SlideShare uma empresa Scribd logo
1 de 46
Baixar para ler offline
Capítulo II                                                                                 30


                                     CAPÍTULO II
               Fundición moldeo y Procesos afines

2.1. FUNDAMENTOS DE LA FUNDICIÓN DE METALES
   2.1.1.     TECNOLOGÍA DE FUNDICIÓN
   2.1.2.     CALENTAMIENTO Y VACIADO
       2.1.2.1. CALENTAMIENTO DEL METAL
       2.1.2.2   VACIADO DEL METAL FUNDIDO
            2.1.2.2.1.1 ANÁLISIS INGENIERIL DEL VACIADO
       2.1.2.3   FLUIDEZ
   2.1.3      SOLIDIFICACIÓN Y ENFRIAMIENTO
       2.1.3.1   SOLIDIFICACIÓN DE LOS METALES
       2.1.3.2   TIEMPO DE SOLIDIFICACIÓN
       2.1.3.3   CONTRACCIÓN
       2.1.3.4   SOLIDIFICACIÓN DIRECCIONAL
       2.1.3.5   DISEÑO DE LA MAZAROTA
2.2 PROCESOS DE FUNDICIÓN DE METALES
   2.2.1      FUNDICIÓN EN ARENA
       2.2.1.1   MODELOS Y CORAZONES
       2.2.1.2   MOLDES Y FABRICACIÓN DE MOLDES
   2.2.2      FUNDICIÓN CENTRÍFUGA
   2.2.3      FUNDICIÓN EN MOLDE DE YESO
   2.2.4      FUNDICIÓN EN MOLDE DE CERÁMICA
   2.2.5      FUNDICIÓN EN MOLDE CON REVESTIMIENTO (MODELO PERDIDO)
   2.2.6      FUNDICIÓN EN MOLDE PERMANENTE
   2.2.7      FUNDICIÓN A PRESIÓN
   2.2.8      CALIDAD DE LA FUNDICIÓN
   2.2.9      METALES PARA FUNDICIÓN
   2.2.10 CONSIDERACIONES PARA EL DISEÑO DE PRODUCTOS




UMSS – Facultad de Ciencias y Tecnología                  Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                              31

2.2. FUNDAMENTOS DE LA FUNDICIÓN DE METALES


       En el proceso de fundición el metal fundido fluye por gravedad u otra fuerza dentro de un molde
donde se solidifica y toma la forma de la cavidad del molde. El término fundición se aplica también a la
parte resultante de este proceso. Es uno de los más antiguos procesos de formado que se remonta 6 mil
años atrás. El principio de la fundición es simple: se funde el metal, se vacía a un molde y se deja enfriar;
hay todavía muchos factores y variables que debemos considerar para lograr una operación exitosa de
fundición.
       La fundición incluye la fundición de lingotes y la fundición de formas. El término lingote se asocia
usualmente con las industrias de metales primarios; describe una fundición grande de forma simple,
diseñada para volver a formarse en procesos subsiguientes como laminado o forjado. La fundición de
formas involucra la producción de piezas complejas que se aproximan más a la forma final deseada del
producto. Este capítulo se ocupa de estas formas de fundición más que de los lingotes.
       Existen diversos métodos para la fundición de formas, lo cual hace de este proceso uno de los más
versátiles en manufactura. Sus posibilidades y ventajas son las siguientes:
   •    La fundición se puede usar para crear partes de compleja geometría, incluyendo formas externas
        e internas.
   •    Algunos procesos de fundición pueden producir partes de forma neta que no requieren
        operaciones subsecuentes para llenar los requisitos de la geometría y dimensiones de la parte.
   •    Se puede usar la fundición para producir partes muy grandes. Se han fabricado fundiciones que
        pesan más de 100 toneladas.
   •    El proceso de fundición puede realizarse en cualquier metal que pueda calentarse y pasar al
        estado líquido.
   •    Algunos métodos de fundición son altamente adaptables a la producción en masa.


       No obstante, también hay desventajas asociadas con la fundición y sus diferentes métodos. Estas
incluyen las limitaciones de algunos procesos en las propiedades mecánicas como porosidad, baja
precisión dimensional y acabado deficiente de la superficie, también hay riesgos en la seguridad de los
trabajadores durante el procesamiento y problemas ambientales.
       Las partes de fundición fluctúan en tamaño, desde pequeños componentes que pesan solamente
unas cuantas onzas hasta grandes productos de más de 100 toneladas. La lista incluye coronas dentales,
joyería, estatuas, estufas de hierro fundido, bloques y cabezas para motores automotrices, base para
máquinas, ruedas para ferrocarril, sartenes para freír, tubos y carcasas para bombas. Se pueden fundir
todas las variedades de metales ferrosos y no ferrosos.
       La fundición también puede utilizarse en otros materiales como polímeros y cerámicos; sin
embargo, como los detalles son bastante diferentes, posponemos en análisis de los procesos de
fundición de estos materiales para secciones posteriores. En este tema revisamos los fundamentos que
se aplican prácticamente a todas las operaciones de fundido; se describen los procesos de fundición
individualizados, junto con los aspectos que deben considerarse en el diseño de productos de fundición.


UMSS – Facultad de Ciencias y Tecnología                               Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                  32

   2.2.1.     TECNOLOGÍA DE FUNDICIÓN


       La fundición, como proceso de producción, se lleva a cabo generalmente en una fundidora. Una
fundidora es una fábrica equipada para hacer moldes, fundir y manejar el metal en estado líquido,
desempeñar los procesos de fundición y limpieza de las piezas terminadas. Los trabajadores que realizan
las operaciones de fundición en estas fábricas se llaman fundidores.
       Este proceso empieza lógicamente con un molde. El molde consiste en dos mitades: la tapa y la
draga. Ambas están contenidas en la caja del molde, que también se divide en dos partes: La semicaja
superior y la semicaja inferior (en inglés cope es la parte superior y drag la parte inferior), una para cada
parte del molde; las dos mitades del molde están separadas por el plano de separación. El molde
contiene una cavidad cuya forma geométrica determina la forma de la parte a fundir. La cavidad debe
diseñarse de forma y tamaño ligeramente sobredimensionado, esto permitirá la contracción del metal
durante la solidificación y enfriamiento. Cada metal sufre diferente porcentajes de contracción, por tanto,
la cavidad debe diseñarse para el metal particular que se va a fundir. La cavidad del molde proporciona la
superficie externa de la fundición; pero además puede tener superficies internas, que se definen por
medio de un corazón, el cual es una forma colocada en el interior de la cavidad del molde para formar la
geometría interior de la pieza. Los moldes se hacen de varios materiales que incluyen arena, yeso,
cerámica y metal. Los procesos de fundición se clasifican frecuentemente de acuerdo a los diferentes
tipos de moldes.




               FIGURA 2.1 Dos formas de molde: (a) molde abierto, simplemente un recipiente con la
               forma de la parte de fundición; y (b) molde cerrado, de forma más compleja que requiere
               un sistema de vaciado (vía de paso) conectado con la cavidad.


       En una operación de fundición, se calienta primero el metal a una temperatura lo suficientemente
alta para transformarlo completamente al estado líquido. Después se vierte directamente en la cavidad
del molde. En un molde abierto figura 2.1(a), el metal líquido se vacía simplemente hasta llenar la cavidad
abierta. En un molde cerrado figura 2.1(b) una vía de paso llamada sistema de vaciado permite el flujo del
metal fundido desde fuera del molde hasta la cavidad. El molde cerrado es la forma más importante de
producción en operaciones de fundición. El sistema de vaciado en un molde de fundición es el canal o red


UMSS – Facultad de Ciencias y Tecnología                                   Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                             33

de canales por donde fluye el metal fundido hacia la cavidad desde el exterior. El sistema de vaciado,
consiste típicamente en un bebedero de colada (también llamado simplemente bebedero) a través del
cual entra el metal a un canal de alimentación que conduce a la cavidad principal. En la parte superior del
bebedero existe frecuentemente una copa de vaciado para minimizar las salpicaduras y la turbulencia del
metal que fluye en el bebedero. En el diagrama aparece como un simple embudo en forma de cono.
Algunas copas de vaciado se diseñan en forma de tazón con un canal abierto que conduce al bebedero
de colada.
       Tan pronto como el material fundido en el molde empieza a enfriarse, y conforme desciende la
temperatura (al punto de congelación de un metal puro), empieza la solidificación que involucra un
cambio de fase del metal. Se requiere tiempo para completar este cambio de fase, porque es necesario
disipar una considerable cantidad de calor. Durante este proceso, el metal adopta la forma de la cavidad
del molde y se establecen muchas de las propiedades y características de la fundición.
       En cualquier fundición cuya contracción sea significativa se requiere, además del sistema de
vaciado, una mazarota conectada a la cavidad principal. La mazarota es una reserva en el molde que
sirve como fuente de metal líquido para compensar la contracción de la fundición durante la solidificación.
A fin de que la mazarota cumpla adecuadamente con su función, debe diseñarse de tal forma que
solidifique después de la fundición principal.
       Una vez que la fundición se ha enfriado lo suficiente, se remueve del molde. Pueden necesitarse
procesamientos posteriores, dependiendo del método de fundición y del metal que se usa. Entre éstos se
encuentran el desbaste del metal excedente de la fundición, la limpieza de la superficie, la inspección del
producto y el tratamiento térmico para mejorar sus propiedades. Además, puede requerirse maquinado
para lograr tolerancias estrechas en ciertas partes de la pieza y para remover la superficie fundida y
microestructura metalúrgica asociada.


   2.2.2.     CALENTAMIENTO Y VACIADO


       Para desarrollar la operación de fundición, el metal se calienta a temperatura ligeramente mayor
que su punto de fusión y después se vacía en la cavidad del molde para que se solidifique. En esta
sección consideramos varios aspectos de estos dos pasos en la fundición.


     2.2.2.1. CALENTAMIENTO DEL METAL


       Se usan varias clases de hornos, para calentar el metal a la temperatura necesaria de fusión. La
energía calorífica requerida es la suma de 1) calor para elevar la temperatura hasta el punto de fusión, 2)
calor de fusión para convertir el metal sólido a líquido y 3) calor para elevar al metal fundido a la
temperatura de vaciado. Esto se puede expresar como:


                    H = ρV {C S (Tm − To ) + H f + C t (T p − Tm )}                 2.1




UMSS – Facultad de Ciencias y Tecnología                              Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                              34

        Donde:
         H = calor requerido para elevar la temperatura del metal a la temperatura de fusión, (J)
         ρ = densidad, (Kg/m3)
         C s = calor específico en peso para el material sólido, (J/Kg ºC)
         Tm = temperatura de fusión del metal, (ºC)
         T0 = Temperatura inicial, generalmente la ambiente, (ºC);
         H f = calor de fusión, (J/Kg)

         C t = calor específico en peso del metal líquido, (J/KgºC)
         T p = temperatura de vaciado, (ºC)
        V = Volumen del metal que se calienta, (m3).

Ejemplo 2.1: Calentamiento del metal para fundición.


Un volumen de 0.03 m3        de una cierta aleación eutéctica se va a calentar en un crisol desde la
temperatura ambiente hasta 100 ºC por encima de su punto de fusión. Las propiedades de la aleación
son densidad = 4160 kg/m3, punto de fusión = 700 ºC, calor específico del metal = 343.32 J/kgoC en el
estado sólido y 297.26 J/kgoC en el estado líquido; y el calor de fusión = 167120.85 J/kg. ¿Cuánta
energía calorífica se debe añadir para alcanzar el calentamiento, asumiendo que no hay pérdidas?


Solución: Si aceptamos que la temperatura ambiente en la fundición = 26 ºC y que las densidades en los
estados líquido y sólido del metal son las mismas, al sustituir los valores de las propiedades en la
ecuación (2.1) se tiene:


        H = (4160)(0.03){343.32(700-26) + 167120.85 +297.26(800-700}
          = 53444917.34 J
.
       La ecuación 2.1 tiene un valor conceptual y su cálculo es de utilidad limitada, no obstante se usa
como ejemplo. El cálculo de la ecuación 2.1 es complicado por los siguientes factores: 1) el calor
específico y otras propiedades térmicas del metal sólido varían con una temperatura, especialmente si el
metal sufre un cambio de fase durante el calentamiento; 2) el calor específico de un metal puede ser
diferente en el estado sólido y en estado líquido; 3) la mayoría de los metales de fundición son aleaciones
que funden en un intervalo de temperaturas entre sólidos y líquidos en lugar de un punto único de fusión,
por lo tanto, el calor de fusión no puede aplicarse tan fácilmente como se indica arriba; 4) en la mayoría
de los casos no se dispone de los valores requeridos en la ecuación para una aleación particular y 5)
durante el calentamiento hay pérdidas de calor significativas.




