SlideShare uma empresa Scribd logo
1 de 28
Baixar para ler offline
Abstract 

          Recently I turned my attention to the NCTM Principles and Standards and 

was surprised to see “communication” as a key factor. Metacognition? Math 

journaling? Are we still doing this? I wondered what would happen if I put 

communication at the center of my math instruction? I was surprised by the results 

of my action research. Communication is not a passing fad! Sharing thinking, asking 

questions, and explaining and justifying ideas belong in the very heart of every math 

class. 




                                                                                     1 
Communication Speaks 

       “In a grades 3–5 classroom, communication should include sharing thinking, 

asking questions, and explaining and justifying ideas. It should be well integrated in 

the classroom environment. Students should be encouraged to express and write 

about their mathematical conjectures, questions, and solutions” (National Council of 

Teachers of Mathematics, 2000, p. 193). What would my fourth grade classroom 

look like, how would I teach, and what would my students need if I actually strove to 

meet this standard in a real and substantive way?  

                                   Where to Begin? 

       A somewhat argumentative person myself, I have always enjoyed teaching 

essay writing as a convincing and organized argument.  I was compelled by the idea 

of having my students argue and justify their mathematical thinking in much the 

same way they support their theses in my writing classes. But I wasn’t sure where to 

begin. I decided the only thing I would do differently in my math instruction was to 

ask my students to explain their thinking and see where it would take us. This one 

question took many forms:  “What is your answer and how did you get it?” “Explain 

your thinking.”  “Why does that work?”  “How do you know?” And because we are in 

Missouri, simply, “Show me.” My students became accustomed to my mantra and 

explained their thinking prior to being asked. They learned that giving an answer 

wasn’t enough and began to explain their processes.  As we became immersed in 

these questions, it was easily sustained. Conversations were expected and math 

class was interesting and engaging for both my students and me. 




                                                                                      2 
However, there is a domino effect in teaching.  One small adjustment can 

have profound repercussions. I was curious to see how making communication a 

priority would impact student learning. I proceeded to investigate for myself, and 

fortunately I was open for adventure. Communication in math class, like a great 

many things, needs to be explicitly taught. I hadn’t considered this going in, but 

luckily my students readily revealed what we needed to learn. 

                                  Foundational Steps 

       The first thing I learned was that asking questions alone did not produce 

immediate results. Students need to be taught how to respond. When Lynne was 

asked how she got her answer 305‐169=136 (Figure 1), she wrote, “I just subtracted 

it.” When Hayden was prompted to explain why he put those little ones above the 5 

and the 6 when vertically solving 567+259=826 (Figure 2), he proudly responded, “I 

don’t know, but it still works!” I just did it and I don’t know weren’t the persuasive 

statements for which I hoped.  “In some instances, children’s inability to give 

convincing arguments may stem from the fact that they are unaccustomed to giving 

explanations; in other instances, their inability may reflect a lack of understanding” 

(Flores, 2002, p. 274). 

        I realized my students would need many opportunities to verbalize their 

thinking before they could argue an answer or write about their process. In some 

instances guiding questions were helpful. What did you do first? What do these 

numbers represent? Why did you do that?  Using these prompts supported those who 

needed help communicating and revealed misconceptions. 

        



                                                                                          3 
A second important component to communication is listening. To have 

meaningful conversations, my students needed to learn how to listen to each other.  

How little my students paid attention to one another surprised me. Initially, they 

looked to me for all truth and definitive answers and routinely ignored the 

questions and comments of their peers. How could we have meaningful discourse if 

I was the only one listening? I shifted the paradigm by standing back and allowing 

student after student to share his thinking on the interactive white board. As 

facilitator, I named the technique after the instructing student (Photo 1) and asked 

for a different way to solve the problem. This prompt required students to listen to 

their peers, to make connections between strategies, and to think creatively. Those 

who repeated previously shared strategies often realized this during their 

explanations. Amelia wasn’t sure her decomposing strategy was the same as 

Alejandro ’s until she shared it (Figure 3). The class decided they were the same. 

Seeing themselves and their classmates as mathematical thinkers was an important 

element in developing mathematical communication. My class was beginning to 

hear each other and reason together. 

        

     Just as asking questions did not initially produce meaningful answers, likewise, 

having students represent their thinking in writing didn’t yield clear explanations. 

