SlideShare uma empresa Scribd logo
1 de 204
Test Method for Density of Hydraulic Cement)
1.

(

(Mixed

Cement)

(Kerosene)

2.

1
2

3.
3.1

(Le Chatelier Flask)
1.1.1

3.2
3.3
3.4

(Thermometer)
(Water Bate)

3.5
3.6

0.1
(Kerosene)

(Naphtha)

0.731

4.
4.1

Type1

4.2

Type 2

4.3
3

64

1

2

5.
5.1
0

20

-

1

-

0.02

30

3

5.2

5.3

30

3
4

0.2
6.
6.1
P

=

P

=

W

=

V

=

W
V

/

3

6.2

2
0.03

/

6.3

7.

3

.
5

ASTM C188-89 “ Standard Test Method for
Density of Hydraulic Cement”
8.
8.1
8.1.1
8.1.2
8.2
8.2.1

(

)

8.2.2

(

)

8.2.3

(Le

Flask)

(

-

Chatelier
)
6

1.1.1
(ASTM C188 – 95)
7
8

9.

………………………………………
…………………………………......
…………………………….
………………………………….....
…………………………….
……………………………………

1
(

.

.)

(
+

)

(
(

.
.

.)
.)

2
9

(

/

.

.)
(-)

(Test Method for Fineness of Portland Cement by Air
Permeability Apparatus )
1.

(Hydration)
10

3

(

Blaine

Air

)

Permeability

2.

3.
Blaine Air Permeability
3.1

3.2

(Permeability

(Perforated

1.2
Cell)

Disk)
11

3.3

(Plunger)

3.4

(Filter

Paper)
Type1

General Specilication for Paper Filtering (UU-

B

P-236)

3.5

(Manometer
U

tube)

1.2.1

3.6
(Liquid

Manometer)
(DibutylPhthalate)
(Dibutyl 1

1.2
benzene-dicarboxylate)

(Light Grade of Mineral oil)
3.7

(Timer)

0.5
60
1

60 - 300
3.8
3.9

0.001
^ CS Reagent Grade
12

3.10
13

1.2
(ASTM C 204)

(Density of Mercury Viscosity of Air (  ) and



at Given

Temperatures)
Room

Density of

Temperature

Mercury

C

Mg / m 3

Viscosity of
Air





Pa.s

18

13.55

17.98

4.24

20

13.55

18.08

4.25

22

13.54

18.18

4.26

24

13.54

18.28

4.28
14

26

13.53

18.37

4.29

28

13.53

18.47

4.30

30

13.52

18.57

4.31

32

13.52

18.67

4.32

34

13.51

18.76

4.33

4.
4.1

NIST

4.2

114p

Type 1 , 3

5.
5.1

2
Permeability

5.1.1
(Calibration

of

Apparatus)
(Bulk Volume of Compacted Bed of
Powder)

Permeability
15

1.
2
(Plunger)

2.

3.
(WA )
4.

2.80±0.001

5.

1

2

(c)
16

6.
WB

7.

V

(W A  WB )
D

=

………………………… (1)

=

V

:

.

.

WA =

:
WB =

:
D

=

(

1.2.1)

8.
±0.005

.

.
17

5.1.2

Permeability

1.
120

.

.

2
2

2.

W

=

VP(1 -  ) ………………………………………

(2)

=

W

:


=

(
/

V

.

)

=



.

=

(1)
(Porosity)
(
0.500±0.005)

3.

3.15

(Cement Bed)
3.1
1
18

3.2
0.001
1
3.3

(Plunger)

90

4.

Permeability
4.1

4.2

4.3
19

5.

Permeability
5.1

5.2
5.1.1(4)
(Plunger)
(2)
0.530±0.005
5.3
5.1.2 (3)
5.4

5.5

(Plunger)
20

3
5.6

5.7

3

4
5.8
5.8.1
5.8.2
(Plunger)
5.8.3
5.8.4
5.9
5.10

.
21

6.
(Specific
Surface)
S

=

SS

(3)

T
TS

S

=

SS

S

S S (b S ) 3 T

=

S

=

3 TS (b )
S
S S (b S ) 3  T


3
S

S

S

=

 (b ) 
S S  S (bS  S )  S 3 T

 (b ) 3 TS T
S

cm 2 / g
SS

TS  (b  )

3
S

=
=

cm 2 / g

(5)
(6)

S S  S (bS  S ) 3

=

S

(4)



TS

S

T

(7)

T

TS

(8)
22

T

=

TS

=

S

S



=

( Pa.s)

S

=

(
Pa.s )



=

S

=



=
mg/m3

mg/m3

S

b

g/cm3

g/cm3

=

=
23

bs

=

0.9
(3)

1.

(4)

(3)

2.
±30C

(4)
(5)

3.

(6)

(3)
(4)
(7)

4.

(3)

(8)

(4)

b
ASTM C204

7.
ASTM C204 Standard Test Method for Fineness of
Portland Cement by Air Permeability Apparatus
8.
24

8.1
8.1.1

2
2%

2

8.1.2
8.2
8.2.1
8.2.2
8.2.3
Hydration
Heat of Hydration
8.2.4

W
C

(E)

9.
9.1
9.2

9.3
(Plunger)
25

9.4

9.5

10.
10.1

10.2
26

–

ASTM C305
(Practice for Mechanical Mixing of Hydraulic Cement
Paste and Mortars)
1.

(
ASTM
C305

+

)

(

+

+

)
ASTM
27

2.

ASTM C305
3.
3.1

(Mixer)

2
140

±

5

rpm

285
0.8

2.1.1

±

10

–

2.5

rpm
.

4.37
3.2

.

(Scraper)
50

3.3

150
.

75

.

(Balance)

3.4
4.
4.1

1
28

4.2
4.3
5.
5.1
5.2
5.3
30
140 ± 5 rpm
30

15

5.4
±

10

6.
6.1
6.2
6.3

285
rpm

1
29

6.4
±

5

140
rpm

30

6.5
10 rpm

285 ±
30

6.6

6.7

90

15

285

±

10

rpm

60

7.
ASTM C305-82 (Reapproved 1987) “ Standard
Practice for Mechanical Mixing of
Paste and Mortars”
8.
8.1
8.2

Hydraulic Cement
30

8.3

8.4

9.
9.1

9.2
31

2.1.1
(ASTM C 305)
32

(Test for Normal Consistency of Hydraulic Cement)
1.
ASTM
(Normal
Consistency)

2.

3.
3.1
(Mixer)
33

2
140

±

5

rpm

285
0.8

±
–

10

rpm

2.5

.

2.1.1
4.37
3.2

:
±

0.05

%
0.0125

%
1

3.3

ASTM
200

C40

:

250

3.4

(Vicat

Apparatus)

2.2.1
3.4.1

A

3.4.2

3.4.3

B

B

C
34

D
3.4.4

B
E

3.4.5

F

3.4.6

G

3.4.7

H

3.5
3.6
(Scoop)

(Scraper)
35

2.2.1
(ASTM C 187 – 98)
4.
4.1
4.2

5.
5.1
650

5.2
6
15

5.3
Ring

.

Conical
(G)
36

5.4
1

5.5

Ring

BasePlate

H

5.4
5.6

Base

Plate
Ring
Plunger (C)

5.7

Plunger

(C)
Ser-Screw

5.8
(

Indicator
)

30

5.9

(E)

(F)
E
E
37

5.10

Plunger
Plunger

10 ± 1

.

