SlideShare uma empresa Scribd logo
1 de 141
Baixar para ler offline
Eduardo Gómez Impactos en la Hidrosfera 1
Los impactos en la
hidrosfera
Eduardo Gómez
Impactos en la Hidrosfera 2
El agua, un bien necesario
La vida en el planeta depende del agua, pero el aumento de población
hace que peligre este recurso por la pérdida de calidad.
El ciclo natural del agua tiene una gran
capacidad de purificación. Pero esta
misma facilidad de regeneración del agua,
y su aparente abundancia, hace que sea
el vertedero habitual en el que arrojamos
los residuos producidos por nuestras
actividades.
Esto obliga a la humanidad al tratamiento
del agua contaminada, a la creación de
infraestructuras para garantizar el
abastecimiento y otras soluciones con
fuerte impacto ambiental.
Eduardo Gómez
Impactos en la Hidrosfera 3
Eduardo Gómez
Consumo de agua en el mundo
Impactos en la Hidrosfera 4
De acuerdo al mapa, el consumo promedio global es
de unos 1.240 m³ por persona y año. En países de
alto consumo, como España o Estados Unidos, el
consumo está cercano a los 2.500 m³ mientras que
en otros como China es más bajo con 700 m³.
Eduardo Gómez
Impactos en la Hidrosfera 5
Las soluciones a la escasez de agua pasan por:
• Utilización correcta y racional de los
recursos.
• Mejorar el rendimiento de los recursos
existentes.
• Implantar nuevos recursos (procesos muy
caros).
Eduardo Gómez
Impactos en la Hidrosfera 6
Origen de la contaminación del agua
• Según la OMS ( Organización Mundial de la Salud). Se
considera que el agua está contaminada cuando su
composición o estado natural se ven modificados, de tal
modo que el agua pierde sus condiciones aptas para los
usos a los que estaba destinada.
• La Ley de Aguas dice que la contaminación del agua es
la acción y el efecto de introducir materias o formas de
energía o inducir condiciones en el agua que de una
modo directo o indirecto impliquen una alteración
perjudicial de su calidad en relación con los usos
posteriores o con su función ecológica.
Eduardo Gómez
Impactos en la Hidrosfera 7
El origen de la contaminación puede deberse a:
Causas naturales
Causas antrópicas
Eduardo Gómez
Impactos en la Hidrosfera 8
En ambos casos, la fuente de
contaminación puede ser:
Difusa: Aparece en zonas
amplias y no tiene un foco
emisor concreto
Puntual: Afecta a una zona concreta
Eduardo Gómez
Impactos en la Hidrosfera 9
Contaminación natural del agua
Se debe a la presencia en el agua de distintas sustancias sin que
intervenga la acción humana:
• Partículas sólidas, gases arrastrados por la lluvia
• Polen, hojas, residuos vegetales y animales
Todos estos residuos pueden ser eliminados a través de procesos
químicos y biológicos que forman parte de la capacidad de
autodepuración del agua.
Eduardo Gómez
Impactos en la Hidrosfera 10
Contaminación artificial de origen urbano
 Aguas procedentes de los domicilios (productos de limpieza, jabones,
grasas, restos de cocina ...)
 Aguas negras procedentes de la defecación (1,2 a 1,5 litros por persona y
día).
 Aguas procedentes de la vía pública, de riego, de limpieza, de lluvia...
 La composición es variada, presenta gran cantidad de organismos
patógenos, materia orgánica, nutrientes, detergentes, materias flotantes,
residuos de la contaminación atmosférica...
Eduardo Gómez
Impactos en la Hidrosfera 11
 Fertilizantes inorgánicos, abonos, plaguicidas,
sales disueltas.
 Contaminan tanto aguas superficiales como
aguas subterráneas que surten a las
poblaciones.
Contaminación artificial de origen agrícola
Eduardo Gómez
Plaguicidas y su transporte
Eduardo Gómez
Impactos en la Hidrosfera 13
 Estiércol y purines que contienen microorganismos patógenos,
sólidos en suspensión, materia orgánica, nitrógeno y fósforo.
Contaminación artificial de origen ganadero
Cuando estos contaminantes se
usan como abonos, pueden
llegar a las aguas subterráneas
de forma dispersa o puntual si
se vierten directamente en un
terreno
Eduardo Gómez
Impactos en la Hidrosfera 14
 Industrias de refinado de petróleo: Contiene residuos tóxicos
diversos, cianuro, grasas, fenoles.. álcalis..
 Industria metalúrgica: Vertidos tóxicos diversos y agua caliente.
 Industria del papel, del curtido y textiles: residuos orgánicos,
detergentes..
 Industrias químicas y farmacéuticas: metales pesados y material
químico y biológico peligroso
 Industrias energéticas: radiactividad, cambios de temperatura.
Contaminación artificial de origen industrial
Es la que mayor impacto produce por la variedad de materiales y
fuentes de energía que aporta al agua.
Son especialmente contaminantes:
Eduardo Gómez
Nucleares Petroleras
Papeleras
Siderometalúrgica
Químicas
Eduardo Gómez
Impactos en la Hidrosfera 16
Sector industrial Substancias contaminantes principales
Construcción Sólidos en suspensión, metales, pH.
Minería Sólidos en suspensión, metales pesados, materia orgánica, pH, cianuros.
Energía Calor, hidrocarburos y productos químicos.
Textil y piel
Cromo, taninos, tensoactivos, sulfuros, colorantes, grasas, disolventes orgánicos,
ácidos acético y fórmico, sólidos en suspensión.
Automoción Aceites lubricantes, pinturas y aguas residuales.
Navales Petróleo, productos químicos, disolventes y pigmentos.
Siderurgia Cascarillas, aceites, metales disueltos, emulsiones, sosas y ácidos.
Química inorgánica
Hg, P, fluoruros, cianuros, amoniaco, nitritos, ácido sulfhídrico, F, Mn, Mo, Pb,
Ag, Se, Zn, etc. y los compuestos de todos ellos.
Química orgánica
Organohalogenados, organosilícicos, compuestos cancerígenos y otros que
afectan al balance de oxígeno.
Fertilizantes Nitratos y fosfatos.
Pasta y papel Sólidos en suspensión y otros que afectan al balance de oxígeno.
Plaguicidas Organohalogenados, organofosforados, compuestos cancerígenos, biocidas, etc.
Fibras químicas Aceites minerales y otros que afectan al balance de oxígeno.
Pinturas, barnices y tintas
Compuestos organoestámicos, compuestos de Zn, Cr, Se, Mo, Ti, Sn, Ba, Co,
etc.
Eduardo Gómez
Impactos en la Hidrosfera 17
Contaminación artificial de origen industrial
El grado de contaminación depende del tipo de industria y de los
procesos de fabricación empleados.
Además hay que tener en cuenta que hay fuentes de contaminación
secundarias, como la atmósfera, que puede estar previamente
contaminada y pasar sus contaminantes al agua.
En general, la contaminación de origen antrópico supera la capacidad
de autodepuración de los sistemas hídricos, haciendo necesaria la
implantación de medidas preventivas y correctoras.
Eduardo Gómez
Impactos en la Hidrosfera 18
Origen Tipo Contaminantes Efectos
Urbana
Aguas domésticas
(cocina, blancas de
baño)
Sales,
Jabones, detergentes
Sólidos en suspensión
Grasas
Eutrofización
Aguas negras Materia orgánica
Eutrofización
Microorganismos patógenos
Limpieza y riego
(abonos)
Sólidos en suspensión
Detergentes
Materia orgánica
Eutrofización
Agrícola
Pesticidas y
plaguicidas
Sustancias tóxicas
(Metales pesados,
compuestos
organoclorados)
Bioacumulación, envenenamiento
Abonos N, P, S Eutrofización
Ganadera
Purines
(excrementos del
ganado)
Materia orgánica
Eutrofización
Microorganismos patógenos
Industria y
minería
Siderurgia
Petroquímica
Energética
Textil
Papelera
Minería
Materia orgánica
Metales pesados
Incremento del pH
Incremento de Tª
Radiactividad
Aceites, grasas
Eutrofización
Bioacumulación, envenenamiento
Acidificación
Disminución O2 disuelto, variación de
ciclos reproductivos y de crecimiento
Mutaciones
Eduardo Gómez
Impactos en la Hidrosfera 19
Factores y nivel de contaminación
Hay unos factores que pueden agravar o disminuir
los efectos de la contaminación como son:
 Características del receptor.
 Características de la zona donde se encuentra el
receptor.
 Usos previos del agua.
Eduardo Gómez
Impactos en la Hidrosfera 20
Características del receptor
1. Tipo de receptor
Aguas superficiales
Aguas subterráneas
2. Cantidad y calidad de agua del receptor:
• A más volumen, mayor capacidad de dilución del contaminante
• Si la calidad del agua es mala, se suman los efectos
3. Biocenosis: La presencia de organismos (fundamentalmente
microorganismos) ayuda a degradar la materia orgánica.
Eduardo Gómez
Impactos en la Hidrosfera 21
Localización del receptor
Las características climáticas (lluvias, insolación, …) y las
características geomorfológicas (pendiente, relieve, tipo de rocas…)
influyen en la capacidad del receptor para depurar los contaminantes.
Eduardo Gómez
Eduardo Gómez
Impactos en la Hidrosfera 23
Usos previos del agua
 Cantidad de vertidos previos al momento
de la contaminación
 Cantidad de procesos de depuración
previos al momento de la contaminación
Si los dos procesos anteriores son
importantes, más grave será la
contaminación
Eduardo Gómez
Impactos en la Hidrosfera 24
Contaminantes del agua
Químicos: Sustancias de dos tipos:
1. Biodegradables: cuando pueden ser eliminadas por los
microorganismos u otros seres. P.ej. las sales minerales que
son captadas por los seres autótrofos para la fotosíntesis, o
las moléculas orgánicas que son respiradas por bacterias u
otros seres.
2. No biodegradables: ningún ser vivo tiene enzimas que los
eliminen y por tanto se acumulan. Son los metales pesados
como el plomo o el mercurio y también ciertas moléculas
orgánicas de síntesis compleja como pesticidas,
detergentes, etc.
Eduardo Gómez
Impactos en la Hidrosfera 25
Físicos
Pueden ser:
1. Radiactivos mutagénicos, normalmente antrópicos.
2. Térmicos, debido a refrigeraciones industriales, que provocan
disminución de la concentración de oxígeno en las aguas,
alteración de los ciclos vitales y de la migración de muchos
organismos.
3. Partículas gruesas que pueden enturbiar el agua dificultando la
fotosíntesis, la autodepuración y la potabilización.
Contaminantes del agua
Eduardo Gómez
Impactos en la Hidrosfera 26
Radiactividad (posibles
escapes) y calentamiento del
agua usada como refrigerante
Turbidez, aumento de partículas
Eduardo Gómez
Impactos en la Hidrosfera 27
Biológicos:
Debida a microrganismos que producen enfermedades; algunos con gran
capacidad de supervivencia, como los hongos (enfermedad “pie de
atleta”), protozoos (enfermedad “paludismo”) o algas (envenenamiento al
comer mejillones que han filtrado estas algas), y otros con poca
supervivencia como las bacterias (enfermedad “cólera”).
Contaminantes del agua
E.coli
V. cholerae
Eduardo Gómez
Contaminantes físicos del agua
Impactos en la Hidrosfera 28
Alteraciones
físicas
Características y contaminación que indica
Color El agua no contaminada suele tener ligeros colores rojizos, pardos,
amarillentos o verdosos. debido, principalmente, a los compuestos
húmicos, férricos o los pigmentos verdes de las algas que contienen..
Olor y sabor Compuestos químicos presentes en el agua como los fenoles, diversos
hidrocarburos, cloro, materias orgánicas en descomposición o esencias
liberadas por diferentes algas u hongos pueden dar olores y sabores muy
fuertes al agua, aunque estén en muy pequeñas concentraciones. Las
sales o los minerales dan sabores salados o metálicos, en ocasiones sin
ningún olor.
Temperatura Aumenta la velocidad de las reacciones del metabolismo, acelerando la
putrefacción.
Las centrales nucleares, térmicas y otras industrias contribuyen a la
contaminación térmica de las aguas, a veces de forma importante.
Eduardo Gómez
Impactos en la Hidrosfera 29
Alteraciones
físicas
Características y contaminación que indica
Materiales en
suspensión
Partículas como arcillas, limo y otras, aunque no lleguen a estar
disueltas, son arrastradas por el agua de dos maneras: en disoluciones
coloidales; o en suspensión que sólo dura mientras el movimiento del
agua las arrastra.
Radiactividad Las aguas naturales tienen unos valores de radiactividad, debidos sobre
todo a isótopos del K. Algunas actividades humanas pueden contaminar
el agua con isótopos radiactivos.
Espumas Los detergentes producen espumas y añaden fosfato al agua
(eutrofización). Disminuyen mucho el poder autodepurador de los ríos al
dificultar la actividad bacteriana. También interfieren en los procesos de
floculación y sedimentación en las estaciones depuradoras.
Conductividad El agua pura tiene una conductividad eléctrica muy baja. El agua natural
tiene iones en disolución y su conductividad es mayor y proporcional a la
cantidad y características de esos electrolitos. Por esto se usan los
valores de conductividad como índice aproximado de concentración de
solutos.
Eduardo Gómez
Impactos en la Hidrosfera 30
Contaminantes químicos
Alteraciones
químicas
Contaminación que indica
pH Las aguas naturales pueden tener pH ácidos por el CO2 disuelto
desde la atmósfera o proveniente de los seres vivos; por ácido
sulfúrico procedente de algunos minerales, por ácidos húmicos
disueltos del mantillo del suelo.
Las aguas contaminadas con vertidos mineros o industriales
pueden tener pH muy ácido. El pH tiene una gran influencia en
los procesos químicos que tienen lugar en el agua, actuación de
los floculantes, tratamientos de depuración, etc.
Oxígeno disuelto
(OD)
Las aguas superficiales limpias suelen estar saturadas de
oxígeno, lo que es fundamental para la vida. Si el nivel de
oxígeno disuelto es bajo indica contaminación con materia
orgánica.
Eduardo Gómez
Impactos en la Hidrosfera 31
Contaminantes químicos II
Alteraciones
químicas
Contaminación que indica
Materia orgánica
biodegradable:
Demanda Bioquímica
de Oxígeno (DBO5)
DBO5 es la cantidad de oxígeno disuelto requerido por los
microorganismos para la oxidación aerobia de la materia orgánica
biodegradable presente en el agua. Se mide a los cinco días. Su
valor da idea de la calidad del agua desde el punto de vista de la
materia orgánica presente y permite prever cuanto oxígeno será
necesario para la depuración de esas aguas e ir comprobando
cual está siendo la eficacia del tratamiento depurador en una
planta.
Materiales oxidables:
Demanda Química de
Oxígeno (DQO)
Es la cantidad de oxígeno que se necesita para oxidar los
materiales contenidos en el agua con un oxidante químico
(normalmente dicromato potásico en medio ácido). Se determina
en tres horas y, en la mayoría de los casos, guarda una buena
relación con por lo que es de gran utilidad al no necesitar los
cinco días de embargo no diferencia entre materia biodegradable
y el resto y no suministra información sobre la velocidad de
degradación en condiciones naturales.
Eduardo Gómez
Impactos en la Hidrosfera 32
Contaminantes químicos III
Alteraciones
químicas
Contaminación que indica
Nitrógeno total Varios compuestos de nitrógeno son nutrientes esenciales. Su
presencia en las aguas en exceso es causa de eutrofización.
El nitrógeno se presenta en muy diferentes formas químicas en
las aguas naturales y contaminadas.. El contenido en nitratos y
nitritos se da por separado.
Fósforo total El fósforo, como el nitrógenos, es nutriente esencial para la vida.
Su exceso en el agua provoca eutrofización.
Eduardo Gómez
Impactos en la Hidrosfera 33
Contaminantes químicos (IV)
Aniones:
cloruros
nitratos
nitritos
fosfatos
sulfuros
cianuros
fluoruros
indican salinidad
indican contaminación agrícola
indican actividad bacteriólogica
indican detergentes y fertilizantes
indican acción bacteriológica anaerobia (aguas negras, etc.)
indican contaminación de origen industrial
en algunos casos se añaden al agua para la prevención de las caries,
aunque es una práctica muy discutida.
Cationes:
sodio
calcio y Mg
amonio
metales pesados
indica salinidad
están relacionados con la dureza del agua
contaminación con fertilizantes y heces
de efectos muy nocivos; se bioacumulan en la cadena trófica.
Compuestos
orgánicos
Los aceites y grasas procedentes de restos de alimentos o de procesos
industriales (automóviles, lubricantes, etc.) son difíciles de metabolizar por
las bacterias y flotan formando películas en el agua que dañan a los seres
vivos.
Los fenoles pueden estar en el agua como resultado de contaminación
industrial .
Eduardo Gómez
Impactos en la Hidrosfera 34
Contaminantes biológicos
Alteraciones biológicas del agua Contaminación que indican
Bacterias coliformes Desechos fecales
Virus
Desechos fecales y restos
orgánicos
Animales, plantas, microorganismos
diversos
Eutrofización
Eduardo Gómez
Impactos en la Hidrosfera 35
Parámetros de calidad del agua
La calidad del agua se define en función del uso al que va a ser destinada:
1. Agua de boca
2. Agua de riego
3. Agua de baño
4. Agua de refrigeración
En función del destino, se establecen las condiciones de olor, sabor, etc., que
debe tener dicho agua.
Eduardo Gómez
Impactos en la Hidrosfera 36
Para medir esta calidad se establecen una serie de parámetros o
índices que nos permiten cuantificar la variación de las características
naturales (características que tiene el agua antes de ser utilizada),
teniendo en cuenta su uso.
Los parámetros indicadores más importantes son:
1.Parámetros generales
2.Parámetros inorgánicos
3.Parámetros orgánicos
4.Parámetros biológicos
5.Toxicidad
Eduardo Gómez
Impactos en la Hidrosfera 37
Parámetros generales: Temperatura
Puede variar entre unos límites.
 Afecta a parámetros o características tales como la
solubilidad de gases y sales, la cinética de las
reacciones químicas y bioquímicas, desplazamientos
de los equilibrios químicos, tensión superficial,
desarrollo de organismos presentes en el agua,...
 La influencia más interesante va a ser la disminución
de la solubilidad del oxígeno al aumentar la
temperatura y la aceleración de los procesos de
putrefacción.
Eduardo Gómez
Impactos en la Hidrosfera 38
Parámetros generales: pH
 El pH de un agua, que indica la reacción ácida y básica
de la misma es una propiedad de carácter químico de
vital importancia para el desarrollo de la vida acuática
(tiene influencia sobre determinados procesos químicos
y biológicos), la naturaleza de las especies iónicas que
se encuentran en su seno, el potencial redox del agua,
el poder desinfectante del cloro, etc.
 Por lo general las aguas naturales tienen un cierto
carácter básico, unos valores de pH comprendidos entre
6,5-8,5. En los océanos tienen un valor medio de 8.
Eduardo Gómez
Impactos en la Hidrosfera 39
Parámetros generales: Oxígeno disuelto
1. En su mayor parte procede de la solubilización del oxigeno atmosférico.
2. Puede variar el contenido en función de la temperatura o la presencia de
materia orgánica.
3. Su disminución provoca la muerte de muchas especies.
Eduardo Gómez
Impactos en la Hidrosfera 40
Otros parámetros generales
CONDUCTIVIDAD.
La conductividad del agua da una buena apreciación de la concentración de
los iones de disolución y una conductividad elevada se traduce en una
salinidad elevada o en valores anómalos de pH.
TURBIDEZ Y SÓLIDOS EN SUSPENSIÓN.
• La turbidez de un agua es provocada por la materia insoluble, en
suspensión o dispersión coloidal.
• La mayoría de las aguas residuales industriales tienen valores
elevados de turbidez.
• Unida a la turbidez está parte de la cantidad de materia sólida presente
en el agua.
Eduardo Gómez
Impactos en la Hidrosfera 41
DUREZA DEL AGUA
La dureza es también un parámetro relacionado con los anteriores. Mide la
presencia de cationes Ca+2 y Mg+2, y en menor cantidad Fe+2 y Mn+2 y otros
alcalinotérreos.
Se diferencian:
• Dureza total: es la suma total de las concentraciones de sales de Ca y
Mg
• Dureza temporal: Es la que corresponde a los hidrogenocarbonatos de
calcio y magnesio, desaparece por ebullición pues precipitan los
carbonatos.
• Dureza permanente: es la que existe después de la ebullición del agua,
es la diferencia entre las dos anteriores.
Eduardo Gómez
Impactos en la Hidrosfera 42
CARACTERÍSTICAS ORGANOLÉPTICAS: COLOR, OLOR Y SABOR.
• Color: hay que distinguir lo que se llama color aparente, el que presenta el
agua bruta y el verdadero, que es el que presenta cuando se le ha separado
la materia en suspensión.
• Olor y sabor: el olor y sabor están en general íntimamente relacionados.
Existen solamente cuatro sabores fundamentales: ácido, salado, amargo y
dulce, los olores pueden ser mucho más específicos.
• Las medidas de olores y sabores son estimativas, mediante procesos de
dilución.
Eduardo Gómez
Impactos en la Hidrosfera 43
Parámetros inorgánicos
Indican las cantidades de sales minerales disueltas de forma natural
en el agua a su paso por distintos tipos de suelos y rocas.
Estas cantidades naturales pueden verse muy afectadas por
procesos humanos como:
1. Industria minera
2. Papeleras, textiles
3. Industria alimentaria
4. Industria química
Eduardo Gómez
Impactos en la Hidrosfera 44
Parámetros orgánicos
Indican la cantidad de materia orgánica en el agua, pero sin indicar
el origen de la misma:
Los parámetros más utilizados son:
1. OD (oxígeno disuelto)
2. COT (Carbono orgánico total)
3. DBO (Demanda biológica de oxígeno)
4. DQO (Demanda química de oxígeno)
Eduardo Gómez
Impactos en la Hidrosfera 45
El Oxígeno Disuelto (OD) es vital para la vida acuática, ya que
se utiliza en la respiración.
Su cantidad dependerá de la limpieza de las aguas (las aguas
superficiales limpias están saturadas de oxígeno), de la cantidad
de vertidos de material orgánico (la cantidad de oxígeno
disminuirá con la descomposición de la materia orgánica), de la
temperatura del agua (el oxígeno se disuelve mejor en aguas frías
que en calientes), etc.
Eduardo Gómez