To develop this skill, much of their writing was done in collaborative poster‐making 

(photo 2).  At first, the students’ posters represented their joy of using magic 

markers and communicated very little mathematical thinking (photo 2.1). I wanted 

the students to appraise, internalize, and communicate their thoughts, so I asked 



                                                                                        4 
them to evaluate the posters for a particular problem and decide which was the 

clearest and why. This conversation helped the students not only see the 

importance of the words, but also how their proximity to the example, the sequence 

in which they are written, and preciseness of their vocabulary all mattered (photo 

2.3).  “Over time, students should become more aware of, and responsive to, their 

audience as they explain their ideas in mathematics class. They should learn to be 

aware of whether they are convincing and whether others can understand them” 

(NCTM, p.61). The clarity of their work became more evident as the purpose for 

written communication gained value.  

     As one change led to another, I could see the dominoes continue to fall. Just by 

laying this foundation, we had accomplished a lot.  I was asking questions that 

exposed their depth of understanding, and they were supporting their answers even 

without being prompted. They were listening to and questioning each other and 

putting their thoughts in writing. Our communication was evident. But as a 

somewhat argumentative person, I stood back and said, “So what?” I wondered what 

my students were actually gaining by all this communication. How was sharing their 

thinking, asking questions, and explaining their ideas impacting student learning? 

                                      Sharing Thinking 

       Asking a question can start a discussion, and when students share their 

thinking, we all gain from the conversation. The speaker strengthens, solidifies, and 

deepens her thinking, and the listeners discover a fresh way to look at things. 

       During a study of subtraction, I pressed my students to share their thinking. 

Ali shared how making a number line shows the difference between two numbers 



                                                                                        5 
(figure 4). This gave a logical and visual reason for why the answer to a subtraction 

problem is called the difference. Sharing their thinking provided a context for the 

correct use of math terminology. To be understood, they needed to use the right 

vocabulary. 

       Subtracting with regrouping in the hundreds place in order to rename a zero 

in the tens place was a confusing procedure for many of my fourth graders. Some, 

like Lynne, remembered the algorithm and just subtracted without questioning how 

it works (figure 1). Cate’s approach got around this complication and revealed her 

understanding of place value and what subtraction means. She decomposed the 

subtrahend and started “taking away” with the hundreds (figure 5). Eugene 

presented a similar technique, but he counted backward using an open number line 

(figure 6). Wyatt’s subtraction strategy (figure 7) revealed what he knows about 

place value and negative integers. His method and the others shared allowed 

students to see the process of subtraction beyond the cross‐out and regroup 

algorithm that was difficult to remember. Learning multiple strategies, seeing a 

problem from different perspectives, using correct terminology, and solidifying 

their understanding were all results of students sharing their thinking. 

                                      Asking Questions 

       As my questioning became part of the fabric of the class, I noticed my 

students were not only eagerly answering them, but they also started asking 

questions themselves. “The most productive discussions around mathematical ideas 

seem to happen in classrooms where questioning is an almost spontaneous part of 

the way children talk to one another about their work” (Kline, 2008, p. 146).  



                                                                                       6 
After my students discovered all triangles have an interior angle sum of 180˙, 

they questioned whether squares, rectangles, and other quadrilaterals would have 

similar measurements. Squares and rectangles proved simple, 90˙ times 4; but the 

trapezoid and rhombus, like the triangles, required careful angle measuring. Once 

they determined the interior angles of all quadrilaterals did indeed have the sum of 

360˙, someone asked about the pentagon! Hexagon? Heptagon? What about all 

polygons? My students had moved beyond asking clarifying questions and were 

posing their own mathematical investigations. 

       Pairs of students set off to work. Armed with protractors, they measured and 

determined the sum of the interior angles of regular and irregular polygons. They 

confirmed their data with an interactive web site: Math Open Reference, Polygon 

Interior Angles (http://www.mathopenref.com/polygoninteriorangles.html), 

shared their findings, and made a group chart (Figure 8). 

