consensus in Permissionless Decentralized NetworksRuy De Queiroz
 
Linguagem, Lógica e a Natureza da Matemática
Linguagem, Lógica e a Natureza da MatemáticaLinguagem, Lógica e a Natureza da Matemática
Linguagem, Lógica e a Natureza da MatemáticaRuy De Queiroz
 
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)Ruy De Queiroz
 
Cibersegurança na Internet das Coisas
Cibersegurança na Internet das CoisasCibersegurança na Internet das Coisas
Cibersegurança na Internet das CoisasRuy De Queiroz
 
Capitalismo de Vigilância e Proteção de Dados Pessoais
Capitalismo de Vigilância e Proteção de Dados PessoaisCapitalismo de Vigilância e Proteção de Dados Pessoais
Capitalismo de Vigilância e Proteção de Dados PessoaisRuy De Queiroz
 
Privacidade e Proteção de Dados Pessoais
Privacidade e Proteção de Dados PessoaisPrivacidade e Proteção de Dados Pessoais
Privacidade e Proteção de Dados PessoaisRuy De Queiroz
 
Fake News, Deep Fakes, e seus efeitos sobre a Democracia
Fake News, Deep Fakes, e seus efeitos sobre a DemocraciaFake News, Deep Fakes, e seus efeitos sobre a Democracia
Fake News, Deep Fakes, e seus efeitos sobre a DemocraciaRuy De Queiroz
 
Tecnologia e O Ritmo de Evolução
Tecnologia e  O Ritmo de EvoluçãoTecnologia e  O Ritmo de Evolução
Tecnologia e O Ritmo de EvoluçãoRuy De Queiroz
 
O Papel da Criptografia Moderna na Proteção às Garantias Individuais
O Papel da Criptografia Moderna na Proteção às Garantias IndividuaisO Papel da Criptografia Moderna na Proteção às Garantias Individuais
O Papel da Criptografia Moderna na Proteção às Garantias IndividuaisRuy De Queiroz
 
Linguagem, lógica e a natureza da matemática
Linguagem, lógica e a natureza da matemáticaLinguagem, lógica e a natureza da matemática
Linguagem, lógica e a natureza da matemáticaRuy De Queiroz
 
Inovação e Regulação 2.0
Inovação e Regulação 2.0Inovação e Regulação 2.0
Inovação e Regulação 2.0Ruy De Queiroz
 

Mais de Ruy De Queiroz (20)

What formal equalities between rewriting paths have in common with homotopies...
What formal equalities between rewriting paths have in common with homotopies...What formal equalities between rewriting paths have in common with homotopies...
What formal equalities between rewriting paths have in common with homotopies...
 
Connections between Logic and Geometry via Term Rewriting
 Connections between Logic and Geometry via Term Rewriting Connections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term Rewriting
 
Law and Legal uses for blockchain technologies
Law and Legal uses for blockchain technologiesLaw and Legal uses for blockchain technologies
Law and Legal uses for blockchain technologies
 
Criptografia como aliado
Criptografia como aliadoCriptografia como aliado
Criptografia como aliado
 
Privacidade, Segurança, Identidade
Privacidade, Segurança, IdentidadePrivacidade, Segurança, Identidade
Privacidade, Segurança, Identidade
 
From Tractatus to Later Writings and Back
From Tractatus to Later Writings and BackFrom Tractatus to Later Writings and Back
From Tractatus to Later Writings and Back
 
Desafios na Interseção entre Direito e Tecnologia
Desafios na Interseção entre  Direito e TecnologiaDesafios na Interseção entre  Direito e Tecnologia
Desafios na Interseção entre Direito e Tecnologia
 
Connections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term RewritingConnections between Logic and Geometry via Term Rewriting
Connections between Logic and Geometry via Term Rewriting
 
Teoria da Computação: Histórias e Perspectivas, (TeoComp-NE)
Teoria da Computação:  Histórias e Perspectivas,  (TeoComp-NE)Teoria da Computação:  Histórias e Perspectivas,  (TeoComp-NE)
Teoria da Computação: Histórias e Perspectivas, (TeoComp-NE)
 
Consensus in Permissionless Decentralized Networks
Consensus in Permissionless Decentralized NetworksConsensus in Permissionless Decentralized Networks
Consensus in Permissionless Decentralized Networks
 