Impactos en la Hidrosfera 46
Carbono orgánico total (COT):
o Consiste en medir la cantidad de dióxido de carbono producido por
calcinación de una micromuestra.
o Según que el agua haya sido filtrada previamente o no, se obtendrá el
carbono disuelto o el carbono total.
o La medida de COT está menos sujeta a interferencias que la medida de
la DQO, particularmente en presencia de materia nitrogenada, siendo
además una técnica más rápida y reproducible.
o Se mide en mg de C/L.
Eduardo Gómez
Impactos en la Hidrosfera 47
Demanda Bioquímica de Oxígeno (DBO5) en 5 días (unas ¾ partes de la DBO
total):
o Es el parámetro que se maneja para tener una medida de la materia
orgánica biodegradable.
o Se define como la cantidad de oxígeno necesaria para la descomposición
biológica aeróbica de la materia orgánica biodegradable de un agua.
o Se calcula midiendo la disminución en la concentración de oxígeno disuelto
del agua después de incubar una muestra durante 5 días a 20ºC.
Eduardo Gómez
Impactos en la Hidrosfera 48
Unos valores elevados de DBO5 indican una alta concentración de materia
orgánica biodegradable:
o Aguas muy puras: DBO5 < 3 ppm O2 (mg de O2/litro)
o Pureza intermedia: DBO5 3-10 ppm O2
o Agua contaminada: DBO5 > 10 ppm O2
o Residuales urbanas: DBO5 100-400 ppm O2
o Industria alimentaria o semejante: DBO5 hasta 10.000
ppm O2
Eduardo Gómez
Impactos en la Hidrosfera 49
Demanda Química de Oxígeno (DQO):
o Se expresa como la cantidad de oxígeno equivalente necesaria para la
oxidación química de la materia orgánica oxidable de un agua.
o Sus unidades, por lo tanto, son las mismas que la DBO, es decir, mg de
O2/L.
o Entre las ventajas sobre la medida de DBO, cabe destacar el tiempo
considerablemente inferior del análisis (3 horas).
o Mide la cantidad de materia orgánica total susceptible de oxidación
química (biodegradable y no biodegradable).
o En esta medida se sustituyen los microorganismos por un poderoso
agente químico, como el bicromato o el permanganato de potasio en
medio ácido.
Eduardo Gómez
Impactos en la Hidrosfera 50
Toxicidad
El término toxicidad se refiere al daño que puede producir en los seres vivos
la presencia de determinados contaminantes en un agua, en concentraciones
que den positivos los denominados test de toxicidad.
La toxicidad de un vertido puede manifestarse:
1. De forma directa: en función de la dosis de especies tóxicas y su
tiempo de acción
2. De forma indirecta como resultado de la acumulación en los seres
vivos (bioacumulación).
La evaluación de este parámetro se puede realizar por medida de la
mortalidad de diferentes especies.
Otros resultados de toxicidad se refieren al carácter cancerígeno, mutagénico
o teratogénico (capacidad de producir malformaciones) de los contaminantes.
Eduardo Gómez
Impactos en la Hidrosfera 51
Compuestos tóxicos más abundantes:
1. Carácter inorgánico:
• Metales pesados
• Compuestos de As, Se, Be, CN-, Sb;....
2. Microcontaminantes orgánicos:
• Fenoles
• Pesticidas
• PCB (policlorobifenilos)
• HAP (Hidrocarburos aromáticos policiclicos)
3. Elementos radiactivos
4. Microorganismos patógenos:
• Bacterias (Salmonella, Shigella,...)
• Virus (Enterovirus,...)
• Protozoos (Amebas,...)
• Hongos (Aspergillus,...)
Eduardo Gómez
Impactos en la Hidrosfera 52
Radiactividad.
o Todas las aguas naturales presentan una determinada radiactividad
natural, como consecuencia de la presencia de isótopos radiactivos
naturales de los elementos, en especial del 40K y 87Rb.
o Actualmente, y como consecuencia de las actividades nucleares de
origen industrial (civil o militar) y farmacológico, hay un incremento de
la radiactividad de las aguas que puede llegar a ser muy perjudicial.
Entre los isótopos más frecuentes debe señalarse la existencia de
226Ra, 230Th, 90Sr,...
o No se efectúa la medida de cada uno de los isótopos radiactivos, sino
que se determina la radiación  global y la radiación  global,
midiéndola en Bq/L.
Eduardo Gómez
Impactos en la Hidrosfera 53
Características microbiológicas.
Los microorganismos más importantes que podemos encontrar en las
aguas son bacterias, virus, hongos, protozoos y distintos tipos de algas
(por ej. las azul verdosas).
La contaminación de tipo bacteriológico es debida fundamentalmente a los
desechos humanos y animales, ya que los agentes patógenos –
bacterias y virus- se encuentran en las heces, orina y sangre, y son el
origen de muchas enfermedades y epidemias (fiebres tifoideas,
disentería, cólera, polio, hepatitis infecciosa,...).
Desde el punto de vista histórico, la prevención de las enfermedades
originadas por las aguas constituyó la razón fundamental del control de
la contaminación.
Eduardo Gómez
Impactos en la Hidrosfera 54
EFECTOS DE LA CONTAMINACIÓN DEL AGUA
Hay que diferenciar los efectos de la contaminación en tres niveles:
 AGUAS SUPERFICIALES
 RÍOS: Debido a su dinámica poseen capacidad de autodepuración, no
obstante pueden aparecer problemas de restricción de agua,
alteraciones de la biocenosis, apariencia y olor desagradables.
 LAGOS: Al ser masas estáticas, los efectos de la contaminación son
más severos y persistentes.
 AGUAS SUBTERRÁNEAS
 AGUAS OCEÁNICAS
Eduardo Gómez
Impactos en la Hidrosfera 55
Contaminación de las aguas superficiales
Los ríos, debido a su capacidad erosiva arrastran una gran cantidad de
materiales a los que hay que añadir los procedentes de las distintas
actividades humanas
Los ríos tienen una cierta capacidad de autodepuración, pero en muchas
ocasiones no pueden con todos estos productos y sus efectos son:
1. Restricciones en el uso del agua
2. Alteraciones en la flora y fauna
3. Apariencia y olores desagradables
Eduardo Gómez
Impactos en la Hidrosfera 56
El proceso de autodepuración depende del tipo y cantidad de Materia
Orgánica (MO) que tenga, de la cantidad de oxígeno disuelto y del tipo
de microoganismos que lo habiten.
Se pueden distinguir tres zonas en un río en
función de los indicadores biológicos que
encontremos y que a su vez dependen de las
características físico-químicas del agua:
1. Zona oligosapróbica: Río sin contaminar
2. Zona mesosapróbica: Más contaminada
3. Zona polisapróbica: Muy contaminada
Eduardo Gómez
Impactos en la Hidrosfera 57
Eduardo Gómez
Impactos en la Hidrosfera 58
Eduardo Gómez
Impactos en la Hidrosfera 59
Contaminación de lagos
En los lagos el proceso de contaminación es mas grave por que la dinámica
del lago no permite la dilución de los contaminantes.
Al ser aguas estáticas los contaminantes se acumulan y almacenan,
alterando el equilibrio de la zona, provocando desaparición de unas especies
y proliferación de otras
El ejemplo más claro es el de la eutrofización
Eduardo Gómez
Impactos en la Hidrosfera 60
Eduardo Gómez
Impactos en la Hidrosfera 61
Eutrofización
Un río, un lago o un embalse sufren eutrofización cuando sus aguas se
enriquecen en nutrientes.
Podría parecer a primera vista que es bueno que las aguas estén bien
repletas de nutrientes, porque así podrían vivir más fácil los seres vivos. Pero
la situación no es tan sencilla.
El problema está en que si hay exceso de nutrientes crecen en abundancia
las plantas y otros organismos. Más tarde, cuando mueren, se pudren y llenan
el agua de malos olores y le dan un aspecto nauseabundo, disminuyendo
drásticamente su calidad.
El proceso de putrefacción consume una gran cantidad del oxígeno disuelto y
las aguas dejan de ser aptas para la mayor parte de los seres vivos. El
resultado final es un ecosistema casi destruido.
Eduardo Gómez
Impactos en la Hidrosfera 62
Nutrientes que eutrofizan las aguas
Los nutrientes que más influyen en este proceso son los fosfatos y los nitratos.
En algunos ecosistemas el factor limitante es el fosfato, como sucede en la mayoría
de los lagos de agua dulce, pero en muchos mares el factor limitante es el nitrógeno
para la mayoría de las especies de plantas.
En los últimos 20 o 30 años las concentraciones de nitrógeno y fósforo en muchos
mares y lagos casi se han duplicado. La mayor parte les llega por los ríos.
En el caso del nitrógeno, una elevada proporción (alrededor del 30%) llega a través
de la contaminación atmosférica. El nitrógeno es más móvil que el fósforo y puede
ser lavado a través del suelo o saltar al aire por evaporación del amoniaco o por
desnitrificación.
El fósforo es absorbido con más facilidad por las partículas del suelo y es
arrastrado por la erosión erosionadas o disuelto por las aguas de escorrentía
superficiales.
Eduardo Gómez
Impactos en la Hidrosfera 63
Fuentes de eutrofización
Eutrofización natural
La eutrofización es un proceso que se va produciendo lentamente de forma
natural en todos los lagos del mundo, porque todos van recibiendo
nutrientes.
Eutrofización de origen humano
Los vertidos humanos aceleran el proceso hasta convertirlo, muchas veces,
en un grave problema de contaminación. Las principales fuentes de
eutrofización son:
Los vertidos urbanos, que llevan detergentes y desechos orgánicos; los
vertidos ganaderos y agrícolas, que aportan fertilizantes, desechos
orgánicos y otros residuos ricos en fosfatos y nitratos
Eduardo Gómez
Impactos en la Hidrosfera 64
Medidas para evitar la eutrofización
1. Disminuir la cantidad de fosfatos y nitratos en los vertidos
2. Usar detergentes con baja proporción de fosfatos
3. Emplear menor cantidad de detergentes
4. No abonar en exceso los campos
5. Usar los desechos agrícolas y ganaderos como fertilizantes, en vez de
verterlos, etc.
Eduardo Gómez
Impactos en la Hidrosfera 65
En concreto:
1. Tratar las aguas residuales en EDAR que incluyan tratamientos biológicos y
químicos que eliminan el fósforo y el nitrógeno.
2. Almacenar adecuadamente el estiércol que se usa en agricultura.
3. Usar los fertilizantes más eficientemente.
4. Cambiar las prácticas de cultivo a otras menos contaminantes. Por ejemplo:
 Retrasar el arado y la preparación de los campos para el cultivo hasta
la primavera
 Plantar los cultivos de cereal en otoño asegura tener cubiertas las
tierras con vegetación durante el invierno con lo que se reduce la
erosión.
5. Reducir las emisiones de NOx y amoníaco
6. Inyección de O2 en embalses y lagos afectados
7. Crecimiento de algas cianofíceas
Eduardo Gómez
Impactos en la Hidrosfera 66
Se da en 3 fases:
1. Aporte de nutrientes: sobre todo fosfatos pues
el nitrógeno puede ser fijado por cianobacterias
fitoplanctonicas y el sulfato se necesita en
menor cantidad.
2. Proliferación de fitoplancton masiva en
superficie que impide la entrada de luz con
muerte del fitoplancton por debajo de esta zona
fótica disminuida.
3. Descomposición de la materia fitoplanctonica
muerta por:
 Oxidación por bacterias aerobias que
agotan el oxígeno
 Fermentación por bacterias anaerobias
cuando no hay oxígeno, que producen
sulfhídrico (olor a huevos podridos),
amoniaco (olor orina) y metano (burbujas
que suben) y que pueden producir
enfermedades.
Eduardo Gómez
Impactos en la Hidrosfera 67
La eutrofización la producen sobre todo las aguas
agrícolas, los detergentes fosforados , purines
animales, alpechines (restos de aceituna) y otros
restos de la industria agroalimentaria.
Las consecuencias son la sustitución de los peces de
aguas limpias por otros de peor calidad, y la
alteración de todo el ecosistema por
envenenamiento y de la calidad del agua.
Eduardo Gómez
Impactos en la Hidrosfera 68
Los fenómenos de eutrofización también se pueden producir en estuarios
costeros y mares más o menos cerrados (Báltico, Mar Negro,
Mediterráneo..)
Eduardo Gómez
Impactos en la Hidrosfera 69
Actualmente (2008) la eutrofización afecta a:
• 54% de los lagos asiáticos
• 53 % de los lagos europeos
• 48% de los lagos de América del Norte
• 41% de los lagos de América del Sur
• 28% de los lagos africanos
En España, están afectados por este problema zonas como:
• Parque Natural del Aiguamolls de l’Ampordà
• Delta del Ebro
• Albufera de Valencia
• Tablas de Daimiel
• Doñana
• Manga del Mar Menor
Eduardo Gómez
Impactos en la Hidrosfera 70
Contaminación de aguas subterráneas
Las aguas subterráneas son una de las principales fuentes de suministro
para uso doméstico y para el riego en muchas partes de España y del
mundo.
En España alrededor de la tercera parte del agua que se usa en las ciudades
y la industria y la cuarta parte de la que se usa en agricultura son aguas
subterráneas.
En muchos lugares en los que las precipitaciones son escasas e irregulares
pero el clima es muy apto para la agricultura son un recurso vital y una gran
fuente de riqueza, ya que permiten cultivar productos muy apreciados en los
mercados internacionales.
Eduardo Gómez
Impactos en la Hidrosfera 71
Las aguas subterráneas suele ser más difíciles de contaminar que las
superficiales, pero cuando esta contaminación se produce, es más difícil de
eliminar.
Sucede esto porque las aguas del subsuelo tienen un ritmo de renovación
muy lento.
Se calcula que mientras el tiempo de permanencia medio del agua en los
ríos es de días, en un acuífero es de cientos de años, lo que hace muy
difícil su purificación.
Contaminación de aguas subterráneas
Se suelen distinguir dos tipos de procesos contaminantes de las aguas
subterráneas:
•Puntuales: Afectan a zonas muy localizadas,
•Difusos: Provocan contaminación dispersa en zonas amplias, en las
que no es fácil identificar un foco principal.
Eduardo Gómez
Impactos en la Hidrosfera 72
Actividades que suelen provocar contaminación puntual son:
• Lixiviados de vertederos de residuos urbanos y fugas de aguas residuales
que se infiltran en el terreno.
• Lixiviados de vertederos industriales, derrubios de minas, depósitos de
residuos radiactivos o tóxicos mal aislados, gasolineras con fugas en sus
depósitos de combustible, etc.
• Pozos sépticos y acumulaciones de purines procedentes de las granjas.
Este tipo de contaminación suele ser más intensa junto al lugar de origen y se va
diluyendo al alejarnos. La dirección que sigue el flujo del agua del subsuelo
influye de forma muy importante en determinar en qué lugares los pozos tendrán
agua contaminada y en cuales no. Puede suceder que un lugar relativamente
cercano al foco contaminante tenga agua limpia, porque la corriente subterránea
aleja el contaminante de ese lugar, y al revés.
Eduardo Gómez
Impactos en la Hidrosfera 73
La contaminación difusa suele estar provocada por:
• Uso excesivo de fertilizantes y pesticidas en la agricultura o en las
prácticas forestales.
• Explotación excesiva de los acuíferos que facilita el que las aguas
salinas invadan la zona de aguas dulces, por desplazamiento de la
interfase entre los dos tipos de aguas.
Este tipo de contaminación puede provocar situaciones especialmente
preocupantes con el paso del tiempo, al ir cargándose de contaminación, lenta
pero continuamente, zonas muy extensas.
Eduardo Gómez
Impactos en la Hidrosfera 74
Eduardo Gómez
Impactos en la Hidrosfera 75
Lugar de
origen
Fuentes de contaminación potenciales de aguas subterráneas
Municipal Industrial Agrícola Individual
Por debajo
de la
superficie
de suelo
basureros
fugas y drenaje de
líneas de aguas
residuales
tuberías
tanques de
almacenamiento
subterráneos
almacenamiento
subterráneo
tanques
pozos: construidos
inadecuadamente o
abandonados
sistemas sépticos
pozos: construidos
inadecuadamente o
abandonados
Eduardo Gómez
Impactos en la Hidrosfera 76
Lugar de
origen
Fuentes de contaminación potenciales de aguas subterráneas
Municipal Industrial Agrícola Individual
Cerca de la
superficie del
suelo
contaminación del
aire
disposición en suelos
de residuos
municipales
sal para el deshielo
de caminos
calles &
aparcamientos
contaminación de aire
químicos: almacén &
derrames
combustibles: almacén
& derrames
arrastre en residuos de
minas
contaminación del aire
derrame de químicos
fertilizantes
residuos en granjas
almacenamiento &
emisión al campo
pesticidas
contaminación del aire
fertilizantes
casas
limpiadores
detergentes
petróleo
pinturas
pesticidas
Eduardo Gómez
Impactos en la Hidrosfera 77
Medidas para evitar la contaminación de las aguas subterráneas:
1. Limitación de ciertas actividades, instalaciones y obras en zonas
próximas a acuíferos.
2. Control de vertidos.
3. Instalación de depuradoras en procesos de producción industrial.
Eduardo Gómez
Impactos en la Hidrosfera 78
Sobreexplotación de acuíferos
Eduardo Gómez
Impactos en la Hidrosfera 79
Cuando de un acuífero se saca más agua de la que entra se produce la
sobreexplotación del mismo, proceso que disminuye el nivel freático y puede
provocar intrusiones de agua de mar si se produce cerca de la costa.
El agua de mar, mas densa, entra en el acuífero desalojando al agua dulce y
provoca su salinización e inutilización para muchos usos.
En España este fenómeno es frecuente en el litoral mediterráneo y en las
islas por el excesivo consumo derivado del turismo y de las actividades
agrícolas.
Eduardo Gómez
Impactos en la Hidrosfera 80
Contaminación de océanos
El vertedero final para una gran parte de nuestros desechos es el océano.
A él van a parar gran parte de los vertidos urbanos e industriales. No sólo
recibe las aguas residuales, sino que, en muchas ocasiones, se usa para
arrojar las basuras o, incluso, los residuos radiactivos.
La capacidad purificadora de las grandes masas de agua marina es muy
grande. En ellas se diluyen, dispersan o degradan ingentes cantidades de
aguas fecales, hidrocarburos, desechos industriales e, incluso, materiales
radiactivos. Por este motivo es muy tentador recurrir al barato sistema de
arrojar al mar los residuos de los que queremos deshacernos; pero en
muchos lugares, los excesos cometidos han convertido grandes zonas
del mar en desiertos de vida o en cloacas malolientes.
Estos problemas no son iguales en todos los mares, ni en cualquier parte
del mar. La mayor concentración se da en las costas y en los mares
cerrados con poca dinámica en sus aguas.
Eduardo Gómez
Impactos en la Hidrosfera 81
Eduardo Gómez
Impactos en la Hidrosfera 82
Eduardo Gómez
Impactos en la Hidrosfera 83
Los efectos de los vertidos también
se dejan sentir en las aguas libres de
mares y océanos. Las grandes
cantidades de plástico echadas al
mar son las responsables de la
muerte de muchas focas, ballenas,
delfines, tortugas, y aves marinas,
que quedan atrapadas en ellas o se
las comen.
Eduardo Gómez
Impactos en la Hidrosfera 84
El 80% de las sustancias que contaminan el mar tienen su origen en tierra.
De las fuentes terrestres la contaminación difusa es la más importante.
Incluye pequeños focos como tanques sépticos, coches, camiones, etc. y
otros mayores como granjas, tierras de cultivo, bosques, etc. Los accidentes
marítimos son responsables de alrededor de un 5% de los hidrocarburos
vertidos en el mar. En cambio, una ciudad de cinco millones de habitantes
acaba vertiendo en un año la misma cantidad que derramó el “Exxon Valdez”
en su accidente en Alaska.
Aproximadamente un tercio de la contaminación que llega a los mares
empieza siendo contaminación atmosférica pero después acaba cayendo a
los océanos.
Eduardo Gómez
Impactos en la Hidrosfera 85
Para medir la contaminación se utilizan en
ocasiones bioindicadores con determinados
tipos de moluscos (mejillones, percebes…)
que al ser filtradores recogen todo tipo de
contaminantes:
Uno de los mares más contaminados es el Mediterráneo debido a:
 Mar cerrado y poco dinámico
 Población en aumento y concentrada en el litoral
 Vertido de residuos sin tratamiento procedentes de:
• Ríos contaminados
• Desagües (emisarios submarinos)
• Vertidos directos
• Explotación de fondos marinos
Eduardo Gómez
Mareas negras
Impactos en la Hidrosfera 86
Se denomina marea negra a la masa oleosa que
se crea cuando se produce un derrame de
hidrocarburos en el medio marino.
Se trata de una de las formas de contaminación
más graves, pues no sólo invade el hábitat de
numerosas especies marinas, sino que en su
dispersión alcanza igualmente costas y playas
destruyendo la vida a su paso, o alterándola
gravemente, a la vez que se generan grandes
costes e inversiones en la limpieza, depuración y
regeneración de las zonas afectadas.
Eduardo Gómez
Principales mareas negras
Impactos en la Hidrosfera 87
Eduardo Gómez
Impactos en la Hidrosfera 88
Daños a la vida marina
Cuando se produce el vertido, el hidrocarburo forma una mancha negra, una
lámina que flota sobre el agua. Esta lámina impide que penetre la luz del sol y
que se realice la fotosíntesis. Esto causa que los organismos primarios se
vean afectados y con ellos toda la cadena alimenticia.
El plancton es la población que se ve afectada de una forma más directa.
Estos microorganismos forman parte de la alimentación de muchos otros seres
que habitan en el mar, entre ellos se encuentran las grandes ballenas.
Los moluscos bivalvos (mejillones, almejas,
etc.), además de su escasa dinámica, no
han desarrollado la capacidad de asimilar ni
eliminar el hidrocarburo, por lo que a
pequeñas concentraciones del mismo en el
agua, estos organismos se ven afectados
seriamente.
Eduardo Gómez
Impactos en la Hidrosfera 89
En el caso de los peces, encontramos diferentes comportamientos y efectos
dependiendo de las especies. Existen peces que a 1000 ppm (partes por
millón) no se ven afectados, y sin embargo existen larvas que a pequeñas
concentraciones de hidrocarburos mueren. El hidrocarburo afecta a sus