       In making sense of their data, the class had a lot to communicate. Cate was 

the first to show smaller polygons within larger ones. She saw two trapezoids inside 

the pentagon (figure 9), but adding the sum of their angles was 180˚ too much. Why 

was this? Building on this idea, Devin recalled in pattern blocks six green triangles 

make one yellow hexagon, but adding the 180˚ of six triangles gave 360˚ too much 

for the sum of interior angles of a hexagon. He went on to show the interior circle 

formed where the equilateral triangles met in the middle (figure 10) and promptly 

added that he needed to subtract that extra 360˚. Explain your thinking? Tracing the 

hexagon with his finger, Devin said, “They don’t touch the sides.” Observing this, 

Mark said he could make two equal trapezoids in the hexagon, add the sum of their 



                                                                                         7 
angles, and that would result in the sum of the angles in the hexagon. Show me. 

Vanessa said two hexagons would equal a decagon. How do you know? Amelia 

noticed that each time we added a side to a polygon the sum of the interior angles 

increased by 180˙. She observed that a straight line also measures 180˙ and 

connected the additional side to the additional straight line. Mark conjectured that 

the sum of the interior angles had to have something to do with triangles because 

the triangle is the smallest polygon (the fewest sides), 180˙ is part of the pattern, 

and 180˙ is also the sum of the interior angles of a triangle.  

        Asking questions like, “How did you do that?” or “I don’t get it,” which is 

fourth‐grade code for, “Will you please explain that to me again?” was another way I 

saw children take ownership of and become invested in their learning. They 

measured angles with protractors (photo 3), drew interior polygons, made charts, 

added, subtracted, and multiplied. Some students determined a formula (the 

number of sides the polygon has, minus two, times 180 degrees), others used the 

pattern from making a chart (add 180˙), and some drew smaller polygons (often 

triangles) in the larger ones to find the sum of the interior angles for any polygon. 

Using geometry tools in context and encouraging communication around their 

discoveries took my fourth graders to a level of mathematics I never would have 

thought to take them. They were deeply entrenched doing the work of 

mathematicians: listening to each other, noticing patterns, testing theories, proving 

their conjectures, asking questions, and representing their thinking.   

     When the question, “How do you know the sum of the interior angles of all 

triangles is 180˚?” was answered, a class that was used to answering and asking 



                                                                                         8 
questions took me down a weeklong digression of the interior angles of all polygons.  

At that point, I had to decide whether I wanted to follow their line of questioning or 

return to my fourth grade curricular objectives. I am glad I followed their lead. We 

explored more topics more deeply, and my students developed their reasoning skills 

though sharing and building on each other’s thinking when their questions were 

valued.  

                             Explaining and Justifying Ideas 

       When I began this research, I wasn’t sure how often I should press my 

students to explain their thinking. Would I question every single answer? Marilyn 

Burns (2004) states,  “Teachers are accustomed to asking students to explain their 

thinking when their responses are incorrect. It's important, however, to ask children 

to explain their reasoning at all times” (p.17). I gave this idea a try and took it to 

heart when going over routine homework. In previous years, I called on students to 

share their answers, and we only paused when an incorrect response was given. 

With my new mantra, I asked them to explain their thinking for each question. I 

became a believer in at all times with this question, “What unit of measure would 

you use to weigh a pencil? A. pound B. gram  C. kilogram  D. inch” (Enright & 

Spencer, 2005, p. 11). When the student answering justified B. gram, in part, by 

saying that a pound was a little too much, the lesson evolved from establishing a 

benchmark for pounds to a deep discussion of the properties of even and odd 

numbers.  

       John explained, “B, because a paperclip weighs a gram.” Heads nodded. This 

was a benchmark the class seemed to agree on. He continued, “And a pound is a 



                                                                                          9 
little too much, a kilogram is a lot more, and inches are silly because they are for 

distance.” 

       I wasn’t sure the class had a solid benchmark for pounds so I pressed, “Is a 

pound just a little more?  How many pencils would equal a pound?” I dropped a 

pencil on the kitchen scale. It barely registered. I added a few more until we dumped 

in three boxes of pencils (12 per box) and still hadn’t reached half a pound.  Six 

boxes later, one pound was showing.  I asked, “How many pencils is that? How many 

make a pound?”  John offered, “93,” but Christopher interjected, “No, it can’t be an 

odd number!”  John explained that he knew 2 boxes was 24 pencils, so he mentally 

multiplied 24 three times.  When he did this on the board he wrote 24+24+24 and 

corrected his answer to 72.  Christopher spoke out, “I knew it couldn’t be odd!” I 

asked him to explain his thinking.  He said, “An even plus an even is an even, so an 

even times an even is even. Twelve (pencils in a box) times six (boxes of pencils) is 

an even (number) times an even (number) so the answer’s got to be even too.” But 

the way John solved it—24 times 3—was an even number times an odd number. 