5.11

5.1

5.10
Plunger

5.12
10
.
5.13
0.1%
0.5 %
6.
6.1

ASTM C187 - 98 Standard Test Method for

Normal Consistency of Hydraulic Cement
38

6.2

ASTM C1005 - 91 Standard Specification

for Weights and Weighting Devices Use in the Physical
Testing of Hydraulic Cements
7.
7.1
7.1.1
7.1.2
7.1.3

(%)

7.2
7.2.1

(%)

7.2.2

………………………………
…………………..
…………………………..
………………………………………………………..
39

…………………………………………………….

(C)

(

(W)

)

(

)

W
(%)
C

(

.)
40

(Test for Time of Setting of Hydraulic Cement by Vicat
Needle)
1.

(Setting or
Stiffening)
(Hardening)

2
(Initial
Time)
Time)

Setting
(Final

Setting
41

1.1
:
25

.

30
1.2

2.

:
42

3.
3.1

:

±

0.1 %
3.2

:

200 – 250 ml

ASTM C490
3.3

2.2.1
2.2

4.
4.1
4.2
5.
500
2.1
6.
6.1

( ASTM

C191)
6.2
Ring

Conical
30
1.0
43

.
6.3

30
(

6.4

(6.2)

)
–

(6.3)
6.4

.

15
30

10

25
(

.

3

)
6.5

6.6

(6.2)

–

(6.4)

7.1

“Properties of Concrete” A.M. Neville ELES

7.

and Pitman Publishing 1981
7.2

ASTM C191-82 “Standard Test Method for

Time of Setting of Hydraulic Cement by Vicat Needle”
8.
8.1
8.1.1
44

8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.2.3

………………………
45

…………………………
…………………..
………………………………………………………
…………………………………………………..

(

)

(

.)
46
47

(Resistance to Abrasion of Small Size Course Aggregate
by Los Angeles Machine)
1.
48

(Gradation)

(ASTM

C131)
20

20

1

12

500
35

2.

11
2

Los Angeles Machine
49

3.
3.1

Los Angeles Machine

3.2
390

445

3.3

12

ASTM E 11
3.4

0.1

3.5

105
C

4.

110  5
C

(

)

3.1

3.1

–

110
50

(
(

)

)
A

1

1250 ±

1

25
1250 ±

1

25

B

C

D

-

-

-

-

-

-

-

-

-

-

1250 ±

2500 ±

25

10

1250 ±

2500 ±

25

10

# 4

-

2500 ±
10
2500 ±

-

)

5.

# 8
(2.38

)

-

-

-

-

5000 ±

5000 ±

5000 ±

10

# 4 (4.76

)

-

5000 ±

(4.78

10

10

10

10

5000 ±
10
51

5.1

1

5.2
3.2

3.2
. .
(

)

A

12

5000 ± 25

B

11

4584 ± 25

C

8

3330 ± 20

D

6

2500 ± 15

5.3

30 – 33
500

5.4
12
1
1
5.5

12
1
52

5.6

12
12
110 
(

(

1

C

)
)
2

6.

12

7.
53

8.
54
55

………………………………………………
……………………………………………
………………………………….
………………………………..............

(
(
1 1/2

)
1

1

1/4
1/4
# 4 (4.76

# 4 (4.78

)

) # 8 (2.38

)

)
56

………………..
……………………………..
9.
.

………………………………

(1)
#
……………………………...

12

.

(2)
# 12

(1) – (2)

…………………………………

(3)
(3)
(1)

100



…………………………… %
#
……………………………..

12

.

(4)
12

………………………

(1) – (4)
(5)
(5)
(1)

………………………….. %

.



100
57

(Specific Gravity and Absorption of Aggregate)
1.
58

1.1

3

(1)

(2)
(Impermeable

Pore)

(3)

(Permeable Pore)

1.2

(Density)
/
1.2.1

(

)
(Density)

:
59

X
(at X)=

Density

/

Density

(at

X)

=

/
1.2.2

(Absolute
Density)

Absolute Density (at X)

=

/
1.2.3

(Apparent
Density)

Apparent

Density

(at

X)=

/
Oven Dry
Apparent Density (at X)

=

(Oven Dry)/
1.2.4

(Bulk
Density)
60

(Permeable
Pore)
Bulk

Density

(at

X)=

/

Bulk Density
(Saturated Surface Dry)
Bulk Density (at X and SSD Basis)

=

SSD /
1.3

(Specific Gravity of
Density) (
1.3.1

Relative

: -)
(Specific Gravity)

(

)

X

(

)

Y

Specific Gravity (at X,Y)

=

Density (of Material) (at X)/Density of Water (at Y)
1.4

(Apparent

Specific

Gravity)
Apparent Specific Gravity (at X,Y) = Apparent
Density
Y)

(at

X)/Density

of

Water

(at
61

.
Density of Water at 20

Y

/

C=1

.

=

20

C

.

Apparent Specific Gravity (at X,20) = Apparent
Density (at X)
1.5

(Bulk Specific Gravity)
Bulk Specific Gravity (at X,Y)

= Bulk Density

(at X)/ Density of Water (at Y)
Density

/

.

.

Y = 20

Bulk
C

Bulk Specific Gravity (at X,20)

=

Bulk

Density (at X)
1.6
4
(SSD)

2
2.1
(
62

2.2
(

)

3
3.1
3.1.1

:
1

.

0.1
±0.1 %
3.1.2
500

(Pycnometer)
.

.

3.1.3
40±3
90±3

.

75±3
3.1.4

.

.

(Tamper)

340±15

25±3

.

3.2
3.2.1
.

:

5
0.5

3.2.2

0.05

%

:
63

3.1.1
3.2.3

:
3.35

3.2.4

.

:

3.2.5

:

4

4.75

.

4
4.1

1 000

4.2
5
5.1
Quartering
ASTM
C125

C125

ASTM

ASTM D75
5.2
5.2.1
1 000
110

±

5
3-4

.

(

30

)
24±4
64

24

.
5.2.2

5.2.1

37.5

.

(
)

30

24±4

6
6.1
6.1.1
(SSD)

5

.

25

(SSD)
65

6.1.2
500 ml(

B

)

6.1.3
(SSD)
500±10
90

(500 ml)

0.1

%

(

C

)

6.1.4
1.3
110±5

0.1
A)
6.2
6.2.1
(SSD)
66

0.5
B

)

6.2.2

(

C

)

6.2.3

6.1.4 (

A)

7
7.1
Bulk Specific Gravity (Oven Dry)

=

Bulk Specific Gravity (SSD)

=

Apparent specific Gravity (Oven Dry)

=

A
(B  S  C)

S
(B  S  C)

A
(B  A  C)

Absorption (%)
A

=

 100

=

S

( S  A)
A

=

B

=

SSD
67

C

=

7.2
Bulk Specific Gravity (Oven Dry)

=

Bulk Specific Gravity (SSD)

=

Apparent specific Gravity (Oven Dry)

=

A
(B  C)

B
(B  C)

A
( A  C)

Absorption (%)
A

C

Specific Gravity
7.3

100

)
=
(

SSD

( B  A) 
A

=
(

B

=

)

=

(

Absorption
(Specific Gravity)

)
68

G Avg.

=

1/(P1/100G1)+(P2/100G2)+…………(Pn/100Gn
)
G Avg.

Specific Gravity

=

G1,G2…Gn=

Specific

Gravity

1,2…n
P1,P2…

Pn=
1,2…n

7.4

(Absorption)
G

Avg.

