Ângulo

1.787 visualizações

Publicada em

Publicada em: Educação
0 comentários
3 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
1.787
No SlideShare
0
A partir de incorporações
0
Número de incorporações
5
Ações
Compartilhamentos
0
Downloads
62
Comentários
0
Gostaram
3
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Ângulo

  1. 1. 11/10/13 β αO A B ÂNGULO – é a abertura formada por dois raios divergentes que têm um extremo comum que se denomina vértice. ELEMENTOS DE UM ÂNGULO:
  2. 2. Ângulos Colégio Estadual Dinah Gonçalves Professor de Matemática 11/10/13
  3. 3. 11/10/13 α 0º < α < 180º0º < α < 180º 0º < β < 90º0º < β < 90ºβ CLASSIFICAÇÃO SEGUNDO A SUA MEDIDA a) ÂNGULO CONVEXO a.1) ÂNGULO AGUDO
  4. 4. 11/10/13 θ = 90ºθ = 90º α 90º < α < 180º90º < α < 180º θ a.2) ÂNGULO RETO a.3) ÂNGULO OBTUSO
  5. 5. 11/10/13 α + β = 90ºα + β = 90º θ + δ = 180ºθ + δ = 180º δθ α β CLASSIFICAÇÃO SEGUNDO A SOMA a) ÂNGULOS COMPLEMENTARES b) ÂNGULOS SUPLEMENTARES
  6. 6. 11/10/13 α β δ ε φ α α CLASSIFICAÇÃO SEGUNDO A SUA POSIÇÃO a) ÂNGULOS ADJACENTES b) ÂNGULOS CONSECUTIVOS ÂNGULOS OPOSTOS PELO VÉRTICE são congruentes Pode formar mais ângulosUn lado comum
  7. 7. 11/10/13 01. Ângulos alternos internos: m ∠3 = m ∠5; m ∠4 = m ∠6 02. Ângulos alternos externos: m ∠1 = m ∠7; m ∠2 = m ∠8 03. Ângulos conjugados internos: m ∠3+m ∠6=m ∠4+m ∠5=180° 04. Ângulos conjugados externos: m ∠1+m ∠8=m ∠2+m ∠7=180° 05. Ângulos correspondentes: m ∠1 = m ∠5; m ∠4 = m ∠8 m ∠2 = m ∠6; m ∠3 = m ∠7 ÂNGULOS ENTRE DUAS RETAS PARALELAS E UMA RETA SECANTE 1 2 34 5 6 78
  8. 8. 11/10/13 α + β + θ = x + yα + β + θ = x + y α β θ x y 01- Ângulos que se formam por uma linha poligonal entre duas retas paralelas. PROPRIEDADES DOS ÂNGULOS
  9. 9. 11/10/13 α β θ δ ε α + β + θ + δ + ε = 180°α + β + θ + δ + ε = 180° 02- ÂNGULOS ENTRE DUAS RETAS PARALELAS
  10. 10. 11/10/13 α + β = 180°α + β = 180° α β 03- ÂNGULOS DE LADOS PERPENDICULARES
  11. 11. 11/10/13
  12. 12.  Professor Antonio Carlos carneiro Barroso   Colégio estadual Dinah Gonçalves  Graduado em Ciências naturais pela UFBA  Pós graduado em Metodologia e Didática de ensino Superior  Lecionando Matemática e Biologia  http://ensinodematemtica.blogspot.com  Salvador-Ba 11/10/13
  13. 13. 11/10/13 O complemento da diferença entre o suplemento e o complemento de um ângulo “X” é igual ao dobro do complemento do ângulo “X”. Calcule a medida do ângulo “X”. 90 - { ( ) - ( ) } = ( )180° - X 90° - X 90° - X2 90° - { 180° - X - 90° + X } = 180° - 2X 90° - 90° = 180° - 2X 2X = 180° X = 90°X = 90° RESOLUÇÃO Problema Nº 01 A estrutura segundo o enunciado: Desenvolvendo se obtem: Logo se reduz a:
  14. 14. 11/10/13 A soma das medidas dos ângulos é 80° e o complemento do primeiro ângulo é o dobro da medida do segundo ângulo. Calcule a diferença das medidas desses ângulos. Sejam os ângulos: α e β α + β = 80°Dado: β = 80° - α ( 1 ) ( 90° - α ) = 2β ( 2 ) Substituindo (1) em (2): ( 90° - α ) = 2 ( 80° - α ) 90° - α = 160° -2α β = 10° α = 70° α - β = 70°-10° = 60° Problema Nº 02 RESOLUÇÃO Dado: Diferença das medidas Resolvendo
  15. 15. 11/10/13 A soma de seus complementos dos ângulos é 130° e a diferença de seus suplementos dos mesmos ângulos é 10°. Calcule a medida destes ângulos. Sejam os ângulos: α e β ( 90° - α ) ( 90° - β ) = 130°+ β + α = 50° ( 1 ) ( 180° - α ) ( 180° - β ) = 10°- β - α = 10° ( 2 ) Resolvendo: (1) e (2) β + α = 50° β - α = 10° (+) 2β = 60° β = 30° α = 20° Problema Nº 03 RESOLUÇÃO Do enunciado: Do enunciado:
