SlideShare uma empresa Scribd logo
1 de 23
Conics
DEFINITION Conic sections are plane curves that can be formed by cutting a double right circular cone with a plane at various angles.
AXIS DOUBLE RIGHT CIRCULAR CONE A circle is formed when the plane intersects one cone and is perpendicular to the axis
	An ellipse is formed when the plane intersects one cone and is NOT perpendicular to the axis.
	A parabola is formed when the plane intersects one cone and is parallel to the edge of the cone.
	A hyperbola is formed when the plane intersects both cones.
DEGENERATE CONIC
	In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2.  	It can be defined as the locus of points whose distances are in a fixed ratio to some point, called a focus, and some line, called a directrix.
GENERAL EQUATION OF CONICS 𝑨𝒙𝟐+𝑩𝒙𝒚+𝑪𝒚𝟐+𝑫𝒙+𝑬𝒚+𝑭=𝟎   DISCRIMINANT Ellipse Parabola Hyperbola 𝑩𝟐−𝟒𝑨𝑪<𝟎   𝑩𝟐−𝟒𝑨𝑪=𝟎   𝑩𝟐−𝟒𝑨𝑪>𝟎  
Parabola: 	A = 0    or 	C = 0 Circle: 		A = C Ellipse:		A = B, but both have the 					same sign	 Hyperbola:	A and C have Different  					signs
The Parabola The parabolais a set of points which are equidistant from a fixed point (the focus) and the fixed line (the directrix).
PROPERTIES The line through the focus perpendicular to the directrix is called the axis of symmetry or simply the axis of the curve. The point where the axis intersects the curve is the vertex of the parabola. The vertex (denoted by V) is a point midway between the focus and directrix.
[object Object]
The line through F perpendicular to the axis is called the latus rectum whose length is |4a|. The endpoints are 𝑳𝟏and𝑳𝟐. This determines how the wide the parabola opens.
The line parallel to the latus rectum is called the directrix. 
𝑳𝟏   𝑷(𝒙,𝒚)   Directrix Latus Rectum abr />|a| Vertex Focus Axis of Symmetry 𝑳𝟐  
TYPES OF PARABOLA
𝑽(𝟎,𝟎)   𝑳𝟏(𝒂,𝟐𝒂)   𝒂𝒙𝒊𝒔: 𝒙   𝒐𝒑𝒆𝒏𝒊𝒏𝒈: 𝒕𝒐 𝒕𝒉𝒆 𝒓𝒊𝒈𝒉𝒕   𝑭(𝒂,𝟎)   𝑳𝟐(𝒂,−𝟐𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒚𝟐=𝟒𝒂𝒙   𝑫:𝒙=−𝒂   TYPE 1
𝑽(𝟎,𝟎)   𝑳𝟏(−𝒂,𝟐𝒂)   𝒂𝒙𝒊𝒔: 𝒙   𝒐𝒑𝒆𝒏𝒊𝒏𝒈: 𝒕𝒐 𝒕𝒉𝒆 𝒍𝒆𝒇𝒕   𝑭(−𝒂,𝟎)   𝑳𝟐(−𝒂,−𝟐𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒚𝟐=−𝟒𝒂𝒙   𝑫:𝒙=𝒂   TYPE 2
𝑽(𝟎,𝟎)   𝑳𝟏(𝟐𝒂,𝒂)   𝒂𝒙𝒊𝒔: 𝒚   𝒐𝒑𝒆𝒏𝒊𝒏𝒈:  𝒖𝒑𝒘𝒂𝒓𝒅   𝑭(𝟎,𝒂)   𝑳𝟐(−𝟐𝒂,𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒙𝟐=𝟒𝒂𝒚   𝑫:𝒚=−𝒂   TYPE 3
𝑽(𝟎,𝟎)   𝑳𝟏(−𝟐𝒂,−𝒂)   𝒂𝒙𝒊𝒔: 𝒚   𝒐𝒑𝒆𝒏𝒊𝒏𝒈:𝒅𝒐𝒘𝒏𝒘𝒂𝒓𝒅   𝑭(𝟎,−𝒂)   𝑳𝟐(𝟐𝒂,−𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒙𝟐=−𝟒𝒂𝒚   𝑫:𝒚=𝒂   TYPE 4
Sample Problem Locate the coordinates of the vertex (V), focus (F), endpoints of the latus rectum (𝑳𝟏𝑳𝟐), the equation of the directrix, and sketch the graph of 𝒙𝟐=−𝟖𝒚.  
solution 1. 𝒙𝟐=−𝟖𝒚 takes the form 𝒙𝟐=−𝟒𝒂𝒚 2. the parabola opens downward 3. Compute the value of 𝒂 4. so, −𝟒𝒂=−𝟖, or 𝒂=𝟐 5. the required coordinates are   𝑽(𝟎,𝟎)   𝑫:𝒚=𝒂   𝑭𝟎,−𝒂=𝑭(𝟎,−𝟐)   𝑫:𝒚=𝟐   𝑳𝟏−𝟐𝒂,−𝒂=𝑳𝟏(−𝟒,−𝟐)   𝑳𝟐𝟐𝒂,−𝒂=𝑳𝟐(𝟒, −𝟐)  