=

(P1A1/100)+(P2A2/100)+…………..(PnAn/100)
G Avg. =
A1,A2…An =

Absorption
Absorption

1,2…n
8
8.1
8.1.1

Bulk Specific Gravity

8.1.2

Bulk Specific Gravity (SSD)

8.1.3

Apparent Specific Gravity
69

8.1.4

Absorption Capacity (% over
Oven-Dry Basis)

8.2
8.2.1

What is difference between
Apparent and Bulk Specific
Gravity?

8.2.2 If sample of sand sample is drier that SSD
condition, what would the determination of Bulk Specific
Gravity (SSD) be affected assuming the sample becomes
saturated during the test.
8.2.3 Would the apparent specific gravity be
affected in the same manner,explain?
9 Reference
9.1

ASTM C127 Standard Test Method for

Specific Gravity and Absorption of Coarse Aggregate
9.2

ASTM C128 Standard Test Method for

Specific Gravity and Absorption of Fine Aggregate
9.3

ASTM C70 Standard Test Method for

Surface Moisture in Fine Aggregate
70

––
71
72

(Test for Sieve Analysis of Fine and Coarse Aggregates)
1.

(Gradation)
73

(Segregation)

5.1

5.1

2.

3.
74

3.1
9.5

.)

(
:

0.1
0.1

0.1

%

3.2
(

9.5

.)

:
0.5

0.1 %
3.3
1

1
2

,1,

3
4

:
,

1
2

,

3
8

No.4

3.4

:3,
8

No. 4, No. 8 , No. 16 , No. 30 No. 50

No. 100

3.5
4.
4.1

:

Quartering ( ASTM 075
4.2
95 %
8

#
300

85 %
4

5%

#8

#
500
75

4.3

:

.

(

)

9.5 (3/8)

1

12.5 (1/2)

2

19.0 (3/4)

5

25.0 (1)

10

37.5 (1 ½)

15

5.
5.1

110±5
(
76

5.2

5.3

(

)

5.4
1
1

%

5.5

5.6

:

0.1

%

(Fineness Modulus)
6.
6.1

ASTM C33-86 “Standard Specification for

Concrete Aggregates”
77

6.2

ASTM C 136-84a “Standard Method for

Sieve Analysis of fine and Coarse Aggregates”
7.
7.1
7.1.1
Weight Retained % Weight Retained (or %
Coarser) % Cumulative Retained (% Coarser) % Passing
7.1.2
7.1.3

(Fineness Modulus)
Grading

7.1.4

Curves
Grading
ASTM

Curves
5.1

7.2
7.2.1
7.2.2
7.2.3

Fineness
Modulus)
78
79

………………….
Weight

/
%

Sieve

Retained

% Weight

Cumulative

No.

(g)

Retained

Retained
(% Coarser)

1 1/2
1

% Passing
80

3/4

No 4
No 8
No 16
No 30
No 50
No 100
Pan
Total
Fineness Modulus =

X
100

Xi = % Cumulative Retained on Sieve I
I = Each Sieve of the Standard Set from Maximum
one to Sieve No 100
81

(Unit Weight of an Aggregate)
1.

(Voids)
(particles)
(1)

(Loose unit weight)

(2)

(Rodded

weight)

(Grading)

.
.(

.(

. .)

)

12 ( 1 )
2

1
2700 ( 10 )

25 (1)

9000 ( 13 )

37 (1 12 )

13500 ( 12 )

unit
82

100 (4)

27000 (1)

2.

3.
3.1

3
13500

.

2700 , 9000

.

3.2
3.3

50

.

± 50
4.
3
4.1

uniform
9

4.2

grading

.
uniform

25 – 50
4.3

well
50

.

grading

.
graded
83

5.
5.1
5.2
5.3
3
25
5.4

5.5

2

3

2

2 700 cm 3

9 000 cm 3

13 500 cm 3
84

+


9
. .

+ . .

. .
 . .
9
. .

+ . .

. .
 . .
25–50
.
. .

+ . .

. .
 . .
25–50
85

.
. .

+ . .

. .
 . .
50
. .

.

+ . .

. .
 . .
2 700 cm 3
50
. .
. .
 . .

+ . .

.

9 000 cm 3

13 500 cm 3
86

(Tensile Tests of Reinforcement Steel Steel Plate and
Aluminum)
1.
87

(Heat
Treatment)
38

38
5.5 D

(D

(Tensile

“

Stress)

”(Strain)
88

=
P
A

=(Lo)

(Proportional

Limit)
(Elastic)

(Elastic Limit)

(Mild

Steel)
89

(Yield Point)

Strain

Hardening

(Ultimate
(Necking)

2.
2.1

Strength)
90

2.2

2.3
(Rupture)

3.
3.1

(Universal

Testing Machine)

1000 KN (100 ton)

3.2
3.3

3

3.4

(Round bar)

RB9

(SR24)
3.5

(Deformed
DB12 (SD30

bar)

SD40)

3.6

(Brass)
10

3.7

15 mm.
(Aluminum)

10
3.8

(Flat
2

3.9

15 mm.
bar)

4 mm.
91

7.1

4.
4.1

(7850
kgf/m3)
4.2

(Gage

mark)

4
(Percent

elongation)
Gage mark
92

4.3

(Grip)

UTM
Extensometer

Gage

length

Gage

length

Grip
4.4

Load

Cell

Gage

UTM

4.5

0.0345
1.15-11.5

MPa/E/s

0.345 m/min
Strain

/second)

(Ultimate

load)

ASTM 370 E8
4.6

1/10
load

Ultimate
5 KN (

Ultimate
load
0.5 ton)
93

4.7
Gage

mark

7.2

5.
5.1
(KN)

(mm)
5.2
(MPa)
94

(Stress-strain curve)
5.3
5.4

(Proportional

5.5
Offset

(Yield
Strain

strength)

0.002

5.6
constant

Limit)

(Elasticity
Young’s modulus

5.7

modulus of elasticity)
(Ultimate

strength)
5.8

(Percent

elongation)

(Percent

reduction of area)
5.9
2.2

2.3

5.10
6.
ASTM 370 E8 Test Methods for Tension Testing of
Metallic Materials
95

7.
7.1
7.2

Control

(Universal Testing Machine)
96

Length …………………………………………..

mm. Weight

……………………………... g.
Diameter …………………………………… mm. Gage Length
……………………………..….. mm.
Cross

Section

Area

………………………………. mm2 Date

……………………………….…
Readin

Load

Stress

Deforma

g No.

(ton)

(kg/mm

tion

2)

(mm.)

1
2
3
4
5
6
7
8
9
10
11

Strain

Remark
97

12
13
14
15
16
17
18
19
20
21
22
23
24
25

Length

…………………………………………….mm.

Weight

……………………………... g.
Diameter …………………………………………….mm. Gage
Length ………………………….. mm.
Cross Section Area ………………………………… mm2 Date
………………………………..
98

Readin

Load

Stress

Deforma

g No.

(ton)

(kg/mm

tion

2)

(mm.)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Strain

Remark
99

20
21
22
23
24
25

Length ………………………………………..

mm. Weight

…………………….…………... g.
Diameter …………………………………………….mm. Gage
Length …………………………... mm.
Cross Section Area ………………………………… mm2 Date
………………………….……..
Readin

Load

Stress

Deforma

g No.

(ton)

(kg/mm

tion

2)

(mm.)

1
2
3
4
5

Strain

Remark
100

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
101

(Flow Test and Preparation of Mortar Cube)
1.

ASTM C109

50 × 50 × 50

(

.

)

Silica (Ottawa Sand)

20

30

ASTM

C190
Briquet

1991 ASTM
Committee

C-1
1:2.75
0.485
0.460
(Flow) 110±5%
Flow
102

2.

