Escola Básica e Secundária do Porto Moniz
Ano Letivo 2013/2014
FICHA DE TRABALHO DE MATEMÁTICA - 8ºAno
Tema: Sistemas de E...
Exercícios:
1.

Observa as seguintes representações gráficas:
a)

Escreve uma equação para a reta r e s.

b)

Utilizando a...
x y x y
 8  6 5


 x  y  x  y  10
 2
3
 4
x y x y
 2  3 0


2 x   x  y    1 x



2
2

...
a 1,50€ e cada frango, a 0,90€. A venda rendeu
1590€.
a) Traduz a informação dada por meio de um
sistema de equações, cons...
Próximos SlideShares
Carregando em…5
×

Ficha de trabalho sistemas de equações

1.253 visualizações

Publicada em

0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
1.253
No SlideShare
0
A partir de incorporações
0
Número de incorporações
113
Ações
Compartilhamentos
0
Downloads
44
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Ficha de trabalho sistemas de equações

  1. 1. Escola Básica e Secundária do Porto Moniz Ano Letivo 2013/2014 FICHA DE TRABALHO DE MATEMÁTICA - 8ºAno Tema: Sistemas de Equações Nome: __________________________________________ Turma: ___ Nº____ Data: __/__/__  Sistemas de duas equações: 2 x  y  4 3x  2 y  10 Exemplo:   Solução de um sistema: Definição: Um par ordenado ( x , y ) é solução de um sistema de duas equações com duas incógnitas, x e y , se for solução simultaneamente das duas equações.  Resolução de sistemas pelo método de substituição. Considera o seguinte sistema: 1º Passo Colocar o sistema na forma canónica 2º Passo Resolver uma das equações em ordem a uma das incógnitas. 3º Passo Substituir na outra equação o valor encontrado 5 x  9  2 y  3x  y  1  0 5 x  2 y  9   3x  y  1 5 x  2 y  9    y  1  3x 5 x  2(1  3x)  9   y  1  3x para essa incógnita 4º Passo Resolver a equação que tem uma só incógnita. 5 x  2  6 x  9 5 x  6 x  9  2    y  1  3x  y  1  3x 11  11x  11 x  1 x     11  y  1  3x  y  1  3x  y  1  3x  4.º Passo Substituir o valor encontrado na outra equação. x  1 x  1    y  1  3x  y  1  3 1 5.º Passo Determinar o valor da outra incógnita. x  1 x  1    y  1  3 1  y  1  3 x  1   y  2 6.º Passo Apresentar a solução do sistema: A solução do sistema é o par ordenado 1,2 1
  2. 2. Exercícios: 1. Observa as seguintes representações gráficas: a) Escreve uma equação para a reta r e s. b) Utilizando as equações escreve:    2. Um sistema impossível. Um sistema possível e determinado. Um sistema possível e indeterminado. 3x  6  2 y .  x  2 y  10 Considera o sistema:  a) b) Escreve o sistema na forma canónica. c) 3. Verifica, sem resolver, se o par 1,3 é solução do sistema. Resolve o sistema pelas duas maneiras: método de substituição e pela resolução gráfica. A cada um dos sistemas (A), (B) e (C) faz corresponder o respetivo gráfico. 2 x  y  2  x  3y  3 (A) (B)  3x  2 y  4  3x  2 y  6 (C) 1 y   x3 3 I y3 II III 4. y 1  4 x  1  3  x  1  2  Reduz o sistema à forma canónica e, em seguida, resolve-o:  .  2  y  3  1  x  1  x  3  5. Resolve os sistemas pelo método de substituição: a)  2a  4  2a  3b  4 b) 2 x  5 y  1  3x  0 c) 3s  t  0  s  6  0 d) e) x  y  1  4  2 x  3 y  4  1  2  a  b    2   a  b  1 a 2 4 8  2