estructuras respiratorias y mueren. Si logran sobrevivir, el petróleo se trasmitirá
a las especies que se alimenten de ellos.
Los cetáceos en principio no se tendrían que verse muy afectados de forma
directa, puesto que se cree que son capaces de detectar una mancha de
petróleo que flota en el agua y desviar su trayectoria. Pero sin embargo, como
hemos dicho anteriormente, las grandes ballenas se ven afectadas de forma
indirecta al desaparecer su alimento, el plancton.
Eduardo Gómez
Impactos en la Hidrosfera 90
En las poblaciones de cetáceos más pequeños y costeros, como los delfines, sí
se han detectado daños, por ejemplo con el derrame del Prestige, se han
encontrado delfines muertos con una gran cantidad de petróleo pegado a su
piel. Para estos animales, las barreras de contención que se colocan en la costa
para detener el avance del petróleo también son un peligro, puesto que quedan
atrapados en ellas como si se tratase de unas redes.
Eduardo Gómez
Impactos en la Hidrosfera 91
Aves marinas
Estos animales mueren por congelación (hipotermia) puesto que
el petróleo en sus plumas no permite el aislamiento térmico ni la
impermeabilización de su cuerpo. La mayoría de aves que se
encuentran "petroleadas" mueren en pocos días debido al mal
estado en el que se encuentran. En las grandes catástrofes que
han ocurrido en la historia han muerto miles y miles de aves por
el derrame.
Eduardo Gómez
Impactos en la Hidrosfera 92
Daños al ecosistema terrestre
o Cuando la marea negra llega a las costas las playas se tiñen de negro y
las rocas se cubren de una película de hidrocarburo. El crudo se
introduce entre los granos de arena y penetra en el suelo, en este
momento se produce la contaminación del terreno.
o Los seres vivos más afectados son los invertebrados que habitan en
este ecosistema. Las poblaciones intersticiales que viven en este hábitat
mueren.
o La película de crudo forma una capa que impide el crecimiento de
nuevas plantas y animales. Por eso la limpieza de las playas y líneas de
costa son necesarias limpiarlas en profundidad para evitar que el
hidrocarburo permanezca en el medio.
o Pueden producir daños irreparables en ecosistemas de litoral como
marismas, manglares y arrecifes de coral
o Puede incrementarse la lluvia ácida
Eduardo Gómez
Impactos en la Hidrosfera 93
Eduardo Gómez
Impactos en la Hidrosfera 94
Eduardo Gómez
Impactos en la Hidrosfera 95
Daños a la economía
La pérdidas económicas asociadas a los vertidos de petróleo al medio marino
son descomunales. Toda una población costera se puede ver afectada en mayor
o menor medida.
En los pueblos y ciudades costeras la pesca juega un papel importante en la
economía del lugar. Al producirse un vertido de hidrocarburo los bancos de
pesca se ven afectados. Pero también los animales que viven en las rocas y
superficies (percebes, mejillones, marisco en general), así como la flora
acuática.
La transformación de bellos paisajes en negros lugares manchados de
hidrocarburos, hacen que el turismo se resienta y las actividades que dependen
de él sufran grandes pérdidas económicas (hoteles, restaurantes, tiendas, etc.).
En estos casos las indemnizaciones son el único recurso que les queda a los
pescadores que se ven afectados. Un plan para que el pago de estas
indemnizaciones sea rápido y eficaz es lo que denuncian estas comunidades
pesqueras cuyo único recurso es el mar.
Eduardo Gómez
Depuración natural de las mareas negras
Impactos en la Hidrosfera 96
Eduardo Gómez
Impactos en la Hidrosfera 97
Medidas preventivas
1. Reglamentos y leyes internacionales
2. Buques de doble casco
3. Reglamentos de transporte de sustancias tóxicas y peligrosas
4. Distancias de navegación a la costa
Eduardo Gómez
Impactos en la Hidrosfera 98
Limpieza de las mareas negras
Contención y recogida
Siempre que sea posible, la contención de crudo en el agua será una de las
primeras operaciones que se realizarán, por su inocuidad, puesto que no
causan daños, y porque impiden que la marea negra se propague a otras
zonas. La contención consiste en rodear la marea negra, por lo general con
barreras flotantes o cercos. Más tarde se procede a la recogida del petróleo
mediante sistemas de succión (raseras o espumaderas).
Después de esta recogida se separa el hidrocarburo del agua por diferentes
procesos: centrifugación, bombeo por aspiración, adherencia a tambor o
discos giratorios, fibras absorbentes, etc.
Existen tres tipos diferentes de barreras según sus flotadores, estos pueden
ser planos, cilíndricos o cilíndricos hinchables.
Para la recogida y trasvase del hidrocarburo se utilizan los denominados
"skimmers" y bombas de succión.
Eduardo Gómez
Impactos en la Hidrosfera 99
Limpieza del crudo
Eduardo Gómez
Impactos en la Hidrosfera 100
Dispersantes
Los dispersantes químicos rompen los hidrocarburos en partículas más
pequeñas. Son mezclas que contienen tensioactivos (como los detergentes),
para reducir la tensión entre las superficies de las láminas de hidrocarburo y de
agua. Estos agentes dispersantes, lo que producen es que la concentración de
hidrocarburos en la columna de agua vuelva a estar en unos niveles
aceptables.
El tipo de dispersante y la concentración del mismo, dependerá de la tipología
del hidrocarburo derramado. En el desastre del buque tanque Torrey Canyon
en 1967, los daños producidos por los dispersantes utilizados fueron mayores
que los provocados por el vertido en sí.
Eduardo Gómez
Impactos en la Hidrosfera 101
Incineración
La incineración del petróleo es otra de las formas de
eliminación del crudo. Se puede eliminar hasta un 95%
del vertido total. Los efectos que tiene esta técnica es el
humo negro que se produce. En muchos de los
accidentes que han ocurrido en la historia de las mareas
negras, se ha producido el incendio accidental del buque
por alguna explosión interna, como ocurrió con el
Urquiola, Mega Borg y Mar Egeo.
Eduardo Gómez
Impactos en la Hidrosfera 102
Biodegradación (Biorremediación)
Existen microorganismos capaces de utilizar los hidrocarburos como fuente
de carbono (alimento). Como subproductos generan compuestos no tóxicos.
Las técnicas de limpieza generan las condiciones óptimas para el crecimiento
de estos microorganismos. Aportan nutrientes, oxígeno, condiciones de pH y
temperatura a los que los microorganismos "trabajan" mejor, etc.
Este método es lento y complejo, todavía se sigue experimentando con él.
Existen dos opciones a la hora de utilizar esta técnica:
1. Inoculación de bacterias petroleolíticas preparadas de forma industrial
2. Potenciación de las poblaciones autóctonas.
Esta última opción es la más aconsejable, puesto que esas poblaciones están
mejor adaptadas a ese medio.
Eduardo Gómez
Impactos en la Hidrosfera 103
Limpieza de playas y costas
La limpieza de las playas y costas requiere el esfuerzo de muchos puesto que
a veces las zonas son de difícil acceso.
Hay que procurar no utilizar maquinaria pesada para no causar daños físicos
al área afectada.
Se utilizan chorros a presión de agua caliente para separar el hidrocarburo.
Este método es criticado porque, aunque a simple vista parece que la playa ha
quedado limpia, esto no es cierto porque el hidrocarburo es enterrado a más
profundidad y provoca la muerte de la fauna intersticial que se encuentra en
las playas.
Eduardo Gómez
Impactos en la Hidrosfera 104
No hacer nada
En los vertidos que se producen en alta mar, o en aquellos donde las
operaciones de limpieza son ineficaces o difíciles, se suele dejar que actúen
los procesos naturales (olas, la fotoxidación, etc.) y el hidrocarburo se
degrade de forma natural. Este método de no actuación se realiza en zonas
donde la vegetación ha sido contaminada.
En costas pantanosas es el mejor método porque las otras tareas de limpieza
han producido más daños medioambientales.
Eduardo Gómez
Impactos en la Hidrosfera 105
Calidad de aguas potables
El agua natural (o aguas blancas) no es apta para el consumo (lleva
microorganismos y otras sustancias. Tiene que ser tratada para poder
convertirse en agua potable.
El proceso se denomina potabilización y se lleva a cabo en Estaciones
de Tratamiento de Agua Potable (ETAP).
El tratamiento que recibe el agua no siempre es el mismo, depende de
la carga de sustancias y contaminantes que tenga el agua natural.
Eduardo Gómez
Impactos en la Hidrosfera 106
Clasificamos las aguas naturales superficiales, según el
tratamiento que necesiten, en tres tipos:
1. Tipo A1. Necesita tratamientos físicos simples y de
desinfección.
2. Tipo A2. Necesita tratamientos físicos simples, tratamiento
químico y desinfección.
3. Tipo A3. Necesita tratamientos físico-químicos intensos,
afino y desinfección.
Eduardo Gómez
El ciclo urbano del agua
Impactos en la Hidrosfera 107
El agua que se reutiliza en las
poblaciones recorre un ciclo: se
toma del medio natural y, una
vez usada y depurada, se
reintegra de nuevo al medio.
En el ciclo urbano
diferenciamos tres fases:
• Captación,
• potabilización y
• depuración.
Eduardo Gómez
Captación
Impactos en la Hidrosfera 108
En los proyectos de captación deben existir las siguientes prioridades:
1. Elegir acuíferos con recursos superiores a las necesidades de la
población para evitar la sobreexplotación.
2. Que las aguas sean de la mejor calidad.
3. Localizar el lugar de captación lo más cercano posible al punto de
destino del agua.
Eduardo Gómez
Impactos en la Hidrosfera 109
Potabilización
Es el proceso por el que el agua natural, a través de una serie
de procesos fisico-químicos, se convierte en agua potable,
apta para el consumo humano.
La potabilización del agua se realiza en Estaciones de
Tratamiento de Aguas Potables (ETAP).
Eduardo Gómez
Impactos en la Hidrosfera 110
Los principales procesos son:
• Desbaste – tamización
Sistema de rejas y tamices, cada vez más finos, que eliminan los
sólidos más gruesos.
• Aireación
Al airear el agua se eliminan sustancias volátiles (CO2, H2S, ..) y se
oxidan otros compuestos (Fe, Mn…). Con este proceso se elimina
la posible corrosión en tuberías, así como malos olores y sabores.
• Decantación - sedimentación
Se añaden unos agentes químicos que favorecen la coagulación o
floculación de los sólidos finos en suspensión para que sedimenten
posteriormente.
Eduardo Gómez
Impactos en la Hidrosfera 111
• Filtración
Filtros de arena, grava, carbones activos…, que eliminan las sustancias
más finas.
• Desinfección
Consiste en la eliminación de patógenos. Se puede hacer por:
1. Filtros de membrana.
2. Cloración. Genera problemas de olor y sabor.
3. Ozonización. El ozono es un oxidante fuerte y tóxico para los
microorganismos. Es caro.
4. Radiación UV. Es caro y el agua debe estar muy clara para
evitar la absorción de radiación UV por parte de la materia
orgánica.
Eduardo Gómez
Impactos en la Hidrosfera 112
Si el agua tiene un alto contenido en sales de calcio o de magnesio (dureza)
se hace también un tratamiento de “ablandamiento” que reduce la dureza del
agua. Consiste en la adición de Na2CO3 o sosa caustica (NaOH) al agua.
Eduardo Gómez
Impactos en la Hidrosfera 113
Eduardo Gómez
Impactos en la Hidrosfera 114
Rio, agua
bruta
Depósito
abierto
Sedimentación
simple
Desbaste
Tamización
Aireación
Preoxidación
Coagulación
Floculación
Decantación
Sedimentación
Filtración fina
Desinfección Depósitos
Red de
distribución
Fangos
Tratamiento
de fangos
Eduardo Gómez
Impactos en la Hidrosfera 115
Depuración de aguas
Los procesos de depuración rebajan las contaminaciones fuertes con el fin
de facilitar la autodepuración, reutilizar las aguas residuales en regadíos y
favorecer la potabilización evitando riesgos para la salud.
Se diferencian dos grupos de sistemas depurativos:
1. Sistemas de tratamiento biológico.
2. Sistemas físico-químicos.
Su uso depende de cada EDAR (Estación Depuradura de Aguas
Residuales) y se pueden dar solos o combinados.
Eduardo Gómez
Tratamientos biológicos
Impactos en la Hidrosfera 116
Degradan la MO mediante microorganismos vivos (fundamentalmente
bacterias, ya sean las que lleva el agua o añadidas).
Tipos de tratamientos:
• Fangos activados
• Lechos bacterianos
• Tratamientos blandos: Lagunajes
Eduardo Gómez
Lagunajes
Impactos en la Hidrosfera 117
• Son lagunas artificiales
• Poco profundas
• El agua residual permanece meses
• Los sólidos sedimentan
• Los microorganismos degradan la MO
Pueden ser:
1. Lagunas aerobias
2. Lagunas anaerobias
3. Lagunas facultativas
Se pueden combinar varias lagunas de distinto
tipo.
Aerobia
Anaerobia
Eduardo Gómez
Otros tratamientos blandos
Impactos en la Hidrosfera 118
• Filtros verdes:
Plantaciones de chopos
u otros árboles/arbustos
de crecimiento rápido
que se riegan con
aguas residuales. Los
microorganismos del
suelo contribuyen a la
depuración.
• Lechos de turba:
Las aguas filtran a
través de un manto de
turba de grosor variable
y habitado por
microorganismos.
Son sistemas útiles para pequeñas poblaciones. Su coste y gasto de
mantenimiento son muy bajos.
Estructura interna de un humedal artificial para
el tratamiento de aguas residuales
Eduardo Gómez
Eduardo Gómez
Impactos en la Hidrosfera 120
Eduardo Gómez
Sistemas físico-químicos
Impactos en la Hidrosfera 121
• También llamados depuración tecnológica o dura.
• Se usan en grandes plantas.
• Necesitan grandes instalaciones (caras).
• Ventajas basadas en la rapidez y volumen de agua tratada.
Eduardo Gómez
Proceso de depuración
Impactos en la Hidrosfera 122
Depende de cada EDAR y del tipo de agua a tratar: urbana, agrícola,
industrial…
Se pueden diferenciar:
1. Línea de agua: Tratamiento del agua desde que entra hasta que
se vierte al receptor natural (río, mar….).
2. Línea de fangos: Es el proceso de compactación y concentración
de los residuos presentes en el agua residual.
3. Línea de gas: Proceso al que se somete el gas obtenido en el
tratamiento de lodos y fangos.
Eduardo Gómez
Impactos en la Hidrosfera 123
En verde: línea de agua. En marrón: línea de fangos. En amarillo: línea de gas
Eduardo Gómez
Impactos en la Hidrosfera 124
Eduardo Gómez
Impactos en la Hidrosfera 125
1 Pozo de llegada
2 Tanque de tormentas
3 Edificio de pretratamiento
4 Desarenador-desengrasador
5 Decantadores primarios
6 Reactores biológicos
7 Decantadores secundarios
8 Salida
VISTA AÉREA DE UNA E.D.A.R.
Eduardo Gómez
Impactos en la Hidrosfera 126
Eduardo Gómez
Línea de aguas
Impactos en la Hidrosfera
127
Tratamiento previo (pretratamiento)
Consiste en la separación de los elementos más grandes por medios mecánicos:
1. Predesbaste: Rejas con elementos móviles.
2. Desbaste: Tamices finos.
3. Desarenado – Desengrasado. El agua se remueve y airea para que la
arena sedimente y las grasas floten (se retiran por un sistema de
recogida superficial mediante rasquetas).
Los residuos generados en esta fase se compactan en contenedores y van a
vertederos o plantas de compostaje.
4. Depósitos de laminación: Para mantener caudales continuos de agua en
la planta.
Eduardo Gómez
Impactos en la Hidrosfera 128
Tratamiento primario
Se trata de retirar los sólidos en suspensión o materia flotante que no se
haya eliminado en el tratamiento previo. Requiere los siguientes
procesos:
1. Decantación por gravedad.
2. Floculación (añadir productos químicos que formen
agregados y favorezcan la precipitación).
3. Neutralización (ajuste del pH).
El proceso de floculación es precedido por la
coagulación, por eso se suele hablar de los
procesos de coagulación-floculación. Estos
facilitan la retirada de las sustancias en
suspensión y de las partículas coloidales.
Eduardo Gómez
Impactos en la Hidrosfera 129
Tratamiento secundario o biológico
• Conjunto de procesos biológicos complementados con procesos de
decantación para eliminar del agua la MO.
• El sistema más empleado es el de lodos o fangos activos que
consiste en poner el agua residual en grandes depósitos en los que
las bacterias del agua (o añadidas) oxidan la MO.
• Se inyecta oxígeno para favorecer el crecimiento bacteriano.
• Microorganismos y lodos son eliminados en un proceso posterior de
decantación.
• Es importante controlar los parámetros que aseguran un buen
crecimiento de las bacterias.
• Parte de los lodos se recirculan como inóculo bacteriano.
Eduardo Gómez
Impactos en la Hidrosfera 130
Otro sistema biológico es el de filtros o lechos bacterianos, donde
las bacterias se adhieren a un material inerte (fragmentos
sintéticos, piedras trituradas…) y el agua pasa por ellos.
Los microrganismos descomponen la materia orgánica del agua
que pasa por estos filtros del biorreactor.
Eduardo Gómez
Impactos en la Hidrosfera 131
Eduardo Gómez
Impactos en la Hidrosfera 132
Tratamiento terciario
Son procesos en los que el agua salida de los procesos secundarios se
somete a procesos complementarios y avanzados para eliminar la MO
restante o reducir la cantidad de elementos, como P y N o sus compuestos.
Son procesos caros (se utilizan en pocas EDAR) pero posibilitan la
reutilización del agua.
Desinfección. También se considera un tratamiento terciario para eliminar
patógenos. Su utilización depende del grado de eficacia de los tratamientos
anteriores.
Eduardo Gómez
Línea de fangos
Impactos en la Hidrosfera 133
Es el tratamiento de fangos primarios y secundarios no utilizados en la
recirculación.
1. Espesamiento de fangos. Reducción de volumen basada en la gravedad.
2. Estabilización de fangos. Digestión anaerobia y obtención de CH4 (puede
utilizarse como combustible: biogás).
3. Acondicionamiento químico. Adición de reactivos químicos para provocar
la coagulación de los sólidos.
4. Deshidratación por secado, prensado y centrifugación. El fango seco
puede ir a vertederos, incineradoras o plantas de compostaje.
Eduardo Gómez
Línea de gas
Impactos en la Hidrosfera 134
El gas obtenido en la línea de fangos puede aportar energía a la propia planta
o se puede quemar en una serie de antorchas que tienen estas plantas.
Eduardo Gómez
Impactos en la Hidrosfera 135Impactos en la Hidrosfera 135
Agua residual Desbaste
Desarenado,
desengrasado
Depósitos de
laminación
Decantación
primaria
Tratamiento
secundario:
Fangos activos o
lechos
bacterianos
Decantación
secundaria
Tratamiento de afino
filtración, desinfecciónReceptor natural
FangosDigestiónEspesamiento
Deshidratación
Al vertedero,
incineradora,
compostaje
Producción
de energía
Metano
Eduardo Gómez
Impactos en la Hidrosfera 136
Red de control de aguas superficiales
 Son sistemas de vigilancia de la calidad de las aguas y del estado
ambiental de los ríos. Con ellos se pueden detectar las agresiones que
sufren los ecosistemas fluviales y se recoge información de tipo
ambiental, científico y económico sobre los recursos hídricos.
 La evaluación de la calidad de las aguas es una materia difícil, en la que
se discute cuales son los mejores indicadores para evaluar el estado del
agua. El problema reside fundamentalmente en la definición que se
haga del concepto de "calidad del agua".
 En España esta red de control se denominó Red ICA (Red Integrada de
Calidad de las Aguas) que desde el año 1992 recogió los datos
obtenidos en las distintas redes existentes en ese momento, como son
la Red COCA (Control de Calidad General de las Aguas), la Red COAS
(Control Oficial de Abastecimientos) y la Red ICTIOFAUNA que controla
la aptitud del agua para la vida piscícola, hasta la entrada en vigor de la
DMA (Directiva Marco Europea del Agua).
Eduardo Gómez
Impactos en la Hidrosfera 137
Red COCA
El control de la Calidad General se realiza en las estaciones integradas en
la Red COCA, ubicadas en tramos de diversas características (cabecera,
tramos medios, aguas abajo de los vertidos más significativos) con el objeto
de tener una visión global y representativa de la calidad de las aguas en el
conjunto de la cuenca. En estas estaciones se analizan del orden de 40
parámetros distintos, cuyo valor se transmite a las confederaciones
hidrográficas y al Ministerio de Medio Ambiente.
Finalmente, se condensa la información recogida en un único valor
numérico que refleje la calidad del agua, para lo que se ha venido usando
un índice numérico denominado Índice de Calidad General (ICG).
Eduardo Gómez
Impactos en la Hidrosfera 138
Índice de Calidad General (ICG)
1. Es un índice muy utilizado en todo el Estado español.
2. El ICG se obtiene matemáticamente a partir de una fórmula que
integra 23 parámetros de calidad de las aguas.
o Nueve de estos parámetros, que se denominan básicos, son
necesarios en todos los casos.
o Otros catorce, que responden al nombre general de
complementarios, sólo se usan para aquéllas estaciones o
períodos en los que se analizan.
3. A partir de formulaciones matemáticas, que valoran la influencia de
cada uno de estos parámetros en el total del índice, se deduce un
valor final que se sitúa necesariamente entre 0 y 100.
Eduardo Gómez
Impactos en la Hidrosfera 139
CALIDAD DEL AGUA ICG
Excelente entre 85 y 100
Buena entre 75 y 85
Regular entre 65 y 75
Deficiente entre 50 y 65
Mala menor que 50Los parámetros de coeficiente 1 son
los más importantes a la hora de
determinar la calidad del agua. De
ellos, seis son básicos (OD, MES,
pH, conductividad, DBO y
coliformes). Otros tres básicos son
la DQO, fosfatos y nitratos.
Eduardo Gómez
Impactos en la Hidrosfera 140
Evolución de la calidad del agua (1998-2006)
Eduardo Gómez
Impactos en la Hidrosfera 141