UMSS – Facultad de Ciencias y Tecnología                               Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                             35

     2.1.3.2       VACIADO DEL METAL FUNDIDO


       Después del calentamiento, el material está listo para vaciarse. La introducción del metal fundido
en el molde y su flujo dentro del sistema de vaciado y de la cavidad es un paso crítico en el proceso. Para
que este paso tenga éxito, el metal debe fluir antes de solidificarse a través de todas las regiones del
molde, incluida la región más importante que es la cavidad principal. Los factores que afectan la
operación de vaciado son la temperatura de vaciado, la velocidad de vaciado y la turbulencia.
       La temperatura de vaciado es la temperatura del metal fundido al momento de su introducción en el
molde. Lo importante aquí es la diferencia entre la temperatura de vaciado y la temperatura a la que
empieza la solidificación (el punto de fusión para un metal puro, o la temperatura líquidus para una
aleación). A esta diferencia de temperaturas se le llama algunas veces sobrecalentamiento.
       La velocidad de vaciado se refiere a la velocidad volumétrica a la que se vierte el metal fundido
dentro del molde. Si la velocidad es muy lenta, el metal puede enfriarse antes de llenar la cavidad. Si la
velocidad de vaciado es excesiva, la turbulencia puede convertirse en un problema serio.
       La turbulencia de flujo se caracteriza por variaciones erráticas de la velocidad a través del fluido;
cuando éste se agita, genera corrientes irregulares en lugar de fluir en forma laminar. El flujo turbulento
debe evitarse durante el vaciado por varias razones. Tiende a acelerar la formación de óxidos metálicos
que pueden quedar atrapados durante la solidificación, degradando así la calidad de la fundición. La
turbulencia también agrava la erosión del molde, que es el desgaste gradual de las superficies del molde
debido al impacto del flujo de metal fundido. Las densidades de la mayoría de los metales fundidos son
más altas que las del agua y de otros fluidos que conocemos normalmente. Los metales fundidos son
químicamente mucho más reactivos que a temperatura ambiente. Por consiguiente, el desgaste causado
por el flujo de estos metales en el molde es significativo, especialmente bajo condiciones turbulencias. La
erosión es especialmente seria cuando ocurre en la cavidad principal porque afecta la forma de la parte
fundida.


       2.1.3.2.1     ANÁLISIS INGENIERIL DEL VACIADO


       Varias relaciones gobiernan el flujo del metal líquido a través del sistema de vaciado y dentro del
molde. Una relación importante es el teorema de Bernoulli, el cual establece que la suma de las energías
(altura, presión dinámica, energía cinética y fricción) en dos puntos cualquiera de un líquido que fluye son
iguales. Esto se puede escribir en la siguiente forma:

                                 P1 v12            P   v2
                          h1 +     +    + F1 = h2 + 2 + 2 + F1− 2               2.2
                                 gρ 2 g            gρ 2 g


        Donde:
           h = altura, (m)
           P = presión en el líquido, (N/m2)


UMSS – Facultad de Ciencias y Tecnología                              Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                36

         ρ=   densidad, (Kg/m3)

         v = velocidad de flujo en (m/seg)
         g = Constante de la aceleración gravitacional, (9.81 m/seg2);
         F = Pérdidas de carga debidas a la fricción, (metros).
        Los subíndices 1 y 2 indican los dos puntos cualquiera en el flujo del líquido.


       La ecuación de Bernoulli se puede simplificar de varias maneras. Si ignoramos las pérdidas por
fricción (de seguro, la fricción afectará el flujo del líquido a través del molde de arena) y asumimos que el
sistema permanece a presión atmosférica en toda su extensión, entonces la ecuación puede reducirse a:


                                            v12     v2
                                     h1 +       = h2 2                  2.3
                                            2g      2g
       La cual puede usarse para determinar la velocidad del metal fundido en la base del bebedero de
colada. Definamos un punto (1) en la parte superior del bebedero y un punto (2) en la base. Si el punto
(2) se usa como referencia, entonces la altura en ese punto es cero ( h2 = 0 ) y h1 es la altura (longitud)
del bebedero. Cuando se vierte el metal en la copa de vaciado y fluye hacia abajo, su velocidad inicial en

la parte superior es cero ( v1 = 0 ). Entonces la ecuación 1.3 se simplifica a


                                                            2
                                                           v2
                                                    h1 =
                                                           2g
que se pede resolver para la velocidad del flujo:


                                           v = 2 gh               2.4

        Donde:
         v = Velocidad del metal líquido en la base del bebedero de colada, (m/seg);
         g = 9.81 m/seg2
         h = altura del bebedero (m)

       Otra relación de importancia durante el vaciado es la ley de continuidad, la cual establece que la
velocidad volumétrica del flujo permanece constante a través del líquido. La velocidad del flujo
volumétrico m3/seg es igual a la velocidad multiplicada por el área de la sección transversal del flujo
líquido. La ley de continuidad puede expresarse como:


                                     Q = v1 A1 = v 2 A2                 2.5
        Donde:
         Q = Velocidad de flujo volumétrico, (m3/seg);


UMSS – Facultad de Ciencias y Tecnología                                 Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                             37

         v = Velocidad, (m/seg);
         A = área de la sección transversal del líquido, (m2)
Los subíndices se refieren a cualquiera de los dos puntos en el sistema de flujo. Entonces, un incremento
en el área produce un decremento en la velocidad y viceversa.


       Las ecuaciones 2.4 y 2.5 indican que el bebedero debe ser ahusado. El área de la sección
transversal del canal debe reducirse conforme el metal se acelera durante su descenso en el bebedero
de colada; de otra manera, puede aspirar aire dentro del líquido debido al incremento de la velocidad del
metal que fluye hacia la base del bebedero y conducirlo a la cavidad del molde. Para prevenir esta
condición, se diseña el bebedero con un ahusamiento de manera que la velocidad volumétrica de flujo
vA sea misma en la parte superior y en el fondo del bebedero.
       Si aceptamos que el canal alimentador de la base del bebedero a la cavidad del molde sea
horizontal (y por tanto que la altura sea la misma que la de la base del bebedero), la velocidad
volumétrica de flujo a través del sistema de vaciado y dentro de al cavidad del molde permanece igual a
vA en la base. Por consiguiente, podemos estimar el tiempo requerido para llenar una cavidad de
volumen V como sigue:


                                                   V
                                           MFT =                2.6
                                                   Q
        Donde:
         MFT = tiempo de llenado del molde, seg. (s);
        V = Volumen de la cavidad del molde, (m3);
         Q = Velocidad volumétrica de flujo. (m3/seg)


       El tiempo de llenado del molde calculado por la ecuación 2.6 debe considerarse como tiempo
mínimo, debido a que el análisis ignora las pérdidas por fricción y la posible constricción del flujo en el
sistema de vaciado; por tanto, el tiempo de llenado del molde será mayor que el resultante de la ecuación
2.6


Ejemplo 2.2: Cálculos de vaciado.
Un molde tiene un bebedero de colada cuya longitud es 0.20 m y el área de la sección transversal en la
base del bebedero es 0.000258 m2. El bebedero alimenta a un canal horizontal que conduce a la cavidad
del molde cuyo volumen es 0.0016387 m3. Determine a) la velocidad del metal fundido en la base del
bebedero, b) la velocidad volumétrica de flujo y c) el tiempo de llenado del molde.


Solución: a) La velocidad del flujo de metal en la base del bebedero está dada por la ecuación 2.4




UMSS – Facultad de Ciencias y Tecnología                              Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                               38

                                    v = 2hg = 2 ⋅ 9.81 ⋅ 0.20 = 1.98 m /seg
b) La velocidad volumétrica de flujo es


                             Q = (0.000258 m2)(1.98 m/seg) = 0.00051107 m3/seg


c) El tiempo requerido para llenar una cavidad de 0.0016387 m2 con este flujo es


                                     MFT = 0.0016387/0.0005152 = 3.2 seg.

       2.1.3.3   FLUIDEZ

       Las características del metal fundido se describen frecuentemente con el término fluidez, una
medida de la capacidad del metal par llenar el molde antes de enfriar. Existen métodos normales de
ensayo para valorar la fluidez, como el molde espiral de prueba que se muestra en la figura 2.2, donde la
fluidez se mide por la longitud del metal solidificado en el canal espiral. A mayor longitud, mayor fluidez
del metal fundido.




              FIGURA 2.2 Molde espiral para ensayo de la fluidez, ésta se mide por la longitud del
              canal espiral lleno antes de la solidificación


       Los factores que afectan la fluidez son la temperatura de vaciado, la composición del metal, la
viscosidad del metal líquido y el calor transferido de los alrededores. Una temperatura mayor, con
respecto al punto de solidificación del metal, incrementa el tiempo que el metal permanece en estado
líquido permitiéndole avanzar más, antes de solidificarse. Esto tiende a agravar ciertos problemas como
la formación de óxido, la porosidad gaseosa y la penetración del metal líquido en los espacios
intersticiales entre los gramos de arena que componen el molde. Este último problema causa que la
superficie de la fundición incorpore partículas de arena que la hacen más rugosa y abrasiva de lo normal.
La composición también afecta la fluidez, particularmente en lo que respecta a los mecanismos de
solidificación del metal. Los metales que se solidifican a temperatura constante tienen mejor fluidez (por
ejemplo, metales puros y aleaciones eutécticas). Cuando la solidificación ocurre en un intervalo de
temperaturas, como es el caso de muchas aleaciones, la porción parcialmente solidificada interfiere en el


UMSS – Facultad de Ciencias y Tecnología                                Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                  39

flujo de la porción líquida, reduciendo así la fluidez. La composición del metal determina, además de los
mecanismos de solidificación, el calor de fusión, la cantidad de calor requerida para que el metal pase del
estado líquido al sólido. Un mayor calor de fusión tiende a incrementar la medida de la fluidez en la
fundición.


   2.1.4      SOLIDIFICACIÓN Y ENFRIAMIENTO


       Después de vaciar el metal fundido en el molde, éste se enfría y solidifica. En esta sección
examinaremos los mecanismos físicos de solidificación que ocurren durante la fundición. Los aspectos
asociados con la solidificación incluyen el tiempo de enfriamiento del metal, la contracción, la
solidificación direccional y el diseño de las mazarotas.


     2.1.3.6      SOLIDIFICACIÓN DE LOS METALES


       La solidificación involucra el regreso del metal fundido al estado sólido. El proceso de solidificación
difiere, dependiendo de si el metal es un elemento puro o una aleación.




               FIGURA 2.3 Curva de enfriamiento para un metal puro durante la fundición.


       Metales puros. Un metal puro solidifica a una temperatura constante que constituye su punto de
congelación o punto de fusión. Los puntos de fusión de los metales puros son bien conocidos. El proceso
ocurre en un tiempo determinado como se muestra en la figura 2.3, conocida como curva de enfriamiento.
La solidificación real toma un tiempo llamado, tiempo local de solidificación, durante el cual el calor
latente de fusión del metal escapa fuera del molde. El tiempo total de solidificación va desde el momento
de vaciar el metal hasta su completa solidificación. Después que la fundición se ha solidificado

UMSS – Facultad de Ciencias y Tecnología                                   Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                     40

completamente, el enfriamiento continúa a una velocidad indicada por la pendiente hacia debajo de la
curva de enfriamiento.
       Debido a la acción refrigerante de la pared del molde, se forma una delgada película inicial de
metal sólido en la pared inmediatamente después del vaciado. El espesor de esta película aumenta para
formar una costra alrededor del metal fundido que va creciendo hacia el centro de la cavidad conforme
progresa la solidificación. La velocidad del enfriamiento depende del calor que se transfiere en el molde y
de las propiedades térmicas del metal.
       Es interesante examinar la formación del grano metálico y su crecimiento durante este proceso de
solidificación. El metal que forma la película inicial se ha enfriado rápidamente por la extracción de calor a
través de la pared del molde. Esta acción de enfriamiento causa que los granos de la película sean finos,
equiaxiales y orientados aleatoriamente. Al continuar el enfriamiento se forman más granos y el
crecimiento ocurre en direcciones alejadas de la transferencia de calor. Como el calor se transfiere a
través de la costra y la pared del molde, los granos crecen hacia adentro como agujas o espinas de metal
sólido. Al agrandarse estas espinas se forman ramas laterales que siguen creciendo y forman ramas
adicionales en ángulos rectos con las primeras. Este tipo de crecimiento llamado crecimiento dendrítico
del grano ocurre no solamente en la solidificación de los metales puros, sino también en la de las
aleaciones. Estas estructuras tipo árbol se llevan a cabo en forma gradual durante el enfriamiento, al
depositarse continuamente metal adicional en las dendritas hasta completar la solidificación. Los granos
resultantes de este crecimiento dendrítico adoptan una orientación preferente y tienden a ser burdos y
alinearse en forma de granos columnares hacia el centro de la fundición. La estructura granulada
resultante se ilustra en la figura 2.4




              FIGURA 2.4 Estructura cristalina característica del un metal puro, mostrando los granos,
              pequeños orientados aleatoriamente cerca de las paredes del molde, y los granos
              columnares grandes orientados hacia el centro de la fundición


UMSS – Facultad de Ciencias y Tecnología                                      Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                 41




              FIGURA 2.5 (a) Diagrama de fase para un sistema, de aleación cobre-níquel y (b) curva
              de enfriamiento asociada para una composición Ni-Cu 50-50% durante la fundición.