The class knew an even plus an odd gave an odd answer. How could an even number 

times an odd number produce an even answer? They were connecting what they 

knew about how even and odd numbers behave in addition and applying it to 

multiplication. Disequilibrium set in. We did some additional multiplication facts 

with mixed even and odd factors and consistently found even products. I asked, 

“Why does this work?”   

       Eugene offered, “It doesn’t matter how many times if you have an even 

number, it (the product) will always be even because you are counting by even 



                                                                                        10 
numbers.” He showed this by counting by two’s and drawing dots on the board. One 

set of two makes two. Two sets of two make four. Three sets of two make six. 

William, still grappling with differences between adding and multiplying odd and 

even numbers made this conjecture, “An odd plus an odd makes an even, so an odd 

times an odd must make an even.” He was surprised when we tried it and all the 

products were odd numbers (7x3=21, 5x9=45). Then he said, “Oh, I get it.” William 

talked and drew out his process with 3 x 3 showing with dots on the board like 

Eugene had done that 3 x 2 was even, but when he added on the next group of three, 

this odd number made the total an odd number (figure 11) . He concluded, “That last 

odd number makes the product odd.” Like John before him, William refined his idea 

while justifying his thinking. 

       They were discovering differences between addition and multiplication that 

many adults miss. I discovered problems do not have to be inherently rich 

mathematical tasks to produce deep and meaningful conversations. In a short time, 

we had come a long way from determining it takes 72 pencils to equal one pound. 

Explaining and justifying their ideas allowed my students to struggle through 

disequilibrium, test conjectures, and make sense of the math they use.  

                                        Conclusion 

       Asking one small question can have a huge impact on teaching and learning. 

“Show me,” changed the structure and dynamic of my classroom. “What is your 

answer and how did you get it?” helps clear up misconceptions. “Why does that 

work?” can lead to mathematical debates. All of this communication deepened my 

students’ understanding of mathematics.  



                                                                                    11 
This transformation doesn’t happen overnight. Students need to be taught 

how to speak, listen, question, and write (figure 12). All of this takes time. In my 

experience, it is time well spent. I told my students at the start of the year that they 

would learn more from each other than they would from me, and I don’t think that 

was an exaggeration (photo 4). Changing one thing, watching and responding to the 

ripples of that change, helped me see its impact. I found the value of putting 

communication at the center of my math instruction to have an exponential effect. 

Yes, they learned to listen, speak, and write mathematically, but they also made 

deep and meaningful mathematical connections, developed their mathematical 

dispositions, and became a community of problem solvers. When I allowed space for 

my students’ thoughts and questions to guide my instruction, ownership and joy 

permeated math class. I will argue that allowing children to process content through 

communication should never become an educational fad.




                                                                                        12 
Figure 1: Lynne’s subtraction solution. “I just subtracted it.” 




                                                                      




                                                                   13 
Figure 2:  Hayden’s addition strategy 




                                         14 
Figure 3: Amelia’s and Alejandro ’s addition strategies 




                                                                




                                                            




                                                                   15 
 

Figure 4:  Ali’s Number line 




                                16 
Figure 5—Cate’s decomposing the subtrahend strategy 504‐169=335




Figure 6—Eugene’s Open Number line 504‐169=335 




                                                                     




                                                                  17 
 

Figure 7:  Wyatt’s subtraction strategy 12/05/08 




                                                                                         



 Wyatt decomposed the numbers and started with the ones. He figured 5‐9= ‐4. He 

moved to the tens and subtracts 0‐60=‐60. Then he worked out the hundreds, 300‐

100= 200. Last, he combined his differences: 200‐60‐4. He did this in two steps. 200‐

60=140 and then 140‐4=136. Wyatt shows us that 305‐169=136. 




                                                                                  18 
Figure 8—Class Chart, Interior Angles of Polygons




                                                    19 
Figure 9: Cate sees two trapezoids in this pentagon. The red arc shows where the extra

180˙ is found.




Figure 10: Devin sees 6 triangles in the hexagon and subtracts out the extra 360˙

produced by the circle of extra angles in the center.