Mais conteúdo relacionado

Mais procurados

Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at InfinityMatthew Leingang
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsMatthew Leingang
 
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Matthew Leingang
 
Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functionsJessica Garcia
 
Calculus: Real World Application of Limits
Calculus: Real World Application of LimitsCalculus: Real World Application of Limits
Calculus: Real World Application of LimitsNehaHaroon1
 
Limits of some transcendental functions
Limits of some transcendental functionsLimits of some transcendental functions
Limits of some transcendental functionsJesusDel2
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsMatthew Leingang
 
Lesson Plan on situational problems involving parabola inquiry-based method
Lesson Plan on situational problems involving parabola   inquiry-based methodLesson Plan on situational problems involving parabola   inquiry-based method
Lesson Plan on situational problems involving parabola inquiry-based methodElton John Embodo
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabolaJean Leano
 
Lesson 11 translation of axes
Lesson 11    translation of axesLesson 11    translation of axes
Lesson 11 translation of axesJean Leano
 
Geometric sequences and geometric means
Geometric sequences and geometric meansGeometric sequences and geometric means
Geometric sequences and geometric meansDenmar Marasigan
 
Arithmetic sequences and arithmetic means
Arithmetic sequences and arithmetic meansArithmetic sequences and arithmetic means
Arithmetic sequences and arithmetic meansDenmar Marasigan
 
Pre-Calculus 11 - Lesson no. 1: Conic Sections
Pre-Calculus 11 - Lesson no. 1: Conic SectionsPre-Calculus 11 - Lesson no. 1: Conic Sections
Pre-Calculus 11 - Lesson no. 1: Conic SectionsJuan Miguel Palero
 
PCAL-11-Q1-0101-PF-FINAL.pptx
PCAL-11-Q1-0101-PF-FINAL.pptxPCAL-11-Q1-0101-PF-FINAL.pptx
PCAL-11-Q1-0101-PF-FINAL.pptxSeanColadilla
 
Lesson 10 conic sections - hyperbola
Lesson 10    conic sections - hyperbolaLesson 10    conic sections - hyperbola
Lesson 10 conic sections - hyperbolaJean Leano
 

Mais procurados (20)

Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
 
Limit of functions
Limit of functionsLimit of functions
Limit of functions
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit Laws
 
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
 
Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functions
 
Calculus: Real World Application of Limits
Calculus: Real World Application of LimitsCalculus: Real World Application of Limits
Calculus: Real World Application of Limits
 
Remainder theorem
Remainder theoremRemainder theorem
Remainder theorem
 
Limits of some transcendental functions
Limits of some transcendental functionsLimits of some transcendental functions
Limits of some transcendental functions
 
