SlideShare uma empresa Scribd logo
1 de 25
Differentiation Chap 9

Objective: How to find
Stationary Points
&
determine their nature
(maximum/minimum)
riazidan
The stationary points of a curve are the points where
the gradient is zero
e.g.

y = x3 − 3x2 − 9x

A local maximum
x

dy
=0
dx
x

A local minimum
The word local is usually omitted and the points called
maximum and minimum points.
e.g.1 Find the coordinates of the stationary points
on the curve y = x 3 − 3 x 2 − 9 x
y = x3 − 3x2 − 9x
Solution:

dy
⇒
= 3x2 − 6x − 9
dx
dy
⇒ 3 x 2 − 6 x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0
=0
dx
3( x − out + 1 = 0 ⇒ x = 3
Tip: Watch 3)( xfor )common factors or x = −1
x = 3 when finding )stationary points.
⇒ y = ( 3 3 − 3( 3) 2 − 9( 3)
= 27 − 27 − 27 = − 27
x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1)
= −1 − 3 + 9 = 5
The stationary points are (3, -27) and ( -1, 5)
Exercises
Find the coordinates of the stationary points of the
following functions
2
1. y = x − 4 x + 5

2.

y = 2 x 3 + 3 x 2 − 12 x + 1

Solutions:
dy
1.
= 2x − 4

dx
dy
= 0 ⇒ 2x − 4 = 0
dx
⇒ x=2

x = 2 ⇒ y = ( 2) 2 − 4( 2) + 5 = 1
Ans: St. pt. is ( 2, 1)
y = 2 x 3 + 3 x 2 − 12 x + 1

2.
Solution:

dy
= 6 x 2 + 6 x − 12
dx

dy
= 0 ⇒ 6( x 2 + x − 2) = 0 ⇒ 6( x − 1)( x + 2) = 0
dx
⇒ x = 1 or x = −2
x = 1 ⇒ y = −6
x = −2 ⇒ y = 2( −2) 3 + 3( −2) 2 − 12( −2) + 1 = 21
Ans: St. pts. are ( 1, −6) and ( −2, 21 )
We need to be able to determine the nature of a
stationary point ( whether it is a max or a min ).
There are several ways of doing this. e.g.
On the left of
a maximum,
the gradient is
positive

+

On the right of
a maximum,
the gradient is
negative

−
So, for a max the gradients are
0 At the max
On the left of
On the right of
the max
the max

−

+

The opposite is true for a minimum

−

0

+

Calculating the gradients on the left and right of a
stationary point tells us whether the point is a max or a
min.
e.g.2 Find the coordinates of the stationary point of the
2
curve y = x − 4 x + 1 . Is the point a max or min?

− − − − − − (1)
y = x2 − 4x + 1
Solution:
dy
⇒
= 2x − 4
dx
dy
=0
⇒
2x − 4 = 0 ⇒ x = 2
dx
y = ( 2) 2 − 4( 2) + 1
⇒ y = −3
Substitute in (1):
dy
= 2(1) − 4 = − 2 < 0
On the left of x = 2 e.g. at x = 1,
dx
dy
On the right of x = 2 e.g. at x = 3,
= 2( 3) − 4 = 2 > 0
dx
+
−
⇒ ( 2, − 3) is a min
We have
0
Another method for determining the nature of a
stationary point.
e.g.3 Consider

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

3
2
At the max of y = x + 3 x − 9 x + 10 the gradient is 0
but the gradient of the gradient is negative.
Another method for determining the nature of a
stationary point.
e.g.3 Consider

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

At the min of

y = x 3 + 3 x 2 − 9 x + 10
the gradient of the
gradient is positive.