Linguagem, Lógica e a Natureza da Matemática
Linguagem, Lógica e a Natureza da MatemáticaLinguagem, Lógica e a Natureza da Matemática
Linguagem, Lógica e a Natureza da Matemática
 
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
Criptografia Moderna - Visita do SRBR (Samsung Research do Brasil)
 
Cibersegurança na Internet das Coisas
Cibersegurança na Internet das CoisasCibersegurança na Internet das Coisas
Cibersegurança na Internet das Coisas
 
Capitalismo de Vigilância e Proteção de Dados Pessoais
Capitalismo de Vigilância e Proteção de Dados PessoaisCapitalismo de Vigilância e Proteção de Dados Pessoais
Capitalismo de Vigilância e Proteção de Dados Pessoais
 
Privacidade e Proteção de Dados Pessoais
Privacidade e Proteção de Dados PessoaisPrivacidade e Proteção de Dados Pessoais
Privacidade e Proteção de Dados Pessoais
 
Fake News, Deep Fakes, e seus efeitos sobre a Democracia
Fake News, Deep Fakes, e seus efeitos sobre a DemocraciaFake News, Deep Fakes, e seus efeitos sobre a Democracia
Fake News, Deep Fakes, e seus efeitos sobre a Democracia
 
Tecnologia e O Ritmo de Evolução
Tecnologia e  O Ritmo de EvoluçãoTecnologia e  O Ritmo de Evolução
Tecnologia e O Ritmo de Evolução
 
O Papel da Criptografia Moderna na Proteção às Garantias Individuais
O Papel da Criptografia Moderna na Proteção às Garantias IndividuaisO Papel da Criptografia Moderna na Proteção às Garantias Individuais
O Papel da Criptografia Moderna na Proteção às Garantias Individuais
 
Linguagem, lógica e a natureza da matemática
Linguagem, lógica e a natureza da matemáticaLinguagem, lógica e a natureza da matemática
Linguagem, lógica e a natureza da matemática
 
Inovação e Regulação 2.0
Inovação e Regulação 2.0Inovação e Regulação 2.0
Inovação e Regulação 2.0
 

Último

What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterMydbops
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney
 

Último (20)

What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL Router
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
 