       Aleaciones en general. Las aleaciones solidifican generalmente en un intervalo de temperaturas
en lugar de una temperatura única. El rango exacto depende del sistema de aleación y su composición
particular. Se puede explicar la solidificación de una aleación con referencia a la figura 2.5, que muestra
el diagrama de fase de un sistema particular de aleación y a la curva de enfriamiento para una
composición dada. Conforme desciende la temperatura, empieza la solidificación en la temperatura que
indica la línea liquidus y se completa cuando se alcanza la solidus. El inicio de la solidificación es similar a
la del metal puro. Se forma una delgada película en la pared del molde debido a un alto gradiente de
temperatura en esta superficie. La solidificación progresa entonces igual que antes, mediante la
formación de dendritas alejadas de las paredes. Sin embargo, debido a la propagación de la temperatura
entre liquidus y solidus, el crecimiento de las dendritas es tal que se forma una zona avanzada donde el
metal sólido y el líquido coexisten. La porción sólida está constituida por estructuras dendríticas que se
han formado lo suficiente y han atrapado en la matriz pequeñas islas de líquido. La región sólido-líquido
tiene una consistencia suave que da lugar a su nombre de zona blanda. Dependiendo de las condiciones
del enfriamiento, la zona blanda puede ser relativamente angosta o puede ocupar la mayor parte de la
fundición. Los factores que promueven la última condición son una lenta transferencia de calor fuera del
metal caliente y una amplia diferencia entre liquidus y solidus. Las islas de líquido en la matriz de dendrita
se solidifican gradualmente al bajar la temperatura de la fundición hasta la temperatura solidus que
corresponde a la composición de la aleación.
       Otro factor que complica la solidificación de las aleaciones es la composición de las dendritas que
al iniciar su formación son favorecidas por el metal que tiene el punto de fusión mayor Al continuar la
solidificación las dendritas crecen y se genera un desbalance entre la composición del metal solidificado y
el metal fundido remanente. Este desbalance de composición se manifiesta finalmente como segregación


UMSS – Facultad de Ciencias y Tecnología                                 Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                 42

de elementos en las fundiciones terminadas. La segregación es de dos tipos, microscópica y
macroscópica. A nivel microscópico, la composición química varía a través de cada grano individual. Esto
se debe a que la espina inicial de cada dendrita tiene una proporción más alta de uno de los elementos
de la aleación La dendrita crece a expensas del líquido remanente que ha sido parcialmente agotado de
este primer elemento. Finalmente, el último metal que solidifica en cada grano es el que quedó atrapado
en las ramas de las dendritas, cuya composición es aún más desbalanceada. El resultado es una
variación en composición química dentro de cada grano de la fundición.
       A nivel macroscópico, la composición química varía a través de la fundición en sí. Como las
regiones de la fundición que se solidifica primero (generalmente cerca de las paredes del molde) son más
ricas en un componente que en otro, la composición de la aleación fundida remanente queda modificada
cuando ocurre la solidificación en el interior. Se genera entonces, una segregación general a través de la
sección transversal de la fundición, llamada algunas veces segregación de lingote como se muestra en la
figura 2.6.




              FIGURA 2.6 Estructura cristalina característica de fundición para una aleación,
              mostrando la segregación de los componentes en el centro de la fundición.


      Aleaciones eutécticas. Las aleaciones eutécticas constituyen una excepción del proceso general
de solidificación de las aleaciones. Una aleación eutéctica tiene una composición particular en la cual las
temperaturas sólidus y líquidus son iguales. En consecuencia, la solidificación ocurre a una temperatura
constante, y no en un rango de temperaturas como se describió anteriormente, el hierro fundido (4.3%C)
son ejemplos de aleaciones eutécticas que se usan en fundición.




UMSS – Facultad de Ciencias y Tecnología                                  Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                            43

     2.1.3.7     TIEMPO DE SOLIDIFICACIÓN


      Si la fundición es metal puro o aleación, de todos modos, su solidificación toma tiempo. El tiempo
total de solidificación es el tiempo necesario para que la fundición solidifique después del vaciado. Este
tiempo depende del tamaño y de la forma de la fundición expresada por una relación empírica conocida
como regla de Chvorinov que establece
                                                      n
                                              V 
                                    TST = C m                    2.7
                                               A
        Donde:
         TST = Tiempo de solidificación total, min;
        V = Volumen de fundición, (m3);
         A = Área superficial de la fundición, (m2);
         n = Exponente que toma usualmente un valor de 2;
         C m = Es la constante del molde.


       Dado que n = 2, las unidades de C m son (min/m2), su valor depende de las condiciones

particulares de la operación de fundición, entre las cuales se incluyen el material del molde (calor
específico y conductividad térmica), propiedades térmicas del metal de fundición (calor de fusión, calor
específico y conductividad térmica), y la temperatura relativa de vaciado con respecto al punto de fusión
del metal. El valor de C m para una operación dada se puede basar en datos experimentales de

operaciones previas con el mismo material de molde, metal y temperatura de vaciado, incluso cuando la
forma de la parte haya sido bastante diferente.
      La regla de Chvorinov indica que una fundición con una relación de volumen a área superficial se
enfriará y solidificará más lentamente que otra con una relación más baja. Este principio ayuda en el
diseño de la mazarota del molde. Para cumplir su función de alimentar metal fundido a al cavidad
principal, el metal en la mazarota debe permanecer en fase líquida más tiempo que el de la fundición. En
otras palabras, la TST para la mazarota debe exceder la TST de la fundición principal. Como la
condición del molde para la mazarota y la fundición es la misma, las constantes del molde serán iguales.
Si el diseño de la mazarota incluye una relación de volumen a área más grande, podemos estar más o
menos seguros de que la fundición principal solidificará primero y se reducirán los efectos de la
contracción. Antes de considerar el diseño de la mazarota mediante la regla de Chvorinov tomemos en
cuenta el tema de la contracción, razón por la cual se necesitan las mazarotas.


     2.1.3.8     CONTRACCIÓN


       Nuestro análisis de la solidificación ha omitido el impacto de la contracción que ocurre durante el
enfriamiento y la solidificación. La contracción ocurre en tres pasos: 1) contracción líquida durante el


UMSS – Facultad de Ciencias y Tecnología                             Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                      44

enfriamiento anterior a la solidificación; 2) contracción durante el cambio de fase de líquido a sólido,
llamada contracción de solidificación, y 3) contracción térmica de la fundición solidificada durante el
enfriamiento hasta la temperatura ambiente. Los tres pasos pueden explicarse con referencia a una
fundición cilíndrica hipotética hecha en un molde abierto, como se muestra en la figura 2.7.




              FIGURA 2.7 Contracción de una fundición cilíndrica durante la solidificación y
              enfriamiento: (0) niveles iniciales del metal fundido inmediatamente después del vaciado;
              (1) reducción del nivel causada por la contracción del líquido durante el enfriamiento; (2)
              reducción de la altura y formación de la bolsa de contracción causada por la contracción
              por solidificación; y (3) reducción posterior de la altura y diámetro debida a la contracción
              térmica durante el enfriado del metal sólido. Las reducciones están exageradas para
              mayor claridad.


       El metal fundido inmediatamente después de vaciado se muestra en la parte (0) de la serie. La
contracción del metal líquido durante el enfriamiento, desde la temperatura de vaciado hasta la


UMSS – Facultad de Ciencias y Tecnología                                       Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                     45

temperatura de solidificación, causa que la altura del líquido se reduzca desde el nivel inicial como en (1)
de la Fig. La cantidad de esta concentración líquida es generalmente alrededor del 0.5%. La contracción
de solidificación que se observa en la parte (2) tiene dos efectos. Primero, la contracción causa una
reducción posterior en la altura de la fundición. Segundo, la cantidad de metal líquido disponible para
alimentar la porción superior del centro de la fundición se restringe. Ésta es usualmente la última región
en solidificar; la ausencia de metal crea un vacío en este lugar de la fundición. Esta cavidad de
encogimiento es llamada por los fundidores rechupe. Una vez solidificada, la fundición experimenta una
contracción posterior en altura y diámetro mientras se enfría como en (3). Esta contracción se determina
por el coeficiente de expansión térmica del metal sólido, que en este caso se aplica a la inversa para
determinar la contracción.
       La Tabla 2.1, presenta algunos valores típicos de la contracción volumétrica para diferentes
metales de fundición debidos a la contracción por solidificación y a la contracción sólida paso (2) y (3). La
contracción por solidificación ocurre casi en todos los metales porque la fase sólida tiene una mayor
densidad que la fase líquida. La transformación de fase que acompaña la solidificación causa una
reducción en el volumen por unidad de peso del metal. La excepción en la tabla 2.1 es el hierro fundido
con un contenido alto de carbono, cuya solidificación se complica por un período de grafitación durante
las etapas finales de enfriamiento, que provoca una expansión tendiente a contrarrestar el crecimiento
volumétrico asociado con el cambio de fase.


              TABLA 2.1 Contracción volumétrica para diferentes metales de fundición debida a la
              contracción por solidificación y contracción del sólido
                                                                Contracción volumétrica debida a:
                                Metal                           Contracción           Contracción
                                                            por solidificación % térmica del sólido %
              Aluminio                                                  7.0                5.6
              Aleación de aluminio (típica)                             7.0                5.0
              Fundición de hierro gris                                  1.8                3.0
              Fundición de hierro gris al alto carbono                  0                  3.0
              Fundición de acero al bajo carbono.                       3.0                7.2
              Cobre                                                     4.5                7.5
              Bronce (CuSn)                                             5.5                6.0


       Los modelistas toman en cuenta la contracción por solidificación para sobredimensionar las
cavidades de los moldes. La cantidad que hay que aumentar a las dimensiones del molde con respecto al
tamaño de la pieza final se llama tolerancia de contracción del modelo. Aunque la contracción es
volumétrica, las dimensiones de la fundición se expresan linealmente. Para hacer los modelos y los
moldes más grandes que la pieza, se usan reglas especiales de contracción que consideran una ligera
elongación en proporción adecuada. Estas reglas varían en elongación desde menos de 3 mm. a 16 mm.
por cada 300 mm de longitud con respecto a una regla normal, dependiendo del metal a fundir.


UMSS – Facultad de Ciencias y Tecnología                                      Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                  46

     2.1.3.9      SOLIDIFICACIÓN DIRECCIONAL


       Para minimizar los efectos dañinos de la contracción es conveniente que las regiones de la
fundición más distantes de la fuente de metal líquido se solidifiquen primero y que la solidificación
progrese de estas regiones hacia la mazarota. En esta forma, el metal fundido continuará disponible en
las mazarotas para prevenir los vacíos de contracción durante la solidificación. Se usa el término -
solidificación direccional para describir este aspecto del proceso de solidificación y sus métodos de
control La solidificación direccional deseada se logra aplicando la regla de Chvorinov al diseño de la
fundición, a su orientación dentro del molde y al diseño del sistema de mazarotas. Por ejemplo, al
localizar las secciones de la fundición con menores relaciones V/A lejos de las mazarotas la solidificación
aparecerá primero en estas regiones y el suministro de metal líquido para el resto de la fundición
permanecerá abierto hasta que solidifiquen las secciones más voluminosas.
       Otra forma de fomentar la solidificación direccional es usar enfriadores sumideros de calor internos
o externos que causan un, enfriamiento rápido en ciertas regiones de la fundición, Los enfriadores
internos son pequeñas partes de metal colocadas dentro de la cavidad antes del vaciado, cuyo objetivo
es que el metal fundido solidifiqué primero alrededor de estas partes. El refrigerante interno debe tener
una composición química igual a la del metal que se vacía. Esto se logra fabricando él, enfriador del
mismo metal que la fundición.