d2y

The notation for the gradient of the gradient is
dx 2
“d 2 y by d x squared”
e.g.3 ( continued ) Find the stationary points on the
curve y = x 3 + 3 x 2 − 9 x + 10 and distinguish between
the max and the min.
y = x 3 + 3 x 2 − 9 x + 10
Solution:

dy
d2y
2
⇒
= 3x + 6x − 9 ⇒
= 6x + 6
2
dx
dx
2
dy
2 d y
Stationary points:
= 0 ⇒ 3 x + 6 x −is called the
9=0
dx
dx 2 nd
2 derivative
⇒ 3( x 2 + 2 x − 3) = 0
⇒ 3( x + 3)( x − 1) = 0
⇒

x = −3 or x = 1

We now need to find the y-coordinates of the st. pts.
y = x 3 + 3 x 2 − 9 x + 10
x = −3 ⇒

y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37

x =1

y = 1 + 3 − 9 + 10 = 5

⇒

To distinguish between max and min we use the 2nd
derivative, at the stationary points.

d2y
2

= 6x + 6

dx
d y
= 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 )
At x = −3 ,
2
dx
2

At x = 1 ,

d2y
dx

2

= 6 + 6 = 12 > 0 ⇒ min at (1, 5)
SUMMARY
 To find stationary points, solve the equation
dy
=0
dx
 Determine the nature of the stationary points

•

either by finding the gradients on the left
and right of the stationary points

+

−
•

⇒ minimum

0

0

+

−

⇒

maximum

or by finding the value of the 2nd derivative
at the stationary points

d2y
dx

2

< 0 ⇒ max

d2y
dx

2

> 0 ⇒ min
Exercises
Find the coordinates of the stationary points of the
following functions, determine the nature of each
and sketch the functions.
3
2
3

2

y = x + 3x − 2
Ans. (0, − 2) is a min.

1.

(−2 , 2)
2.

y = x + 3x − 2

is a max.

y = 2 + 3x − x3

Ans. (−1, 0)

(1 , 4)

is a min.
is a max.

y = 2 + 3x − x3
The following slides contain repeats of
information on earlier slides, shown without
colour, so that they can be printed and
photocopied.
For most purposes the slides can be printed
as “Handouts” with up to 6 slides per sheet.
The stationary points of a curve are the points where
the gradient is zero
e.g.

y = x3 − 3x2 − 9x

A local maximum
x

dy
=0
dx
x

A local minimum
The word local is usually omitted and the points called
maximum and minimum points.
e.g.1 Find the coordinates of the stationary points
y = x3 − 3x2 − 9x
on the curve
Solution:

⇒
dy
=0
dx

⇒

y = x3 − 3x2 − 9x
dy
= 3x2 − 6x − 9
dx
3x2 − 6x − 9 = 0 ⇒

3( x 2 − 2 x − 3) = 0

3( x − 3)( x + 1) = 0 ⇒ x = 3 or x = −1
x = 3 ⇒ y = ( 3) 3 − 3( 3) 2 − 9( 3)
= 27 − 27 − 27 = − 27
x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1)
= −1 − 3 + 9 = 5
The stationary points are (3, -27) and ( -1, 5)
Determining the nature of a Stationary Point
For a max we have
On the left of
the max

+

0

At the max

−

On the right of
the max

The opposite is true for a minimum

−

0

+

Calculating the gradients on the left and right
of a stationary point tells us whether the point
is a max or a min.
Another method for determining the nature of a
stationary point.
e.g. Consider

y

y = x 3 + 3 x 2 − 9 x + 10

The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

3
2
At the max of y = x + 3 x − 9 x + 10 the gradient is
0, but the gradient of the gradient is negative.
y = x 3 + 3 x 2 − 9 x + 10
The gradient function
is given by

dy
= 3x2 + 6x − 9
dx

dy
dx

At the min of
y = x 3 + 3 x 2 − 9 x + 10
the gradient of the
gradient is positive.