3.
3.1
3.2

4.
4.1

C1005

4.2

ASTM C40

4.3

50 × 50 × 50

4.4
ASTM C305
4.5
ASTM C230
4.6

.
103

5.
5.1
5.2

1

5.3
6.
3
7.
7.1
7.2

Parafin

7.3

8.
8.1
8.2
1

8.1
104

A

)

C

D

I
(

B
I

I

I

740

500

500

500

E

F
I

500

500

2035 1250 1500 1375 1375 1375
(

)
(

)

242.

242.

5

5

0.48

0.48

0.48

5

W/C

359

5

275

300

0.55

0.6

5

(%)

9

3

3

3

3

2.75

Sand/Cement

3
2.5

3

2.75

2.75

2.75

1, 3,

7

7

7

7

7

(by weight)
(

)

7
8.3
8.3.1
8.3.2
8.3.3
20

25

.
105

8.3.4

8.3.5
8.3.6

1
13

.

25

15
8.3.7

4
8

8.4
8.4.1

Flow

Test
(

2)

15

8.4.2

2

30
25
4

8

8.4.3

.
10
106

8.4.4

8.5
8.5.1

24

.
8.5.2
1
8.6
%

=
Davg

Dorg

( Davg  Dorg )
Dorg

× 100

=

=

9.
9.1
9.1.1

W
C
107

9.1.2
1%
2.65

/

9.1.3

.

.
A

E
9.2
9.2.1

W
C

9.2.2
9.2.3
110±5 %
10.
10.1

ASTM C109 Standard Test Method for

Compressive Strength of Hydraulic Cement Mortar
10.2

ASTM C230 Standard Specification for

Flow Table for Use in Tests of Hydraulic Cement
108

8.1
(ASTM C230)
109

(Test Method for Compressive Strength of Hydraulic
Cement Mortars)
1.
110

2.
2.1
8.2

8.2
24

±

2.2
24

(1

)

1
1
23

±

1.7
111

2.3

Compression Machine

3.
3.1
3.2

3.3
20-80
3.4

(

)

4.
4.1
fa

=
fa

P
A

=

/
P
A

=

.
=
2
112

±1.5%
4.2
10

2

10

%

%

5.
5.1
5.1.1
5.1.2
5.1.3

W
C

5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.2.4

W
C
113

6.
6.1

ASTM C109 Standard Test Method for

Compressive Strength of Hydraulic Cement Mortar
6.2

ASTM C230 Standard Specification for

Flow Table for Use in Tests of Hydraulic Cement
114
115

(Calibration of Testing Machine)
1.
(Testing
Machine)

Load

Cell

Proving Ring

(Elastic)
Load
Load

Cell

Proving

Ring
116

Load

2.

3.
3.1

(Universal

Testing Machine)
3.2

Load Cell

3.3

Load

Proving

Ring
Proving Ring
3.4

Data Logger)

Cell
117

4.
4.1

Load

Cell

Proving

Ring

(Cross Head)
4.2
Load

Cell

Proving

Ring

(Universal Testing Machine)
Load Cell

Proving Ring

4.3

Load Cell
4.4

Proving Ring

Load Cell

Proving

Ring
4.5

(Percent

of Error)
Percent of Error
R
T
Cell

Proving Ring

=

R T
T

× 100%

=

Reading Load

=

True Load

Load
118

4.6
4.7
Load
Cell

Proving Ring

9.1.1
119

(Data Logger)

Name

………………………………………………… Type

……………………………………..
Capacity ……………………………………………….. Owner
……………………………………
Tested by……………………………………………….

Group

No. ……………………………..
Date

……………………………………………….

Read

Reading

ing

Load

No.

True Load

True Load

(Load Cell or (Load Cell or

(Compressi Proving ring) Proving ring)

Average
(ton)
120

ve Machine)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

1 (ton)

2 (ton)
121

23
24
122

1.

Bolts

Bolts

Bolts
Bolts
Bolts
Bolts
Bolts

Bolts
Bolts

1.High – Strength Bolts

ASTM A325

2.Non – High - Strength Bolts
A307 A490

ASTM
123

9.2.1

(Bolt)

(a)
(Shear Failure) Bolt
cdef
Bolts
Single

Shear

(S)

Bolts
Shear

(b)

Bolts
Double Shear (D)

Plan
Bolts
124

9.2.2

(Shear
Failure)

Bolt

High-Strength

Bolt

(Thread)

(Included N)

(Excluded X)
Bolt

Shear

Plan
Shear

Plan

Shear Plan
%

N

Bolt
X

Bolt
Bolt

AISC Volumn II
Second

Edition
125

Bolt

Rn =
n

Ø=

(Fv Ab)n

=

Fv

Ø Rn

Bolt

=

Bolt

(Nominal Shear Strength)
Ab

=

Bolt

(Nominal

Bolt Area)
Bolt
2.
2.1

Bolt

2.2

Bolt

3.
3.1

Shear Stress at Proportional Limit (  PL )

3.2

Ultimate Shear Stress (  u )

3.3

Modulus of

Rigidity

Bolt
3.4
4.

Type of Failure

Shear Modulus
126

Bolt
1.5
5.
5.1

(Universal

Testing Machine)
5.2
5.3

Shear Tool Box

Bolt

6.
6.1
6.2
Box

Bolt
Bolt

Shear Tool

Shear

Tool

Box

6.3
6.4

Apply

Load

Head

Cross
0.8

(Deformation)
kg.

(Failure)
6.5

Bolt

100
127

6.6
(Shear

Force)

(Deformation)
Proportional Limit

(Yield Point)
6.7
6.7.1 Shear Stress at Proportional Limit
6.7.2 Ultimate Shear Stress
6.8
Modulus

Modulus of

Shear

Bolt

6.9
6.10

Rigidity
Bolt

(Sketch)

7.
AISC Volume II Part 8

Bolt
128

Shear Tool Box

Bolt

Specimen No. ………………………………………………Diameter
…………………………… mm.
Length……………………………………………mm.

Type of

Bolt……………………...........
Type of Shear Failure ………………………………………….
Tested

by………………………………………………………

Group No. …………………………..
Date ………………………………………………………
Readi

Load

Deformatio

Shearing

Average

ng No.

(kg)

n

Stress

(ton)
129

(mm.)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

(kg./m2)
130

23
24
25
131

(Flexure Test and Shear Test of Concrete)
1.

2.
2.1
2.2

3.
3.1

(Modulus of Rupture R)
132

3.2
4.

3
5.
5.1

(Universal

Testing Machine)

Third –Point

Loading
5.2
Transducer
5.3

Displacement
Dial Gauge
Vernier

5.4
6.
6.1

2
(b

6.2

×

d)

Support
10.1.1
133

10.1.1

Third –
Point Loading

6.3

2

6.4
6.5

(Apply

Load)

Cross
(Central

Head
Deformation)

6.6
6.7
(Load)

(Deflection)

100

kg.
134

6.8
6.9
(Tension Surface)
Load

Modulus

R

=

of

Rupture

PL
bd 2

6.9.1
(Tension
Load

Surface)
“Outside of the Middle Third of the Span

Length”

5%

Span Length

Modulus of Rupture
R

=

R

=

Modulus of Rupture (ksc.)

P

=

Maximum Load (kg)

L

=

Span Length (cm.)

b

=

Average

Width

of

d

=

Average

Depth

of

3PL
bd 2

Specimen (cm.)
Specimen (cm.)
135

a

=

Average Distance between

line of Fracture and the Nearest Support measured on the
Tension of the Beam (cm.)