                                                                                         20 
Figure 11—William uses 3 x 3 to illustrate two odd factors give an odd product. He 
draws three groups of three in a pyramid form. Then he circles the pairs. He 
explains that 2 x 3 is even because each dot has a partner, but when we add on the 
next odd number (three) there will always be one without a partner. Odd times odd 
makes odd, but odd plus odd makes even! 




                                                            
 
 
 
 
 


              




                                                                                21 
Figure 12 
 
Steps I used to establish and promote communication: 
 
1. Provide a safe environment that promotes risk‐taking 
        Set behavioral norms with the class. 
 
        Prompt: What will you need to do your best learning? 
        What are your hopes and fears about math class? 
 
2. Develop discourse in math class 
        Ask questions and wait for answers. Hear all voices. 
 
        Strategies: turn and talk; think, pair, share; call on everyone 
 
3. Expect listening to the ideas of peers and allow grappling to understand them 
        Ask students to paraphrase, compare ideas, question, and add on to each 
        other. 
 
        Prompt: Who can explain how she figured it out? How are these strategies 
        alike? What questions do you have? Can anyone add on to that idea? 
 
4. Allow processing of content through writing 
        Use poster‐making, journaling, and exit tickets with clear guidelines (title, 
        names, proof, examples, and words).  
         
        Prompts: How did you solve this problem? Pretend your friend is sick:  write  
        a letter explaining what we learned today. Describe what you learned today. 
         
 




                                                                                   22 
Photos: 


Photo 1—Sharing Strategies: Maria’s Rounding Strategy show how she rounds up to 
friendly numbers, adds, and subtracts the extras. 


 




                                                                                




                                                                             23 
 
 
 Photo 2—Making Posters: How can you best communicate your group’s thinking? 
 




                                                                                 




                                                                            24 
 
 Photo 2.1—This group glued the questions to the poster, drew some solutions, and 
connected their solutions to the questions with arrows.  




                                                                                       




                                                                                25 
Photo 2.2—This poster is a response to, “What is the commutative property of 
multiplication?” It follows the guidelines: title, names, proof, examples, and words. 
 




                                                                                          




                                                                                     26 
 


Photo 3—Measuring the interior angles of octagons 




                                                        




                                                     27 
  
Photo 4: Sharing strategies: The Open Number Line 
 




                                                                                         
 
References  
 
Burns, M. (April 2004). 10 big math ideas. Instructor, 113(7), 16-19, 60.

Enright, B. & Spencer, D. (2005). Test Ready Plus Mathematics. North Billerica, MA:
       Curriculum Associates.

Flores, A. (January 2002). How do children know that what they learn in
        mathematics is true? Teaching Children Mathematics, 8(5), 269-274.

Kline, K. (October 2008). Learning to think & thinking to learn. Teaching
        Children Mathematics, 15(2), 144-151.

National Council of Teachers of Mathematics. (2000). Principles and standards
       for school mathematics. Reston, VA: Author.

Page, J. (2008). Polygon interior angles—Math open reference.
        http://www.mathopenref.com/polygoninteriorangles.html.
 


                                                                                      28 

Mais conteúdo relacionado

Mais procurados

Kdg mp and problem solving intro 8.28.12
Kdg mp and problem solving intro 8.28.12Kdg mp and problem solving intro 8.28.12
Kdg mp and problem solving intro 8.28.12
Laura Chambless
 
Math look fors (updated)
Math look fors (updated)Math look fors (updated)
Math look fors (updated)
Laura Chambless
 
Pmena2010 presentation 101030
Pmena2010 presentation 101030Pmena2010 presentation 101030
Pmena2010 presentation 101030
Aaron
 
Math Powerpoint For Presentation
Math Powerpoint For PresentationMath Powerpoint For Presentation
Math Powerpoint For Presentation
Deirdre L. Thorpe
 
Assessment and Teaching Project Kara and Jeanne (2) grammar and spelling checked
Assessment and Teaching Project Kara and Jeanne (2) grammar and spelling checkedAssessment and Teaching Project Kara and Jeanne (2) grammar and spelling checked
Assessment and Teaching Project Kara and Jeanne (2) grammar and spelling checked
jeanne asberry
 
Franke productive struggle_5pmtalk
Franke productive struggle_5pmtalkFranke productive struggle_5pmtalk
Franke productive struggle_5pmtalk
kdtanker
 