d2y

The notation for the gradient of the gradient is
dx 2
“d 2 y by d x squared”
The gradient of the gradient is called the 2nd
derivative and is written as

d2y
dx 2
e.g. Find the stationary points on the curve
3
y = xand 3distinguish between the max
+ x 2 − 9 x + 10

and the=min.+ 3 x 2 − 9 x + 10
y x3
Solution:

dy
d2y
2
⇒
= 3x + 6x − 9 ⇒
= 6x + 6
2
dx
dx
dy
Stationary points:
= 0 ⇒ 3x2 + 6x − 9 = 0
dx
⇒ 3( x 2 + 2 x − 3) = 0
⇒ 3( x + 3)( x − 1) = 0
⇒

x = −3 or x = 1

We now need to find the y-coordinates of the st. pts.
y = x 3 + 3 x 2 − 9 x + 10
x = −3 ⇒

y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37

x =1

y = 1 + 3 − 9 + 10 = 5

⇒

To distinguish between max and min we use the 2nd
derivative,
d2y
2

= 6x + 6

dx
d2y
At x = −3 , 2 = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 )
dx
At

x =1 ,

d2y
dx

2

= 6 + 6 = 12 > 0 ⇒ min at (1, 5)
SUMMARY
 To find stationary points, solve the equation
dy
=0
dx
 Determine the nature of the stationary points

•

either by finding the gradients on the left
and right of the stationary points
0
−
+
−
⇒ maximum
⇒ minimum +
0
• or by finding the value of the 2nd derivative
at the stationary points

d2y
dx

2

< 0 ⇒ max

d2y
dx

2

> 0 ⇒ min

Mais conteúdo relacionado

Mais procurados

5.2 first and second derivative test
5.2 first and second derivative test5.2 first and second derivative test
5.2 first and second derivative test
dicosmo178
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions
hisema01
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite Integral
Sharon Henry
 
L5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremL5 infinite limits squeeze theorem
L5 infinite limits squeeze theorem
James Tagara
 
Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphs
Jerlyn Fernandez
 

Mais procurados (20)

Inverse Function.pptx
Inverse Function.pptxInverse Function.pptx
Inverse Function.pptx
 
Pascal triangle and binomial theorem
Pascal triangle and binomial theoremPascal triangle and binomial theorem
Pascal triangle and binomial theorem
 
5.2 first and second derivative test
5.2 first and second derivative test5.2 first and second derivative test
5.2 first and second derivative test
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and Decay
 
Differentiation using First Principle - By Mohd Noor Abdul Hamid
Differentiation using First Principle  - By Mohd Noor Abdul HamidDifferentiation using First Principle  - By Mohd Noor Abdul Hamid
Differentiation using First Principle - By Mohd Noor Abdul Hamid
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite Integral
 
L5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremL5 infinite limits squeeze theorem
L5 infinite limits squeeze theorem
 
Algebra 2 Section 2-2
Algebra 2 Section 2-2Algebra 2 Section 2-2
Algebra 2 Section 2-2
 
Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphs
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Function Notation.ppt
Function Notation.pptFunction Notation.ppt
Function Notation.ppt
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
 
First Order Differential Equations
First Order Differential EquationsFirst Order Differential Equations
First Order Differential Equations
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
Presentation on quadratic equation
Presentation on quadratic equationPresentation on quadratic equation
Presentation on quadratic equation
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor
 

Destaque (20)

Stationary points
Stationary pointsStationary points
Stationary points
 
IB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative testIB Maths. Turning points. First derivative test
IB Maths. Turning points. First derivative test
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
 
IB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative testIB Maths.Turning points. Second derivative test
IB Maths.Turning points. Second derivative test
 
C4 2012 june
C4 2012 juneC4 2012 june
C4 2012 june
 
C4 January 2012 QP
C4 January 2012 QPC4 January 2012 QP
C4 January 2012 QP
 
Simltaneous equations
Simltaneous equationsSimltaneous equations
Simltaneous equations
 
Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2Schoenburg- AREA OF STUDY 2
Schoenburg- AREA OF STUDY 2
 