5%
(Discard)
7.
ASTM C78 AASHTO T97 Flexural Strength of
Concrete

(Torsion Test of Steel Cast Iron and Brass)
1.
136

Torsion

Load
(Shearing
Torque

Stress)
Twisting

Angle

(Torsion)
(Shear
(Tensile Stress)

Stress)

(Compressive

Stress)
(Helicoid)

(Buckling)

(Twisting

Strain

(Strain

Angle)

Hardening)
137

(Shearing

Stress)

(Shearing


=



=



=



=



=

r

Strain)

=

T .r
J
r
L

(kg/cm2)
(kg – cm)
(cm)

J

=

Polar Moment of Inertia



=

(Radial)

L

=

(cm4)
(cm)
(Modulus
(Shear
G
G

2.

=

of

Rigidity)
Modulus)

TL
J

T
138

3.
8.2.2
Short

Specimen

2
3

3.1

(Steel)
3

3.2
Iron)

(Cast
3

3.3

(Brass)
3

10.2.1
139

10.2.2

4.
4.1

(Torsion Test Machine)
10.2.1

4.1.1

Loading

Device

4.1.2

Torque Measurement Unit (2)

4.1.3

(1)

(Calibration
Device) (3)

4.1.4
(Hexagon

Socket)

(4)
140

4.1.5Track Base (5)
4.1.6Digital Torque Meter (6)
4.2

Vernier)

5.
5.1
Torque

Loading Device
Measuring

Unit

Hexagon Socket
5.2
Holder

Shifting

Specimen

Load Device
5.3

Load
Hand

Wheel

Input

Measurement Unit
5.4

Worm

Gear

Torque

Digital Torque Meter
Indicator

Input

Output Shaft

Worm Gear
5.5

Dial Gauge

Compensation Unit

Turn – able Scale
5.6
5.7

(Reset)
Hand
Load

Wheel

Input

Gear
(Angle)
141

5.8
(Quarter Rotation

90 0

)
–

180 0 )

5.9

Twisting Angle

(Output Angle

of the Gear)
5.10

Hand Wheel (Input)
Hand Wheel
Steel

5.11
Measurement

Deformation
Unit

Compensation Unit
5.12
Amplifier

Torque

Hand

Wheel

Dial Gauge

Torque

(Display)
Twisting

6.
6.1
Scale Reading

–

Worm Gear Input

Angle
142

Load Torque (Nm)
(Yield Point)
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3

6.4
6.5
143

Specimen Data
Type …………………………………………………..

Length

………………………………… mm.
Weight …………………………………………….. g.

Diameter

………………………………… mm
Gage Length …………………………………… mm.

Cross Section

Area …………………… mm.2
Tested by ……………………………………………

Group No.

………………………………….
Date …………………………………………………..

Readin Scale Reading at

2
3
4

the

the

(Nm)

Specimen

(rev)
1

Load Torque

Worm Gear Input

g No.

Twisting Angle at

(degree)
144

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Specimen Data
145

Type ………………………………………………..

Length

………………………………… mm.
Weight …………………………………………….. g.

Diameter

………………………………… mm
Gage Length …………………………………… mm.

Cross Section

Area …………………… mm.2
Tested by ……………………………………………

Group No.

……………………………………
Date …………………………………………………..
Readin

Scale Reading at

Twisting Angle at

Load Torque

g No.

the

the

(Nm)

Worm Gear Input

Specimen (degree)

(rev)
1
2
3
4
5
6
7
8
9
10
11
12
146

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Specimen Data
Type …………………………………………………….

Length

………………………………… mm.
Weight ……………………………………………..

g.

Diameter

Gage Length ……………………………………… mm.

Cross Section

………………………………. mm
Area …………………… mm.2
Tested by ……………………………………………..
………………………………….

Group No.
147

Date …………………………………………………..
Readin

Scale Reading at

Twisting Angle at

Load Torque

g No.

the

the

(Nm)

Worm Gear Input

Specimen (degree)

(rev)
148

26
27
28
149

(Compression Parallel and Perpendicular to Grain Test of
Wood)
1.

(Annual Growth Rings)
1

1

(Compressive
Stress)
150

11.1.1

2.
2.1
Failure
2.2

3.
3.1

Compressive

Strength

at

Proportional

Limited (  PL )
3.2

Yield Stress at 0.05 % Offset (  Y )

3.3

Ultimate Compressive Strength (  uc )

3.4

Modulus of Elasticity (  )
151

3.5

Modulus of Resilience

3.6

Type of Failure

4.

2 × 2 ×8

3

5.
5.1

(Universal

Testing Machine)
5.2

Compressometer
(Gage Length) 15

5.3
5.4

(Dial Gauge)
Vernier)

6.
6.1
6.2

3
2

6.3
152

6.4
Upper

Lower Plate

Plate
Spherical

Plate
Bearing

Plate

Plate

6.5
(Compressometer)
6.6

Testing

Machine
6.7

Dial Gauge

6.8

(Apply

Load)

Cross Head

0.6

6.9
100

kg

Proportional

Compressometer
(Ultimate Load)
6.10
6.11
6.12
(Load)
Proportional Limit

(Deformation)
Yield Strength

Limit
153

6.13
6.13.1

Compressive Strength at Proportional

Limited (  PL )
=
6.13.2
=

( y )

Ultimate Compressive Strength (  uc )

UlitmateLo ad
Cross sec tionArea

6.13.4
=

Yield Stress at 0.05% Offset

Loadat 0.05% offset
Cross sec tionArea

6.13.3
=

LoadatPL
Cross  sec tionArea

Modulus of Elasticity (  )

StressatPL
StrainatPL
154

11.1.2

7
ASTM D143 Standard Methods of Testing Small
Clear Specimens of Timber
155

Tested by ………………………………………………………………
Group No. ……………………………
Date ………………………………………………………………
Specimen No.
Cross Section W ×
L (cm)
Weight (g)
Density (g/cm3)
Annual Growth
Rings per cm.
Water Content (%)
Compressive
Strength at PL
Yield Stress
(kg/cm2)
Ultimate Stress
(kg/cm2)

1

2

3
156

Modulus of
Elasticity (kg/cm2)
Type of Failure

1.
(Point
Load)

1

3
157

2.
2.1
Failure
2.2

3.
3.1

Compressive

Strength

at

Proportional

Limited (  PL )
3.2

Yield Stress at 0.05% offset (  y )

3.3

Compressive

Strength

Deformation
3.4

Modulus of Elasticity (E)

3.5

Modulus of Resilience

4.

2"

2"

6"

3

at

0.1

inch
158

5.
5.1

(Universal Testing Machine)

5.2

Compressometer
(Gage Length) 15

5.3

(Dial Gauge)

Vernier

6.
6.1
6.2

3
2

6.3
6.4
Upper

Lower Plate

Plate
Spherical

Plate
Bearing

Plate

Plate

6.5

Compressometer

6.6

Testing

Machine
159

6.7

Dial Gauge

6.8

(Apply Load)

Cross Head

0.6

6.9
100

kg.