  3. 3. x y x y  8  6 5    x  y  x  y  10  2 3  4 x y x y  2  3 0   2 x   x  y    1 x    2 2   1  2  x  y    3    3  x  1  y  7  3 y  2  f) g) h) 12. Numa banca de um arraial, estão à venda caixas com bolos tradicionais. Existem caixas com três bolos e existem caixas com quatro bolos. Sabe-se ainda que as caixas vazias têm todas a mesma massa, os bolos têm, também, todos a mesma massa, uma caixa com quatro bolos tem uma massa de 310 gramas, e duas caixas, cada uma com três bolos, têm uma massa total de 470 gramas. Qual é a massa, em gramas, de cada caixa vazia? 13. Para a festa de aniversário da Maria, gastaram-se 6. Determine x e y sabendo que a figura seguinte representa um retângulo. 54 euros na compra de pacotes de leite e de pacotes de sumo. Cada pacote de leite custou 70 cêntimos e cada pacote de sumo custou 60 cêntimos. O número de pacotes de leite comprados Quatro gelados e dois iogurtes custam 3,40 euros. é o triplo do número de pacotes de sumo. Quantos Três gelados e cinco iogurtes custam 3,25 euros. pacotes de leite e quantos pacotes de sumo se Quanto custa um gelado? E um iogurte? 7. compraram? Numa festa havia 40 pessoas. Quando 7 homens 14. A Rita tem 5,50 euros no mealheiro. No total, tem saíram, o número de mulheres passou a ser o dobro 17 moedas, sendo umas de 20 cêntimos e outras de do número de homens. Quantas mulheres estavam 50 cêntimos. Seja x o número de moedas de 20 na festa? 8. cêntimos e seja y o número de moedas 50 cêntimos que a Rita tem no mealheiro. Quantas moedas de 9. Há cinco anos a idade da Ana era o quádruplo da idade da Adriana. Daqui a 10 anos, a soma das duas 20 cêntimos e quantas moedas de 50 cêntimos tem a Rita no mealheiro? idades será igual a 80 anos. Qual é a idade atual de cada uma delas? 15. Na praceta onde mora a família Coelho, estão estacionados automóveis e motos. Cada automóvel 10. A Sara e o Rui moram na mesma rua. O número da porta da Sara excede numa dezena e três unidades o número da porta do Rui e o dobro do número da porta do Rui é igual à soma de 7 com o número da porta da Sara. Quais são os números das portas? tem 4 rodas, e cada moto tem 2 rodas. O número de automóveis é o triplo do número das motos e, ao todo, há 70 rodas na praceta. Determina quantos automóveis e quantas motos estão estacionados na praceta. 11. A Sara foi tomar o pequeno-almoço. Gastou 2,25 euros num sumo natural e numa torrada. O sumo custou mais 55 cêntimos do que a torrada. Quanto 16. Um aviário que comercializa galinhas do campo e frangos vendeu 1400 aves. Cada galinha foi vendida custou a torrada e quanto custou o sumo natural? 3
  4. 4. a 1,50€ e cada frango, a 0,90€. A venda rendeu 1590€. a) Traduz a informação dada por meio de um sistema de equações, considerando x o número de galinhas vendidas e y o número de frangos vendidos. b) Resolve o sistema de equações e indica quantas galinhas e quantos frangos foram vendidos. 17. Um hotel tem 80 quartos, entre duplos e individuais, num total de 144 camas. a) Traduz a informação dada por meio de um sistema de equações, considerando x o número de quartos duplos e y o número de quartos individuais. b) Resolve o sistema de equações e refere quantos quartos individuais tem o hotel. 18. Um retângulo tem 34 cm de perímetro. Se o seu comprimento tivesse menos 7 cm, o retângulo seria um quadrado. Quais são as dimensões do retângulo? 19. A Manuela tem mais 4 anos que o André. A soma das suas idades é meio século. Que idade tem cada um? 20. O sêxtuplo da idade do Pedro excede em cinco anos a idade do António. Daqui a cinco anos a idade do António será tripla da do Pedro. Qual é a idade de cada um? 21. O Artur e o seu irmão Gabriel têm no Banco, conjuntamente, 713.28 euros. Se o dinheiro que o Gabriel tem no Banco for 30% Bom Trabalho!! do Artur, que dinheiro tem cada um dos irmãos? A Professora, Rute Esteves 4

×