C3 bronze 1
C3 bronze 1C3 bronze 1
C3 bronze 1
 
Kinematics
KinematicsKinematics
Kinematics
 
M1 January 2012 QP
M1 January 2012 QPM1 January 2012 QP
M1 January 2012 QP
 
C3 January 2012 QP
C3 January 2012 QPC3 January 2012 QP
C3 January 2012 QP
 
C3 2012 june
C3 2012 juneC3 2012 june
C3 2012 june
 
Dynamics (full chapter)
Dynamics (full chapter)Dynamics (full chapter)
Dynamics (full chapter)
 
Kinematics jan 27
Kinematics jan 27Kinematics jan 27
Kinematics jan 27
 
Kinematics displacement velocity graphs
Kinematics   displacement velocity graphsKinematics   displacement velocity graphs
Kinematics displacement velocity graphs
 
C4 EDEXCEL HELP
C4 EDEXCEL HELPC4 EDEXCEL HELP
C4 EDEXCEL HELP
 
dynamics text (M1)
dynamics text (M1)dynamics text (M1)
dynamics text (M1)
 
Increasing decreasing functions
Increasing decreasing functionsIncreasing decreasing functions
Increasing decreasing functions
 
Numerical analysis stationary variables
Numerical analysis  stationary variablesNumerical analysis  stationary variables
Numerical analysis stationary variables
 

Semelhante a Differentiation jan 21, 2014

C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
fatima d
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions
dicosmo178
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtys
Lina Ša
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
akabaka12
 
maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiation
tenwoalex
 

Semelhante a Differentiation jan 21, 2014 (20)

C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
 
4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions
 
Algebra Revision.ppt
Algebra Revision.pptAlgebra Revision.ppt
Algebra Revision.ppt
 
Sudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtysSudėtingesnės trupmeninės lygtys
Sudėtingesnės trupmeninės lygtys
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
Quadraticequation
QuadraticequationQuadraticequation
Quadraticequation
 
Derivatives
DerivativesDerivatives
Derivatives
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Core 1 revision notes a
Core 1 revision notes aCore 1 revision notes a
Core 1 revision notes a
 
整卷
整卷整卷
整卷
 
Integration
IntegrationIntegration
Integration
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiation
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Differentiation.pptx
Differentiation.pptxDifferentiation.pptx
Differentiation.pptx
 

Mais de Mohammed Ahmed (7)

vectors
vectorsvectors
vectors
 
vectors
vectorsvectors
vectors
 
Moments
MomentsMoments
Moments
 
statics
staticsstatics
statics
 
Chap 3 3a to 3d
Chap 3 3a to 3dChap 3 3a to 3d
Chap 3 3a to 3d
 
C2 differentiation jan 22
C2 differentiation jan 22C2 differentiation jan 22
C2 differentiation jan 22
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their Graphs
 

Último

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Último (20)

