Ponto, reta e plano

26.456 visualizações
26.208 visualizações

Publicada em

Publicada em: Educação
1 comentário
11 gostaram
Estatísticas
Notas
Sem downloads
Visualizações
Visualizações totais
26.456
No SlideShare
0
A partir de incorporações
0
Número de incorporações
212
Ações
Compartilhamentos
0
Downloads
1.274
Comentários
1
Gostaram
11
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Ponto, reta e plano

  1. 1. A Geometria baseia-se em três noções: Ponto Reta Plano Essas noções são aceitas sem definição e, por esse motivo, são chamadas de conceitos primitivos.
  2. 2. O ponto não possui dimensões, isto é, não tem comprimento nem largura ou altura. Temos idéia do que é, mas não podemos defini-lo. Um pequeno furo feito por um alfinete no papel, por exemplo, nos dá a idéia de um ponto. Nomeamos um ponto por uma letra maiúscula do alfabeto latino. A B C D E
  3. 3. Não podemos definir uma reta, no entanto, temos noção do que seja. Por exemplo, um risco no papel, feito com o auxílio de uma régua, nos dá a idéia de uma reta. Nomeamos uma reta por uma letra minúscula do alfabeto latino. “A reta é formada por infinitos pontos alinhados.” r s
  4. 4. No desenho abaixo, o ponto B está entre o ponto A e o ponto C. Entre o ponto B e o ponto C, conseguimos marcar outro ponto. Entre esse novo ponto e o ponto C, conseguimos marcar outro. Então, entre dois pontos sempre existe um terceiro ponto. Quando vários pontos pertencem a uma mesma reta eles são chamados Pontos colineares. Dois pontos sempre são colineares. A B CD E F r
  5. 5. A RETA POSSUI APENAS UMA DIMENSÃO, MAS NÃO É POSSÍVEL MEDI-LA, POIS ELA É INFINITA.
  6. 6. O piso de uma quadra poliesportiva nos dá a idéia de um plano. Nomeamos um plano por uma letra minúscula do alfabeto grego: Alfa (α), beta (β), gama (γ), etc. β
  7. 7. O PLANO POSSUI DUAS DIMENSÕES: COMPRIMENTO E LARGURA. NO ENTANTO, NÃO É POSSÍVEL MEDI-LO.
  8. 8. “O plano é formado por infinitas retas.” t r s β
  9. 9. Quando várias retas estão contidas num mesmo plano, elas são chamadas Retas coplanares. Quando vários pontos pertencem a um mesmo plano, eles são chamados Pontos coplanares.
  10. 10. 1. Vimos que ponto, reta e plano são noções elementares da geometria. Escreva a idéia que nos dá cada situação descrita a seguir: a) A marca da ponta do grafite em um papel. b) Um fio bem esticado. c) A superfície de uma mesa. d) Um piso de uma quadra de basquete. e) Estrelas no céu. f) O encontro do chão com a parede. g) Uma corda bem esticada. h) A cabeça de um prego. i) Uma folha de cartolina. j) O fundo de uma piscina. k) A linha de um caderno. l) O piso de uma quadra de tênis. m) A capa de um livro. n) Uma caneta. o) A cabeça de um parafuso. p) A linha de um trem. PONTO PLANO RETA PLANO PONTO RETA RETA PONTO PONTO PLANO PLANO PLANO RETA PLANO RETA RETA
  11. 11. 2. A figura geométrica abaixo está representando quatro retas: r, s, t e u. Determine: a) Os pontos indicados que pertencem à reta r. b) Os pontos indicados que pertencem à reta s. c) Os pontos indicados que pertencem à reta u. d) Os pontos que pertencem às retas r e s simultaneamente. e) Os pontos indicados que pertencem à reta t. f) Os pontos que pertencem às retas u e t simultaneamente. A B E D B EC A B C DC AB CD E r s t u
  12. 12. 3. Considerando as retas indicadas na figura, identifique: a) As retas que passam pelo ponto A. b) As retas que passam pelo ponto B. c) A reta que passa por A e B. d) A reta que passa por A e C. e) A reta que passa por B e C. r s t s s r t r s t A B C