Circular functions
Circular functionsCircular functions
Circular functions
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
Lesson Plan on situational problems involving parabola inquiry-based method
Lesson Plan on situational problems involving parabola   inquiry-based methodLesson Plan on situational problems involving parabola   inquiry-based method
Lesson Plan on situational problems involving parabola inquiry-based method
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabola
 
Lesson 11 translation of axes
Lesson 11    translation of axesLesson 11    translation of axes
Lesson 11 translation of axes
 
Geometric sequences and geometric means
Geometric sequences and geometric meansGeometric sequences and geometric means
Geometric sequences and geometric means
 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
 
Arithmetic sequences and arithmetic means
Arithmetic sequences and arithmetic meansArithmetic sequences and arithmetic means
Arithmetic sequences and arithmetic means
 
Pre-Calculus 11 - Lesson no. 1: Conic Sections
Pre-Calculus 11 - Lesson no. 1: Conic SectionsPre-Calculus 11 - Lesson no. 1: Conic Sections
Pre-Calculus 11 - Lesson no. 1: Conic Sections
 
PCAL-11-Q1-0101-PF-FINAL.pptx
PCAL-11-Q1-0101-PF-FINAL.pptxPCAL-11-Q1-0101-PF-FINAL.pptx
PCAL-11-Q1-0101-PF-FINAL.pptx
 
Conic section ppt
Conic section pptConic section ppt
Conic section ppt
 
Lesson 10 conic sections - hyperbola
Lesson 10    conic sections - hyperbolaLesson 10    conic sections - hyperbola
Lesson 10 conic sections - hyperbola
 

Semelhante a Conic Sections

2. PARABOLA (PRECAL).pptx
2. PARABOLA (PRECAL).pptx2. PARABOLA (PRECAL).pptx
2. PARABOLA (PRECAL).pptxJeromePascual12
 
math conic sections.pptx
math conic sections.pptxmath conic sections.pptx
math conic sections.pptxVarshaSanjeev
 
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdfINTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdfLyndrianShalomBaclay
 
geometricalconstruction-101112193228-phpapp01.pptx
geometricalconstruction-101112193228-phpapp01.pptxgeometricalconstruction-101112193228-phpapp01.pptx
geometricalconstruction-101112193228-phpapp01.pptxPraveen Kumar
 
ANALYTIC-GEOMETRY(4).pptx
ANALYTIC-GEOMETRY(4).pptxANALYTIC-GEOMETRY(4).pptx
ANALYTIC-GEOMETRY(4).pptxBercasioKelvin
 
Chapter 7.2 parabola
Chapter 7.2 parabolaChapter 7.2 parabola
Chapter 7.2 parabolasoma1996
 
classification of quadrilaterals grade 9.pptx
classification of quadrilaterals grade 9.pptxclassification of quadrilaterals grade 9.pptx
classification of quadrilaterals grade 9.pptxMeryAnnMAlday
 
Geometricalconstruction
GeometricalconstructionGeometricalconstruction
GeometricalconstructionSaidon Aziz
 
Mehul mathematics conics
Mehul mathematics conicsMehul mathematics conics
Mehul mathematics conicsmehuldas
 
Lines and angles For Class 7, 8, 9
Lines and angles For Class 7, 8, 9 Lines and angles For Class 7, 8, 9
Lines and angles For Class 7, 8, 9 75193
 
Geometry 201 unit 3.1
Geometry 201 unit 3.1Geometry 201 unit 3.1
Geometry 201 unit 3.1Mark Ryder
 

Semelhante a Conic Sections (20)

Module 2 Parabola.pptx
Module 2 Parabola.pptxModule 2 Parabola.pptx
Module 2 Parabola.pptx
 
2. PARABOLA (PRECAL).pptx
2. PARABOLA (PRECAL).pptx2. PARABOLA (PRECAL).pptx
2. PARABOLA (PRECAL).pptx
 
Conic Section
Conic SectionConic Section
Conic Section
 
Quadrilaterals
QuadrilateralsQuadrilaterals
Quadrilaterals
 
math conic sections.pptx
math conic sections.pptxmath conic sections.pptx
math conic sections.pptx
 