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 

Differentiation jan 21, 2014

  • 1. Differentiation Chap 9 Objective: How to find Stationary Points & determine their nature (maximum/minimum) riazidan
  • 2. The stationary points of a curve are the points where the gradient is zero e.g. y = x3 − 3x2 − 9x A local maximum x dy =0 dx x A local minimum The word local is usually omitted and the points called maximum and minimum points.
  • 3. e.g.1 Find the coordinates of the stationary points on the curve y = x 3 − 3 x 2 − 9 x y = x3 − 3x2 − 9x Solution: dy ⇒ = 3x2 − 6x − 9 dx dy ⇒ 3 x 2 − 6 x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0 =0 dx 3( x − out + 1 = 0 ⇒ x = 3 Tip: Watch 3)( xfor )common factors or x = −1 x = 3 when finding )stationary points. ⇒ y = ( 3 3 − 3( 3) 2 − 9( 3) = 27 − 27 − 27 = − 27 x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1) = −1 − 3 + 9 = 5 The stationary points are (3, -27) and ( -1, 5)
  • 4. Exercises Find the coordinates of the stationary points of the following functions 2 1. y = x − 4 x + 5 2. y = 2 x 3 + 3 x 2 − 12 x + 1 Solutions: dy 1. = 2x − 4 dx dy = 0 ⇒ 2x − 4 = 0 dx ⇒ x=2 x = 2 ⇒ y = ( 2) 2 − 4( 2) + 5 = 1 Ans: St. pt. is ( 2, 1)
  • 5. y = 2 x 3 + 3 x 2 − 12 x + 1 2. Solution: dy = 6 x 2 + 6 x − 12 dx dy = 0 ⇒ 6( x 2 + x − 2) = 0 ⇒ 6( x − 1)( x + 2) = 0 dx ⇒ x = 1 or x = −2 x = 1 ⇒ y = −6 x = −2 ⇒ y = 2( −2) 3 + 3( −2) 2 − 12( −2) + 1 = 21 Ans: St. pts. are ( 1, −6) and ( −2, 21 )
  • 6. We need to be able to determine the nature of a stationary point ( whether it is a max or a min ). There are several ways of doing this. e.g. On the left of a maximum, the gradient is positive + On the right of a maximum, the gradient is negative −
  • 7. So, for a max the gradients are 0 At the max On the left of On the right of the max the max − + The opposite is true for a minimum − 0 + Calculating the gradients on the left and right of a stationary point tells us whether the point is a max or a min.
  • 8. e.g.2 Find the coordinates of the stationary point of the 2 curve y = x − 4 x + 1 . Is the point a max or min? − − − − − − (1) y = x2 − 4x + 1 Solution: dy ⇒ = 2x − 4 dx dy =0 ⇒ 2x − 4 = 0 ⇒ x = 2 dx y = ( 2) 2 − 4( 2) + 1 ⇒ y = −3 Substitute in (1): dy = 2(1) − 4 = − 2 < 0 On the left of x = 2 e.g. at x = 1, dx dy On the right of x = 2 e.g. at x = 3, = 2( 3) − 4 = 2 > 0 dx + − ⇒ ( 2, − 3) is a min We have 0
  • 9. Another method for determining the nature of a stationary point. e.g.3 Consider y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx 3 2 At the max of y = x + 3 x − 9 x + 10 the gradient is 0 but the gradient of the gradient is negative.
  • 10. Another method for determining the nature of a stationary point. e.g.3 Consider y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx At the min of y = x 3 + 3 x 2 − 9 x + 10 the gradient of the gradient is positive. d2y The notation for the gradient of the gradient is dx 2 “d 2 y by d x squared”
  • 11. e.g.3 ( continued ) Find the stationary points on the curve y = x 3 + 3 x 2 − 9 x + 10 and distinguish between the max and the min. y = x 3 + 3 x 2 − 9 x + 10 Solution: dy d2y 2 ⇒ = 3x + 6x − 9 ⇒ = 6x + 6 2 dx dx 2 dy 2 d y Stationary points: = 0 ⇒ 3 x + 6 x −is called the 9=0 dx dx 2 nd 2 derivative ⇒ 3( x 2 + 2 x − 3) = 0 ⇒ 3( x + 3)( x − 1) = 0 ⇒ x = −3 or x = 1 We now need to find the y-coordinates of the st. pts.