Franke std explan_11amtalk
Franke std explan_11amtalkFranke std explan_11amtalk
Franke std explan_11amtalk
kdtanker
 
Instructional Support Tools
Instructional Support ToolsInstructional Support Tools
Instructional Support Tools
jwalts
 
Revised classroom question presentation
Revised classroom question presentationRevised classroom question presentation
Revised classroom question presentation
Xyleanne Alforte
 

Mais procurados (20)

Kdg mp and problem solving intro 8.28.12
Kdg mp and problem solving intro 8.28.12Kdg mp and problem solving intro 8.28.12
Kdg mp and problem solving intro 8.28.12
 
2 sharmistha oak ppt
2 sharmistha oak ppt2 sharmistha oak ppt
2 sharmistha oak ppt
 
Study Pack, HOTS and Evaluation
Study Pack, HOTS and EvaluationStudy Pack, HOTS and Evaluation
Study Pack, HOTS and Evaluation
 
Math look fors (updated)
Math look fors (updated)Math look fors (updated)
Math look fors (updated)
 
Geometry
GeometryGeometry
Geometry
 
Pmena2010 presentation 101030
Pmena2010 presentation 101030Pmena2010 presentation 101030
Pmena2010 presentation 101030
 
Math Powerpoint For Presentation
Math Powerpoint For PresentationMath Powerpoint For Presentation
Math Powerpoint For Presentation
 
Facilitating Students' Geometric Thinking through Van Hiele's Phase Based Lea...
Facilitating Students' Geometric Thinking through Van Hiele's Phase Based Lea...Facilitating Students' Geometric Thinking through Van Hiele's Phase Based Lea...
Facilitating Students' Geometric Thinking through Van Hiele's Phase Based Lea...
 
Assessment and Teaching Project Kara and Jeanne (2) grammar and spelling checked
Assessment and Teaching Project Kara and Jeanne (2) grammar and spelling checkedAssessment and Teaching Project Kara and Jeanne (2) grammar and spelling checked
Assessment and Teaching Project Kara and Jeanne (2) grammar and spelling checked
 
Kazemi pm talk_powerpoint
Kazemi pm talk_powerpointKazemi pm talk_powerpoint
Kazemi pm talk_powerpoint
 
Teaching Geometry
Teaching GeometryTeaching Geometry
Teaching Geometry
 
Franke productive struggle_5pmtalk
Franke productive struggle_5pmtalkFranke productive struggle_5pmtalk
Franke productive struggle_5pmtalk
 
Standard D
Standard DStandard D
Standard D
 
Franke std explan_11amtalk
Franke std explan_11amtalkFranke std explan_11amtalk
Franke std explan_11amtalk
 
Philipp pm slides
Philipp pm slidesPhilipp pm slides
Philipp pm slides
 
Instructional Support Tools
Instructional Support ToolsInstructional Support Tools
Instructional Support Tools
 
Mathematical Practices Look-fors
Mathematical Practices Look-forsMathematical Practices Look-fors
Mathematical Practices Look-fors
 
Revised classroom question presentation
Revised classroom question presentationRevised classroom question presentation
Revised classroom question presentation
 
Rickard, anthony teaching prospective teachers about mathematical reasoning n...
Rickard, anthony teaching prospective teachers about mathematical reasoning n...Rickard, anthony teaching prospective teachers about mathematical reasoning n...
Rickard, anthony teaching prospective teachers about mathematical reasoning n...
 
paper #3 for edu 510_fox
paper #3 for edu 510_foxpaper #3 for edu 510_fox
paper #3 for edu 510_fox
 

Destaque (11)

Kadai8
Kadai8Kadai8
Kadai8
 
Folla de inscrición 4ª pequenos definitiva si
Folla de inscrición 4ª pequenos definitiva siFolla de inscrición 4ª pequenos definitiva si
Folla de inscrición 4ª pequenos definitiva si
 
Mantenimiento 04 - regulador de voltaje (63170)
Mantenimiento   04 - regulador de voltaje (63170)Mantenimiento   04 - regulador de voltaje (63170)
Mantenimiento 04 - regulador de voltaje (63170)
 
Asher young - watershed scale conservation
Asher young - watershed scale conservationAsher young - watershed scale conservation
Asher young - watershed scale conservation
 