Propositional Equality and Identity Types

  • 1. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Propositional Equality and Identity Types Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Seminar at Logic Group, TU Darmstadt 19 Aug 2013 Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 2. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Content 1 Identity Types in Type Theory 2 Heyting’s explanation via proofs 3 Direct Computations 4 The Functional Interpretation of Propositional Equality 5 Normal form for equality proofs Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 3. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E What is a proof of an equality statement? What is the formal counterpart of a proof of an equality? In talking about proofs of an equality statement, two dichotomies arise: 1 definitional equality versus propositional equality 2 intensional equality versus extensional equality First step on the formalisation of proofs of equality statements: Per Martin-L¨of’s Intuitionistic Type Theory (Log Coll ’73, published 1975) with the so-called Identity Type Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 4. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Identity Types - Topological and Categorical Structure Workshop, Uppsala, November 13–14, 2006 “The identity type, the type of proof objects for the fundamental propositional equality, is one of the most intriguing constructions of intensional dependent type theory (also known as Martin-L¨of type theory). Its complexity became apparent with the Hofmann–Streicher groupoid model of type theory. This model also hinted at some possible connections between type theory and homotopy theory and higher categories. Exploration of this connection is intended to be the main theme of the workshop.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 5. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Type Theory and Homotopy Theory Indeed, a whole new research avenue has since 2005 been explored by people like Vladimir Voevodsky and Steve Awodey in trying to make a bridge between type theory and homotopy theory, mainly via the groupoid structure exposed in the Hofmann–Streicher (1994) countermodel to the principle of Uniqueness of Identity Proofs (UIP). This has open the way to, in Awodey’s words, “a new and surprising connection between Geometry, Algebra, and Logic, which has recently come to light in the form of an interpretation of the constructive type theory of Per Martin-L¨of into homotopy theory, resulting in new examples of certain algebraic structures which are important in topology”. (“Type Theory and Homotopy”, preprint, 2010.) Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 6. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Identity Types as Topological Spaces According to B. van den Berg and R. Garner (“Topological and simplicial models of identity types”, ACM Transactions on Computational Logic, Jan 2012), “All of this work can be seen as an elaboration of the following basic idea: that in Martin-L¨of type theory, a type A is analogous to a topological space; elements a, b ∈ A to points of that space; and elements of an identity type p, q ∈ IdA(a, b) to paths or homotopies p, q : a → b in A.”. Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 7. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types Identity Types as Topological Spaces From the Homotopy type theory collective book (2013): “In type theory, for every type A there is a (formerly somewhat mysterious) type IdA of identifications of two objects of A; in homotopy type theory, this is just the path space AI of all continuous maps I → A from the unit interval. In this way, a term p : IdA(a, b) represents a path p : a b in A.” Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 8. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types: Iteration From Propositional to Predicate Logic and Beyond In the same aforementioned workshop, B. van den Berg in his contribution “Types as weak omega-categories” draws attention to the power of the identity type in the iterating types to form a globular set: “Fix a type X in a context Γ. Define a globular set as follows: A0 consists of the terms of type X in context Γ,modulo definitional equality; A1 consists of terms of the types Id(X; p; q) (in context Γ) for elements p, q in A0, modulo definitional equality; A2 consists of terms of well-formed types Id(Id(X; p; q); r; s) (in context Γ) for elements p, q in A0, r, s in A1, modulo definitional equality; etcetera...” Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 9. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Identity Types: Iteration The homotopy interpretation Here is how we can see the connections between proofs of equality and homotopies: a, b : A p, q : IdA(a, b) α, β : IdIdA(a,b)(p, q) · · · : IdIdId... (· · · ) Now, consider the following interpretation: Types Spaces Terms Maps a : A Points a : 1 → A p : IdA(a, b) Paths p : a ⇒ b α : IdIdA(a,b)(p, q) Homotopies α : p q Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 10. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Propositional Equality Proofs of equality as (rewriting) computational paths Motivated by looking at equalities in type theory as arising from the existence of computational paths between two formal objects, our purpose here is to offer a different perspective on the role and the power of the notion of propositional equality as formalised in the so-called Curry–Howard functional interpretation. The main idea goes back to a paper entitled “Equality in labelled deductive systems and the functional interpretation of propositional equality”, , presented in Dec 1993 at the 9th Amsterdam Colloquium, and published in the proceedings in 1994. Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 11. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Brouwer–Heyting–Kolmogorov Interpretation Proofs rather than truth-values a proof of the proposition: is given by: A ∧ B a proof of A and a proof of B A ∨ B a proof of A or a proof of B A → B a function that turns a proof of A into a proof of B ∀xD .P(x) a function that turns an element a into a proof of P(a) ∃xD .P(x) an element a (witness) and a proof of P(a) Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 12. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Brouwer–Heyting–Kolmogorov Interpretation: Formally Canonical proofs rather than truth-values a proof of the proposition: has the canonical form of: A ∧ B p, q where p is a proof of A and q is a proof of B A ∨ B inl(p) where p is a proof of A or inr(q) where q is a proof of B (‘inl’ and ‘inr’ abbreviate ‘into the left/right disjunct’) A → B λx.b(x) where b(p) is a proof of B provided p is a proof of A ∀xD .P(x) Λx.f(x) where f(a) is a proof of P(a) provided a is an arbitrary individual chosen from the domain D ∃xD .P(x) εx.(f(x), a) where a is a witness from the domain D, f(a) is a proof of P(a) Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 13. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Brouwer–Heyting–Kolmogorov Interpretation What is a proof of an equality statement? a proof of the proposition: is given by: t1 = t2 ? (Perhaps a sequence of rewrites starting from t1 and ending in t2?) What is the logical status of the symbol “=”? What would be a canonical/direct proof of t1 = t2? Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 14. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Statman’s Direct Computations Terms, Equations, Measure Definition (equations and systems of equations) Let us consider equations E between individual terms a, b, c, . . ., possibly containing function variables, and finite sets of equations S. Definition (measure) A function M from terms to non-negative integers is called a measure if M(a) ≤ M(b) implies M(c[a/x]) ≤ M(c[b/x]), and, whenever x occurs in c, M(a) ≤ M(c[a/x]). Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 15. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Statman’s Direct Computations Kreisel–Tait’s calculus K Definition (calculus K) The calculus K of Kreisel and Tait consists of the axioms a = a and the rule of substituting equals for equals: (1) E[a/x] a . = b E[b/x] where a . = b is, ambiguously, a = b and b = a, together with the rules (2) sa = sb a = b (3) 0 = sa b = c (4) a = sn a b = c H will be the system consisting only of the rule (1) Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 16. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E Statman’s Direct Computations Computations, Direct Computations Definition (computation) Computations T in K or H are binary trees of equation occurrences built up from assumptions and axioms according to the rules. Definition (direct computation) If M is a measure, we say that a computation T of E from S is M-direct if for each term b occurring in T there is a term c occurring in E or S with M(b) ≤ M(c). Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 17. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Propositional Equality Curry–Howard and Labelled Deduction Our aims: Using Gentzen’s methods for equality reasoning (Statman’77) Addressing the dichotomy: definitional vs. propositional Giving an alternative to the ‘Equality/Identity Type’ of Martin-L¨of’s Type Theory Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 18. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Equality Sequences of conversions (λx.(λy.yx)(λw.zw))v η (λx.(λy.yx)z)v β (λy.yv)z β zv (λx.(λy.yx)(λw.zw))v β (λx.(λw.zw)x)v η (λx.zx)v β zv (λx.(λy.yx)(λw.zw))v β (λx.(λw.zw)x)v β (λw.zw)v η zv There is at least one sequence of conversions from the initial term to the final term. (In this case we have given three!) Thus, in the formal theory of λ-calculus, the term (λx.(λy.yx)(λw.zw))v is declared to be equal to zv. Now, some natural questions arise: 1 Are the sequences themselves normal? 2 Are there non-normal sequences? 3 If yes, how are the latter to be identified and (possibly) normalised? 4 What happens if general rules of equality are involved?Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 19. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Equality Propositional equality Definition (Hindley & Seldin 2008) P is β-equal or β-convertible to Q (notation P =β Q) iff Q is obtained from P by a finite (perhaps empty) series of β-contractions and reversed β-contractions and changes of bound variables. That is, P =β Q iff there exist P0, . . . , Pn (n ≥ 0) such that P0 ≡ P, Pn ≡ Q, (∀i ≤ n − 1)(Pi 1β Pi+1 or Pi+1 1β Pi or Pi ≡α Pi+1). NB: equality with an existential force. Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 20. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Equality Gentzen’s ND for propositional equality Remark In setting up a set of Gentzen’s ND-style rules for equality we need to account for: 1 definitional versus propositional equality; 2 there may be more than one normal proof of a certain equality statement; 3 given a (possibly non-normal) proof, the process of bringing it to a normal form should be finite and confluent. Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 21. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computation Equality in Type Theory Martin-L¨of’s Intuitionistic Type Theory: Intensional (1975) Extensional (1982(?), 1984) Remark (Definitional vs. Propositional Equality) definitional, i.e. those equalities that are given as rewrite rules, orelse originate from general functional principles (e.g. β, η, ξ, µ, ν, etc.); propositional, i.e. the equalities that are supported (or otherwise) by an evidence (a sequence of substitutions and/or rewrites) Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 22. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computation Definitional Equality Definition (Hindley & Seldin 2008) (α) λx.M = λy.