               FIGURA 2.8 (a) Enfriadores externos para alentar la solidificación rápida del metal
               fundido en una zona delgada de la fundición y (b) resultado probable si no se usan los
               enfriadores.


       Los enfriadores externos son insertos metálicos en las paredes de la cavidad del molde que
remueven el calor del metal fundido más rápidamente que la arena circundante, a fin de promover
solidificación. Se usan a menudo en secciones de la fundición que son difíciles de alimentar con metal
líquido, el cual encuentra así un enfriamiento rápido que lo hace solidificar en estas secciones mientras la
conexión con el metal líquido está todavía abierta. La figura 2.8 ilustra una posible aplicación de
refrigerantes externos y el resultado probable si no se usaran.
      Tan importante como iniciar la solidificación en las regiones apropiadas de la cavidad, es evitar la
solidificación prematura en las secciones del molde cercanas a la mazarota. De particular interés es la vía

UMSS – Facultad de Ciencias y Tecnología                                   Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                             47

de paso entre la mazarota y la cavidad principal. Esta conexión debe diseñarse de manera que no se
solidifique antes de la fundición, porque puede aislar el metal fundido en la mazarota. Aunque
generalmente es deseable minimizar el volumen en la conexión (para reducir el desperdicio), la sección
transversal del área debe ser adecuada para retardar la solidificación prematura. Con este objeto se hace
el pasaje de corta longitud para que reciba calor del metal fundido en la mazarota y en la fundición.


     2.1.3.10   DISEÑO DE LA MAZAROTA


      Tal como se describió antes, una mazarota figura 2.1(b) se usa en un molde de fundición para
alimentar metal líquido al proceso durante el enfriamiento y compensar así la contracción por
solidificación. La mazarota debe permanecer fundida hasta después de que la fundición solidifique. Para
satisfacer este requerimiento se puede calcular el tamaño de la mazarota usando la regla de Chvorinov.
El siguiente ejemplo ilustra los cálculos.


Ejemplo 2.3: Diseño de la mazarota usando la regla de Chvorinov
Debe diseñarse una mazarota cilíndrica para un molde de fundición en arena. La fundición es una placa
rectangular de acero con dimensiones 0.0762 m x 0.127 X 0.0254 m. En observaciones previas se ha
indicado que el tiempo de solidificación total ( TST ) para esta fundición = 1.6 min. La mazarota cilíndrica
tendrá una relación de diámetro a altura de 1.0. Determine la dimensión que la mazarota de manera que
TST = 2.0 minutos.

Solución: Determine primero la relación V/A para la placa. Su volumen V = 0.0762 x 0.127 x 0.0254 =
0.0002458 m3, y la superficie del área A = 2(0.0762 x 0.127 + 0.0762 x 0.0254 + 0.127 x 0.0254) =
0.032258 m2. Dado que TST = 1.6 min podemos determinar la constante del molde Cm mediante la
ecuación (2.7) usando un valor de n = 2 en la ecuación.



                    Cm =
                             TST
                                   2
                                     =
                                                1.6
                                                                             [
                                                               = 27560.36 min m 2      ]
                           (V / A)     (0.0002458 / 0.03226) 2


       Después debemos diseñar la mazarota de manera que su tiempo de solidificación total sea de 2.0
min, usando el mismo valor de la constante del molde ya que tanto la fundición como la mazarota están
en el mismo molde. El volumen de la mazarota esta dado por

                                                     πD 2 h
                                                V=
                                                       4
y el área de la superficie esta dada por

                                                       2πD 2
                                             A = πDh +
                                                         4



UMSS – Facultad de Ciencias y Tecnología                              Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                               48

Como estamos usando una relación D/h = 1.0, entonces D = h. Al sustituir D por h en las formulas del
volumen y el área tenemos

                                                        πD 3
                                                   V=
                                                            4
                                                        y

                                                2πD 2
                                       A = πD +2
                                                      = 1.5πD 2
                                                  4
entonces la relación V/A = D/6. Usando esta relación en la ecuación de Chvorinov tenemos:
                                                                2
                                                   D
                               TST = 2.0 = 27560.36  = 4593.4 D 2
                                                   6

                                    D2 =
                                            2.0
                                           4593.4
                                                                    [ ]
                                                  = 4.35 × 10 − 4 m 2

                                           D = 2.09 × 10 −2 [m]
Como h = D, también h = 2.09x10-2[m]


       La mazarota representa el metal de desperdicio que se separa del proceso y se refunde para hacer
fundiciones subsecuentes. Es deseable que este volumen de metal en la mazarota sea el mínimo. Como
la forma geométrica de la mazarota se selecciona normalmente para maximizar V/A, esto tiende a reducir
el volumen de la mazarota lo más posible. Nótese que el volumen de la mazarota en nuestro ejemplo es
V = π(2.09X10-2)3 /4 = 7.14X10-6 m3, solamente 55% del volumen de la placa (fundición), incluso cuando
el tiempo de solidificación total es más grande por un 25%.
       La mazarota se puede diseñar en diferentes formas. El diseño mostrado en la figura 2.1 (b) es una
mazarota lateral. Está anexada a un lado de la fundición por medio de un pequeño canal. Una mazarota
superior se conecta en la parte superior de la superficie de la fundición. Las mazarotas pueden ser
abiertas o sumergidas. Una mazarota abierta está expuesta al exterior en la superficie superior de la tapa,
pero tiene la desventaja de permitir que escape más calor, promoviendo una solidificación más rápida.
Una mazarota sumergida está completamente encerrada dentro del molde como en la figura 2.1 (b).


2.3 PROCESOS DE FUNDICIÓN DE METALES


       Los procesos de fundición del metal se dividen en dos categorías de acuerdo al tipo de moldes 1)
moldes desechables y 2) moldes permanentes. En las operaciones de fundición con molde desechable,
éste se destruye para remover la parte fundida. Como se requiere un nuevo molde por cada nueva
fundición, las velocidades de producción en procesos de molde desechable son limitadas, más a causa
del tiempo que se requiere para hacer el molde, que al tiempo para hacer la fundición. Sin embargo, para
ciertas partes se pueden producir moldes y fundiciones a velocidades de 400 partes por hora o mayores.
En los procesos de moldeo permanente, el molde se fabrica con metal (u otro material durable) que



UMSS – Facultad de Ciencias y Tecnología                                Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                     49

permite usarlos en repetidas operaciones de fundición. En consecuencia, estos procesos tienen una
ventaja natural para mayores velocidades de producción.


   2.3.1      FUNDICIÓN EN ARENA


         La fundición en arena es el proceso más utilizado, la producción por medio de este método
representa la mayor parte del tonelaje total de fundición. Casi todas las aleaciones pueden fundirse en
arena; de hecho, es uno de los pocos procesos que pueden usarse para metales con altas temperaturas
de fusión, como son el acero, el níquel y el titanio. Su versatilidad permite fundir partes muy pequeñas o
muy grandes (véase la figura 2.9) y en cantidades de producción que van de una pieza a millones de
éstas.




               FIGURA 2.9 Fundición en arena para el cuerpo de un compresor con un peso de 680 Kg
               (Cortesía de Elkhart Foundry, Foto por Paragon Inc. , Elkhart, Indiana).


         La fundición en arena consiste en vaciar un metal fundido en un molde de arena, dejarlo solidificar
y romper después el molde para remover la fundición. Posteriormente la fundición pasa por un proceso
de limpieza e inspección, pero en ocasiones requiere un tratamiento térmico para mejorar sus
propiedades metalúrgicas. Se da forma a la cavidad del molde de arena recubriendo con arena un
modelo o patrón (un duplicado aproximado de la parte que se va a fundir), después se remueve el modelo
para separar el molde en dos mitades.


UMSS – Facultad de Ciencias y Tecnología                                      Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                50

       El molde contiene el sistema de vaciado y la mazarota, pero si la fundición tiene superficies
internas (por ejemplo partes huecas o agujeros) debe incluirse también un corazón. Como el molde se
sacrifica para remover la fundición, se tiene que hacer un nuevo molde de arena por cada parte a
producir. En esta breve descripción se puede observar que la fundición en arena no solamente incluye
operaciones de fundición, sino también la fabricación de modelos y manufactura de moldes. La secuencia
se muestra en la figura 2.10.




               FIGURA 2.10 Pasos en la secuencia de producción de la fundición en arena. Los pasos
               incluyen no solamente las operaciones de fundición si no también la manufactura del
               modelo y del molde.


     2.3.1.1      MODELOS Y CORAZONES


       La fundición en arena requiere un patrón o modelo al tamaño natural de la parte, ligeramente
agrandado, tomando en consideración la contracción y las tolerancias para el maquinado de la pieza final.
Los materiales que se usan para hacer estos modelos incluyen la madera, los plásticos y los metales. La
madera es un material común para modelos, por la facilidad de trabajarla y darle forma. Sus desventajas
son la tendencia a la torsión y al desgaste por la abrasión de la arena que se compacta a su alrededor, lo
cual limita el número de veces que puede usarse. Los modelos de metal son más costosos pero duran
más. Los plásticos representan un término medio entre la madera y los metales. La selección del material
apropiado para patrones o modelos depende en gran parte de la cantidad total de piezas a producir.
       Hay varios tipos de modelos, como se ilustra en la figura 2.11. El más simple está hecho de una
pieza, llamado modelo sólido, que tiene la misma forma de la fundición y los ajustes en tamaño por
contracción y maquinado. Su manufactura es fácil, pero la complicación surge cuando se utiliza para
hacer el molde de arena. Determinar la localización del plano de separación entre las dos mitades del
molde e incorporar el sistema de vaciado y el vertedero de colada para un modelo sólido, puede ser un
problema que se dejará al juicio y habilidad del operario del taller de fundición. Por tanto, los modelos
sólidos se usan solamente en producciones de muy baja cantidad.
       Los modelos divididos constan de dos piezas que separan la pieza a lo largo de un plano, éste
coincide con el plano de separación del molde. Los modelos divididos son apropiados para partes de



UMSS – Facultad de Ciencias y Tecnología                                 Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                               51

forma compleja y cantidades moderadas de producción. El plano de separación del molde queda
predeterminado por las dos mitades del molde, más que por el juicio del operador.
       Para altos volúmenes de producción se emplean los modelos con placa de acoplamiento o los
modelos dé doble placa (superior e inferior). En un modelo con placa de acoplamiento, las dos piezas del
modelo dividido se adhieren a los lados opuestos de una placa de madera o metal. Los agujeros de la
placa permiten una alineación precisa entre la parte superior y el fondo (cope y drag) del molde. Los
modelos con doble placa de acoplamiento son similares a los patrones con una placa, excepto que las
mitades del patrón dividido se pegan a placas separadas, de manera que las secciones de la parte
superior e inferior del molde se puedan fabricar independientemente, en lugar de usar la misma
herramienta para ambas. La parte (d) de la figura 2.11 incluye el sistema de vaciado y de mazarota en los
modelos con placa de acoplamiento doble.




              FIGURA 2.11 Tipos de patrones utilizados en la fundición en arena: a) modelo sólido,
              b)modelo dividido, c) modelo con placa de acoplamiento d) modelo de doble placa
              superior e inferior


       Los patrones definen la forma externa de la fundición. Si posee superficies internas, se necesita un
corazón para definirlas. Un corazón es un modelo de tamaño natural de las superficies interiores de la
parte. El corazón se inserta en la cavidad del molde antes del vaciado, para que al fluir el metal fundido,
solidifique entre la cavidad del molde y el corazón, formando así las superficies externas e internas de la
fundición. El corazón se hace generalmente de arena compactada. El tamaño real del corazón debe
incluir las tolerancias para contracción y maquinado lo mismo que el patrón. El corazón, dependiendo de
la forma, puede o no requerir soportes que lo mantengan en posición en la cavidad del molde durante el
vaciado. Estos soportes, llamados sujetadores, se hacen de un metal cuya temperatura de fusión sea
mayor que la de la pieza a fundir. Por ejemplo, para fundiciones de hierro colado se usan sujetadores de
acero. Los sujetadores quedan atrapados en la fundición durante el vaciado y la solidificación. En la figura
2.12 se muestra un posible arreglo del corazón usando sujetadores. La porción de los sujetadores que
sobresalen de la fundición se recortan después.