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdfINTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
 
geometricalconstruction-101112193228-phpapp01.pptx
geometricalconstruction-101112193228-phpapp01.pptxgeometricalconstruction-101112193228-phpapp01.pptx
geometricalconstruction-101112193228-phpapp01.pptx
 
ANALYTIC-GEOMETRY(4).pptx
ANALYTIC-GEOMETRY(4).pptxANALYTIC-GEOMETRY(4).pptx
ANALYTIC-GEOMETRY(4).pptx
 
Conic section
Conic sectionConic section
Conic section
 
Chapter 7.2 parabola
Chapter 7.2 parabolaChapter 7.2 parabola
Chapter 7.2 parabola
 
Modern Geometry Topics
Modern Geometry TopicsModern Geometry Topics
Modern Geometry Topics
 
classification of quadrilaterals grade 9.pptx
classification of quadrilaterals grade 9.pptxclassification of quadrilaterals grade 9.pptx
classification of quadrilaterals grade 9.pptx
 
Geometricalconstruction
GeometricalconstructionGeometricalconstruction
Geometricalconstruction
 
ellipse
ellipseellipse
ellipse
 
Paso 4 grupo29
Paso 4 grupo29Paso 4 grupo29
Paso 4 grupo29
 
Plano cartesiano
Plano cartesianoPlano cartesiano
Plano cartesiano
 
Mehul mathematics conics
Mehul mathematics conicsMehul mathematics conics
Mehul mathematics conics
 
CHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptxCHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptx
 
Lines and angles For Class 7, 8, 9
Lines and angles For Class 7, 8, 9 Lines and angles For Class 7, 8, 9
Lines and angles For Class 7, 8, 9
 
Geometry 201 unit 3.1
Geometry 201 unit 3.1Geometry 201 unit 3.1
Geometry 201 unit 3.1
 