Proportional

Limit

Compressometer
(Ultimate
Load)
6.10
6.11
6.12
(Load)

(Deformation)

Proportional Limit

Yield Strength

6.13
6.13.1

Compressive Strength at Proportional

Limited (  PL )
=
6.13.2

LoadatPL
Cross  sec tionArea

Compressive Strength at 0.1 inch

Deformation
=

Loadat 0.01"Deformation
Cross sec tionArea
160

6.13.3

Modulus of Elasticity (E)
StressatPL
StrainatPL

=
7

ASTM D143 Standard Methods of Testing Small
Clear Specimens of Timber

Tested by ……………………………………………………….
Group No. ………………………
Date …………………………………………………………….
Specimen No.
Cross Section W ×
L(cm)
Weight (g)
Density (g/cm3)
Annual Growth
Rings per cm.
Water Content (%)
Compressive

1

2

3
161

Strength at PL
Compressive
Strength at
0.1 " Deformation
Yield Stress
(kg/cm2)
Modulus of
Elasticity (kg/cm2)
Type of Failure
162

(Shear Parallel to Grain Test of Wood and Flexure Test of
Wood)
1.
163

(Slide or Slip)
“

”
1.

(Shear
Parallel to Grain of Wood)

2.

(Shear

Perpendicular to Grain of Wood)

2.
2.1
(Failure)
2.2

3.
164

11.3.1
4.
4.1

(Universal

Testing Machine)
4.2
4.3

(Vernier)
(Shear Tool Box)

Shear Tool Box
165

5.
5.1
5.2

Shear Tool Box

Shear ToolBox
5.3

Apply Load

Cross Head

Maximum Load
5.4
5.5
Moisture Content
5.6

Specific Gravity
SP

W
V W

SP

=

Specific Gravity

W

=

kg)

V

=

( cm 3 )

W

5.7

=

=

Density

kg / cm 3

Shearing Stress)
166

Shearing Stress

=

P
m
A

Pm

=

Maximum Load

A

=

Shearing Area

6.
ASTM D143 Standard Methods of Testing Small
Clear Specification of Timber

Tested by ………………………………………………… Group
No. ………………………………
Date

……………………………………………….

Specimen No.
Type of Wood
(cm × cm)
Cross Section w

1

2

3
167

×l
(cm × cm)
Shear

Force

(kg.)
Shearing
Strength(ksc.)
Sketch of Failure
Specimen

Remark
168

(Bending tests of wood)
1.

(Bending Moment)
(Bending Stress)
2.
2.1
2.2
(Failure)
3.
3.1

Bending Stress of Proportional Limited (  PL

3.2

Modulus of Rupture (  r )

3.3

Modulus of Elasticity (  )

3.4

Modulus of Resilience (R)

3.5

Maximum Shearing Stress (  m ax )

3.6

Average Total Work to Ultimate Load (W)

)
169

3.7

Type of Failure

4.
2

2

30

3
5.
5.1
Testing Machine

Universal
Support

5.2
Transducer

Displacement
Dial Gauge

5.3

(Vernier)

5.4
6.
6.1
b × d)
Specific Gravity
6.2

(Sketch)
(Deflect)
(Ring)
170

6.3

Support
Support

Surface

Tangential
Cross

Head

Cross Head
6.4
6.5
Testing Machine
6.6
Cross

(Apply

Load)

Head
(Central

Deflection)

kg.

6.7
6.8
(Water Content)
6.9
(Load)

(Deflection)
Proportional

Limit

(PL)

6.10
6.10.1
3P  L
2bd 2

Bending Stress of PL (  PL )
ksc.

=
171

6.10.2

Modulus of Rupture (  r )

3Pm ax  L
2bd 2

6.10.3
PL3
4bd 3

6.10.4
2
 PL

18 

ksc.

Modulus of Elasticity (E)

=

ksc.
Modulus Resilience (R)

=

Maximum Shearing Stress (  m ax )

=

ksc.

6.10.5
3Pm ax
4bd

6.10.6
(W) =

=

(1 )
2

P

ksc.
Average Total Work to Ultimate Load
Pm ax  m ax watt

=

Load at PL

=

Maximum Load

=

Span Length

=

Width of Beam

=

Depth of Beam

(kg.)
Pm ax

(kg.)
L
(cm.)
b
(cm.)
d
(cm.)
172



=

Central Deflection at PL

=

Maximum Center Deflection

(cm.)
 m ax

(cm.)

11.4

7
ASTM D 143 Standard Methods of Testing Small
Clear Specification of Timber
173
174

Tested
by……………………………………………………………
Group No. …………………
Date

…………………………………………………………

Size of Specimen

Width …………………………… mm.

Depth …………………… mm.
Length …………………………. .mm.
Reading
No.

Load (kg.)

Deflection

Moment (kg. –

(mm.)

m.)
175
176

(Mixing Concrete and Slump Test)
1.
177

2.
2.1
(Slump Test)
2.2
2.3
2.4
2.5

3.
3.1

1

3.2
3.3

Slump
Test

3.4
3.5

(Air
Meter)
178

3.6
150±0.75

.

300±3

3.7

.
(Shaking
3600

Table)
/

3.8
4.
4.1
4.1.1

Portland

1

4.1.2
4.1.3
4.1.4
4.2
4.2.1

350

.

1

.

4.2.2W/C = 0.55
4.2.3

/

4.2.4

= 35 %
=2%

4.2.5
(

,
)

3.15 , 1.00 , 2.65

4.2.6Absorption Capacity
1.75

0.95 %

,
2.71
179

4.2.7Moisture Content

X

Y%
4.2.8
12
4.2.9
1

.

4.2.10

X

Y

4.2.11
1

.

4.2.12
1
4.3
4.3.1

1

4.3.2
2-3
4.3.3

3-4

4.3.4

4.3.5
4.3.6

2-3
180

4.3.7

5.
5.1

Slump Test

5.1.1

5.1.2

3
25
12-13

5.1.3

5.1.4

Slump

5.1.5
1

50
181

5.1.6
5.1.7
5.2

(Unit Weight)

5.2.1
5.2.2
0.1%
5.2.3
(a)

0.4

.

(b)

0.4

.

1.
75

.
2.
25-75

.

3.

25

.
5.2.4
3

25
25

.
182

5.2.5
600

.

19-38

.

7000
2

3
25

5.2.6
5.2.7
5.2.8
D

=

Y

=

A

=

W

=

V

=

W1

=

V1

=

W
V
W1
D

100(Y  V )
V1

./

.

./

.

%

.
183

(
)
A

=

%

(

)

6.

Air Meter Type B.
6.1
6.2
Dial

Gauge

%
Dial Gauge
1

±

%
6.2.1
=

.

6.2.2

(

Extension Tube
6.2.3
Left

Left-hand Ball Valve
Main-Air

Valve

Right BondValves

Bleed

)
Valve
184

Left-Hand

Ball

Valve
Right-Hand

Ball

Valve
6.2.4
Dial

Pump

Gauge

2-3

Bleed

Valve

Left-hand Ball Valve
6.2.5

Drain Tube

Left-Hand Bond Valve

Valve
6.2.6

Main-Air Valve

Left-hand Ball Valve
400 cc

Beaker

Main-Air Valve

Right-Hand Ball Valve

6.2.7
Valve

Right-Hand

Ball

Left-Hand

Ball

Bleed Valve
6.2.8

Valve

Drain Tube

6.2.9

(

)

Beaker

. .
6.2.10

Valve
2-3
185

Main-Air Valve

Dial Gauge

Ar

Ac
6.2.11

Ac = m3/m2 100 %

6.2.12
Ar

10
0.1

Ac

%

Ac
Ball

Valve

Right-Hand BallValve (
Left-Hand Ball Valve

Extension Tube

Main-Air Valve

)

10
6.3
6.3.1

3
25

6.3.2
6.3.3

6.2.3

6.3.4

6.2.4

6.3.5

Left

Bleed Valve
Bleed

Valve

Left-Hand Ball Valve

Main-Air Valve

Dial

Gauge
%
6.3.6

Main-Air

Valve
Bleed

Ball

Valve
186

6.4
6.4.1
6.4.2

7.
7.1

7.1.1
7.1..1
Air Meter
7.1..2
100-200
1

35

Air Meter
7.2
7.2.1

×

.
35

.
187

7.2.2

20-30

Bleeding
3

.