UMSS – Facultad de Ciencias y Tecnología                                Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                     52




               FIGURA 2.12 (a) corazón mantenido en su lugar dentro de la cavidad del molde por los
               sujetadores (b) Diseño posible del sujetador (c) Fundición con cavidad interna.


     2.3.1.2      MOLDES Y FABRICACIÓN DE MOLDES


       El molde es una cavidad que tiene la forma geométrica de la pieza que se va fundir. La arena de
fundición es sílice (Si02) o sílice mezclada con otros minerales. Esta arena debe tener buenas
propiedades refractarias, expresadas como la capacidad de resistir altas temperaturas sin fundirse o
degradarse. Otras características importantes son: el tamaño del grano, la distribución de tamaños del
grano en la mezcla y la forma de los granos. Los granos pequeños proporcionan mejor acabado
superficial en la fundición, pero los granos grandes son más permeables, para que los gases escapen
durante el vaciado. Los moldes hechos de granos irregulares tienden a ser más fuertes que los moldes de
granos redondos debido al entrelazado de los granos, pero esto tiende a restringir la permeabilidad.
       En la fabricación del molde, los granos de arena se aglutinan por medio de una mezcla de agua y
arcilla. La proporción típica (en volumen) es 90% de arena, 3% de agua y 7% de arcilla. Se pueden usar
otros agentes aglutinantes en lugar de la arcilla, como resinas orgánicas (por ejemplo resinas fenólicas) y
aglutinantes inorgánicos (por ejemplo, silicato y fosfato de sodio). Algunas veces se añaden a la mezcla
de arena y aglutinante ciertos aditivos para mejorar las propiedades del molde como la resistencia y
permeabilidad.
       En el método tradicional para formar la cavidad del molde se compacta la arena alrededor del
modelo en la parte superior e inferior de un recipiente llamado caja de moldeo. El proceso de empaque se
realiza por varios métodos. El más simple es el apisonado a mano realizado manualmente por un
operario. Además, se han desarrollado varias máquinas para mecanizar el procedimiento de empacado,
las cuales operan por medio de los siguientes mecanismos: 1) compactación de la arena alrededor del
patrón o modelo mediante presión neumática; 2) acción de sacudimiento, dejando caer repetidamente la
arena contenida en la caja junto al modelo, a fin de compactarla en su lugar; y 3) lanzamiento, haciendo
que los granos de arena se impacten contra el patrón a alta velocidad.



UMSS – Facultad de Ciencias y Tecnología                                      Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                            53

       Una alternativa a las cajas tradicionales para moldes de arena es el moldeo sin caja, que consiste
en el uso de una caja maestra en un sistema mecanizado de producción de moldes. Cada molde de
arena se produce usando la misma caja maestra. Se estima que la producción por este método
automatizado puede ascender hasta seiscientos moldes por hora.
       Se usan varios indicadores para determinar la calidad de la arena para el molde: 1) resistencia,
capacidad del molde para mantener su forma y soportar la erosión causada por el flujo del metal líquido,
depende del tamaño del grano, las cualidades adhesivas del aglutinante y otros factores; 2)
permeabilidad, capacidad del molde para permitir que el aire caliente y los gases de fundición pasen a
través de los poros de la arena; 3) estabilidad térmica, capacidad de la arena en la superficie de la
cavidad del molde para resistir el agrietamiento y encorvamiento en contacto con el metal fundido; 4)
retractibilidad, capacidad del molde para dejar que la fundición se contraiga sin agrietarse; también se
refiere a la capacidad de remover la arena de la fundición durante su limpieza; y 5) reutilización, ¿puede
reciclarse la arena del molde roto para hacer otros moldes?. Estas medidas son algunas veces
incompatibles, por ejemplo, un molde con una gran resistencia tiene menos capacidad de contracción.
Los moldes de arena se clasifican frecuentemente como arena verde, arena seca o de capa seca.
       Los moldes de arena verde se hacen de una mezcla de arena, arcilla y agua, el término "verde"
se refiere al hecho de que el molde contiene humedad al momento del vaciado. Los moldes de arena
verde tienen suficiente resistencia en la mayoría de sus aplicaciones, así como buena retractibilidad,
permeabilidad y reutilización, también son los menos costosos. Por consiguiente, son los mas
ampliamente usados, aunque también tienen sus desventajas. La humedad en la arena puede causar
defectos en algunas fundiciones, dependiendo del metal y de la forma geométrica de la pieza.
       Un molde de arena seca se fabrica con aglomerantes orgánicos en lugar de arcilla. El molde se
cuece en una estufa grande a temperaturas que fluctúan entre 204 ºC y 316 ºC. El cocido en estufa
refuerza el molde y endurece la superficie de la cavidad. El molde de arena seca proporciona un mejor
control dimensional en la fundición que los moldes de arena verde. Sin embargo, el molde de arena seca
es más costoso y la velocidad de producción es reducida debido al tiempo de secado. Sus aplicaciones
se limitan generalmente a fundiciones de tamaño medio y grande y en velocidades de producción bajas.
       En los moldes de capa seca, la superficie de la cavidad de un molde de arena verde se seca a una
profundidad entre 10 mm y 25 mm, usando sopletes, lámparas de calentamiento u otros medios,
aprovechando parcialmente las ventajas del molde de arena seca. Se pueden añadir materiales
adhesivos especiales a la mezcla de arena para reforzar la superficie de la cavidad.
       La clasificación precedente de moldes se refiere al uso de aglutinantes convencionales, ya sea
agua, arcilla u otros que requieren del calentamiento para curar. Se han desarrollado también moldes
aglutinados, químicamente diferentes de cualquiera de los aglutinantes tradicionales. Algunos de estos
materiales aglutinantes, utilizados en sistemas que no requieren cocimiento, incluyen las resinas
furánicas (que consisten en alcohol furfural, urea y formaldehído), las fenólicas y los aceites alquídicos.
La popularidad de los moldes que no requieren cocimiento está creciendo debido a su buen control
dimensional en aplicaciones de alta producción.




UMSS – Facultad de Ciencias y Tecnología                             Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                    54

       A continuación se muestra una serie de fotografías que describen el proceso de fundición en molde
de arena
    Se fabrica una amplia variedad de tipos de vaciado. Abajo se muestra una fábrica que produce vaciados en
                               molde de arena maquinados hechos de fierro dúctil.




        Lingotes de hierro dúctil         Llenando un molde con arena      Cerniendo y Comprimiendo Arena




         Medio molde de arena          Corazón de arena en medio molde Medio molde con corazón en su lugar




  Ensamblando las mitades del molde          Vaciando acero fundido                Vaciado laminar




              Llenando un molde               Seis moldes a la vez             Laboratorio con reactivos




                            Inspección con Microscopio   Vaciado con tratamiento de arena




UMSS – Facultad de Ciencias y Tecnología                                 Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                             55

   2.3.2      FUNDICIÓN CENTRÍFUGA


       La fundición centrífuga se refiere a varios métodos de fundición caracterizados por utilizar un,
molde que gira a alta velocidad para que la fuerza centrífuga distribuya el metal fundido en las regiones
exteriores de la cavidad del dado. El grupo incluye: 1) fundición centrífuga real, 2) fundición
semicentrífuga y 3) fundición centrifugada o centrifugado.


       Fundición centrífuga real En la fundición centrífuga real, el metal fundido se vacía en un molde
que está girando para producir una parte tubular. Ejemplos de partes hechas por este proceso incluyen
tubos, caños, manguitos y anillos. Este método se ilustra en la figura 2.13. El metal fundido se vacía en el
extremo de un molde rotatorio horizontal.




               FIGURA 2.13 Disposición de la centrífuga real


UMSS – Facultad de Ciencias y Tecnología                              Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                              56

       La rotación del molde empieza en algunos casos después del vaciado. La alta velocidad genera
fuerzas centrífugas que impulsan al metal a tomar la forma de la cavidad del molde. Por tanto, la forma
exterior de la fundición puede ser redonda, octagonal, hexagonal o cualquier otra. Sin embargo, la forma
interior de la fundición es perfectamente redonda (al menos teóricamente), debido a la simetría radial de
las fuerzas en juego.
       La orientación del eje de rotación del molde puede ser horizontal o vertical, pero esta última es la
más común. Para que el proceso trabaje satisfactoriamente se calcula la velocidad de rotación del molde
en la fundición centrifuga horizontal. La fuerza centrífuga está definida por la ecuación:

                                                  mv 2
                                             F=                                      2.8
                                                   R
                                           F mv 2   v2
                                   GF =     =     =                                  2.9
                                           W Rmg Rg
        Donde:
        F = fuerza (N)
        m = masa (Kg)
        v = velocidad (m/s)
        R = radio interior del molde (m)
        W = mg es su peso (N)
        g = aceleración de la gravedad (m/s2)
        El factor-G GF es la relación de fuerza centrífuga dividida por el peso


       La velocidad v puede expresarse como 2πRN / 60 = πRN / 30, donde N velocidad rotacional
rev/min. Al sustituir esta expresión en la ecuación (2.9) obtenemos



                                                    R(πN )
                                                             2

                                             GF =     30
                                                                                     2.10
                                                         g
       Con un arreglo matemático para despejar la velocidad rotacional N y usando el diámetro D en lugar
del radio, tenemos

                                                  30     2 gGF
                                             N=                                      2.11
                                                  π         D
        Donde:
        D = diámetro interior del molde (m)
        N= velocidad de rotación (rev/min)


       Si el factor-G es demasiado bajo en la fundición centrífuga, el metal líquido no quedará pegado a la
pared del molde durante la mitad superior de la ruta circular sino que “lloverá” dentro de la cavidad.
Ocurren deslizamientos entre el metal fundido y la pared del molde, lo cual significa que la velocidad
rotacional del metal es menor que la del molde. Empíricamente, los valores de GF = 60 a 80 son

UMSS – Facultad de Ciencias y Tecnología                               Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                               57

apropiados para la fundición centrífuga horizontal, aunque esto depende hasta cierto punto del metal que
se funde


Ejemplo 2.4 Velocidad de rotación en la fundición centrífuga real
Se realizará una operación de fundición centrífuga real horizontal para hacer secciones de tubo de cobre
de 0.3 m de longitud con un diámetro externo = 0.25 m y diámetro interno = 0.22 m ¿Qué velocidad de
rotación se requiere, si se usa un factor-G de 65 para fundir la tubería?
Solución: El diámetro interno del molde D = diámetro externo de la fundición = 0.25 m. Podemos calcular
la velocidad rotacional requerida por medio de la ecuación (2.11) como sigue:

                                      30    2 ⋅ 9.81 ⋅ 65
                                 N=                       = 681.69[rev / min ]
                                      π         0.25

       En la fundición centrifuga vertical el efecto de la gravedad que actúa en el metal líquido causa
que la pared de la fundición sea más gruesa en la base que en la parte superior. El perfil interior de la
fundición tomará una forma parabólica. La diferencia entre el radio de la parte superior y del fondo se
relaciona con la velocidad de rotación como sigue:

                                                    30    2 gl
                                            N=                                       2.12
                                                    π    R − Rb2
                                                          i
                                                           2


        Donde:
        L = longitud vertical de la fundición (m)
        Rt = radio interno de la parte superior de la fundición (m)
        Rb = radio interior en el fondo de la fundición (m).