[y/x]M (y /∈ FV(M)) (β) (λx.M)N = [N/x]M (η) (λx.Mx) = M (x /∈ FV(M)) (ξ) M = M λx.M = λx.M (µ) M = M NM = NM (ν) M = M MN = M N (ρ) M = M (σ) M = N N = M (τ) M = N N = P M = P Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 23. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computation Intuitionistic Type Theory →-introduction [x : A] f(x) = g(x) : B λx.f(x) = λx.g(x) : A → B (ξ) →-elimination x = y : A g : A → B gx = gy : B (µ) x : A g = h : A → B gx = hx : B (ν) →-reduction a : A [x : A] b(x) : B (λx.b(x))a = b(a/x) : B (β) c : A → B λx.cx = c : A → B (η) Role of ξ: Bishop’s constructive principles. Role of η: “[In CL] All it says is that every term is equal to an abstraction” [Hindley & Seldin, 1986] Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 24. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Lessons from Curry–Howard and Type Theory Harmonious combination of logic and λ-calculus; Proof terms as ‘record of deduction steps’, Function symbols as first class citizens. Cp. ∃xP(x) [P(t)] C C with ∃xP(x) [t : D, f(t) : P(t)] g(f, t) : C ? : C in the term ‘?’ the variable f gets abstracted from, and this enforces a kind of generality to f, even if this is not brought to the ‘logical’ level. Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 25. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Labelled Deduction to find a unifying framework factoring out meta- from object- level features; to keep the logic (and logical steps, for that matter) simple, handling meta-level features via a separate, yet harmonious calculus; to make sure the relevant assumptions in a deduction are uncovered, paying more attention to the explicitation and use of resources. Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 26. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Equality in Intensional Type Theory A type a : A b : A Idint A (a, b) type Idint -formation a : A r(a) : Idint A (a, a) Idint -introduction a = b : A r(a) : Idint A (a, b) Idint -introduction a : A b : A c : Idint A (a, b) [x : A] d(x) : C(x, x, r(x)) [x : A, y : A, z : Idint A (x, y)] C(x, y, z) type J(c, d) : C(a, b, c) Idint - a : A [x : A] d(x) : C(x, x, r(x)) [x : A, y : A, z : Idint A (x, y)] C(x, y, z) type J(r(a), d(x)) = d(a/x) : C(a, a, r(a)) Idint -equality Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 27. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Equality in Extensional Type Theory A type a : A b : A Idext A (a, b) type Idext -formation a = b : A r : Idext A (a, b) Idext -introduction c : Idext A (a, b) a = b : A Idext -elimination c : Idext A (a, b) c = r : Idext A (a, b) Idext -elimination Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 28. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations The missing entity Considering the lessons learned from Type Theory, the judgement of the form: a = b : A which says that a and b are equal elements from domain D, let us add a function symbol: a =s b : A where one is to read: a is equal to b because of ‘s’ (‘s’ being the rewrite reason); ‘s’ is a term denoting a sequence of equality identifiers (β, η, ξ, etc.), i.e. a composition of rewrites. In other words, ‘s’ is the computational path from a to b. Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 29. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Propositional Equality Id-introduction a =s b : A s(a, b) : IdA(a, b) Id-elimination m : IdA(a, b) [a =g b : A] h(g) : C REWR(m, ´g.h(g)) : C Id-reduction a =s b : A s(a, b) : IdA(a, b) Id-intr [a =g b : A] h(g) : C REWR(s(a, b), ´g.h(g)) : C Id-elim β [a =s b : A] h(s/g) : C Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 30. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Propositional Equality: A Simple Example of a Proof By way of example, let us prove Πx : AΠy : A(IdA(x, y) → IdA(y, x)) [p : IdA(x, y)] [x =t y : A] y =σ(t) x : A (σ(t))(y, x) : IdA(y, x) REWR(p,´t(σ(t))(y, x)) : IdA(y, x) λp.REWR(p,´t(σ(t))(y, x)) : IdA(x, y) → IdA(y, x) λy.λp.REWR(p,´t(σ(t))(y, x)) : Πy : A(IdA(x, y) → IdA(y, x)) λx.λy.λp.REWR(p,´t(σ(t))(y, x)) : Πx : AΠy : A(IdA(x, y) → IdA(y, x)) Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 31. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Rule of Substitution x =g y : A f(x) : P(x) g(x, y) · f(x) : P(y) Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 32. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Normal form for the rewrite reasons Strategy: Analyse possibilities of redundancy Construct a rewriting system Prove termination and confluence Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 33. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Normal form for the rewrite reasons Definition (equation) An equation in our LNDEQ is of the form: s =r t : A where s and t are terms, r is the identifier for the rewrite reason, and A is the type (formula). Definition (system of equations) A system of equations S is a set of equations: {s1 =r1 t1 : A1, . . . , sn =rn tn : An} where ri is the rewrite reason identifier for the ith equation in S. Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types
  • 34. Identity Types in Type Theory Heyting’s explanation via proofs Direct Computations The Functional Interpretation of Propositional E The Functional Interpretation of Direct Computations Normal form for the rewrite reasons Definition (rewrite reason) Given a system of equations S and an equation s =r t : A, if S s =r t : A, i.e. there is a deduction/computation of the equation starting from the equations in S, then the rewrite reason r is built up from: (i) the constants for rewrite reasons: { ρ, σ, τ, β, η, ν, ξ, µ }; (ii) the ri’s; using the substitution operations: (iii) subL; (iv) subR; and the operations for building new rewrite reasons: (v) σ, τ, ξ, µ. Ruy de Queiroz (joint work with Anjolina de Oliveira) Univ. Federal de Pernambuco, Recife, Brazil Propositional Equality and Identity Types