Probabilidades

8.762 visualizações

Publicada em

1 comentário
1 gostou
Estatísticas
Notas
Sem downloads
Visualizações
Visualizações totais
8.762
No SlideShare
0
A partir de incorporações
0
Número de incorporações
350
Ações
Compartilhamentos
0
Downloads
124
Comentários
1
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Probabilidades

  1. 1. NOÇÕES DE PROBABILIDADE 1. Espaço Amostral e Evento Espaço Amostral (E) é o conjunto de todos os resultados possíveis de um dado experimento. Exemplo: No lançamento de um dado, o espaço amostral é: E = {1, 2, 3, 4, 5, 6} Evento (A) é qualquer subconjunto de um espaço amostral. Exemplo: No lançamento de um dado, o conjunto A = {1, 3, 5} (ocorrência de um número ímpar) é um evento.
  2. 2. 2. Definição Probabilidade é o quociente entre o número de elementos do evento desejado [n(A)] e o número de elementos do espaço amostral [n(E)], desde que as amostras desse espaço amostral possam ocorrer de maneira eqüiprováveis (mesmas chances de ocorrer). n(A) é o número de elementos do evento desejado n(E) é o número de elementos do espaço amostral a) 0,24 b) 0,40 c) 0,32 d) 0,25 e) 0,80 Exercício 1: ( ACAFE ) Num sorteio com número de 1 a 25, a probabilidade de ser sorteado um número múltiplo de 3 é: ESPAÇO AMOSTRAL E = {1, 2, 3, 4, ….., 23, 24, 25} n(E) = 25 EVENTO DESEJADO A = {3, 6, 9, 12, 15, 18, 21, 24} n(A) = 8 = 8 25 = 0,32
  3. 3. Exercício 2: Joga-se um dado “honesto” de seis faces e lê-se o número da face voltada para cima. Calcular a probabilidade de se obter: ESPAÇO AMOSTRAL E = {1, 2, 3, 4, 5,6} a) EVENTO DESEJADO A = {4 } n(A) = 1 n(E) = 6 a) o número 4 b) um número ímpar c) um número maior que 2 d) um número menor que 7 e) um número maior que 6 n(A) = 3 b) EVENTO DESEJADO A = {1, 3, 5} P(A) = 1 6 = 0,16667.. P(A) = 3 6 = 0,5..
  4. 4. ESPAÇO AMOSTRAL E = {1, 2, 3, 4, 5,6} c) EVENTO DESEJADO A = {3, 4, 5, 6 } n(A) = 4 n(E) = 6 a) o número 4 b) um número ímpar c) um número maior que 2 d) um número menor que 7 e) um número maior que 6 n(A) = 6 d) EVENTO DESEJADO A = {1, 2, 3, 4, 5, 6} EVENTO CERTO e) EVENTO DESEJADO A = { } n(A) = 0 EVENTO Impossível P(A) = 4 6 = 0,6666…. P(A) = 6 6 = 1 P(A) = 0 6 = 0
  5. 5. Exercício 3: ( METODISTA ) Em um único sorteio envolvendo os números naturais de 1 a 200, a probabilidade de neste sorteio sair um número que seja múltiplo de sete é: a) 14% b) 15% c) 18% d) 19% e) 20% ESPAÇO AMOSTRAL E = {1, 2, 3, 4, ….., 198, 199, 200} EVENTO DESEJADO A = {7, 14, 21,……………………196 } n(A) = ? n(E) = 200 n(A) = 28 a n = a 1 + (n – 1).r P.A. 196 = 7 + (n – 1).7 196 = 7 + 7n – 7 28 = n P(A) = 28 200 = 0,14 x 100 14%
  6. 6. Exercício 4: ( ACAFE ) Uma urna contém 6 bolas brancas e 24 pretas.A probabilidade de sortearmos uma bola branca é de: a) 40% b) 25% c) 80% d) 75% e) 20% ESPAÇO AMOSTRAL E = { B, B, B, B , B, B, P, P, P……..,P} EVENTO DESEJADO A = { B, B, B, B, B, B } n(A) = 6 n(E) = 30 P(A) = 6 30 = 0,2 x 100 20%
  7. 7. Exercício 5: A probabilidade de uma bola branca aparecer ao se retirar uma única bola de uma urna contendo 4 bolas brancas, 3 vermelhas e 5 azuis, é: a) 40% b) 25% c) 80% d) 33% e) 20% ESPAÇO AMOSTRAL E = { B, B, B, B , V, V, V, A, A, A, A, A } EVENTO DESEJADO A = { B, B, B, B } n(E) = 4 n(E) = 12 P(A) = 4 12 = 0,333… x 100 33%
  8. 8. Exercício 6: Joga-se dois dados. Qual a probabilidade de obtermos, nas faces voltadas para cima, a soma 7.: ESPAÇO AMOSTRAL E = {(1,1), (1,2), (1, 3)….(3, 5), (3,6) (4, 1),…….(6,2), ….(6,6)} EVENTO DESEJADO A = {(1,6),(2, 5),(3, 4),(4, 3),(5, 2)(6, 1)} n(A) = 6 n(E) = 36 P(A) = 6 36 = 0,16… x 100 16%
  9. 9. Exercício 7: Uma cidade tem 50000 habitantes possui 3 jornais, A, B e C. Sabe-se que: 15 000 lêem o jornal A; 10000 lêem o jornal B; 8000 lêem o jornal C; 6000 lêem os jornais A e B 4000 lêem os jornais A e C 3000 lêem os jornais B e C 1000 lêem os três jornais. Uma pessoa é selecionada ao acaso. Qual a probabilidade de que: a) ela leia pelo menos um jornal b) leia só um jornal JORNAL A JORNAL B JORNAL C 1000 2000 3000 5000 2000 2000 6000 29000 50 000 a) 21 50 = 0,42 b) 10 50 = 0,20
  10. 10. Considerando-se um octógono regular. Tomando-se ao acaso uma das diagonais do polígono, a probabilidade de que ela passe pelo centro é: Exercício 8: d = n(n – 3) 2 d = 8(8 – 3) 2 d = 20 n(E) = 20 Se n (número de lados) é par então: n 2 diagonais passam pelo centro do polígono Logo no octógono regular 4 diagonais passam pelo centro. n(A) = 4 P(A)= 4 20 = 20%

×