       Se puede usar la ecuación (2.12) para determinar la velocidad rotacional requerida para la
fundición centrífuga vertical, dadas las especificaciones de los radios internos en la parte superior y en el
fondo. De la fórmula se desprende que para igualar a Rt, y a Rb, la velocidad de rotación N tendría que
ser infinita, lo cual desde luego es imposible. En la práctica es conveniente que la longitud de las partes
hechas por fundición centrífuga vertical no exceda de dos veces su diámetro. Esto es satisfactorio para
bujes y otras partes que tengan diámetros grandes en relación con sus longitudes, especialmente si se va
a usar el maquinado para dimensionar con precisión el diámetro interior.
       Las fundiciones hechas por fundición centrífuga real se caracterizan por su alta densidad,
especialmente en las regiones externas de la pieza, donde F es más grande. La contracción por
solidificación en el exterior del tubo fundido no es de consideración, debido a que la fuerza centrífuga
relocaliza continuamente el metal fundido hacia la pared del molde durante la congelación. Cualquier
impureza en la fundición tiende a ubicarse en la pared interna y puede eliminarse mediante maquinado si
es necesario,




UMSS – Facultad de Ciencias y Tecnología                                Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                      58

       Fundición semicentrífuga En este método se usa la fuerza centrífuga para producir fundiciones
sólidas en lugar de partes tubulares, como se muestra en la figura 2.14. La velocidad de rotación se
ajusta generalmente para un factor-G alrededor de 15, y los moldes se diseñan con mazarotas que
alimenten metal fundido desde el centro. La densidad del metal en la fundición final es más grande en la
sección externa que en el centro de rotación. El centro tiene poco material o es de poca densidad. Por lo
regular el centro en este tipo de sistemas de fundición es maquinado posteriormente, excluyendo así la
porción de más baja calidad. Los volantes y las poleas son ejemplos de fundiciones que pueden hacerse
por este proceso. Se usan frecuentemente moldes consumibles o desechables en la fundición
semicentrífuga, como sugiere nuestra ilustración del proceso.




              FIGURA 2.14 Fundición semicentrífuga




              FIGURA 2.15 (a) Fundición centrifugada: la fuerza centrífuga hace que el metal fluya a
              las cavidades del molde lejos del eje de rotación y (b) la fundición.



UMSS – Facultad de Ciencias y Tecnología                                       Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                             59

       Fundición centrifugada Es un sistema donde por medio de un tallo se hace llegar metal fundido a
racimos de cavidades colocadas simétricamente en la periferia (figura 2.15), de manera que la fuerza
centrífuga distribuya la colada del metal entre estas cavidades. El proceso se usa para partes pequeñas,
la simetría radial de la parte no es un requerimiento como en los otros dos métodos de fundición
centrífuga.


   2.3.3      FUNDICIÓN EN MOLDE DE YESO


       La fundición con moldes de yeso es similar a la fundición en arena, excepto que el molde está
hecho de yeso (2CaSO4 – H20) en lugar de arena. Se mezclan aditivos como el talco y la arena de sílice
con el yeso para controlar la contracción y el tiempo de fraguado, reducir los agrietamientos e
incrementar la resistencia. Para fabricar el molde, se hace una mezcla de yeso y agua, se vacía en un
modelo de plástico o metal en una caja de moldeo y se deja fraguar. En este método, los modelos de
madera son generalmente insatisfactorios, debido al extenso contacto con el agua del yeso. La
consistencia permite a la mezcla de yeso fluir fácilmente alrededor del patrón, capturando los detalles y el
acabado de la superficie. Ésta es la causa de que las fundiciones hechas en moldes de yeso sean
notables por su fidelidad al patrón.
       El curado del molde de yeso es una de las desventajas de este proceso, al menos para altos
volúmenes de producción. El molde debe dejarse fraguar cerca de 20 minutos antes de sacar el molde y,
posteriormente, debe cocerse por varias horas para remover la humedad. Aun cocido, el yeso no se
desprende de todo el contenido de humedad. El problema que enfrentan los fundidores es que la
resistencia del molde se pierde cuando el yeso se deshidrata y, en el caso contrario, la humedad
remanente puede causar defectos en el producto de fundición, por tanto es necesario encontrar un
equilibrio entre estas alternativas indeseables. Otra desventaja del molde de yeso es que no es
permeable limitando el escape de los gases de la cavidad del molde. Este problema puede resolverse de
varias maneras: 1) evacuar el aire de la cavidad del molde antes de vaciar; 2) batir la pasta de yeso antes
de hacer el molde, de manera que el yeso fraguado contenga pequeños poros dispersados; y 3) usar
composiciones especiales del molde y un tratamiento conocido como proceso Antioch. Este proceso
consiste en utilizar cerca de un 50% de arena mezclada con el yeso, calentar el molde en una autoclave
(estufa que usa vapor sobrecalentado a presión), y después secar. El molde resultante tiene una
permeabilidad considerablemente más grande que el molde de yeso convencional.
Los moldes de yeso no pueden soportar temperaturas tan elevadas como los moldes de arena. Por tanto,
están limitados a fundiciones de bajo punto de fusión como aluminio, magnesio y algunas aleaciones de
cobre. Su campo de aplicación incluye moldes de metal para plásticos y hule, impulsores para bombas y
turbinas, y otras partes cuyas formas son relativamente intrincadas. Los tamaños de las fundiciones
varían desde menos de una onza hasta varios cientos de libras; las partes que pesan menos de 20 lb.
son las más comunes. Las ventajas de los moldes de yeso para estas aplicaciones son su buen acabado
superficial, su precisión dimensional y su capacidad para hacer fundiciones de sección transversal
delgada.


UMSS – Facultad de Ciencias y Tecnología                              Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                            60

   2.3.4      FUNDICIÓN EN MOLDE DE CERÁMICA


       Las fundiciones con moldes cerámicos son similares a las fundiciones con molde de yeso, el
modelo se introduce varias veces en una lechada refractaria (yeso con polvo de mármol) la que cada vez
que el modelo se introduce este se recubre de una capa de la mezcla, generando una cubierta en el
modelo. Posteriormente el modelo se extrae y luego el molde se introduce en un horno con lo que el
material refractario se endurece. Así, los moldes cerámicos pueden usarse para fundiciones de acero,
hierro y otras aleaciones de alta temperatura. Sus aplicaciones (moldes y piezas relativamente
intrincadas) son similares a las de los moldes de yeso excepto por los metales que se funden. Sus
ventajas (buena precisión y acabado) son también similares.


   2.2.9      FUNDICIÓN EN MOLDE CON REVESTIMIENTO (MODELO PERDIDO)


       Es un proceso muy antiguo para la fabricación de piezas artísticas. Consiste en la creación de un
modelo en cera de la pieza que se requiere, este modelo debe tener exactamente las características
deseadas en la pieza a fabricar. El modelo de cera es revestido (se cubre completamente) con yeso o un
material cerámico que soporte el metal fundido. Luego el conjunto se introduce a un horno, con ello el
material cerámico se endurece y el modelo de cera se derrite, obteniendo así el molde. En el molde
fabricado se vacía el metal fundido y se obtiene la pieza deseada. Es un proceso de fundición capaz de
hacer piezas de alta precisión e intrincados detalles y se conoce también como fundición a la cera
perdida, debido a que el modelo de cera se pierde en el molde antes de fundirse.
       Los pasos en la fundición por revestimiento se describen en la figura 2.16. Como los modelos de
cera se funden después que se hace el molde refractario, se debe fabricar un modelo para cada
fundición. La producción de modelos se realiza mediante una operación de moldeo, que consiste en
vaciar o inyectar cera caliente en un dado maestro, diseñado con las tolerancias apropiadas para la
contracción de la cera y del metal de fundición. En los casos donde la forma de la pieza es complicada,
se juntan varias piezas de cera para hacer el patrón. En operaciones de alta producción se pegan varios
patrones a un bebedero de colada, hecho también de cera, para formar un modelo de árbol, ésta es la
forma que tomará el metal fundido.
       El recubrimiento con refractario (paso 3) se hace generalmente por inmersión del árbol patrón en
un lodo de sílice u otro refractario de grano muy, fino (casi en forma de polvo) mezclado con yeso que
sirve para unir el molde. El grano fino del material refractario provee una superficie lisa que captura los
intrincados detalles del modelo de cera. El molde final (paso 4) se forma por inmersiones repetidas del
árbol en el lodo refractario o por una compactación cuidadosa del refractario alrededor del árbol en un
recipiente. El molde se deja secar al aire, aproximadamente ocho horas, para que endurezca el
aglutinante.




UMSS – Facultad de Ciencias y Tecnología                             Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                     61




              FIGURA 2.16 Pasos en la fundición por revestimiento. (1) se producen los patrones o
              modelos de cera; (2) se adhieren varios modelos a un bebedero para formar el modelo
              de árbol; (3) el modelo de árbol se recubre con una capa delgada de material refractario;
              (4) se forma el molde entero, cubriendo el árbol revestido con suficiente material para
              hacerlo rígido; (5) el molde se sostiene en posición invertida y se calienta para fundir la
              cera y dejar que escurra fuera de la cavidad; (6) el molde se precalienta a una alta
              temperatura para asegurar la eliminación de todos los contaminantes del molde, esto
              también facilita que el metal fluya dentro de la cavidad y sus detalles, el metal se vacía y
              solidifica; (7) el molde se rompe y se separa de la fundición terminada. Las partes se
              separan del bebedero de colada.


       Las ventajas de la fundición por revestimiento son: 1) capacidad para fundir piezas complejas e
intrincadas; 2) estrecho control dimensional con posibles tolerancias de ±0.076 mm; 3) buen acabado de
la superficie; 4) recuperación de la cera para reutilizarla y 5) por lo general no se requiere maquinado
adicional. Éste es un proceso de forma neta, aunque relativamente costoso por la cantidad de pasos que
involucra su operación. Las partes hechas por este método son normalmente de tamaño pequeño,
aunque se han fundido satisfactoriamente partes de formas complejas de hasta 34 Kg. Pueden fundirse
todos los tipos metales, incluyendo aceros, aceros inoxidables y otras aleaciones de alta temperatura.
Algunos ejemplos de partes fundidas por este proceso son: partes complejas de maquinaria paletas y
otros componentes para motores de turbina, así como joyería y accesorios dentales. En la figura 2,17 se




UMSS – Facultad de Ciencias y Tecnología                                      Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                62

muestra una pieza que ilustra las características intrincadas que son posibles con la fundición por
revestimiento.




              FIGURA 2.17 Estator de una sola pieza para compresor hecho mediante fundición por
              con 108 aletas aerodinámicas separadas (cortesía de Howmet Corp.).


   2.2.10 FUNDICIÓN EN MOLDE PERMANENTE


       La desventaja económica de cualquiera de los procesos con molde desechable es la necesidad de
un nuevo molde para cada fundición. En la fundición con molde permanente, el molde se reutiliza muchas
veces. En esta sección analizaremos la fundición en molde permanente, tratándola como un proceso
básico del grupo de procesos que utilizan moldes reutilizables.


       La fundición en molde permanente usa un molde metálico construido en dos secciones que
están diseñadas para cerrar y abrir con precisión y facilidad. Los moldes se hacen comúnmente de acero
o hierro fundido. La cavidad junto con el sistema de vaciado se forma por maquinado en las dos mitades
del molde a fin de lograr una alta precisión dimensional y un buen acabado superficial. Los metales que
se funden comúnmente en molde permanente son: aluminio, magnesio, aleaciones de cobre y hierro
fundido, Sin embargo, el hierro fundido requiere una alta temperatura de vaciado, 1250 ºC a 1500 ºC, lo
cual acorta significativamente la vida del molde. Las temperaturas más altas de vaciado para el acero,
hacen inapropiado el uso de moldes permanentes para este metal, a menos que se hagan en moldes de
material refractario.
       En este proceso es posible usar corazones para formar las superficies interiores del producto de
fundición. Los corazones pueden ser metálicos, pero su forma debe permitir la remoción de la fundición, o
deben ser mecánicamente desmontables para permitir esta operación. Si la remoción del corazón



UMSS – Facultad de Ciencias y Tecnología                                 Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                   63

metálico es difícil o imposible se pueden usar corazones de arena, en este caso el proceso de fundición
es frecuentemente llamado fundición en molde semipermanente.
       Los pasos en el proceso de fundición con molde permanente se describen en la figura 2.18. Los
moldes se precalientan primero para prepararlos, y se rocía la cavidad con uno o más recubrimientos. El
precalentamiento facilita el flujo del metal a través del sistema de vaciado y de la cavidad. Los
recubrimientos ayudan a disipar el calor y a lubricar la superficie del molde para separar fácilmente la
fundición. Tan pronto como solidifica el metal, el molde se abre y se remueve la fundición. A diferencia
de, los moldes desechables, los moldes permanentes no se retraen, así que deben abrirse antes de que
ocurra la contracción por enfriamiento a fin de prevenir el desarrollo de grietas en la fundición.




              FIGURA 2.18 Pasos en la fundición en molde permanente: (1) el molde se precalienta y
              se recubre; (2) se insertan los corazones (en su caso) y se cierra el molde; (3) el metal
              fundido se vacía en el molde y (4) el molde se abre. La parte terminada se muestra en
              (5).