Mais conteúdo relacionado

Mais procurados

Contaminacion del Agua
Contaminacion del  AguaContaminacion del  Agua
Contaminacion del AguaSandraSV
 
Cambio climatico
Cambio climaticoCambio climatico
Cambio climaticoBrunaCares
 
Contaminación ambiental
Contaminación ambientalContaminación ambiental
Contaminación ambientalFernando Uche
 
CONSECUENCIAS DEL DETERIORO DEL MEDIOAMBIENTE
CONSECUENCIAS DEL DETERIORO DEL MEDIOAMBIENTECONSECUENCIAS DEL DETERIORO DEL MEDIOAMBIENTE
CONSECUENCIAS DEL DETERIORO DEL MEDIOAMBIENTEKacheton Auquilla
 
Unidad VI. LOS IMPACTOS SOBRE LA HIDROSFERA
Unidad VI.  LOS IMPACTOS SOBRE LA HIDROSFERAUnidad VI.  LOS IMPACTOS SOBRE LA HIDROSFERA
Unidad VI. LOS IMPACTOS SOBRE LA HIDROSFERAjosemanuel7160
 
Cambio climático
Cambio climáticoCambio climático
Cambio climáticovictoruisvn
 
Contaminacion Del Suelo
Contaminacion Del SueloContaminacion Del Suelo
Contaminacion Del Sueloguesta17a14
 
La contaminacion ambiental
La contaminacion ambientalLa contaminacion ambiental
La contaminacion ambientalAdalberto
 
PRESENTACION EFECTO INVERNADERO
PRESENTACION EFECTO INVERNADERO PRESENTACION EFECTO INVERNADERO
PRESENTACION EFECTO INVERNADERO Marco_Armas
 
Contaminación ambiental
Contaminación ambientalContaminación ambiental
Contaminación ambientalIndependiente
 
Contaminación de las aguas
Contaminación de las aguasContaminación de las aguas
Contaminación de las aguasInma Dominguez
 
Concepto de medio ambiente y dinámica de sistemas 2012
Concepto de medio ambiente y dinámica de sistemas 2012Concepto de medio ambiente y dinámica de sistemas 2012
Concepto de medio ambiente y dinámica de sistemas 2012Alberto Hernandez
 
Contaminaciã³n de-aguas-continentales
Contaminaciã³n de-aguas-continentalesContaminaciã³n de-aguas-continentales
Contaminaciã³n de-aguas-continentalesNohemi Castillo
 

Mais procurados (20)

Contaminacion del Agua
Contaminacion del  AguaContaminacion del  Agua
Contaminacion del Agua
 
Biosfera
BiosferaBiosfera
Biosfera
 
Cambio climatico
Cambio climaticoCambio climatico
Cambio climatico
 
Contaminación ambiental
Contaminación ambientalContaminación ambiental
Contaminación ambiental
 
Cambio climático
Cambio climáticoCambio climático
Cambio climático
 
Tema 11. Contaminación de las Aguas
Tema 11. Contaminación de las AguasTema 11. Contaminación de las Aguas
Tema 11. Contaminación de las Aguas
 
CONSECUENCIAS DEL DETERIORO DEL MEDIOAMBIENTE
CONSECUENCIAS DEL DETERIORO DEL MEDIOAMBIENTECONSECUENCIAS DEL DETERIORO DEL MEDIOAMBIENTE
CONSECUENCIAS DEL DETERIORO DEL MEDIOAMBIENTE
 
Unidad VI. LOS IMPACTOS SOBRE LA HIDROSFERA
Unidad VI.  LOS IMPACTOS SOBRE LA HIDROSFERAUnidad VI.  LOS IMPACTOS SOBRE LA HIDROSFERA
Unidad VI. LOS IMPACTOS SOBRE LA HIDROSFERA
 
Cambio Climatico Global
Cambio Climatico GlobalCambio Climatico Global
Cambio Climatico Global
 
Recursos energéticos renovables
Recursos energéticos renovablesRecursos energéticos renovables
Recursos energéticos renovables
 
Cambio climático
Cambio climáticoCambio climático
Cambio climático
 
Contaminacion Del Suelo
Contaminacion Del SueloContaminacion Del Suelo
Contaminacion Del Suelo
 
Contaminacion del suelo
Contaminacion del sueloContaminacion del suelo
Contaminacion del suelo
 
La contaminacion ambiental
La contaminacion ambientalLa contaminacion ambiental
La contaminacion ambiental
 
PRESENTACION EFECTO INVERNADERO
PRESENTACION EFECTO INVERNADERO PRESENTACION EFECTO INVERNADERO
PRESENTACION EFECTO INVERNADERO
 
Contaminación ambiental
Contaminación ambientalContaminación ambiental
Contaminación ambiental
 
Contaminación de las aguas
Contaminación de las aguasContaminación de las aguas
Contaminación de las aguas
 
Concepto de medio ambiente y dinámica de sistemas 2012
Concepto de medio ambiente y dinámica de sistemas 2012Concepto de medio ambiente y dinámica de sistemas 2012
Concepto de medio ambiente y dinámica de sistemas 2012
 
Equilibrio ecológico
Equilibrio ecológicoEquilibrio ecológico
Equilibrio ecológico
 
Contaminaciã³n de-aguas-continentales
Contaminaciã³n de-aguas-continentalesContaminaciã³n de-aguas-continentales
Contaminaciã³n de-aguas-continentales
 

Destaque

Alteraciones del ciclo carbono y nitrogeno
Alteraciones del ciclo carbono y nitrogenoAlteraciones del ciclo carbono y nitrogeno
Alteraciones del ciclo carbono y nitrogenohdflores
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera leycharliebm7512
 
Problemas de qumica termodinamica
Problemas de qumica termodinamicaProblemas de qumica termodinamica
Problemas de qumica termodinamicahenrycava
 

Destaque (6)

Alteraciones del ciclo carbono y nitrogeno
Alteraciones del ciclo carbono y nitrogenoAlteraciones del ciclo carbono y nitrogeno
Alteraciones del ciclo carbono y nitrogeno
 
Primera ley de Termodinámica
Primera ley de TermodinámicaPrimera ley de Termodinámica
Primera ley de Termodinámica
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera ley
 
Problemas de qumica termodinamica
Problemas de qumica termodinamicaProblemas de qumica termodinamica
Problemas de qumica termodinamica
 
Termodinamica ejercicios resueltos
Termodinamica ejercicios resueltosTermodinamica ejercicios resueltos
Termodinamica ejercicios resueltos
 
Ejercicios resueltos: ENERGÍA
Ejercicios resueltos: ENERGÍAEjercicios resueltos: ENERGÍA
Ejercicios resueltos: ENERGÍA
 

Semelhante a Impactos en la hidrosfera

Tema 8 los impactos en la hidrosfera
Tema 8 los impactos en la hidrosferaTema 8 los impactos en la hidrosfera
Tema 8 los impactos en la hidrosferaEduardo Gómez
 
Los impactos en la hidrosfera
Los impactos en la hidrosferaLos impactos en la hidrosfera
Los impactos en la hidrosferapepe.moranco
 
Contaminacion ambiental
Contaminacion ambientalContaminacion ambiental
Contaminacion ambientalAndy Johnson
 
contaminacion del suelo .pdf
contaminacion del suelo .pdfcontaminacion del suelo .pdf
contaminacion del suelo .pdfedwin984960
 
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdfPROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdfJuanesGM
 
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdfPROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdfValentinaMage
 
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdfPROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdfJuanitaGuerreroPriet
 
Actividad evaluativa procesos industriales.pptx
Actividad evaluativa procesos industriales.pptxActividad evaluativa procesos industriales.pptx
Actividad evaluativa procesos industriales.pptxfabiancampillay2
 
Diapositivas contaminacion ambiental! 01
Diapositivas contaminacion ambiental! 01Diapositivas contaminacion ambiental! 01
Diapositivas contaminacion ambiental! 01caroni345
 
Contaminación ambiental impacto ambiental
Contaminación ambiental  impacto ambientalContaminación ambiental  impacto ambiental
Contaminación ambiental impacto ambientalOvergelysG
 
Gestión medio ambiental parte ii
Gestión medio ambiental parte iiGestión medio ambiental parte ii
Gestión medio ambiental parte iiRosalinda Lozano
 