Conic Sections

  • 2. DEFINITION Conic sections are plane curves that can be formed by cutting a double right circular cone with a plane at various angles.
  • 3. AXIS DOUBLE RIGHT CIRCULAR CONE A circle is formed when the plane intersects one cone and is perpendicular to the axis
  • 4. An ellipse is formed when the plane intersects one cone and is NOT perpendicular to the axis.
  • 5. A parabola is formed when the plane intersects one cone and is parallel to the edge of the cone.
  • 6. A hyperbola is formed when the plane intersects both cones.
  • 8. In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2. It can be defined as the locus of points whose distances are in a fixed ratio to some point, called a focus, and some line, called a directrix.
  • 9. GENERAL EQUATION OF CONICS 𝑨𝒙𝟐+𝑩𝒙𝒚+𝑪𝒚𝟐+𝑫𝒙+𝑬𝒚+𝑭=𝟎   DISCRIMINANT Ellipse Parabola Hyperbola 𝑩𝟐−𝟒𝑨𝑪<𝟎   𝑩𝟐−𝟒𝑨𝑪=𝟎   𝑩𝟐−𝟒𝑨𝑪>𝟎  
  • 10. Parabola: A = 0 or C = 0 Circle: A = C Ellipse: A = B, but both have the same sign Hyperbola: A and C have Different signs
  • 11. The Parabola The parabolais a set of points which are equidistant from a fixed point (the focus) and the fixed line (the directrix).
  • 12. PROPERTIES The line through the focus perpendicular to the directrix is called the axis of symmetry or simply the axis of the curve. The point where the axis intersects the curve is the vertex of the parabola. The vertex (denoted by V) is a point midway between the focus and directrix.
  • 13.
  • 14. The line through F perpendicular to the axis is called the latus rectum whose length is |4a|. The endpoints are 𝑳𝟏and𝑳𝟐. This determines how the wide the parabola opens.
  • 15. The line parallel to the latus rectum is called the directrix. 
  • 16. 𝑳𝟏   𝑷(𝒙,𝒚)   Directrix Latus Rectum abr />|a| Vertex Focus Axis of Symmetry 𝑳𝟐  
  • 18. 𝑽(𝟎,𝟎)   𝑳𝟏(𝒂,𝟐𝒂)   𝒂𝒙𝒊𝒔: 𝒙   𝒐𝒑𝒆𝒏𝒊𝒏𝒈: 𝒕𝒐 𝒕𝒉𝒆 𝒓𝒊𝒈𝒉𝒕   𝑭(𝒂,𝟎)   𝑳𝟐(𝒂,−𝟐𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒚𝟐=𝟒𝒂𝒙   𝑫:𝒙=−𝒂   TYPE 1
  • 19. 𝑽(𝟎,𝟎)   𝑳𝟏(−𝒂,𝟐𝒂)   𝒂𝒙𝒊𝒔: 𝒙   𝒐𝒑𝒆𝒏𝒊𝒏𝒈: 𝒕𝒐 𝒕𝒉𝒆 𝒍𝒆𝒇𝒕   𝑭(−𝒂,𝟎)   𝑳𝟐(−𝒂,−𝟐𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒚𝟐=−𝟒𝒂𝒙   𝑫:𝒙=𝒂   TYPE 2
  • 20. 𝑽(𝟎,𝟎)   𝑳𝟏(𝟐𝒂,𝒂)   𝒂𝒙𝒊𝒔: 𝒚   𝒐𝒑𝒆𝒏𝒊𝒏𝒈:  𝒖𝒑𝒘𝒂𝒓𝒅   𝑭(𝟎,𝒂)   𝑳𝟐(−𝟐𝒂,𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒙𝟐=𝟒𝒂𝒚   𝑫:𝒚=−𝒂   TYPE 3
  • 21. 𝑽(𝟎,𝟎)   𝑳𝟏(−𝟐𝒂,−𝒂)   𝒂𝒙𝒊𝒔: 𝒚   𝒐𝒑𝒆𝒏𝒊𝒏𝒈:𝒅𝒐𝒘𝒏𝒘𝒂𝒓𝒅   𝑭(𝟎,−𝒂)   𝑳𝟐(𝟐𝒂,−𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒙𝟐=−𝟒𝒂𝒚   𝑫:𝒚=𝒂   TYPE 4
  • 22. Sample Problem Locate the coordinates of the vertex (V), focus (F), endpoints of the latus rectum (𝑳𝟏𝑳𝟐), the equation of the directrix, and sketch the graph of 𝒙𝟐=−𝟖𝒚.  
  • 23. solution 1. 𝒙𝟐=−𝟖𝒚 takes the form 𝒙𝟐=−𝟒𝒂𝒚 2. the parabola opens downward 3. Compute the value of 𝒂 4. so, −𝟒𝒂=−𝟖, or 𝒂=𝟐 5. the required coordinates are   𝑽(𝟎,𝟎)   𝑫:𝒚=𝒂   𝑭𝟎,−𝒂=𝑭(𝟎,−𝟐)   𝑫:𝒚=𝟐   𝑳𝟏−𝟐𝒂,−𝒂=𝑳𝟏(−𝟒,−𝟐)   𝑳𝟐𝟐𝒂,−𝒂=𝑳𝟐(𝟒, −𝟐)  
  • 24. 𝒚   | | | 1 2 3 𝒚=𝟐   𝑽(𝟎,𝟎)   𝒙   | | | | | -5 -4 -3 -2 -1 | | | | | 1 2 3 4 5 | | | -3 -2 -1 𝑳𝟏(−𝟒,−𝟐)   𝑳𝟐(𝟒,−𝟐)   𝑭(𝟎,−𝟐)  
  • 25. Sketch the graphs and determine the coordinates of V, F, ends of LR, and equation of the directrix. 1. 𝒙𝟐+𝟔𝐲=𝟎 2. 𝒚𝟐=−𝟐𝟒𝒙 3. 𝟐𝒚𝟐−𝟑𝒙=𝟎