       Las ventajas de la fundición en molde permanente incluyen buen acabado de la superficie y control
dimensional estrecho, como ya se mencionó. Además, la solidificación más rápida causada por el molde
metálico genera una estructura de grano más fino, de esta forma pueden producirse fundiciones más
resistentes. El proceso está limitado generalmente a metales de bajo punto de fusión. La manufactura de
formas geométricas más simples que las fundidas en molde de arena (debido a la necesidad de abrir el


UMSS – Facultad de Ciencias y Tecnología                                    Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                    64

molde) constituye otra limitación, además del costo. Debido al costo sustancial del molde, el proceso se
adapta mejor a producciones de alto volumen que pueden automatizarse. Las partes típicas que se
producen con proceso de molde permanente incluyen pistones automotrices, cuerpos de bombas y
ciertas fundiciones para aviones y proyectiles.


       Fundición hueca La fundición hueca es un proceso de molde permanente en el cual se forma un
hueco al invertir el molde, después que el metal ha solidificado Parcialmente en la superficie del molde,
drenando así el metal líquido del centro. La solidificación empieza en las paredes relativamente frías del
molde y progresa con el tiempo hacia la parte media de la fundición (sección 2.1.3). El espesor del casco
se controla por el tiempo que transcurre antes de drenar. La fundición hueca se usa para hacer estatuas,
pedestales de lámparas y juguetes a partir de metales de bajo punto de fusión como plomo, zinc y
estaño. En estos artículos lo importante es la apariencia exterior, pero la resistencia y la geometría
interior de la fundición no son relevantes.


   2.2.11 FUNDICIÓN A PRESIÓN


       La fundición a presión es un proceso que necesariamente utiliza moldes permanentes y se puede
clasificar en: fundición a baja presión, fundición con molde permanente al vació y fundición en dados.




              FIGURA 2.19 Fundición a baja presión. El diagrama muestra cómo se usa la presión del
              aire para forzar el metal fundido, dentro de la cuchara de colada, hacia la cavidad molde.
              La presión se mantiene hasta que solidifica la fundición.


       Fundición a baja presión En el proceso de fundición con molde permanente básico y en la
fundición hueca, el flujo de metal en la cavidad del molde es causado por la gravedad. En la fundición a


UMSS – Facultad de Ciencias y Tecnología                                     Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                             65

baja presión, el metal líquido se introduce dentro de la cavidad a una presión aproximada de 0.1 MPa,
aplicada desde abajo, de manera que el metal fluye hacia arriba como sé, ilustra en la figura 2.19. La
ventaja de este método sobre el vaciado tradicional es que se introduce en el molde un metal limpio
desde el centro del crisol, en lugar de un metal que ha sido expuesto al aire. Lo anterior reduce la
porosidad producida por el gas y los defectos generados por la oxidación, y se mejoran las propiedades
mecánicas.


       Fundición con molde permanente al vacío La fundición con molde permanente al vació es una
variante de la fundición a baja presión en la cual se usa vacío para introducir el metal fundido en la
cavidad del molde. La configuración general del proceso es similar a la operación de fundición a baja
presión. La diferencia es que se usa la presión reducida del vacío en el molde para atraer el metal líquido
a la cavidad, en lugar de forzarlo por una presión positiva de aire desde abajo. Los beneficios de la
técnica al vacío, en relación con la fundición a baja presión, son que se reduce la porosidad del aire y los
efectos relacionados, obteniendo una mayor resistencia del producto de fundición.


       La fundición en dados es un proceso de fundición en molde permanente en el cual se inyecta el
metal fundido en la cavidad del molde a alta presión. Las presiones típicas son de 7 a 350 MPa. La
presión se mantiene durante la solidificación; posteriormente, el molde se abre para remover la pieza. Los
moldes en la operación de fundición se llaman dados, de aquí el nombre de fundición en dados. El uso de
alta presión para forzar al metal dentro de la cavidad del dado es la característica más notable que
distingue a este proceso de otros en la categoría de molde permanente.
       Las operaciones de fundición en dados se llevan a cabo en máquinas especiales. Las máquinas
modernas de fundición en dados están diseñadas para mantener un cierre preciso de las dos mitades del
molde y mantenerlas cerradas, mientras el metal fundido permanece a presión dentro de la cavidad. La
configuración general se muestra en la figura 2.20




              FIGURA 2.20 Configuración general de una máquina de fundición en dados (cámara
              fría).




UMSS – Facultad de Ciencias y Tecnología                              Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                      66

Existen dos tipos principales de máquinas de fundición en dados: 1) de cámara caliente y 2) de cámara
fría; sus diferencias radican en la forma en que se inyecta el metal a la cavidad.


       En las máquinas de cámara caliente, el metal se funde en un recipiente adherido a la máquina y
se inyecta en el dado usando un pistón de alta presión. Las presiones típicas de inyección son de (7 a 35
MPa). La fundición se resume en la figura 2.21. Son velocidades características de producción de hasta
500 partes por hora. La fundición en dados con cámara caliente impone una dificultad especial en el
sistema de inyección, porque gran parte de dicho sistema queda sumergido en el metal fundido. Por esa
causa, las aplicaciones del proceso quedan limitadas a metales de bajo punto de fusión que no atacan
químicamente al pistón y a otros componentes mecánicos. Estos metales incluyen al zinc, al estaño, al
plomo y algunas veces al magnesio.




              FIGURA 2.21 Ciclo de la fundición en cámara caliente: (1) el metal fluye en la cámara
              con el dado cerrado y el émbolo levantado; (2) el émbolo fuerza al metal de la cámara a
              fluir hacia el dado, manteniendo la presión durante el enfriamiento y la solidificación, y (3)
              se levanta el émbolo, se abre el dado y se expulsa la parte solidificada. La parte
              terminada se muestra en (4).



UMSS – Facultad de Ciencias y Tecnología                                       Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                      67

       En las máquinas de fundición en dados con cámara fría, el metal fundido procedente de un
contenedor externo para colar, se vacía en una cámara sin calentar y se usa un pistón para inyectar el
metal a alta presión en la cavidad del dado. Las presiones de inyección usadas en estas máquinas van
típicamente (14 a 140 MPa). El ciclo de producción se explica en la figura 2.22. La velocidad de ciclo no
es tan rápida con respecto a las máquinas de cámara caliente, debido a que es necesaria una cuchara de
colada para vaciar el metal líquido desde una fuente externa en la cámara. Sin embargo, este proceso de
fundición es una operación de alta producción. Las máquinas de cámara fría se usan típicamente para
fundiciones de aluminio, latón y aleaciones de magnesio. Las aleaciones de bajo punto de fusión (zinc,
estaño, plomo) pueden también fundirse en máquinas de cámara fría, pero las ventajas del proceso de
cámara caliente favorecen más el uso de estos metales.




              FIGURA 2.22 Ciclo de la fundición en cámara fría: (1) se vacía el metal en la cámara con
              el dado cerrado y el pisón retraído; (2) el pisón fuerza al metal a fluir en el dado,
              manteniendo la presión durante el enfriamiento y la solidificación; y (3) se retrae el pisón,
              se abre el dado y se expulsa la fundición. El sistema de vaciado está simplificado.


       Los moldes que se usan en operaciones de fundición en dados se hacen generalmente con acero
de herramienta y acero para moldes refractarios. El tungsteno y el molibdeno con buenas cualidades
refractarias también se utilizan, especialmente en los intentos para fundir el acero y el hierro en dados.
Los dados pueden tener una cavidad única o múltiple. Los dados de cavidad única se muestran en las
figuras 2.21 y 2.22. Se requieren pernos expulsores para remover la parte del dado cuando éste se abre,
como se muestra en los diagramas. Estos pernos empujan la parte de manera que puedan removerse de
la superficie del dado. También es necesario rociar lubricantes en las cavidades para prevenir el pegado.


UMSS – Facultad de Ciencias y Tecnología                                       Ing. Mecánica –Tecnología Mecánica II
Capítulo II                                                                                                68

Como los materiales del dado no tienen porosidad natural y el metal fundido fluye rápidamente en el dado
durante la inyección, se deben construir barrenos o vías de paso en el plano de separación de los dados
para evacuar el aire y los gases de la cavidad. Aun cuando los orificios son bastante pequeños, se llenan
con el metal durante la inyección, pero éste debe quitarse después. También es común la formación de
rebabas en lugares donde el metal líquido a alta presión penetra entre los pequeños espacios del plano
de separación o en los claros alrededor de los corazones y de los pernos expulsores. La rebaba debe
recortarse de la fundición junto con el bebedero y el sistema de vaciado.
       Las ventajas de la fundición en dados incluyen: 1) altas velocidades de producción; 2) son
económicas para volúmenes grandes de producción; 3) son posibles tolerancias estrechas, del orden de
± 0.076 mm en partes pequeñas; 4) buen acabado de la superficie; 5) son posibles secciones delgadas
hasta cerca de 0.05 mm y 6) el enfriamiento rápido proporciona a la fundición granos de tamaño pequeño
y buena resistencia. Las limitaciones de este proceso, además de los metales que maneja, son la
restricción en la forma de las piezas. La geometría dé la parte debe ser tal que pueda removerse de la
cavidad del dado.


   2.2.12 CALIDAD DE LA FUNDICIÓN


       Hay numerosas contingencias que causan dificultades en una operación de fundición y originan
defectos de calidad en el producto. En esta sección recopilamos una lista de defectos comunes que
ocurren en la fundición e indicamos los procedimientos de inspección para detectarlos.


       Defectos de la fundición Existen defectos comunes en todos los procesos de fundición. Estos
defectos se ilustran en la figura 2.23 y se describen brevemente a continuación:




              FIGURA 2.23 Algunos defectos comunes en las fundiciones: (a) llenado incompleto, (b)
              junta fría, (c) gránulos fríos. (d) cavidad por contracción, (e) microporosidad y (f)
              desgarramientos calientes.


UMSS – Facultad de Ciencias y Tecnología                                 Ing. Mecánica –Tecnología Mecánica II
Procesos de fundicion   f montano
Procesos de fundicion   f montano
Procesos de fundicion   f montano
Procesos de fundicion   f montano
Procesos de fundicion   f montano
Procesos de fundicion   f montano
Procesos de fundicion   f montano

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

18816757 fundicion
18816757 fundicion18816757 fundicion
18816757 fundicion
 
Tratamientos termoquimicos
Tratamientos termoquimicosTratamientos termoquimicos
Tratamientos termoquimicos
 
Informe de fundición de metales
Informe de fundición de metalesInforme de fundición de metales
Informe de fundición de metales
 
Endurecimiento por deformación y recocido
Endurecimiento por deformación y recocidoEndurecimiento por deformación y recocido
Endurecimiento por deformación y recocido
 
Tratamientos Termicos No 2
Tratamientos Termicos No 2Tratamientos Termicos No 2
Tratamientos Termicos No 2
 
Forja
ForjaForja
Forja
 
Fundicion en molde de yeso
Fundicion en molde de yesoFundicion en molde de yeso
Fundicion en molde de yeso
 
Tema 8 (III)
Tema 8 (III)Tema 8 (III)
Tema 8 (III)
 
Moldeo en arena verde
Moldeo en arena verdeMoldeo en arena verde
Moldeo en arena verde
 
Procesos de fundición
Procesos de fundición Procesos de fundición
Procesos de fundición
 
Modelos para fundición
Modelos para fundiciónModelos para fundición
Modelos para fundición
 
proceso de embutido industrial
proceso de embutido industrialproceso de embutido industrial
proceso de embutido industrial
 
Calculo mazarota
Calculo mazarotaCalculo mazarota
Calculo mazarota
 
Embutido
EmbutidoEmbutido
Embutido
 
Reporte de practica fundicion
Reporte de practica fundicionReporte de practica fundicion
Reporte de practica fundicion
 
Trabajo en frio y caliente
Trabajo en frio y calienteTrabajo en frio y caliente
Trabajo en frio y caliente
 
Fundicion nodular
Fundicion nodularFundicion nodular
Fundicion nodular
 
Trabajo de hierro carbono
Trabajo de hierro carbonoTrabajo de hierro carbono
Trabajo de hierro carbono
 
Procesos de Manufactura
Procesos de ManufacturaProcesos de Manufactura
Procesos de Manufactura
 
Recocido
RecocidoRecocido
Recocido
 

Destaque (15)