Capacitacion de organizacion
Capacitacion de organizacionCapacitacion de organizacion
Capacitacion de organizacionjimenezcamilo
 
CONTAMINACION ACTUAL, contaminacion, degradacion, etc
CONTAMINACION ACTUAL, contaminacion, degradacion, etcCONTAMINACION ACTUAL, contaminacion, degradacion, etc
CONTAMINACION ACTUAL, contaminacion, degradacion, etcJorgeCruzRios1
 

Semelhante a Impactos en la hidrosfera (20)

Tema 8 los impactos en la hidrosfera
Tema 8 los impactos en la hidrosferaTema 8 los impactos en la hidrosfera
Tema 8 los impactos en la hidrosfera
 
Los impactos en la hidrosfera
Los impactos en la hidrosferaLos impactos en la hidrosfera
Los impactos en la hidrosfera
 
Contaminacion ambiental
Contaminacion ambientalContaminacion ambiental
Contaminacion ambiental
 
Contaminacion de agua y suelo
Contaminacion de agua y sueloContaminacion de agua y suelo
Contaminacion de agua y suelo
 
contaminacion del suelo .pdf
contaminacion del suelo .pdfcontaminacion del suelo .pdf
contaminacion del suelo .pdf
 
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdfPROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
 
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdfPROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
 
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdfPROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
PROYECTO INTEGRADO CTS APLICANDO HERRAMIENTAS ESTADÍSTICAS.pdf
 
Actividad evaluativa procesos industriales.pptx
Actividad evaluativa procesos industriales.pptxActividad evaluativa procesos industriales.pptx
Actividad evaluativa procesos industriales.pptx
 
Diapositivas contaminacion ambiental! 01
Diapositivas contaminacion ambiental! 01Diapositivas contaminacion ambiental! 01
Diapositivas contaminacion ambiental! 01
 
Arley rodriguez medio ambiente
Arley rodriguez medio ambienteArley rodriguez medio ambiente
Arley rodriguez medio ambiente
 
Contaminación ambiental impacto ambiental
Contaminación ambiental  impacto ambientalContaminación ambiental  impacto ambiental
Contaminación ambiental impacto ambiental
 
Conta juancito
Conta juancitoConta juancito
Conta juancito
 
Conta juancito
Conta juancitoConta juancito
Conta juancito
 
Contaminacion ambiental
Contaminacion ambientalContaminacion ambiental
Contaminacion ambiental
 
Ensayo final
Ensayo finalEnsayo final
Ensayo final
 
Gestión medio ambiental parte ii
Gestión medio ambiental parte iiGestión medio ambiental parte ii
Gestión medio ambiental parte ii
 
Capacitacion de organizacion
Capacitacion de organizacionCapacitacion de organizacion
Capacitacion de organizacion
 
CONTAMINACION ACTUAL, contaminacion, degradacion, etc
CONTAMINACION ACTUAL, contaminacion, degradacion, etcCONTAMINACION ACTUAL, contaminacion, degradacion, etc
CONTAMINACION ACTUAL, contaminacion, degradacion, etc
 
Contaminacion agua 1
Contaminacion agua 1Contaminacion agua 1
Contaminacion agua 1
 

Mais de pepe.moranco

Tema2 humanidadyma
Tema2 humanidadymaTema2 humanidadyma
Tema2 humanidadymapepe.moranco
 
Procesos geológicos internos
Procesos geológicos internosProcesos geológicos internos
Procesos geológicos internospepe.moranco
 
Geo_interna_Tierra
Geo_interna_TierraGeo_interna_Tierra
Geo_interna_Tierrapepe.moranco
 
Modelado azonal y estructural
Modelado azonal y estructuralModelado azonal y estructural
Modelado azonal y estructuralpepe.moranco
 
Geomorfologia eso3
Geomorfologia eso3Geomorfologia eso3
Geomorfologia eso3pepe.moranco
 
Principales modelados del relieve
Principales modelados del relievePrincipales modelados del relieve
Principales modelados del relievepepe.moranco
 
Interpretación de cortes geológicos
Interpretación de cortes geológicosInterpretación de cortes geológicos
Interpretación de cortes geológicospepe.moranco
 
Historia geologica peninsula_iberica
Historia geologica peninsula_ibericaHistoria geologica peninsula_iberica
Historia geologica peninsula_ibericapepe.moranco
 
Recursos geológicos
Recursos geológicosRecursos geológicos
Recursos geológicospepe.moranco
 
El tiempo geológico
El tiempo geológicoEl tiempo geológico
El tiempo geológicopepe.moranco
 
Riesgos geológicos
Riesgos geológicosRiesgos geológicos
Riesgos geológicospepe.moranco
 
La Piedra Pómez o Pumita
La Piedra Pómez o PumitaLa Piedra Pómez o Pumita
La Piedra Pómez o Pumitapepe.moranco
 
Efectos contaminación atmosférica
Efectos contaminación atmosféricaEfectos contaminación atmosférica
Efectos contaminación atmosféricapepe.moranco
 
Geomorfologia intro
Geomorfologia introGeomorfologia intro
Geomorfologia intropepe.moranco
 

Mais de pepe.moranco (20)

Tema2 humanidadyma
Tema2 humanidadymaTema2 humanidadyma
Tema2 humanidadyma
 
Riesgos internos
Riesgos internosRiesgos internos
Riesgos internos
 
Procesos geológicos internos
Procesos geológicos internosProcesos geológicos internos
Procesos geológicos internos
 
Geo_interna_Tierra
Geo_interna_TierraGeo_interna_Tierra
Geo_interna_Tierra
 
Modelado azonal y estructural
Modelado azonal y estructuralModelado azonal y estructural
Modelado azonal y estructural
 
Biodiversidad
BiodiversidadBiodiversidad
Biodiversidad
 
El relieve
El relieveEl relieve
El relieve
 
Geomorfologia eso3
Geomorfologia eso3Geomorfologia eso3
Geomorfologia eso3
 
Principales modelados del relieve
Principales modelados del relievePrincipales modelados del relieve
Principales modelados del relieve
 
Interpretación de cortes geológicos
Interpretación de cortes geológicosInterpretación de cortes geológicos
Interpretación de cortes geológicos
 
Historia geologica peninsula_iberica
Historia geologica peninsula_ibericaHistoria geologica peninsula_iberica
Historia geologica peninsula_iberica
 
Ecology eso4
Ecology eso4Ecology eso4
Ecology eso4
 
Recursos geológicos
Recursos geológicosRecursos geológicos
Recursos geológicos
 
El tiempo geológico
El tiempo geológicoEl tiempo geológico
El tiempo geológico
 
Riesgos geológicos
Riesgos geológicosRiesgos geológicos
Riesgos geológicos
 
Evolución humana
Evolución humanaEvolución humana
Evolución humana
 
La Piedra Pómez o Pumita
La Piedra Pómez o PumitaLa Piedra Pómez o Pumita
La Piedra Pómez o Pumita
 
La Pizarra
La PizarraLa Pizarra
La Pizarra
 
Efectos contaminación atmosférica
Efectos contaminación atmosféricaEfectos contaminación atmosférica
Efectos contaminación atmosférica
 
Geomorfologia intro
Geomorfologia introGeomorfologia intro
Geomorfologia intro
 

Último

Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfmiriamguevara21
 
Presentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUEPresentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUEJosé Hecht
 
tema5 2eso 2024 Europa entre los siglos XII y XV
tema5 2eso 2024 Europa entre los siglos XII y XVtema5 2eso 2024 Europa entre los siglos XII y XV
tema5 2eso 2024 Europa entre los siglos XII y XVChema R.
 
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdfDocencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdfDemetrio Ccesa Rayme
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAlejandrino Halire Ccahuana
 
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptxfotofamilia008
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Gonella
 
Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.monthuerta17
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJOLeninCariMogrovejo
 
Filosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroFilosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroJosé Luis Palma
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.karlazoegarciagarcia
 
Salvando mi mundo , mi comunidad , y mi entorno
Salvando mi mundo , mi comunidad  , y mi entornoSalvando mi mundo , mi comunidad  , y mi entorno
Salvando mi mundo , mi comunidad , y mi entornoday561sol
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docxMagalyDacostaPea
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdflizcortes48
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 

Último (20)

Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdf
 
Presentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUEPresentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUE
 
tema5 2eso 2024 Europa entre los siglos XII y XV
tema5 2eso 2024 Europa entre los siglos XII y XVtema5 2eso 2024 Europa entre los siglos XII y XV
tema5 2eso 2024 Europa entre los siglos XII y XV
 
Acuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptxAcuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptx
 
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdfDocencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdf
 
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2
 
Acuerdo segundo periodo - Grado Sexto.pptx
Acuerdo segundo periodo - Grado Sexto.pptxAcuerdo segundo periodo - Grado Sexto.pptx
Acuerdo segundo periodo - Grado Sexto.pptx
 
¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx
 
Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.Si cuidamos el mundo, tendremos un mundo mejor.
Si cuidamos el mundo, tendremos un mundo mejor.
 
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJODIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
DIDÁCTICA DE LA EDUCACIÓN SUPERIOR- DR LENIN CARI MOGROVEJO
 
Filosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroFilosofía del gobierno del general Alfaro
Filosofía del gobierno del general Alfaro
 
Acuerdo segundo periodo - Grado Septimo.pptx
Acuerdo segundo periodo - Grado Septimo.pptxAcuerdo segundo periodo - Grado Septimo.pptx
Acuerdo segundo periodo - Grado Septimo.pptx
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
 
Salvando mi mundo , mi comunidad , y mi entorno
Salvando mi mundo , mi comunidad  , y mi entornoSalvando mi mundo , mi comunidad  , y mi entorno
Salvando mi mundo , mi comunidad , y mi entorno
 
Unidad 2 | Teorías de la Comunicación | MCDIU
Unidad 2 | Teorías de la Comunicación | MCDIUUnidad 2 | Teorías de la Comunicación | MCDIU
Unidad 2 | Teorías de la Comunicación | MCDIU
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdf
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 