8.
20
C192)
24

.

9.
9.1
9.1.1

9.1.2
9.1.3
9.1.4
9.2
9.2.1

9.2.2

. (ASTM
188

9.2.3Unit Weight

10.
10.1

ASTM C192 Standard Method of Making

and Curing Concrete Test Specimens in the Laboratory
10.2

ASTM C138 Standard Method for Unit

Weight and Air Content (Gravimetric) of Concrete
10.3

ASTM C231 Standard Test Method for Air

Content of Freshly Mixed Concrete by the Pressure
Method
189

(Splitting Tensile Test of Concrete)
1.
(Tensile

Strength)

(Direct

Tension

Test)

(Tensile Splitting Test)
ASTM

689
200lbs/inch^2/min.

–

1 380

C496

kPa/min.

(100-

12.2.1
190

Indirect
Tensile

Strength
15%

12.2.1

2.
2.1
Splitting Tensile Test
2.2

3.
191

3.1
10

20

3

3.2

10

10 × 10

×

3

4.
4.1

(UTM)

4.2

2.54 × 2.54 × 30

4.3
4.4

(Vernier)

5.
5.1
W)

(
(L)

(D)

3

5.2

12.2.1
5.3
5.4
5.5
(Sketch)

(Apply

Load)
192

5.6
(Splitting Tensile
Strength ft)
=

ft

=

ft

2P/  LD

2P/  D 2

P

=

Maximum Load (kg.)

L

=

Length of Cylinder (cm.)

D

=

Diameter of Cylinder

Width

of Cube (cm.)
ft

=

Splitting Tensile Strength

5.7
(Approximate Tensile Strength)
6.
6.1
6.2
6.3
TensileStrength

Splitting
Splitting

TensileStrength
TensileStrength
Splitting
193

6.4

(Tensile

Strength)
Approximate Tensile Strength of Concrete =
0.85 ft
6.5
7.
7.1
Splitting

ASTM C 496Standard Test Method for

Tensile

Strength

of

Cylindrical

Concrete

Specimens
7.2

AASHTO T198 Splitting Tensile Strength of

Cylindrical Concrete Specimen
194

Type of Specimen: Cylinder
Tested by …………………………………………… Group
No. ……………………………….
Date:

………………………………………..

Age

of

Concrete Specimen …………….. days
Specimen

Diameter

Length

Weight

Load

Splitting Tensile
195

No.

Strength
(cm) (mm) (cm) (mm)

(kg)

(kgf) (KN) (kg/cm2) (Mpa)

1
2
3

Average Splitting Tensile Strength ……………………
(kg/cm2) or ……………….. MPa

Type of Specimen: Cube
Splitting
Tensile
Specimen
No.
1
2
3

Width

Length

Height

(cm) (mm) (cm) (mm) (cm) (mm)

Weight
(kg)

Load

Strength

(kgf) (KN) (kg/cm2) (M
196

Average Splitting Tensile Strength ………………………..
(kg/cm2) or ……………… MPa

(Compression Test of Concrete)
1.

(Compressive Strength)

(Water-Cement

Ratio)
197

(Compression)
(Compression

Zone)

2.

(Cubic and Cylindrical Specimen)
3.
3.1
3.2

Ultimate Compressive Strength
Average

Compressive

Average

Compressive

Strength
3.3
Strength
Average Splitting Tensile
Strength

12.2
198

4.
4.1
10

10 × 10 ×
3

4.2
10

20

3

5.
5.1
5.2

Compressive Testing Machine
Vernier

5.3

12.3.1

6.
6.1
199

6.2

Cap

6.3
6.4

12.3.2

Compression
Testing Machine
200

12.3.3

7.
7.1

Ultimate Compressive Strength
Ultimate Compressive Strength =

P
A

P

=

Ultimate Load (kg)

A

=

Cross Section Area (cm2)

7.2

Average

Compressive

Average

Compressive

Strength
7.3
Strength
Average Splitting Tensile Strength
8.
8.1

ASTM C31 Standard Method of Making

and Curing Concrete Test Specimen in the Field.
8.2

ASTM

C39

Standard

Method

for

Compressive Strength of Cylindrical Concrete Specimens.
201

8.3

ASTM C192 Standard Method of Making

and Curing Concrete Test Specimens in the Laboratory
8.4

ASTM C617 Standard Practice of Capping

Cylindrical Concrete Specimens.

Type of Specimen: Cylinder
202

Tested by ……………………………………………………
Group No. ……………………….
Date: ……………………………………… Age of Concrete
Specimen ……………... days
Compressive
Specimen
No.

Diameter

Length

Weight

(cm) (mm) (cm) (mm)

(kg)

Load

Strength

(kgf) (KN) (kg/cm2) (Mpa)

1
2
3

Average Compressive Strength ……………………………
(kg/cm2) or ……………… MPa
Type of Specimen: Cube

Compressi
Specimen
No.
1
2

Width

Length

Height

(cm) (mm) (cm) (mm) (cm) (mm)

Weight
(kg)

Load

Strength

(kgf) (KN) (kg/cm2) (M
203

3

Average

Compressive

Strength

……………………………(kg/cm2) or ……………… MPa

1.
2.

201
221

3.
4.
5.
6. ANNUAL BOOK of ASTM STANDARDS Section 4
Volume 04.02 Concrete and Aggregates 1992
204

Mais conteúdo relacionado

Semelhante a Lab con

Modeling of risers using hybrid fea
Modeling of risers using hybrid feaModeling of risers using hybrid fea
Modeling of risers using hybrid feaHugh Liu
 
Aninvestigation into the effects of water containated with chloride salts on ...
Aninvestigation into the effects of water containated with chloride salts on ...Aninvestigation into the effects of water containated with chloride salts on ...
Aninvestigation into the effects of water containated with chloride salts on ...Samson Olakunle OJOAWO
 
An Experimental Study on Partial Replacement of Cement with Sugarcane Bagasse...
An Experimental Study on Partial Replacement of Cement with Sugarcane Bagasse...An Experimental Study on Partial Replacement of Cement with Sugarcane Bagasse...
An Experimental Study on Partial Replacement of Cement with Sugarcane Bagasse...IRJET Journal
 
Research 2
Research 2Research 2
Research 2Ali Iraq
 
Sip the feasibility of jackfruit peeling as binder to whiteware plastic mass...
Sip the feasibility of  jackfruit peeling as binder to whiteware plastic mass...Sip the feasibility of  jackfruit peeling as binder to whiteware plastic mass...
Sip the feasibility of jackfruit peeling as binder to whiteware plastic mass...Eemlliuq Agalalan
 
Compressive strength and Flexural of Hardened Concrete | Jameel Academy
Compressive strength  and Flexural of Hardened Concrete | Jameel AcademyCompressive strength  and Flexural of Hardened Concrete | Jameel Academy
Compressive strength and Flexural of Hardened Concrete | Jameel AcademyJameel Academy
 
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...eSAT Publishing House
 
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...eSAT Journals
 
soil classification lab
soil classification labsoil classification lab
soil classification labahmed fouad
 
Brtc test rate 2015 2016-22.11.15
Brtc test rate 2015 2016-22.11.15Brtc test rate 2015 2016-22.11.15
Brtc test rate 2015 2016-22.11.15AbidurRahman48
 