  13. 13. 4. Responda usando uma das palavras ponto, reta ou plano. a) Olhando o mapa do seu estado, você identifica a cidade onde você mora. Qual é a idéia que você tem dessa representação? b) Qual é a idéia que esta folha que você está lendo lhe traz? c) Assistindo a uma partida de futebol, você observa a linha divisória do campo. Qual a idéia que esta linha divisória lhe dá? 5. Desenhe uma reta, nomeie esta reta com a letra inicial do seu nome e faça o que se pede: a) Marque um ponto M que pertença à reta. b) Marque dois pontos, P e Q, que não pertençam à reta. PONTO PLANO RETA M P Q
  14. 14. 6. Pontos colineares são os pontos que pertencem a uma mesma reta. Utilizando essa informação, observe a figura abaixo e responda: a) Quais os pontos que pertencem à reta r? b) Os pontos M, N e P são colineares? c) Os pontos P, M e S pertencem à reta r? d) Os pontos P, M e S são colineares? P M N SIM NÃO NÃO r P M N S
  15. 15. 7. Quantas retas distintas você pode traçar a cada 2 pontos dos 6 pontos abaixo?. Dê um nome para cada reta.
  16. 16. 8. Quantas retas distintas você pode traçar a cada 2 pontos dos 8 pontos abaixo? Dê o nome de cada uma das retas que você traçou.
  17. 17. Vamos representar uma reta que passe pelos pontos A e B. Se tentarmos representar, pelos mesmos pontos A e B, uma outra reta diferente da que acabamos de desenhar, não conseguiremos. Pode tentar... Não é possível! Então, podemos definir: DOIS PONTOS DISTINTOS DETERMINAM UMA ÚNICA RETA. B A
  18. 18. A reta que passa por dois pontos A e B pode ser indicada por AB. A B RETA AB
  19. 19. Todo ponto de uma reta r divide essa reta em duas regiões opostas chamadas Semirretas. r semirreta semirreta A B O
  20. 20. O ponto de divisão é chamado origem da semirreta, e uma das semirretas, por exemplo, é indicada por OA (lemos : “semirreta de origem O que passa por A”). A reta r é chamada reta suporte das semirretas. r semirreta semirreta A B O
  21. 21. Se tomarmos dois pontos A e B distintos de uma reta r, determinamos um “pedaço” da reta r chamado segmento de reta de extremos A e B, que indicamos por AB. A reta r é chamado reta suporte do segmento. r A B Segmento de reta AB
  22. 22. 1. Quais segmentos de reta você observa em cada figura? A B C D E A B C DE F DE CD BC AB FA EF DE CD BC AB
  23. 23. 2. Represente uma reta r nas posições horizontal, vertical e inclinada. r r r horizontal vertical inclinada
  24. 24. 3. Identifique, em cada uma das figuras abaixo, as retas desenhadas. A B C D A B C D E AB BC CD DA AB BC CD DE EA BD
  25. 25. 5. Quantas segmentos de reta distintos você pode traçar a cada 2 pontos dos 8 pontos abaixo? Dê o nome de cada uma das retas que você traçou. A B C D KL M N
  26. 26. 6. Quantas e quais as semirretas, com origem em P, que estão representadas na figura? P A B C E D PA PB PC PD PE 5 Semirretas
  27. 27. 7. Observe a figura e responda: a) A reta tem origem? b) A semi-reta tem origem? c) O segmento tem origem? d) A reta tem extremidade? e) A semi-reta tem extremidade? f) O segmento tem extremidade? A A A B B B NÃO SIM NÃO NÃO SIM SIM
  28. 28. 8. Indique as semi-retas representadas nas figuras seguintes e que tem origem no ponto O. AB C D O O OA OB OD OC
  29. 29. 9. Quantas semirretas distintas você pode traçar a cada 2 pontos dos 4 pontos abaixo?. Dê o nome das semir- retas. A GF M AM MG GF FA AG MF FM MA GM FG AF GA 12 SEMIRRETAS
  30. 30. 10. Observe as figuras I, II, III e IV. Agora identifique pelo número: a) Semirreta AB b) Semirreta BA c) Reta AB d) Segmento AB I II III IV A A A A B B B B II IV I III

×