Impactos en la hidrosfera

  • 1. Eduardo Gómez Impactos en la Hidrosfera 1 Los impactos en la hidrosfera
  • 2. Eduardo Gómez Impactos en la Hidrosfera 2 El agua, un bien necesario La vida en el planeta depende del agua, pero el aumento de población hace que peligre este recurso por la pérdida de calidad. El ciclo natural del agua tiene una gran capacidad de purificación. Pero esta misma facilidad de regeneración del agua, y su aparente abundancia, hace que sea el vertedero habitual en el que arrojamos los residuos producidos por nuestras actividades. Esto obliga a la humanidad al tratamiento del agua contaminada, a la creación de infraestructuras para garantizar el abastecimiento y otras soluciones con fuerte impacto ambiental.
  • 3. Eduardo Gómez Impactos en la Hidrosfera 3
  • 4. Eduardo Gómez Consumo de agua en el mundo Impactos en la Hidrosfera 4 De acuerdo al mapa, el consumo promedio global es de unos 1.240 m³ por persona y año. En países de alto consumo, como España o Estados Unidos, el consumo está cercano a los 2.500 m³ mientras que en otros como China es más bajo con 700 m³.
  • 5. Eduardo Gómez Impactos en la Hidrosfera 5 Las soluciones a la escasez de agua pasan por: • Utilización correcta y racional de los recursos. • Mejorar el rendimiento de los recursos existentes. • Implantar nuevos recursos (procesos muy caros).
  • 6. Eduardo Gómez Impactos en la Hidrosfera 6 Origen de la contaminación del agua • Según la OMS ( Organización Mundial de la Salud). Se considera que el agua está contaminada cuando su composición o estado natural se ven modificados, de tal modo que el agua pierde sus condiciones aptas para los usos a los que estaba destinada. • La Ley de Aguas dice que la contaminación del agua es la acción y el efecto de introducir materias o formas de energía o inducir condiciones en el agua que de una modo directo o indirecto impliquen una alteración perjudicial de su calidad en relación con los usos posteriores o con su función ecológica.
  • 7. Eduardo Gómez Impactos en la Hidrosfera 7 El origen de la contaminación puede deberse a: Causas naturales Causas antrópicas
  • 8. Eduardo Gómez Impactos en la Hidrosfera 8 En ambos casos, la fuente de contaminación puede ser: Difusa: Aparece en zonas amplias y no tiene un foco emisor concreto Puntual: Afecta a una zona concreta
  • 9. Eduardo Gómez Impactos en la Hidrosfera 9 Contaminación natural del agua Se debe a la presencia en el agua de distintas sustancias sin que intervenga la acción humana: • Partículas sólidas, gases arrastrados por la lluvia • Polen, hojas, residuos vegetales y animales Todos estos residuos pueden ser eliminados a través de procesos químicos y biológicos que forman parte de la capacidad de autodepuración del agua.
  • 10. Eduardo Gómez Impactos en la Hidrosfera 10 Contaminación artificial de origen urbano  Aguas procedentes de los domicilios (productos de limpieza, jabones, grasas, restos de cocina ...)  Aguas negras procedentes de la defecación (1,2 a 1,5 litros por persona y día).  Aguas procedentes de la vía pública, de riego, de limpieza, de lluvia...  La composición es variada, presenta gran cantidad de organismos patógenos, materia orgánica, nutrientes, detergentes, materias flotantes, residuos de la contaminación atmosférica...
  • 11. Eduardo Gómez Impactos en la Hidrosfera 11  Fertilizantes inorgánicos, abonos, plaguicidas, sales disueltas.  Contaminan tanto aguas superficiales como aguas subterráneas que surten a las poblaciones. Contaminación artificial de origen agrícola
  • 13. Eduardo Gómez Impactos en la Hidrosfera 13  Estiércol y purines que contienen microorganismos patógenos, sólidos en suspensión, materia orgánica, nitrógeno y fósforo. Contaminación artificial de origen ganadero Cuando estos contaminantes se usan como abonos, pueden llegar a las aguas subterráneas de forma dispersa o puntual si se vierten directamente en un terreno
  • 14. Eduardo Gómez Impactos en la Hidrosfera 14  Industrias de refinado de petróleo: Contiene residuos tóxicos diversos, cianuro, grasas, fenoles.. álcalis..  Industria metalúrgica: Vertidos tóxicos diversos y agua caliente.  Industria del papel, del curtido y textiles: residuos orgánicos, detergentes..  Industrias químicas y farmacéuticas: metales pesados y material químico y biológico peligroso  Industrias energéticas: radiactividad, cambios de temperatura. Contaminación artificial de origen industrial Es la que mayor impacto produce por la variedad de materiales y fuentes de energía que aporta al agua. Son especialmente contaminantes:
  • 16. Eduardo Gómez Impactos en la Hidrosfera 16 Sector industrial Substancias contaminantes principales Construcción Sólidos en suspensión, metales, pH. Minería Sólidos en suspensión, metales pesados, materia orgánica, pH, cianuros. Energía Calor, hidrocarburos y productos químicos. Textil y piel Cromo, taninos, tensoactivos, sulfuros, colorantes, grasas, disolventes orgánicos, ácidos acético y fórmico, sólidos en suspensión. Automoción Aceites lubricantes, pinturas y aguas residuales. Navales Petróleo, productos químicos, disolventes y pigmentos. Siderurgia Cascarillas, aceites, metales disueltos, emulsiones, sosas y ácidos. Química inorgánica Hg, P, fluoruros, cianuros, amoniaco, nitritos, ácido sulfhídrico, F, Mn, Mo, Pb, Ag, Se, Zn, etc. y los compuestos de todos ellos. Química orgánica Organohalogenados, organosilícicos, compuestos cancerígenos y otros que afectan al balance de oxígeno. Fertilizantes Nitratos y fosfatos. Pasta y papel Sólidos en suspensión y otros que afectan al balance de oxígeno. Plaguicidas Organohalogenados, organofosforados, compuestos cancerígenos, biocidas, etc. Fibras químicas Aceites minerales y otros que afectan al balance de oxígeno. Pinturas, barnices y tintas Compuestos organoestámicos, compuestos de Zn, Cr, Se, Mo, Ti, Sn, Ba, Co, etc.
  • 17. Eduardo Gómez Impactos en la Hidrosfera 17 Contaminación artificial de origen industrial El grado de contaminación depende del tipo de industria y de los procesos de fabricación empleados. Además hay que tener en cuenta que hay fuentes de contaminación secundarias, como la atmósfera, que puede estar previamente contaminada y pasar sus contaminantes al agua. En general, la contaminación de origen antrópico supera la capacidad de autodepuración de los sistemas hídricos, haciendo necesaria la implantación de medidas preventivas y correctoras.
  • 18. Eduardo Gómez Impactos en la Hidrosfera 18 Origen Tipo Contaminantes Efectos Urbana Aguas domésticas (cocina, blancas de baño) Sales, Jabones, detergentes Sólidos en suspensión Grasas Eutrofización Aguas negras Materia orgánica Eutrofización Microorganismos patógenos Limpieza y riego (abonos) Sólidos en suspensión Detergentes Materia orgánica Eutrofización Agrícola Pesticidas y plaguicidas Sustancias tóxicas (Metales pesados, compuestos organoclorados) Bioacumulación, envenenamiento Abonos N, P, S Eutrofización Ganadera Purines (excrementos del ganado) Materia orgánica Eutrofización Microorganismos patógenos Industria y minería Siderurgia Petroquímica Energética Textil Papelera Minería Materia orgánica Metales pesados Incremento del pH Incremento de Tª Radiactividad Aceites, grasas Eutrofización Bioacumulación, envenenamiento Acidificación Disminución O2 disuelto, variación de ciclos reproductivos y de crecimiento Mutaciones
  • 19. Eduardo Gómez Impactos en la Hidrosfera 19 Factores y nivel de contaminación Hay unos factores que pueden agravar o disminuir los efectos de la contaminación como son:  Características del receptor.  Características de la zona donde se encuentra el receptor.  Usos previos del agua.
  • 20. Eduardo Gómez Impactos en la Hidrosfera 20 Características del receptor 1. Tipo de receptor Aguas superficiales Aguas subterráneas 2. Cantidad y calidad de agua del receptor: • A más volumen, mayor capacidad de dilución del contaminante • Si la calidad del agua es mala, se suman los efectos 3. Biocenosis: La presencia de organismos (fundamentalmente microorganismos) ayuda a degradar la materia orgánica.
  • 21. Eduardo Gómez Impactos en la Hidrosfera 21 Localización del receptor Las características climáticas (lluvias, insolación, …) y las características geomorfológicas (pendiente, relieve, tipo de rocas…) influyen en la capacidad del receptor para depurar los contaminantes.
  • 23. Eduardo Gómez Impactos en la Hidrosfera 23 Usos previos del agua  Cantidad de vertidos previos al momento de la contaminación  Cantidad de procesos de depuración previos al momento de la contaminación Si los dos procesos anteriores son importantes, más grave será la contaminación
  • 24. Eduardo Gómez Impactos en la Hidrosfera 24 Contaminantes del agua Químicos: Sustancias de dos tipos: 1. Biodegradables: cuando pueden ser eliminadas por los microorganismos u otros seres. P.ej. las sales minerales que son captadas por los seres autótrofos para la fotosíntesis, o las moléculas orgánicas que son respiradas por bacterias u otros seres. 2. No biodegradables: ningún ser vivo tiene enzimas que los eliminen y por tanto se acumulan. Son los metales pesados como el plomo o el mercurio y también ciertas moléculas orgánicas de síntesis compleja como pesticidas, detergentes, etc.
  • 25. Eduardo Gómez Impactos en la Hidrosfera 25 Físicos Pueden ser: 1. Radiactivos mutagénicos, normalmente antrópicos. 2. Térmicos, debido a refrigeraciones industriales, que provocan disminución de la concentración de oxígeno en las aguas, alteración de los ciclos vitales y de la migración de muchos organismos. 3. Partículas gruesas que pueden enturbiar el agua dificultando la fotosíntesis, la autodepuración y la potabilización. Contaminantes del agua
  • 26. Eduardo Gómez Impactos en la Hidrosfera 26 Radiactividad (posibles escapes) y calentamiento del agua usada como refrigerante Turbidez, aumento de partículas
  • 27. Eduardo Gómez Impactos en la Hidrosfera 27 Biológicos: Debida a microrganismos que producen enfermedades; algunos con gran capacidad de supervivencia, como los hongos (enfermedad “pie de atleta”), protozoos (enfermedad “paludismo”) o algas (envenenamiento al comer mejillones que han filtrado estas algas), y otros con poca supervivencia como las bacterias (enfermedad “cólera”). Contaminantes del agua E.coli V. cholerae
  • 28. Eduardo Gómez Contaminantes físicos del agua Impactos en la Hidrosfera 28 Alteraciones físicas Características y contaminación que indica Color El agua no contaminada suele tener ligeros colores rojizos, pardos, amarillentos o verdosos. debido, principalmente, a los compuestos húmicos, férricos o los pigmentos verdes de las algas que contienen.. Olor y sabor Compuestos químicos presentes en el agua como los fenoles, diversos hidrocarburos, cloro, materias orgánicas en descomposición o esencias liberadas por diferentes algas u hongos pueden dar olores y sabores muy fuertes al agua, aunque estén en muy pequeñas concentraciones. Las sales o los minerales dan sabores salados o metálicos, en ocasiones sin ningún olor. Temperatura Aumenta la velocidad de las reacciones del metabolismo, acelerando la putrefacción. Las centrales nucleares, térmicas y otras industrias contribuyen a la contaminación térmica de las aguas, a veces de forma importante.
  • 29. Eduardo Gómez Impactos en la Hidrosfera 29 Alteraciones físicas Características y contaminación que indica Materiales en suspensión Partículas como arcillas, limo y otras, aunque no lleguen a estar disueltas, son arrastradas por el agua de dos maneras: en disoluciones coloidales; o en suspensión que sólo dura mientras el movimiento del agua las arrastra. Radiactividad Las aguas naturales tienen unos valores de radiactividad, debidos sobre todo a isótopos del K. Algunas actividades humanas pueden contaminar el agua con isótopos radiactivos. Espumas Los detergentes producen espumas y añaden fosfato al agua (eutrofización). Disminuyen mucho el poder autodepurador de los ríos al dificultar la actividad bacteriana. También interfieren en los procesos de floculación y sedimentación en las estaciones depuradoras. Conductividad El agua pura tiene una conductividad eléctrica muy baja. El agua natural tiene iones en disolución y su conductividad es mayor y proporcional a la cantidad y características de esos electrolitos. Por esto se usan los valores de conductividad como índice aproximado de concentración de solutos.
  • 30. Eduardo Gómez Impactos en la Hidrosfera 30 Contaminantes químicos Alteraciones químicas Contaminación que indica pH Las aguas naturales pueden tener pH ácidos por el CO2 disuelto desde la atmósfera o proveniente de los seres vivos; por ácido sulfúrico procedente de algunos minerales, por ácidos húmicos disueltos del mantillo del suelo. Las aguas contaminadas con vertidos mineros o industriales pueden tener pH muy ácido. El pH tiene una gran influencia en los procesos químicos que tienen lugar en el agua, actuación de los floculantes, tratamientos de depuración, etc. Oxígeno disuelto (OD) Las aguas superficiales limpias suelen estar saturadas de oxígeno, lo que es fundamental para la vida. Si el nivel de oxígeno disuelto es bajo indica contaminación con materia orgánica.
  • 31. Eduardo Gómez Impactos en la Hidrosfera 31 Contaminantes químicos II Alteraciones químicas Contaminación que indica Materia orgánica biodegradable: Demanda Bioquímica de Oxígeno (DBO5) DBO5 es la cantidad de oxígeno disuelto requerido por los microorganismos para la oxidación aerobia de la materia orgánica biodegradable presente en el agua. Se mide a los cinco días. Su valor da idea de la calidad del agua desde el punto de vista de la materia orgánica presente y permite prever cuanto oxígeno será necesario para la depuración de esas aguas e ir comprobando cual está siendo la eficacia del tratamiento depurador en una planta. Materiales oxidables: Demanda Química de Oxígeno (DQO) Es la cantidad de oxígeno que se necesita para oxidar los materiales contenidos en el agua con un oxidante químico (normalmente dicromato potásico en medio ácido). Se determina en tres horas y, en la mayoría de los casos, guarda una buena relación con por lo que es de gran utilidad al no necesitar los cinco días de embargo no diferencia entre materia biodegradable y el resto y no suministra información sobre la velocidad de degradación en condiciones naturales.
  • 32. Eduardo Gómez Impactos en la Hidrosfera 32 Contaminantes químicos III Alteraciones químicas Contaminación que indica Nitrógeno total Varios compuestos de nitrógeno son nutrientes esenciales. Su presencia en las aguas en exceso es causa de eutrofización. El nitrógeno se presenta en muy diferentes formas químicas en las aguas naturales y contaminadas.. El contenido en nitratos y nitritos se da por separado. Fósforo total El fósforo, como el nitrógenos, es nutriente esencial para la vida. Su exceso en el agua provoca eutrofización.
  • 33. Eduardo Gómez Impactos en la Hidrosfera 33 Contaminantes químicos (IV) Aniones: cloruros nitratos nitritos fosfatos sulfuros cianuros fluoruros indican salinidad indican contaminación agrícola indican actividad bacteriólogica indican detergentes y fertilizantes indican acción bacteriológica anaerobia (aguas negras, etc.) indican contaminación de origen industrial en algunos casos se añaden al agua para la prevención de las caries, aunque es una práctica muy discutida. Cationes: sodio calcio y Mg amonio metales pesados indica salinidad están relacionados con la dureza del agua contaminación con fertilizantes y heces de efectos muy nocivos; se bioacumulan en la cadena trófica. Compuestos orgánicos Los aceites y grasas procedentes de restos de alimentos o de procesos industriales (automóviles, lubricantes, etc.) son difíciles de metabolizar por las bacterias y flotan formando películas en el agua que dañan a los seres vivos. Los fenoles pueden estar en el agua como resultado de contaminación industrial .
  • 34. Eduardo Gómez Impactos en la Hidrosfera 34 Contaminantes biológicos Alteraciones biológicas del agua Contaminación que indican Bacterias coliformes Desechos fecales Virus Desechos fecales y restos orgánicos Animales, plantas, microorganismos diversos Eutrofización
  • 35. Eduardo Gómez Impactos en la Hidrosfera 35 Parámetros de calidad del agua La calidad del agua se define en función del uso al que va a ser destinada: 1. Agua de boca 2. Agua de riego 3. Agua de baño 4. Agua de refrigeración En función del destino, se establecen las condiciones de olor, sabor, etc., que debe tener dicho agua.
  • 36. Eduardo Gómez Impactos en la Hidrosfera 36 Para medir esta calidad se establecen una serie de parámetros o índices que nos permiten cuantificar la variación de las características naturales (características que tiene el agua antes de ser utilizada), teniendo en cuenta su uso. Los parámetros indicadores más importantes son: 1.Parámetros generales 2.Parámetros inorgánicos 3.Parámetros orgánicos 4.Parámetros biológicos 5.Toxicidad
  • 37. Eduardo Gómez Impactos en la Hidrosfera 37 Parámetros generales: Temperatura Puede variar entre unos límites.  Afecta a parámetros o características tales como la solubilidad de gases y sales, la cinética de las reacciones químicas y bioquímicas, desplazamientos de los equilibrios químicos, tensión superficial, desarrollo de organismos presentes en el agua,...  La influencia más interesante va a ser la disminución de la solubilidad del oxígeno al aumentar la temperatura y la aceleración de los procesos de putrefacción.
  • 38. Eduardo Gómez Impactos en la Hidrosfera 38 Parámetros generales: pH  El pH de un agua, que indica la reacción ácida y básica de la misma es una propiedad de carácter químico de vital importancia para el desarrollo de la vida acuática (tiene influencia sobre determinados procesos químicos y biológicos), la naturaleza de las especies iónicas que se encuentran en su seno, el potencial redox del agua, el poder desinfectante del cloro, etc.  Por lo general las aguas naturales tienen un cierto carácter básico, unos valores de pH comprendidos entre 6,5-8,5. En los océanos tienen un valor medio de 8.
  • 39. Eduardo Gómez Impactos en la Hidrosfera 39 Parámetros generales: Oxígeno disuelto 1. En su mayor parte procede de la solubilización del oxigeno atmosférico. 2. Puede variar el contenido en función de la temperatura o la presencia de materia orgánica. 3. Su disminución provoca la muerte de muchas especies.
  • 40. Eduardo Gómez Impactos en la Hidrosfera 40 Otros parámetros generales CONDUCTIVIDAD. La conductividad del agua da una buena apreciación de la concentración de los iones de disolución y una conductividad elevada se traduce en una salinidad elevada o en valores anómalos de pH. TURBIDEZ Y SÓLIDOS EN SUSPENSIÓN. • La turbidez de un agua es provocada por la materia insoluble, en suspensión o dispersión coloidal. • La mayoría de las aguas residuales industriales tienen valores elevados de turbidez. • Unida a la turbidez está parte de la cantidad de materia sólida presente en el agua.
  • 41. Eduardo Gómez Impactos en la Hidrosfera 41 DUREZA DEL AGUA La dureza es también un parámetro relacionado con los anteriores. Mide la presencia de cationes Ca+2 y Mg+2, y en menor cantidad Fe+2 y Mn+2 y otros alcalinotérreos. Se diferencian: • Dureza total: es la suma total de las concentraciones de sales de Ca y Mg • Dureza temporal: Es la que corresponde a los hidrogenocarbonatos de calcio y magnesio, desaparece por ebullición pues precipitan los carbonatos. • Dureza permanente: es la que existe después de la ebullición del agua, es la diferencia entre las dos anteriores.
  • 42. Eduardo Gómez Impactos en la Hidrosfera 42 CARACTERÍSTICAS ORGANOLÉPTICAS: COLOR, OLOR Y SABOR. • Color: hay que distinguir lo que se llama color aparente, el que presenta el agua bruta y el verdadero, que es el que presenta cuando se le ha separado la materia en suspensión. • Olor y sabor: el olor y sabor están en general íntimamente relacionados. Existen solamente cuatro sabores fundamentales: ácido, salado, amargo y dulce, los olores pueden ser mucho más específicos. • Las medidas de olores y sabores son estimativas, mediante procesos de dilución.
  • 43. Eduardo Gómez Impactos en la Hidrosfera 43 Parámetros inorgánicos Indican las cantidades de sales minerales disueltas de forma natural en el agua a su paso por distintos tipos de suelos y rocas. Estas cantidades naturales pueden verse muy afectadas por procesos humanos como: 1. Industria minera 2. Papeleras, textiles 3. Industria alimentaria 4. Industria química
  • 44. Eduardo Gómez Impactos en la Hidrosfera 44 Parámetros orgánicos Indican la cantidad de materia orgánica en el agua, pero sin indicar el origen de la misma: Los parámetros más utilizados son: 1. OD (oxígeno disuelto) 2. COT (Carbono orgánico total) 3. DBO (Demanda biológica de oxígeno) 4. DQO (Demanda química de oxígeno)
  • 45. Eduardo Gómez Impactos en la Hidrosfera 45 El Oxígeno Disuelto (OD) es vital para la vida acuática, ya que se utiliza en la respiración. Su cantidad dependerá de la limpieza de las aguas (las aguas superficiales limpias están saturadas de oxígeno), de la cantidad de vertidos de material orgánico (la cantidad de oxígeno disminuirá con la descomposición de la materia orgánica), de la temperatura del agua (el oxígeno se disuelve mejor en aguas frías que en calientes), etc.