Inicio tardio
Inicio tardioInicio tardio
Inicio tardio
 
Stanford university take_ithomedesignthinking
Stanford university take_ithomedesignthinkingStanford university take_ithomedesignthinking
Stanford university take_ithomedesignthinking
 
Folla de inscrición pequenos finais
Folla de inscrición pequenos finaisFolla de inscrición pequenos finais
Folla de inscrición pequenos finais
 
Windows 7
Windows 7Windows 7
Windows 7
 
Healthy fast food
Healthy fast foodHealthy fast food
Healthy fast food
 
a1-cbiss Gas Detectors Brochure
a1-cbiss Gas Detectors Brochurea1-cbiss Gas Detectors Brochure
a1-cbiss Gas Detectors Brochure
 
Gas Detector Tube List
Gas Detector Tube ListGas Detector Tube List
Gas Detector Tube List
 

Semelhante a Communication speaks2 -kinman

Using Field-Based Assignments to Develop Visions and Skills with Best Practic...
Using Field-Based Assignments to Develop Visions and Skills with Best Practic...Using Field-Based Assignments to Develop Visions and Skills with Best Practic...
Using Field-Based Assignments to Develop Visions and Skills with Best Practic...
Nicole Rigelman
 
Yess 4 Laurinda Brown
Yess 4 Laurinda BrownYess 4 Laurinda Brown
Yess 4 Laurinda Brown
carlos torres
 
3rd Grade Webinar Slideshow
3rd Grade Webinar Slideshow3rd Grade Webinar Slideshow
3rd Grade Webinar Slideshow
jwalts
 
Standards for Mathematical Practice
Standards for Mathematical PracticeStandards for Mathematical Practice
Standards for Mathematical Practice
jwalts
 
Standards for Mathematical Practice
Standards for Mathematical PracticeStandards for Mathematical Practice
Standards for Mathematical Practice
jwalts
 
Standards for Mathematical Practice
Standards for Mathematical PracticeStandards for Mathematical Practice
Standards for Mathematical Practice
jwalts
 

Semelhante a Communication speaks2 -kinman (14)

Math Essay
Math EssayMath Essay
Math Essay
 
Using Field-Based Assignments to Develop Visions and Skills with Best Practic...
Using Field-Based Assignments to Develop Visions and Skills with Best Practic...Using Field-Based Assignments to Develop Visions and Skills with Best Practic...
Using Field-Based Assignments to Develop Visions and Skills with Best Practic...
 
What I learned from 20 Years of Student Journals
What I learned from 20 Years of Student JournalsWhat I learned from 20 Years of Student Journals
What I learned from 20 Years of Student Journals
 
What I learned from 20 years of Student Journals
What I learned from 20 years of Student JournalsWhat I learned from 20 years of Student Journals
What I learned from 20 years of Student Journals
 
Newsletter marapril2021.docx
Newsletter marapril2021.docxNewsletter marapril2021.docx
Newsletter marapril2021.docx
 
Yess 4 Laurinda Brown
Yess 4 Laurinda BrownYess 4 Laurinda Brown
Yess 4 Laurinda Brown
 
3rd Grade Webinar Slideshow
3rd Grade Webinar Slideshow3rd Grade Webinar Slideshow
3rd Grade Webinar Slideshow
 
Standards for Mathematical Practice
Standards for Mathematical PracticeStandards for Mathematical Practice
Standards for Mathematical Practice
 
Standards for Mathematical Practice
Standards for Mathematical PracticeStandards for Mathematical Practice
Standards for Mathematical Practice
 
Standards for Mathematical Practice
Standards for Mathematical PracticeStandards for Mathematical Practice
Standards for Mathematical Practice
 
EFFECTIVE QUESTIONING
EFFECTIVE QUESTIONINGEFFECTIVE QUESTIONING
EFFECTIVE QUESTIONING
 
Mathematics and Present challenges.pptx
Mathematics and Present challenges.pptxMathematics and Present challenges.pptx
Mathematics and Present challenges.pptx
 
Module 4 application action research
Module 4 application  action researchModule 4 application  action research
Module 4 application action research
 
Tales Of An Educator New To Depth & Complexity
Tales Of An Educator New To Depth & ComplexityTales Of An Educator New To Depth & Complexity
Tales Of An Educator New To Depth & Complexity
 

Último

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Último (20)

Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 

Communication speaks2 -kinman