Optimization of Pavement Concrete
Optimization of Pavement ConcreteOptimization of Pavement Concrete
Optimization of Pavement ConcreteJill Reeves
 
IMPACT OF QUARRY DUST AND FLY ASH ON THE FRESH AND HARDENED PROPERTIES OF SEL...
IMPACT OF QUARRY DUST AND FLY ASH ON THE FRESH AND HARDENED PROPERTIES OF SEL...IMPACT OF QUARRY DUST AND FLY ASH ON THE FRESH AND HARDENED PROPERTIES OF SEL...
IMPACT OF QUARRY DUST AND FLY ASH ON THE FRESH AND HARDENED PROPERTIES OF SEL...AbdulRazakBH
 
Shrikage behavior of UHPC
Shrikage behavior of UHPCShrikage behavior of UHPC
Shrikage behavior of UHPCThuan Pham
 
Partition Curve - an overview _ ScienceDirect Topics (1).pdf
Partition Curve - an overview _ ScienceDirect Topics (1).pdfPartition Curve - an overview _ ScienceDirect Topics (1).pdf
Partition Curve - an overview _ ScienceDirect Topics (1).pdfssuser9d0ede
 
High speed tensile testing of textile composites 2a
High speed tensile testing of textile composites 2aHigh speed tensile testing of textile composites 2a
High speed tensile testing of textile composites 2aAsuSSEBENA
 
Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...IAEME Publication
 
EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF THE SELF-COMPACTING CONCRETE WITH ...
EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF THE SELF-COMPACTING CONCRETE WITH ...EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF THE SELF-COMPACTING CONCRETE WITH ...
EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF THE SELF-COMPACTING CONCRETE WITH ...IAEME Publication
 
[BLT] 연구개발 프로세스에 따른_강한_특허_전략_v1.3_엄
[BLT] 연구개발 프로세스에 따른_강한_특허_전략_v1.3_엄[BLT] 연구개발 프로세스에 따른_강한_특허_전략_v1.3_엄
[BLT] 연구개발 프로세스에 따른_강한_특허_전략_v1.3_엄JEONG HAN Eom
 
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...IRJET Journal
 

Semelhante a Lab con (20)

Modeling of risers using hybrid fea
Modeling of risers using hybrid feaModeling of risers using hybrid fea
Modeling of risers using hybrid fea
 
Aninvestigation into the effects of water containated with chloride salts on ...
Aninvestigation into the effects of water containated with chloride salts on ...Aninvestigation into the effects of water containated with chloride salts on ...
Aninvestigation into the effects of water containated with chloride salts on ...
 
An Experimental Study on Partial Replacement of Cement with Sugarcane Bagasse...
An Experimental Study on Partial Replacement of Cement with Sugarcane Bagasse...An Experimental Study on Partial Replacement of Cement with Sugarcane Bagasse...
An Experimental Study on Partial Replacement of Cement with Sugarcane Bagasse...
 
Research 2
Research 2Research 2
Research 2
 
Sip the feasibility of jackfruit peeling as binder to whiteware plastic mass...
Sip the feasibility of  jackfruit peeling as binder to whiteware plastic mass...Sip the feasibility of  jackfruit peeling as binder to whiteware plastic mass...
Sip the feasibility of jackfruit peeling as binder to whiteware plastic mass...
 
Compressive strength and Flexural of Hardened Concrete | Jameel Academy
Compressive strength  and Flexural of Hardened Concrete | Jameel AcademyCompressive strength  and Flexural of Hardened Concrete | Jameel Academy
Compressive strength and Flexural of Hardened Concrete | Jameel Academy
 
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
 
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
 
soil classification lab
soil classification labsoil classification lab
soil classification lab
 
Brtc test rate 2015 2016-22.11.15
Brtc test rate 2015 2016-22.11.15Brtc test rate 2015 2016-22.11.15
Brtc test rate 2015 2016-22.11.15
 
Optimization of Pavement Concrete
Optimization of Pavement ConcreteOptimization of Pavement Concrete
Optimization of Pavement Concrete
 
IMPACT OF QUARRY DUST AND FLY ASH ON THE FRESH AND HARDENED PROPERTIES OF SEL...
IMPACT OF QUARRY DUST AND FLY ASH ON THE FRESH AND HARDENED PROPERTIES OF SEL...IMPACT OF QUARRY DUST AND FLY ASH ON THE FRESH AND HARDENED PROPERTIES OF SEL...
IMPACT OF QUARRY DUST AND FLY ASH ON THE FRESH AND HARDENED PROPERTIES OF SEL...
 
4th semester Civil Engineering (2013-June) Question Papers
4th semester Civil Engineering (2013-June) Question Papers 4th semester Civil Engineering (2013-June) Question Papers
4th semester Civil Engineering (2013-June) Question Papers
 
Shrikage behavior of UHPC
Shrikage behavior of UHPCShrikage behavior of UHPC
Shrikage behavior of UHPC
 
Partition Curve - an overview _ ScienceDirect Topics (1).pdf
Partition Curve - an overview _ ScienceDirect Topics (1).pdfPartition Curve - an overview _ ScienceDirect Topics (1).pdf
Partition Curve - an overview _ ScienceDirect Topics (1).pdf
 
High speed tensile testing of textile composites 2a
High speed tensile testing of textile composites 2aHigh speed tensile testing of textile composites 2a
High speed tensile testing of textile composites 2a
 
Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...
 
EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF THE SELF-COMPACTING CONCRETE WITH ...
EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF THE SELF-COMPACTING CONCRETE WITH ...EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF THE SELF-COMPACTING CONCRETE WITH ...
EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF THE SELF-COMPACTING CONCRETE WITH ...
 
[BLT] 연구개발 프로세스에 따른_강한_특허_전략_v1.3_엄
[BLT] 연구개발 프로세스에 따른_강한_특허_전략_v1.3_엄[BLT] 연구개발 프로세스에 따른_강한_특허_전략_v1.3_엄
[BLT] 연구개발 프로세스에 따른_강한_특허_전략_v1.3_엄
 
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
 

Mais de NooPloyy Khanittha

โสกราตีส เพลโต้
โสกราตีส เพลโต้โสกราตีส เพลโต้
โสกราตีส เพลโต้NooPloyy Khanittha
 
คุณความดีสอนกันได้หรือไม่ _เพลโต้
คุณความดีสอนกันได้หรือไม่ _เพลโต้คุณความดีสอนกันได้หรือไม่ _เพลโต้
คุณความดีสอนกันได้หรือไม่ _เพลโต้NooPloyy Khanittha
 

Mais de NooPloyy Khanittha (6)

โสกราตีส เพลโต้
โสกราตีส เพลโต้โสกราตีส เพลโต้
โสกราตีส เพลโต้
 
คุณความดีสอนกันได้หรือไม่ _เพลโต้
คุณความดีสอนกันได้หรือไม่ _เพลโต้คุณความดีสอนกันได้หรือไม่ _เพลโต้
คุณความดีสอนกันได้หรือไม่ _เพลโต้
 
Modernity and urbanization
Modernity and urbanizationModernity and urbanization
Modernity and urbanization
 
Methaphysics epistemology_
Methaphysics epistemology_Methaphysics epistemology_
Methaphysics epistemology_
 
Humanities integration_1
Humanities integration_1Humanities integration_1
Humanities integration_1
 
186 t gp_wired-biz_light_v5
186 t gp_wired-biz_light_v5186 t gp_wired-biz_light_v5
186 t gp_wired-biz_light_v5
 

Último

JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 

Último (20)

JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 

Lab con