  • 46. Eduardo Gómez Impactos en la Hidrosfera 46 Carbono orgánico total (COT): o Consiste en medir la cantidad de dióxido de carbono producido por calcinación de una micromuestra. o Según que el agua haya sido filtrada previamente o no, se obtendrá el carbono disuelto o el carbono total. o La medida de COT está menos sujeta a interferencias que la medida de la DQO, particularmente en presencia de materia nitrogenada, siendo además una técnica más rápida y reproducible. o Se mide en mg de C/L.
  • 47. Eduardo Gómez Impactos en la Hidrosfera 47 Demanda Bioquímica de Oxígeno (DBO5) en 5 días (unas ¾ partes de la DBO total): o Es el parámetro que se maneja para tener una medida de la materia orgánica biodegradable. o Se define como la cantidad de oxígeno necesaria para la descomposición biológica aeróbica de la materia orgánica biodegradable de un agua. o Se calcula midiendo la disminución en la concentración de oxígeno disuelto del agua después de incubar una muestra durante 5 días a 20ºC.
  • 48. Eduardo Gómez Impactos en la Hidrosfera 48 Unos valores elevados de DBO5 indican una alta concentración de materia orgánica biodegradable: o Aguas muy puras: DBO5 < 3 ppm O2 (mg de O2/litro) o Pureza intermedia: DBO5 3-10 ppm O2 o Agua contaminada: DBO5 > 10 ppm O2 o Residuales urbanas: DBO5 100-400 ppm O2 o Industria alimentaria o semejante: DBO5 hasta 10.000 ppm O2
  • 49. Eduardo Gómez Impactos en la Hidrosfera 49 Demanda Química de Oxígeno (DQO): o Se expresa como la cantidad de oxígeno equivalente necesaria para la oxidación química de la materia orgánica oxidable de un agua. o Sus unidades, por lo tanto, son las mismas que la DBO, es decir, mg de O2/L. o Entre las ventajas sobre la medida de DBO, cabe destacar el tiempo considerablemente inferior del análisis (3 horas). o Mide la cantidad de materia orgánica total susceptible de oxidación química (biodegradable y no biodegradable). o En esta medida se sustituyen los microorganismos por un poderoso agente químico, como el bicromato o el permanganato de potasio en medio ácido.
  • 50. Eduardo Gómez Impactos en la Hidrosfera 50 Toxicidad El término toxicidad se refiere al daño que puede producir en los seres vivos la presencia de determinados contaminantes en un agua, en concentraciones que den positivos los denominados test de toxicidad. La toxicidad de un vertido puede manifestarse: 1. De forma directa: en función de la dosis de especies tóxicas y su tiempo de acción 2. De forma indirecta como resultado de la acumulación en los seres vivos (bioacumulación). La evaluación de este parámetro se puede realizar por medida de la mortalidad de diferentes especies. Otros resultados de toxicidad se refieren al carácter cancerígeno, mutagénico o teratogénico (capacidad de producir malformaciones) de los contaminantes.
  • 51. Eduardo Gómez Impactos en la Hidrosfera 51 Compuestos tóxicos más abundantes: 1. Carácter inorgánico: • Metales pesados • Compuestos de As, Se, Be, CN-, Sb;.... 2. Microcontaminantes orgánicos: • Fenoles • Pesticidas • PCB (policlorobifenilos) • HAP (Hidrocarburos aromáticos policiclicos) 3. Elementos radiactivos 4. Microorganismos patógenos: • Bacterias (Salmonella, Shigella,...) • Virus (Enterovirus,...) • Protozoos (Amebas,...) • Hongos (Aspergillus,...)
  • 52. Eduardo Gómez Impactos en la Hidrosfera 52 Radiactividad. o Todas las aguas naturales presentan una determinada radiactividad natural, como consecuencia de la presencia de isótopos radiactivos naturales de los elementos, en especial del 40K y 87Rb. o Actualmente, y como consecuencia de las actividades nucleares de origen industrial (civil o militar) y farmacológico, hay un incremento de la radiactividad de las aguas que puede llegar a ser muy perjudicial. Entre los isótopos más frecuentes debe señalarse la existencia de 226Ra, 230Th, 90Sr,... o No se efectúa la medida de cada uno de los isótopos radiactivos, sino que se determina la radiación  global y la radiación  global, midiéndola en Bq/L.
  • 53. Eduardo Gómez Impactos en la Hidrosfera 53 Características microbiológicas. Los microorganismos más importantes que podemos encontrar en las aguas son bacterias, virus, hongos, protozoos y distintos tipos de algas (por ej. las azul verdosas). La contaminación de tipo bacteriológico es debida fundamentalmente a los desechos humanos y animales, ya que los agentes patógenos – bacterias y virus- se encuentran en las heces, orina y sangre, y son el origen de muchas enfermedades y epidemias (fiebres tifoideas, disentería, cólera, polio, hepatitis infecciosa,...). Desde el punto de vista histórico, la prevención de las enfermedades originadas por las aguas constituyó la razón fundamental del control de la contaminación.
  • 54. Eduardo Gómez Impactos en la Hidrosfera 54 EFECTOS DE LA CONTAMINACIÓN DEL AGUA Hay que diferenciar los efectos de la contaminación en tres niveles:  AGUAS SUPERFICIALES  RÍOS: Debido a su dinámica poseen capacidad de autodepuración, no obstante pueden aparecer problemas de restricción de agua, alteraciones de la biocenosis, apariencia y olor desagradables.  LAGOS: Al ser masas estáticas, los efectos de la contaminación son más severos y persistentes.  AGUAS SUBTERRÁNEAS  AGUAS OCEÁNICAS
  • 55. Eduardo Gómez Impactos en la Hidrosfera 55 Contaminación de las aguas superficiales Los ríos, debido a su capacidad erosiva arrastran una gran cantidad de materiales a los que hay que añadir los procedentes de las distintas actividades humanas Los ríos tienen una cierta capacidad de autodepuración, pero en muchas ocasiones no pueden con todos estos productos y sus efectos son: 1. Restricciones en el uso del agua 2. Alteraciones en la flora y fauna 3. Apariencia y olores desagradables
  • 56. Eduardo Gómez Impactos en la Hidrosfera 56 El proceso de autodepuración depende del tipo y cantidad de Materia Orgánica (MO) que tenga, de la cantidad de oxígeno disuelto y del tipo de microoganismos que lo habiten. Se pueden distinguir tres zonas en un río en función de los indicadores biológicos que encontremos y que a su vez dependen de las características físico-químicas del agua: 1. Zona oligosapróbica: Río sin contaminar 2. Zona mesosapróbica: Más contaminada 3. Zona polisapróbica: Muy contaminada
  • 57. Eduardo Gómez Impactos en la Hidrosfera 57
  • 58. Eduardo Gómez Impactos en la Hidrosfera 58
  • 59. Eduardo Gómez Impactos en la Hidrosfera 59 Contaminación de lagos En los lagos el proceso de contaminación es mas grave por que la dinámica del lago no permite la dilución de los contaminantes. Al ser aguas estáticas los contaminantes se acumulan y almacenan, alterando el equilibrio de la zona, provocando desaparición de unas especies y proliferación de otras El ejemplo más claro es el de la eutrofización
  • 60. Eduardo Gómez Impactos en la Hidrosfera 60
  • 61. Eduardo Gómez Impactos en la Hidrosfera 61 Eutrofización Un río, un lago o un embalse sufren eutrofización cuando sus aguas se enriquecen en nutrientes. Podría parecer a primera vista que es bueno que las aguas estén bien repletas de nutrientes, porque así podrían vivir más fácil los seres vivos. Pero la situación no es tan sencilla. El problema está en que si hay exceso de nutrientes crecen en abundancia las plantas y otros organismos. Más tarde, cuando mueren, se pudren y llenan el agua de malos olores y le dan un aspecto nauseabundo, disminuyendo drásticamente su calidad. El proceso de putrefacción consume una gran cantidad del oxígeno disuelto y las aguas dejan de ser aptas para la mayor parte de los seres vivos. El resultado final es un ecosistema casi destruido.
  • 62. Eduardo Gómez Impactos en la Hidrosfera 62 Nutrientes que eutrofizan las aguas Los nutrientes que más influyen en este proceso son los fosfatos y los nitratos. En algunos ecosistemas el factor limitante es el fosfato, como sucede en la mayoría de los lagos de agua dulce, pero en muchos mares el factor limitante es el nitrógeno para la mayoría de las especies de plantas. En los últimos 20 o 30 años las concentraciones de nitrógeno y fósforo en muchos mares y lagos casi se han duplicado. La mayor parte les llega por los ríos. En el caso del nitrógeno, una elevada proporción (alrededor del 30%) llega a través de la contaminación atmosférica. El nitrógeno es más móvil que el fósforo y puede ser lavado a través del suelo o saltar al aire por evaporación del amoniaco o por desnitrificación. El fósforo es absorbido con más facilidad por las partículas del suelo y es arrastrado por la erosión erosionadas o disuelto por las aguas de escorrentía superficiales.
  • 63. Eduardo Gómez Impactos en la Hidrosfera 63 Fuentes de eutrofización Eutrofización natural La eutrofización es un proceso que se va produciendo lentamente de forma natural en todos los lagos del mundo, porque todos van recibiendo nutrientes. Eutrofización de origen humano Los vertidos humanos aceleran el proceso hasta convertirlo, muchas veces, en un grave problema de contaminación. Las principales fuentes de eutrofización son: Los vertidos urbanos, que llevan detergentes y desechos orgánicos; los vertidos ganaderos y agrícolas, que aportan fertilizantes, desechos orgánicos y otros residuos ricos en fosfatos y nitratos
  • 64. Eduardo Gómez Impactos en la Hidrosfera 64 Medidas para evitar la eutrofización 1. Disminuir la cantidad de fosfatos y nitratos en los vertidos 2. Usar detergentes con baja proporción de fosfatos 3. Emplear menor cantidad de detergentes 4. No abonar en exceso los campos 5. Usar los desechos agrícolas y ganaderos como fertilizantes, en vez de verterlos, etc.
  • 65. Eduardo Gómez Impactos en la Hidrosfera 65 En concreto: 1. Tratar las aguas residuales en EDAR que incluyan tratamientos biológicos y químicos que eliminan el fósforo y el nitrógeno. 2. Almacenar adecuadamente el estiércol que se usa en agricultura. 3. Usar los fertilizantes más eficientemente. 4. Cambiar las prácticas de cultivo a otras menos contaminantes. Por ejemplo:  Retrasar el arado y la preparación de los campos para el cultivo hasta la primavera  Plantar los cultivos de cereal en otoño asegura tener cubiertas las tierras con vegetación durante el invierno con lo que se reduce la erosión. 5. Reducir las emisiones de NOx y amoníaco 6. Inyección de O2 en embalses y lagos afectados 7. Crecimiento de algas cianofíceas
  • 66. Eduardo Gómez Impactos en la Hidrosfera 66 Se da en 3 fases: 1. Aporte de nutrientes: sobre todo fosfatos pues el nitrógeno puede ser fijado por cianobacterias fitoplanctonicas y el sulfato se necesita en menor cantidad. 2. Proliferación de fitoplancton masiva en superficie que impide la entrada de luz con muerte del fitoplancton por debajo de esta zona fótica disminuida. 3. Descomposición de la materia fitoplanctonica muerta por:  Oxidación por bacterias aerobias que agotan el oxígeno  Fermentación por bacterias anaerobias cuando no hay oxígeno, que producen sulfhídrico (olor a huevos podridos), amoniaco (olor orina) y metano (burbujas que suben) y que pueden producir enfermedades.
  • 67. Eduardo Gómez Impactos en la Hidrosfera 67 La eutrofización la producen sobre todo las aguas agrícolas, los detergentes fosforados , purines animales, alpechines (restos de aceituna) y otros restos de la industria agroalimentaria. Las consecuencias son la sustitución de los peces de aguas limpias por otros de peor calidad, y la alteración de todo el ecosistema por envenenamiento y de la calidad del agua.
  • 68. Eduardo Gómez Impactos en la Hidrosfera 68 Los fenómenos de eutrofización también se pueden producir en estuarios costeros y mares más o menos cerrados (Báltico, Mar Negro, Mediterráneo..)
  • 69. Eduardo Gómez Impactos en la Hidrosfera 69 Actualmente (2008) la eutrofización afecta a: • 54% de los lagos asiáticos • 53 % de los lagos europeos • 48% de los lagos de América del Norte • 41% de los lagos de América del Sur • 28% de los lagos africanos En España, están afectados por este problema zonas como: • Parque Natural del Aiguamolls de l’Ampordà • Delta del Ebro • Albufera de Valencia • Tablas de Daimiel • Doñana • Manga del Mar Menor
  • 70. Eduardo Gómez Impactos en la Hidrosfera 70 Contaminación de aguas subterráneas Las aguas subterráneas son una de las principales fuentes de suministro para uso doméstico y para el riego en muchas partes de España y del mundo. En España alrededor de la tercera parte del agua que se usa en las ciudades y la industria y la cuarta parte de la que se usa en agricultura son aguas subterráneas. En muchos lugares en los que las precipitaciones son escasas e irregulares pero el clima es muy apto para la agricultura son un recurso vital y una gran fuente de riqueza, ya que permiten cultivar productos muy apreciados en los mercados internacionales.
  • 71. Eduardo Gómez Impactos en la Hidrosfera 71 Las aguas subterráneas suele ser más difíciles de contaminar que las superficiales, pero cuando esta contaminación se produce, es más difícil de eliminar. Sucede esto porque las aguas del subsuelo tienen un ritmo de renovación muy lento. Se calcula que mientras el tiempo de permanencia medio del agua en los ríos es de días, en un acuífero es de cientos de años, lo que hace muy difícil su purificación. Contaminación de aguas subterráneas Se suelen distinguir dos tipos de procesos contaminantes de las aguas subterráneas: •Puntuales: Afectan a zonas muy localizadas, •Difusos: Provocan contaminación dispersa en zonas amplias, en las que no es fácil identificar un foco principal.
  • 72. Eduardo Gómez Impactos en la Hidrosfera 72 Actividades que suelen provocar contaminación puntual son: • Lixiviados de vertederos de residuos urbanos y fugas de aguas residuales que se infiltran en el terreno. • Lixiviados de vertederos industriales, derrubios de minas, depósitos de residuos radiactivos o tóxicos mal aislados, gasolineras con fugas en sus depósitos de combustible, etc. • Pozos sépticos y acumulaciones de purines procedentes de las granjas. Este tipo de contaminación suele ser más intensa junto al lugar de origen y se va diluyendo al alejarnos. La dirección que sigue el flujo del agua del subsuelo influye de forma muy importante en determinar en qué lugares los pozos tendrán agua contaminada y en cuales no. Puede suceder que un lugar relativamente cercano al foco contaminante tenga agua limpia, porque la corriente subterránea aleja el contaminante de ese lugar, y al revés.
  • 73. Eduardo Gómez Impactos en la Hidrosfera 73 La contaminación difusa suele estar provocada por: • Uso excesivo de fertilizantes y pesticidas en la agricultura o en las prácticas forestales. • Explotación excesiva de los acuíferos que facilita el que las aguas salinas invadan la zona de aguas dulces, por desplazamiento de la interfase entre los dos tipos de aguas. Este tipo de contaminación puede provocar situaciones especialmente preocupantes con el paso del tiempo, al ir cargándose de contaminación, lenta pero continuamente, zonas muy extensas.
  • 74. Eduardo Gómez Impactos en la Hidrosfera 74
  • 75. Eduardo Gómez Impactos en la Hidrosfera 75 Lugar de origen Fuentes de contaminación potenciales de aguas subterráneas Municipal Industrial Agrícola Individual Por debajo de la superficie de suelo basureros fugas y drenaje de líneas de aguas residuales tuberías tanques de almacenamiento subterráneos almacenamiento subterráneo tanques pozos: construidos inadecuadamente o abandonados sistemas sépticos pozos: construidos inadecuadamente o abandonados
  • 76. Eduardo Gómez Impactos en la Hidrosfera 76 Lugar de origen Fuentes de contaminación potenciales de aguas subterráneas Municipal Industrial Agrícola Individual Cerca de la superficie del suelo contaminación del aire disposición en suelos de residuos municipales sal para el deshielo de caminos calles & aparcamientos contaminación de aire químicos: almacén & derrames combustibles: almacén & derrames arrastre en residuos de minas contaminación del aire derrame de químicos fertilizantes residuos en granjas almacenamiento & emisión al campo pesticidas contaminación del aire fertilizantes casas limpiadores detergentes petróleo pinturas pesticidas
  • 77. Eduardo Gómez Impactos en la Hidrosfera 77 Medidas para evitar la contaminación de las aguas subterráneas: 1. Limitación de ciertas actividades, instalaciones y obras en zonas próximas a acuíferos. 2. Control de vertidos. 3. Instalación de depuradoras en procesos de producción industrial.
  • 78. Eduardo Gómez Impactos en la Hidrosfera 78 Sobreexplotación de acuíferos
  • 79. Eduardo Gómez Impactos en la Hidrosfera 79 Cuando de un acuífero se saca más agua de la que entra se produce la sobreexplotación del mismo, proceso que disminuye el nivel freático y puede provocar intrusiones de agua de mar si se produce cerca de la costa. El agua de mar, mas densa, entra en el acuífero desalojando al agua dulce y provoca su salinización e inutilización para muchos usos. En España este fenómeno es frecuente en el litoral mediterráneo y en las islas por el excesivo consumo derivado del turismo y de las actividades agrícolas.
  • 80. Eduardo Gómez Impactos en la Hidrosfera 80 Contaminación de océanos El vertedero final para una gran parte de nuestros desechos es el océano. A él van a parar gran parte de los vertidos urbanos e industriales. No sólo recibe las aguas residuales, sino que, en muchas ocasiones, se usa para arrojar las basuras o, incluso, los residuos radiactivos. La capacidad purificadora de las grandes masas de agua marina es muy grande. En ellas se diluyen, dispersan o degradan ingentes cantidades de aguas fecales, hidrocarburos, desechos industriales e, incluso, materiales radiactivos. Por este motivo es muy tentador recurrir al barato sistema de arrojar al mar los residuos de los que queremos deshacernos; pero en muchos lugares, los excesos cometidos han convertido grandes zonas del mar en desiertos de vida o en cloacas malolientes. Estos problemas no son iguales en todos los mares, ni en cualquier parte del mar. La mayor concentración se da en las costas y en los mares cerrados con poca dinámica en sus aguas.
  • 81. Eduardo Gómez Impactos en la Hidrosfera 81
  • 82. Eduardo Gómez Impactos en la Hidrosfera 82
  • 83. Eduardo Gómez Impactos en la Hidrosfera 83 Los efectos de los vertidos también se dejan sentir en las aguas libres de mares y océanos. Las grandes cantidades de plástico echadas al mar son las responsables de la muerte de muchas focas, ballenas, delfines, tortugas, y aves marinas, que quedan atrapadas en ellas o se las comen.
  • 84. Eduardo Gómez Impactos en la Hidrosfera 84 El 80% de las sustancias que contaminan el mar tienen su origen en tierra. De las fuentes terrestres la contaminación difusa es la más importante. Incluye pequeños focos como tanques sépticos, coches, camiones, etc. y otros mayores como granjas, tierras de cultivo, bosques, etc. Los accidentes marítimos son responsables de alrededor de un 5% de los hidrocarburos vertidos en el mar. En cambio, una ciudad de cinco millones de habitantes acaba vertiendo en un año la misma cantidad que derramó el “Exxon Valdez” en su accidente en Alaska. Aproximadamente un tercio de la contaminación que llega a los mares empieza siendo contaminación atmosférica pero después acaba cayendo a los océanos.
  • 85. Eduardo Gómez Impactos en la Hidrosfera 85 Para medir la contaminación se utilizan en ocasiones bioindicadores con determinados tipos de moluscos (mejillones, percebes…) que al ser filtradores recogen todo tipo de contaminantes: Uno de los mares más contaminados es el Mediterráneo debido a:  Mar cerrado y poco dinámico  Población en aumento y concentrada en el litoral  Vertido de residuos sin tratamiento procedentes de: • Ríos contaminados • Desagües (emisarios submarinos) • Vertidos directos • Explotación de fondos marinos
  • 86. Eduardo Gómez Mareas negras Impactos en la Hidrosfera 86 Se denomina marea negra a la masa oleosa que se crea cuando se produce un derrame de hidrocarburos en el medio marino. Se trata de una de las formas de contaminación más graves, pues no sólo invade el hábitat de numerosas especies marinas, sino que en su dispersión alcanza igualmente costas y playas destruyendo la vida a su paso, o alterándola gravemente, a la vez que se generan grandes costes e inversiones en la limpieza, depuración y regeneración de las zonas afectadas.
  • 87. Eduardo Gómez Principales mareas negras Impactos en la Hidrosfera 87
  • 88. Eduardo Gómez Impactos en la Hidrosfera 88 Daños a la vida marina Cuando se produce el vertido, el hidrocarburo forma una mancha negra, una lámina que flota sobre el agua. Esta lámina impide que penetre la luz del sol y que se realice la fotosíntesis. Esto causa que los organismos primarios se vean afectados y con ellos toda la cadena alimenticia. El plancton es la población que se ve afectada de una forma más directa. Estos microorganismos forman parte de la alimentación de muchos otros seres que habitan en el mar, entre ellos se encuentran las grandes ballenas. Los moluscos bivalvos (mejillones, almejas, etc.), además de su escasa dinámica, no han desarrollado la capacidad de asimilar ni eliminar el hidrocarburo, por lo que a pequeñas concentraciones del mismo en el agua, estos organismos se ven afectados seriamente.
  • 89. Eduardo Gómez Impactos en la Hidrosfera 89 En el caso de los peces, encontramos diferentes comportamientos y efectos dependiendo de las especies. Existen peces que a 1000 ppm (partes por millón) no se ven afectados, y sin embargo existen larvas que a pequeñas concentraciones de hidrocarburos mueren. El hidrocarburo afecta a sus estructuras respiratorias y mueren. Si logran sobrevivir, el petróleo se trasmitirá a las especies que se alimenten de ellos. Los cetáceos en principio no se tendrían que verse muy afectados de forma directa, puesto que se cree que son capaces de detectar una mancha de petróleo que flota en el agua y desviar su trayectoria. Pero sin embargo, como hemos dicho anteriormente, las grandes ballenas se ven afectadas de forma indirecta al desaparecer su alimento, el plancton.