  16. 16. 11/10/13 Se têm ângulos adjacentes AOB e BOC (AOB<BOC), se traça a bissetriz OM dol ângulo AOC; se os ângulos BOC e BOM medem 60° e 20° respectivamente. Calcule a medida do ângulo AOB. A B O C M α α 60° 20°X Da figura: α = 60° - 20° Logo: X = 40° - 20° α = 40° X = 20°X = 20° Problema Nº 04 RESOLUÇÃO
  17. 17. 11/10/13 A diferença das medidas dos ângulos adjacentes AOB e BOC é 30°. Calcule a medida do ângulo formado pela bissetriz do ângulo AOC com o lado OB. A O B C θ θ X (θ- X) ( θ + X) (θ - X)= 30º 2X=30º X = 15°X = 15° Problema Nº 05 RESOLUÇÃO M Construção do gráfico segundo o enunciado Do enunciado: AOB - OBC = 30° - Logo se substitui pelo que se observa no gráfico
  18. 18. 11/10/13 Se têm os ângulos consecutivos AOB, BOC e COD tal que a m∠AOC = m∠BOD = 90°. Calcule a medida do ângulo formado pelas bissetrizes dos ângulos AOB e COD. A C B D M N αα β β θ X Da figura: 2α + θ = 90° θ + 2β = 90° ( + ) 2α + 2θ + 2β = 180° α + θ + β = 90° X = α + θ + βX = α + θ + β X = 90°X = 90° Problema Nº 06 RESOLUÇÃO Construção do gráfico segundo o enunciado
  19. 19. 11/10/13 Se m // n . Calcule a medida do ângulo “X” 80° 30° α α θ θ X m n Problema Nº 07
  20. 20. 11/10/13 2α + 2θ = 80° + 30° Pela propriedade Propriedade do quadrilátero côncavo α + θ = 55° (1) 80° = α + θ + X (2) Substituindo (1) em (2) 80° = 55° + X X = 25°X = 25° 80° 30° α α θ θ X m n RESOLUÇÃO
  21. 21. 11/10/13 Se m // n . Calcular a medida do ângulo “X” 5α 4α 65° X m n Problema Nº 08
  22. 22. 11/10/13 5α 4α 65° X m n Pela propiedad: 4α + 5α = 90° α = 10°α = 10° Ângulo exterior do triângulo 40° 65° X = 40° + 65° X = 105°X = 105° RESOLUÇÃO
  23. 23. 11/10/13 Se m // n . Calcule a medida do ângulo ”X” α 2α x m n θ 2θ Problema Nº 09
  24. 24. 11/10/13 3α + 3θ = 180° α + θ = 60°α + θ = 60° Ângulos entre línhas poligonais X = α + θ X = 60°X = 60° RESOLUÇÃO α 2α x m n θ 2θ x Ângulos conjugados internos
  25. 25. 11/10/13
  26. 26. 11/10/13 PROBLEMA 01- Se L1 // L2 . Calcule a m ∠ x A) 10° B) 20° C) 30° D) 40° E) 50° x α α β β 4x 3x L1 L2
  27. 27. 11/10/13 m n 30° X PROBLEMA 02- Se m // n. Calcule a m ∠ x A) 18° B) 20° C) 30° D) 36° E) 48°
  28. 28. 11/10/13 PROBLEMA 03- Se m // n. Calcule a m ∠ α A) 15° B) 22° C) 27° D) 38° E) 45° 3α 3α 3α α m n
  29. 29. 11/10/13 PROBLEMA 04- Se m // n. Calcule o valor de “x” A) 10° B) 15° C) 20° D) 25° E) 30° 40° 95° α α 2x m n
  30. 30. 11/10/13 PROBLEMA 05- Calcule m ∠ x A) 99° B) 100° C) 105° D) 110° E) 120° 3α 6α x
  31. 31. 11/10/13 α 4θ 4α θ X m n PROBLEMA 06- Se m // n. Calcule m ∠ x A) 22° B) 28° C) 30° D) 36° E) 60°
  32. 32. 11/10/13 A) 24° B) 25° C) 32° D) 35° E) 45° PROBLEMA 07- Se. Calcule m ∠ x 88° 24° x α α θ θ m n
  33. 33. 11/10/13 PROBLEMA 08- Se m // n. Calcule m ∠ x 20° 30° X m n A) 50° B) 60° C) 70° D) 80° E) 30°
  34. 34. 11/10/13 PROBLEMA 09- Se m//n e θ - α = 80°. Calcule m∠x A) 60° B) 65° C) 70° D) 75° E) 80° θ θ x α α m n
  35. 35. 11/10/13 PROBLEMA 10- Se m // n. Calcule m ∠ x A) 20° B) 30° C) 40° D) 50° E) 60° x x x m n
  36. 36. 11/10/13 PROBLEMA 11- Se m // n. Calcule m ∠ α A) 46° B) 48° C) 50° D) 55° E) 60° 180°-2α α 2α m n
  37. 37. 11/10/13 PROBLEMA 12- Se m // n. Calcule m ∠ x A) 30° B) 36° C) 40° D) 45° E) 50° α α θ θ x 80° m n
  38. 38. 11/10/13 PROBLEMA 13- Se m // n. Calcule m ∠ x A) 30° B) 40° C) 50° D) 60° E) 70° 80° α α β β m n x
  39. 39. 11/10/13 REPOSTAS DOS PROBLEMAS PROPOSTOS 1. 20º 8. 50º 2. 30º 9. 80º 3. 45º 10. 30º 4. 10º 11. 60º 5. 120º 12. 40º 6. 36º 13. 50º 7. 32º

×