  • 12. y = x 3 + 3 x 2 − 9 x + 10 x = −3 ⇒ y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37 x =1 y = 1 + 3 − 9 + 10 = 5 ⇒ To distinguish between max and min we use the 2nd derivative, at the stationary points. d2y 2 = 6x + 6 dx d y = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 ) At x = −3 , 2 dx 2 At x = 1 , d2y dx 2 = 6 + 6 = 12 > 0 ⇒ min at (1, 5)
  • 13. SUMMARY  To find stationary points, solve the equation dy =0 dx  Determine the nature of the stationary points • either by finding the gradients on the left and right of the stationary points + − • ⇒ minimum 0 0 + − ⇒ maximum or by finding the value of the 2nd derivative at the stationary points d2y dx 2 < 0 ⇒ max d2y dx 2 > 0 ⇒ min
  • 14. Exercises Find the coordinates of the stationary points of the following functions, determine the nature of each and sketch the functions. 3 2 3 2 y = x + 3x − 2 Ans. (0, − 2) is a min. 1. (−2 , 2) 2. y = x + 3x − 2 is a max. y = 2 + 3x − x3 Ans. (−1, 0) (1 , 4) is a min. is a max. y = 2 + 3x − x3
  • 15.
  • 16. The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.
  • 17. The stationary points of a curve are the points where the gradient is zero e.g. y = x3 − 3x2 − 9x A local maximum x dy =0 dx x A local minimum The word local is usually omitted and the points called maximum and minimum points.
  • 18. e.g.1 Find the coordinates of the stationary points y = x3 − 3x2 − 9x on the curve Solution: ⇒ dy =0 dx ⇒ y = x3 − 3x2 − 9x dy = 3x2 − 6x − 9 dx 3x2 − 6x − 9 = 0 ⇒ 3( x 2 − 2 x − 3) = 0 3( x − 3)( x + 1) = 0 ⇒ x = 3 or x = −1 x = 3 ⇒ y = ( 3) 3 − 3( 3) 2 − 9( 3) = 27 − 27 − 27 = − 27 x = −1 ⇒ y = ( −1) 3 − 3( −1) 2 − 9( −1) = −1 − 3 + 9 = 5 The stationary points are (3, -27) and ( -1, 5)
  • 19. Determining the nature of a Stationary Point For a max we have On the left of the max + 0 At the max − On the right of the max The opposite is true for a minimum − 0 + Calculating the gradients on the left and right of a stationary point tells us whether the point is a max or a min.
  • 20. Another method for determining the nature of a stationary point. e.g. Consider y y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx 3 2 At the max of y = x + 3 x − 9 x + 10 the gradient is 0, but the gradient of the gradient is negative.
  • 21. y = x 3 + 3 x 2 − 9 x + 10 The gradient function is given by dy = 3x2 + 6x − 9 dx dy dx At the min of y = x 3 + 3 x 2 − 9 x + 10 the gradient of the gradient is positive. d2y The notation for the gradient of the gradient is dx 2 “d 2 y by d x squared”
  • 22. The gradient of the gradient is called the 2nd derivative and is written as d2y dx 2
  • 23. e.g. Find the stationary points on the curve 3 y = xand 3distinguish between the max + x 2 − 9 x + 10 and the=min.+ 3 x 2 − 9 x + 10 y x3 Solution: dy d2y 2 ⇒ = 3x + 6x − 9 ⇒ = 6x + 6 2 dx dx dy Stationary points: = 0 ⇒ 3x2 + 6x − 9 = 0 dx ⇒ 3( x 2 + 2 x − 3) = 0 ⇒ 3( x + 3)( x − 1) = 0 ⇒ x = −3 or x = 1 We now need to find the y-coordinates of the st. pts.
  • 24. y = x 3 + 3 x 2 − 9 x + 10 x = −3 ⇒ y = ( −3) 3 + 3( −3) 2 − 9( −3) + 10 = 37 x =1 y = 1 + 3 − 9 + 10 = 5 ⇒ To distinguish between max and min we use the 2nd derivative, d2y 2 = 6x + 6 dx d2y At x = −3 , 2 = 6( −3) + 6 = −12 < 0 ⇒ max at (−3, 37 ) dx At x =1 , d2y dx 2 = 6 + 6 = 12 > 0 ⇒ min at (1, 5)
  • 25. SUMMARY  To find stationary points, solve the equation dy =0 dx  Determine the nature of the stationary points • either by finding the gradients on the left and right of the stationary points 0 − + − ⇒ maximum ⇒ minimum + 0 • or by finding the value of the 2nd derivative at the stationary points d2y dx 2 < 0 ⇒ max d2y dx 2 > 0 ⇒ min