  • 90. Eduardo Gómez Impactos en la Hidrosfera 90 En las poblaciones de cetáceos más pequeños y costeros, como los delfines, sí se han detectado daños, por ejemplo con el derrame del Prestige, se han encontrado delfines muertos con una gran cantidad de petróleo pegado a su piel. Para estos animales, las barreras de contención que se colocan en la costa para detener el avance del petróleo también son un peligro, puesto que quedan atrapados en ellas como si se tratase de unas redes.
  • 91. Eduardo Gómez Impactos en la Hidrosfera 91 Aves marinas Estos animales mueren por congelación (hipotermia) puesto que el petróleo en sus plumas no permite el aislamiento térmico ni la impermeabilización de su cuerpo. La mayoría de aves que se encuentran "petroleadas" mueren en pocos días debido al mal estado en el que se encuentran. En las grandes catástrofes que han ocurrido en la historia han muerto miles y miles de aves por el derrame.
  • 92. Eduardo Gómez Impactos en la Hidrosfera 92 Daños al ecosistema terrestre o Cuando la marea negra llega a las costas las playas se tiñen de negro y las rocas se cubren de una película de hidrocarburo. El crudo se introduce entre los granos de arena y penetra en el suelo, en este momento se produce la contaminación del terreno. o Los seres vivos más afectados son los invertebrados que habitan en este ecosistema. Las poblaciones intersticiales que viven en este hábitat mueren. o La película de crudo forma una capa que impide el crecimiento de nuevas plantas y animales. Por eso la limpieza de las playas y líneas de costa son necesarias limpiarlas en profundidad para evitar que el hidrocarburo permanezca en el medio. o Pueden producir daños irreparables en ecosistemas de litoral como marismas, manglares y arrecifes de coral o Puede incrementarse la lluvia ácida
  • 93. Eduardo Gómez Impactos en la Hidrosfera 93
  • 94. Eduardo Gómez Impactos en la Hidrosfera 94
  • 95. Eduardo Gómez Impactos en la Hidrosfera 95 Daños a la economía La pérdidas económicas asociadas a los vertidos de petróleo al medio marino son descomunales. Toda una población costera se puede ver afectada en mayor o menor medida. En los pueblos y ciudades costeras la pesca juega un papel importante en la economía del lugar. Al producirse un vertido de hidrocarburo los bancos de pesca se ven afectados. Pero también los animales que viven en las rocas y superficies (percebes, mejillones, marisco en general), así como la flora acuática. La transformación de bellos paisajes en negros lugares manchados de hidrocarburos, hacen que el turismo se resienta y las actividades que dependen de él sufran grandes pérdidas económicas (hoteles, restaurantes, tiendas, etc.). En estos casos las indemnizaciones son el único recurso que les queda a los pescadores que se ven afectados. Un plan para que el pago de estas indemnizaciones sea rápido y eficaz es lo que denuncian estas comunidades pesqueras cuyo único recurso es el mar.
  • 96. Eduardo Gómez Depuración natural de las mareas negras Impactos en la Hidrosfera 96
  • 97. Eduardo Gómez Impactos en la Hidrosfera 97 Medidas preventivas 1. Reglamentos y leyes internacionales 2. Buques de doble casco 3. Reglamentos de transporte de sustancias tóxicas y peligrosas 4. Distancias de navegación a la costa
  • 98. Eduardo Gómez Impactos en la Hidrosfera 98 Limpieza de las mareas negras Contención y recogida Siempre que sea posible, la contención de crudo en el agua será una de las primeras operaciones que se realizarán, por su inocuidad, puesto que no causan daños, y porque impiden que la marea negra se propague a otras zonas. La contención consiste en rodear la marea negra, por lo general con barreras flotantes o cercos. Más tarde se procede a la recogida del petróleo mediante sistemas de succión (raseras o espumaderas). Después de esta recogida se separa el hidrocarburo del agua por diferentes procesos: centrifugación, bombeo por aspiración, adherencia a tambor o discos giratorios, fibras absorbentes, etc. Existen tres tipos diferentes de barreras según sus flotadores, estos pueden ser planos, cilíndricos o cilíndricos hinchables. Para la recogida y trasvase del hidrocarburo se utilizan los denominados "skimmers" y bombas de succión.
  • 99. Eduardo Gómez Impactos en la Hidrosfera 99 Limpieza del crudo
  • 100. Eduardo Gómez Impactos en la Hidrosfera 100 Dispersantes Los dispersantes químicos rompen los hidrocarburos en partículas más pequeñas. Son mezclas que contienen tensioactivos (como los detergentes), para reducir la tensión entre las superficies de las láminas de hidrocarburo y de agua. Estos agentes dispersantes, lo que producen es que la concentración de hidrocarburos en la columna de agua vuelva a estar en unos niveles aceptables. El tipo de dispersante y la concentración del mismo, dependerá de la tipología del hidrocarburo derramado. En el desastre del buque tanque Torrey Canyon en 1967, los daños producidos por los dispersantes utilizados fueron mayores que los provocados por el vertido en sí.
  • 101. Eduardo Gómez Impactos en la Hidrosfera 101 Incineración La incineración del petróleo es otra de las formas de eliminación del crudo. Se puede eliminar hasta un 95% del vertido total. Los efectos que tiene esta técnica es el humo negro que se produce. En muchos de los accidentes que han ocurrido en la historia de las mareas negras, se ha producido el incendio accidental del buque por alguna explosión interna, como ocurrió con el Urquiola, Mega Borg y Mar Egeo.
  • 102. Eduardo Gómez Impactos en la Hidrosfera 102 Biodegradación (Biorremediación) Existen microorganismos capaces de utilizar los hidrocarburos como fuente de carbono (alimento). Como subproductos generan compuestos no tóxicos. Las técnicas de limpieza generan las condiciones óptimas para el crecimiento de estos microorganismos. Aportan nutrientes, oxígeno, condiciones de pH y temperatura a los que los microorganismos "trabajan" mejor, etc. Este método es lento y complejo, todavía se sigue experimentando con él. Existen dos opciones a la hora de utilizar esta técnica: 1. Inoculación de bacterias petroleolíticas preparadas de forma industrial 2. Potenciación de las poblaciones autóctonas. Esta última opción es la más aconsejable, puesto que esas poblaciones están mejor adaptadas a ese medio.
  • 103. Eduardo Gómez Impactos en la Hidrosfera 103 Limpieza de playas y costas La limpieza de las playas y costas requiere el esfuerzo de muchos puesto que a veces las zonas son de difícil acceso. Hay que procurar no utilizar maquinaria pesada para no causar daños físicos al área afectada. Se utilizan chorros a presión de agua caliente para separar el hidrocarburo. Este método es criticado porque, aunque a simple vista parece que la playa ha quedado limpia, esto no es cierto porque el hidrocarburo es enterrado a más profundidad y provoca la muerte de la fauna intersticial que se encuentra en las playas.
  • 104. Eduardo Gómez Impactos en la Hidrosfera 104 No hacer nada En los vertidos que se producen en alta mar, o en aquellos donde las operaciones de limpieza son ineficaces o difíciles, se suele dejar que actúen los procesos naturales (olas, la fotoxidación, etc.) y el hidrocarburo se degrade de forma natural. Este método de no actuación se realiza en zonas donde la vegetación ha sido contaminada. En costas pantanosas es el mejor método porque las otras tareas de limpieza han producido más daños medioambientales.
  • 105. Eduardo Gómez Impactos en la Hidrosfera 105 Calidad de aguas potables El agua natural (o aguas blancas) no es apta para el consumo (lleva microorganismos y otras sustancias. Tiene que ser tratada para poder convertirse en agua potable. El proceso se denomina potabilización y se lleva a cabo en Estaciones de Tratamiento de Agua Potable (ETAP). El tratamiento que recibe el agua no siempre es el mismo, depende de la carga de sustancias y contaminantes que tenga el agua natural.
  • 106. Eduardo Gómez Impactos en la Hidrosfera 106 Clasificamos las aguas naturales superficiales, según el tratamiento que necesiten, en tres tipos: 1. Tipo A1. Necesita tratamientos físicos simples y de desinfección. 2. Tipo A2. Necesita tratamientos físicos simples, tratamiento químico y desinfección. 3. Tipo A3. Necesita tratamientos físico-químicos intensos, afino y desinfección.
  • 107. Eduardo Gómez El ciclo urbano del agua Impactos en la Hidrosfera 107 El agua que se reutiliza en las poblaciones recorre un ciclo: se toma del medio natural y, una vez usada y depurada, se reintegra de nuevo al medio. En el ciclo urbano diferenciamos tres fases: • Captación, • potabilización y • depuración.
  • 108. Eduardo Gómez Captación Impactos en la Hidrosfera 108 En los proyectos de captación deben existir las siguientes prioridades: 1. Elegir acuíferos con recursos superiores a las necesidades de la población para evitar la sobreexplotación. 2. Que las aguas sean de la mejor calidad. 3. Localizar el lugar de captación lo más cercano posible al punto de destino del agua.
  • 109. Eduardo Gómez Impactos en la Hidrosfera 109 Potabilización Es el proceso por el que el agua natural, a través de una serie de procesos fisico-químicos, se convierte en agua potable, apta para el consumo humano. La potabilización del agua se realiza en Estaciones de Tratamiento de Aguas Potables (ETAP).
  • 110. Eduardo Gómez Impactos en la Hidrosfera 110 Los principales procesos son: • Desbaste – tamización Sistema de rejas y tamices, cada vez más finos, que eliminan los sólidos más gruesos. • Aireación Al airear el agua se eliminan sustancias volátiles (CO2, H2S, ..) y se oxidan otros compuestos (Fe, Mn…). Con este proceso se elimina la posible corrosión en tuberías, así como malos olores y sabores. • Decantación - sedimentación Se añaden unos agentes químicos que favorecen la coagulación o floculación de los sólidos finos en suspensión para que sedimenten posteriormente.
  • 111. Eduardo Gómez Impactos en la Hidrosfera 111 • Filtración Filtros de arena, grava, carbones activos…, que eliminan las sustancias más finas. • Desinfección Consiste en la eliminación de patógenos. Se puede hacer por: 1. Filtros de membrana. 2. Cloración. Genera problemas de olor y sabor. 3. Ozonización. El ozono es un oxidante fuerte y tóxico para los microorganismos. Es caro. 4. Radiación UV. Es caro y el agua debe estar muy clara para evitar la absorción de radiación UV por parte de la materia orgánica.
  • 112. Eduardo Gómez Impactos en la Hidrosfera 112 Si el agua tiene un alto contenido en sales de calcio o de magnesio (dureza) se hace también un tratamiento de “ablandamiento” que reduce la dureza del agua. Consiste en la adición de Na2CO3 o sosa caustica (NaOH) al agua.
  • 113. Eduardo Gómez Impactos en la Hidrosfera 113
  • 114. Eduardo Gómez Impactos en la Hidrosfera 114 Rio, agua bruta Depósito abierto Sedimentación simple Desbaste Tamización Aireación Preoxidación Coagulación Floculación Decantación Sedimentación Filtración fina Desinfección Depósitos Red de distribución Fangos Tratamiento de fangos
  • 115. Eduardo Gómez Impactos en la Hidrosfera 115 Depuración de aguas Los procesos de depuración rebajan las contaminaciones fuertes con el fin de facilitar la autodepuración, reutilizar las aguas residuales en regadíos y favorecer la potabilización evitando riesgos para la salud. Se diferencian dos grupos de sistemas depurativos: 1. Sistemas de tratamiento biológico. 2. Sistemas físico-químicos. Su uso depende de cada EDAR (Estación Depuradura de Aguas Residuales) y se pueden dar solos o combinados.
  • 116. Eduardo Gómez Tratamientos biológicos Impactos en la Hidrosfera 116 Degradan la MO mediante microorganismos vivos (fundamentalmente bacterias, ya sean las que lleva el agua o añadidas). Tipos de tratamientos: • Fangos activados • Lechos bacterianos • Tratamientos blandos: Lagunajes
  • 117. Eduardo Gómez Lagunajes Impactos en la Hidrosfera 117 • Son lagunas artificiales • Poco profundas • El agua residual permanece meses • Los sólidos sedimentan • Los microorganismos degradan la MO Pueden ser: 1. Lagunas aerobias 2. Lagunas anaerobias 3. Lagunas facultativas Se pueden combinar varias lagunas de distinto tipo. Aerobia Anaerobia
  • 118. Eduardo Gómez Otros tratamientos blandos Impactos en la Hidrosfera 118 • Filtros verdes: Plantaciones de chopos u otros árboles/arbustos de crecimiento rápido que se riegan con aguas residuales. Los microorganismos del suelo contribuyen a la depuración. • Lechos de turba: Las aguas filtran a través de un manto de turba de grosor variable y habitado por microorganismos. Son sistemas útiles para pequeñas poblaciones. Su coste y gasto de mantenimiento son muy bajos. Estructura interna de un humedal artificial para el tratamiento de aguas residuales
  • 120. Eduardo Gómez Impactos en la Hidrosfera 120
  • 121. Eduardo Gómez Sistemas físico-químicos Impactos en la Hidrosfera 121 • También llamados depuración tecnológica o dura. • Se usan en grandes plantas. • Necesitan grandes instalaciones (caras). • Ventajas basadas en la rapidez y volumen de agua tratada.
  • 122. Eduardo Gómez Proceso de depuración Impactos en la Hidrosfera 122 Depende de cada EDAR y del tipo de agua a tratar: urbana, agrícola, industrial… Se pueden diferenciar: 1. Línea de agua: Tratamiento del agua desde que entra hasta que se vierte al receptor natural (río, mar….). 2. Línea de fangos: Es el proceso de compactación y concentración de los residuos presentes en el agua residual. 3. Línea de gas: Proceso al que se somete el gas obtenido en el tratamiento de lodos y fangos.
  • 123. Eduardo Gómez Impactos en la Hidrosfera 123 En verde: línea de agua. En marrón: línea de fangos. En amarillo: línea de gas
  • 124. Eduardo Gómez Impactos en la Hidrosfera 124
  • 125. Eduardo Gómez Impactos en la Hidrosfera 125 1 Pozo de llegada 2 Tanque de tormentas 3 Edificio de pretratamiento 4 Desarenador-desengrasador 5 Decantadores primarios 6 Reactores biológicos 7 Decantadores secundarios 8 Salida VISTA AÉREA DE UNA E.D.A.R.
  • 126. Eduardo Gómez Impactos en la Hidrosfera 126
  • 127. Eduardo Gómez Línea de aguas Impactos en la Hidrosfera 127 Tratamiento previo (pretratamiento) Consiste en la separación de los elementos más grandes por medios mecánicos: 1. Predesbaste: Rejas con elementos móviles. 2. Desbaste: Tamices finos. 3. Desarenado – Desengrasado. El agua se remueve y airea para que la arena sedimente y las grasas floten (se retiran por un sistema de recogida superficial mediante rasquetas). Los residuos generados en esta fase se compactan en contenedores y van a vertederos o plantas de compostaje. 4. Depósitos de laminación: Para mantener caudales continuos de agua en la planta.
  • 128. Eduardo Gómez Impactos en la Hidrosfera 128 Tratamiento primario Se trata de retirar los sólidos en suspensión o materia flotante que no se haya eliminado en el tratamiento previo. Requiere los siguientes procesos: 1. Decantación por gravedad. 2. Floculación (añadir productos químicos que formen agregados y favorezcan la precipitación). 3. Neutralización (ajuste del pH). El proceso de floculación es precedido por la coagulación, por eso se suele hablar de los procesos de coagulación-floculación. Estos facilitan la retirada de las sustancias en suspensión y de las partículas coloidales.
  • 129. Eduardo Gómez Impactos en la Hidrosfera 129 Tratamiento secundario o biológico • Conjunto de procesos biológicos complementados con procesos de decantación para eliminar del agua la MO. • El sistema más empleado es el de lodos o fangos activos que consiste en poner el agua residual en grandes depósitos en los que las bacterias del agua (o añadidas) oxidan la MO. • Se inyecta oxígeno para favorecer el crecimiento bacteriano. • Microorganismos y lodos son eliminados en un proceso posterior de decantación. • Es importante controlar los parámetros que aseguran un buen crecimiento de las bacterias. • Parte de los lodos se recirculan como inóculo bacteriano.
  • 130. Eduardo Gómez Impactos en la Hidrosfera 130 Otro sistema biológico es el de filtros o lechos bacterianos, donde las bacterias se adhieren a un material inerte (fragmentos sintéticos, piedras trituradas…) y el agua pasa por ellos. Los microrganismos descomponen la materia orgánica del agua que pasa por estos filtros del biorreactor.
  • 131. Eduardo Gómez Impactos en la Hidrosfera 131
  • 132. Eduardo Gómez Impactos en la Hidrosfera 132 Tratamiento terciario Son procesos en los que el agua salida de los procesos secundarios se somete a procesos complementarios y avanzados para eliminar la MO restante o reducir la cantidad de elementos, como P y N o sus compuestos. Son procesos caros (se utilizan en pocas EDAR) pero posibilitan la reutilización del agua. Desinfección. También se considera un tratamiento terciario para eliminar patógenos. Su utilización depende del grado de eficacia de los tratamientos anteriores.
  • 133. Eduardo Gómez Línea de fangos Impactos en la Hidrosfera 133 Es el tratamiento de fangos primarios y secundarios no utilizados en la recirculación. 1. Espesamiento de fangos. Reducción de volumen basada en la gravedad. 2. Estabilización de fangos. Digestión anaerobia y obtención de CH4 (puede utilizarse como combustible: biogás). 3. Acondicionamiento químico. Adición de reactivos químicos para provocar la coagulación de los sólidos. 4. Deshidratación por secado, prensado y centrifugación. El fango seco puede ir a vertederos, incineradoras o plantas de compostaje.
  • 134. Eduardo Gómez Línea de gas Impactos en la Hidrosfera 134 El gas obtenido en la línea de fangos puede aportar energía a la propia planta o se puede quemar en una serie de antorchas que tienen estas plantas.
  • 135. Eduardo Gómez Impactos en la Hidrosfera 135Impactos en la Hidrosfera 135 Agua residual Desbaste Desarenado, desengrasado Depósitos de laminación Decantación primaria Tratamiento secundario: Fangos activos o lechos bacterianos Decantación secundaria Tratamiento de afino filtración, desinfecciónReceptor natural FangosDigestiónEspesamiento Deshidratación Al vertedero, incineradora, compostaje Producción de energía Metano
  • 136. Eduardo Gómez Impactos en la Hidrosfera 136 Red de control de aguas superficiales  Son sistemas de vigilancia de la calidad de las aguas y del estado ambiental de los ríos. Con ellos se pueden detectar las agresiones que sufren los ecosistemas fluviales y se recoge información de tipo ambiental, científico y económico sobre los recursos hídricos.  La evaluación de la calidad de las aguas es una materia difícil, en la que se discute cuales son los mejores indicadores para evaluar el estado del agua. El problema reside fundamentalmente en la definición que se haga del concepto de "calidad del agua".  En España esta red de control se denominó Red ICA (Red Integrada de Calidad de las Aguas) que desde el año 1992 recogió los datos obtenidos en las distintas redes existentes en ese momento, como son la Red COCA (Control de Calidad General de las Aguas), la Red COAS (Control Oficial de Abastecimientos) y la Red ICTIOFAUNA que controla la aptitud del agua para la vida piscícola, hasta la entrada en vigor de la DMA (Directiva Marco Europea del Agua).
  • 137. Eduardo Gómez Impactos en la Hidrosfera 137 Red COCA El control de la Calidad General se realiza en las estaciones integradas en la Red COCA, ubicadas en tramos de diversas características (cabecera, tramos medios, aguas abajo de los vertidos más significativos) con el objeto de tener una visión global y representativa de la calidad de las aguas en el conjunto de la cuenca. En estas estaciones se analizan del orden de 40 parámetros distintos, cuyo valor se transmite a las confederaciones hidrográficas y al Ministerio de Medio Ambiente. Finalmente, se condensa la información recogida en un único valor numérico que refleje la calidad del agua, para lo que se ha venido usando un índice numérico denominado Índice de Calidad General (ICG).
  • 138. Eduardo Gómez Impactos en la Hidrosfera 138 Índice de Calidad General (ICG) 1. Es un índice muy utilizado en todo el Estado español. 2. El ICG se obtiene matemáticamente a partir de una fórmula que integra 23 parámetros de calidad de las aguas. o Nueve de estos parámetros, que se denominan básicos, son necesarios en todos los casos. o Otros catorce, que responden al nombre general de complementarios, sólo se usan para aquéllas estaciones o períodos en los que se analizan. 3. A partir de formulaciones matemáticas, que valoran la influencia de cada uno de estos parámetros en el total del índice, se deduce un valor final que se sitúa necesariamente entre 0 y 100.
  • 139. Eduardo Gómez Impactos en la Hidrosfera 139 CALIDAD DEL AGUA ICG Excelente entre 85 y 100 Buena entre 75 y 85 Regular entre 65 y 75 Deficiente entre 50 y 65 Mala menor que 50Los parámetros de coeficiente 1 son los más importantes a la hora de determinar la calidad del agua. De ellos, seis son básicos (OD, MES, pH, conductividad, DBO y coliformes). Otros tres básicos son la DQO, fosfatos y nitratos.
  • 140. Eduardo Gómez Impactos en la Hidrosfera 140 Evolución de la calidad del agua (1998-2006)
  • 141. Eduardo Gómez Impactos en la Hidrosfera 141