Calculo de mazarota
Calculo de mazarotaCalculo de mazarota
Calculo de mazarota
 
Chvorinov
ChvorinovChvorinov
Chvorinov
 
Proyecto final-de-fundicion
Proyecto final-de-fundicionProyecto final-de-fundicion
Proyecto final-de-fundicion
 
Cálculo de estructuras con EXCEL
Cálculo de estructuras con EXCELCálculo de estructuras con EXCEL
Cálculo de estructuras con EXCEL
 
Dibujo mecánico 1
Dibujo mecánico 1Dibujo mecánico 1
Dibujo mecánico 1
 
Proyecto modelo de Estadistica
Proyecto modelo de EstadisticaProyecto modelo de Estadistica
Proyecto modelo de Estadistica
 
Dibujo mecánico, Diferentes piezas
Dibujo mecánico, Diferentes piezasDibujo mecánico, Diferentes piezas
Dibujo mecánico, Diferentes piezas
 
Manual de autoconstruccion mi casa apasco
Manual de autoconstruccion mi casa apascoManual de autoconstruccion mi casa apasco
Manual de autoconstruccion mi casa apasco
 
FUNDICIONES
FUNDICIONESFUNDICIONES
FUNDICIONES
 
Ficha técnica para desarrollar proyectos de estadística
Ficha técnica para desarrollar proyectos de estadísticaFicha técnica para desarrollar proyectos de estadística
Ficha técnica para desarrollar proyectos de estadística
 
FUNDICIÓN
FUNDICIÓNFUNDICIÓN
FUNDICIÓN
 
03 procesos de fundición
03 procesos de fundición03 procesos de fundición
03 procesos de fundición
 
Calculo estructural de muros, cimentaciones, columnas y vigas
Calculo estructural de muros, cimentaciones, columnas y vigasCalculo estructural de muros, cimentaciones, columnas y vigas
Calculo estructural de muros, cimentaciones, columnas y vigas
 
Manual maestro construcor
Manual maestro construcorManual maestro construcor
Manual maestro construcor
 
CALCULO DE VIGA DE HORMIGÓN ARMADO
CALCULO DE VIGA DE HORMIGÓN ARMADOCALCULO DE VIGA DE HORMIGÓN ARMADO
CALCULO DE VIGA DE HORMIGÓN ARMADO
 

Semelhante a Procesos de fundicion f montano

Fundicion de metales
Fundicion de metalesFundicion de metales
Fundicion de metales
majito17
 
Fundición de aluminio
Fundición de aluminioFundición de aluminio
Fundición de aluminio
eriol_yue
 
i-tm11tecproces-presentacic3b3n.pdf
i-tm11tecproces-presentacic3b3n.pdfi-tm11tecproces-presentacic3b3n.pdf
i-tm11tecproces-presentacic3b3n.pdf
TreborPearock
 
2.1.-PROCESOS-DE-FORMADO forja, extrusion.ppt
2.1.-PROCESOS-DE-FORMADO forja, extrusion.ppt2.1.-PROCESOS-DE-FORMADO forja, extrusion.ppt
2.1.-PROCESOS-DE-FORMADO forja, extrusion.ppt
TAMAGOCHI131
 

Semelhante a Procesos de fundicion f montano (20)

GRUPO 7 Procesos y equipos de fundicion de metales.pdf
GRUPO 7 Procesos y equipos de fundicion de metales.pdfGRUPO 7 Procesos y equipos de fundicion de metales.pdf
GRUPO 7 Procesos y equipos de fundicion de metales.pdf
 
CAPITULO II DE PROCESOS MANUFACTURA II FUNDICION Y MOLDEO.ppt
CAPITULO II DE PROCESOS MANUFACTURA II FUNDICION Y MOLDEO.pptCAPITULO II DE PROCESOS MANUFACTURA II FUNDICION Y MOLDEO.ppt
CAPITULO II DE PROCESOS MANUFACTURA II FUNDICION Y MOLDEO.ppt
 
Fundicion de metales
Fundicion de metalesFundicion de metales
Fundicion de metales
 
TECNOLOGÍA DE COLADA FUNCIÓN Y COLADA.pptx
TECNOLOGÍA DE COLADA FUNCIÓN Y COLADA.pptxTECNOLOGÍA DE COLADA FUNCIÓN Y COLADA.pptx
TECNOLOGÍA DE COLADA FUNCIÓN Y COLADA.pptx
 
Fundición
FundiciónFundición
Fundición
 
Procesos de Fabricacion
Procesos de FabricacionProcesos de Fabricacion
Procesos de Fabricacion
 
05-MPM-Cap2-Final.pdf
05-MPM-Cap2-Final.pdf05-MPM-Cap2-Final.pdf
05-MPM-Cap2-Final.pdf
 
Fundición de aluminio
Fundición de aluminioFundición de aluminio
Fundición de aluminio
 
Fundicion 2023_1.pdf
Fundicion 2023_1.pdfFundicion 2023_1.pdf
Fundicion 2023_1.pdf
 
Expo1_Fundicion.pptx
Expo1_Fundicion.pptxExpo1_Fundicion.pptx
Expo1_Fundicion.pptx
 
i-tm11tecproces-presentacic3b3n.pdf
i-tm11tecproces-presentacic3b3n.pdfi-tm11tecproces-presentacic3b3n.pdf
i-tm11tecproces-presentacic3b3n.pdf
 
2.1.-PROCESOS-DE-FORMADO forja, extrusion.ppt
2.1.-PROCESOS-DE-FORMADO forja, extrusion.ppt2.1.-PROCESOS-DE-FORMADO forja, extrusion.ppt
2.1.-PROCESOS-DE-FORMADO forja, extrusion.ppt
 
Moldes especiales copia
Moldes especiales   copiaMoldes especiales   copia
Moldes especiales copia
 
Proceso de fundición y moldeo.pptx
Proceso de fundición y moldeo.pptxProceso de fundición y moldeo.pptx
Proceso de fundición y moldeo.pptx
 
Informefundicion
InformefundicionInformefundicion
Informefundicion
 
Presentacion de fundicion
Presentacion de fundicionPresentacion de fundicion
Presentacion de fundicion
 
1060944.ppt
1060944.ppt1060944.ppt
1060944.ppt
 
10% segundo corte maryher leal
10% segundo corte maryher leal10% segundo corte maryher leal
10% segundo corte maryher leal
 
J.a.f.r.
J.a.f.r.J.a.f.r.
J.a.f.r.
 
Fundicion
FundicionFundicion
Fundicion
 

Procesos de fundicion f montano

  • 1. Capítulo II 30 CAPÍTULO II Fundición moldeo y Procesos afines 2.1. FUNDAMENTOS DE LA FUNDICIÓN DE METALES 2.1.1. TECNOLOGÍA DE FUNDICIÓN 2.1.2. CALENTAMIENTO Y VACIADO 2.1.2.1. CALENTAMIENTO DEL METAL 2.1.2.2 VACIADO DEL METAL FUNDIDO 2.1.2.2.1.1 ANÁLISIS INGENIERIL DEL VACIADO 2.1.2.3 FLUIDEZ 2.1.3 SOLIDIFICACIÓN Y ENFRIAMIENTO 2.1.3.1 SOLIDIFICACIÓN DE LOS METALES 2.1.3.2 TIEMPO DE SOLIDIFICACIÓN 2.1.3.3 CONTRACCIÓN 2.1.3.4 SOLIDIFICACIÓN DIRECCIONAL 2.1.3.5 DISEÑO DE LA MAZAROTA 2.2 PROCESOS DE FUNDICIÓN DE METALES 2.2.1 FUNDICIÓN EN ARENA 2.2.1.1 MODELOS Y CORAZONES 2.2.1.2 MOLDES Y FABRICACIÓN DE MOLDES 2.2.2 FUNDICIÓN CENTRÍFUGA 2.2.3 FUNDICIÓN EN MOLDE DE YESO 2.2.4 FUNDICIÓN EN MOLDE DE CERÁMICA 2.2.5 FUNDICIÓN EN MOLDE CON REVESTIMIENTO (MODELO PERDIDO) 2.2.6 FUNDICIÓN EN MOLDE PERMANENTE 2.2.7 FUNDICIÓN A PRESIÓN 2.2.8 CALIDAD DE LA FUNDICIÓN 2.2.9 METALES PARA FUNDICIÓN 2.2.10 CONSIDERACIONES PARA EL DISEÑO DE PRODUCTOS UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 2. Capítulo II 31 2.2. FUNDAMENTOS DE LA FUNDICIÓN DE METALES En el proceso de fundición el metal fundido fluye por gravedad u otra fuerza dentro de un molde donde se solidifica y toma la forma de la cavidad del molde. El término fundición se aplica también a la parte resultante de este proceso. Es uno de los más antiguos procesos de formado que se remonta 6 mil años atrás. El principio de la fundición es simple: se funde el metal, se vacía a un molde y se deja enfriar; hay todavía muchos factores y variables que debemos considerar para lograr una operación exitosa de fundición. La fundición incluye la fundición de lingotes y la fundición de formas. El término lingote se asocia usualmente con las industrias de metales primarios; describe una fundición grande de forma simple, diseñada para volver a formarse en procesos subsiguientes como laminado o forjado. La fundición de formas involucra la producción de piezas complejas que se aproximan más a la forma final deseada del producto. Este capítulo se ocupa de estas formas de fundición más que de los lingotes. Existen diversos métodos para la fundición de formas, lo cual hace de este proceso uno de los más versátiles en manufactura. Sus posibilidades y ventajas son las siguientes: • La fundición se puede usar para crear partes de compleja geometría, incluyendo formas externas e internas. • Algunos procesos de fundición pueden producir partes de forma neta que no requieren operaciones subsecuentes para llenar los requisitos de la geometría y dimensiones de la parte. • Se puede usar la fundición para producir partes muy grandes. Se han fabricado fundiciones que pesan más de 100 toneladas. • El proceso de fundición puede realizarse en cualquier metal que pueda calentarse y pasar al estado líquido. • Algunos métodos de fundición son altamente adaptables a la producción en masa. No obstante, también hay desventajas asociadas con la fundición y sus diferentes métodos. Estas incluyen las limitaciones de algunos procesos en las propiedades mecánicas como porosidad, baja precisión dimensional y acabado deficiente de la superficie, también hay riesgos en la seguridad de los trabajadores durante el procesamiento y problemas ambientales. Las partes de fundición fluctúan en tamaño, desde pequeños componentes que pesan solamente unas cuantas onzas hasta grandes productos de más de 100 toneladas. La lista incluye coronas dentales, joyería, estatuas, estufas de hierro fundido, bloques y cabezas para motores automotrices, base para máquinas, ruedas para ferrocarril, sartenes para freír, tubos y carcasas para bombas. Se pueden fundir todas las variedades de metales ferrosos y no ferrosos. La fundición también puede utilizarse en otros materiales como polímeros y cerámicos; sin embargo, como los detalles son bastante diferentes, posponemos en análisis de los procesos de fundición de estos materiales para secciones posteriores. En este tema revisamos los fundamentos que se aplican prácticamente a todas las operaciones de fundido; se describen los procesos de fundición individualizados, junto con los aspectos que deben considerarse en el diseño de productos de fundición. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 3. Capítulo II 32 2.2.1. TECNOLOGÍA DE FUNDICIÓN La fundición, como proceso de producción, se lleva a cabo generalmente en una fundidora. Una fundidora es una fábrica equipada para hacer moldes, fundir y manejar el metal en estado líquido, desempeñar los procesos de fundición y limpieza de las piezas terminadas. Los trabajadores que realizan las operaciones de fundición en estas fábricas se llaman fundidores. Este proceso empieza lógicamente con un molde. El molde consiste en dos mitades: la tapa y la draga. Ambas están contenidas en la caja del molde, que también se divide en dos partes: La semicaja superior y la semicaja inferior (en inglés cope es la parte superior y drag la parte inferior), una para cada parte del molde; las dos mitades del molde están separadas por el plano de separación. El molde contiene una cavidad cuya forma geométrica determina la forma de la parte a fundir. La cavidad debe diseñarse de forma y tamaño ligeramente sobredimensionado, esto permitirá la contracción del metal durante la solidificación y enfriamiento. Cada metal sufre diferente porcentajes de contracción, por tanto, la cavidad debe diseñarse para el metal particular que se va a fundir. La cavidad del molde proporciona la superficie externa de la fundición; pero además puede tener superficies internas, que se definen por medio de un corazón, el cual es una forma colocada en el interior de la cavidad del molde para formar la geometría interior de la pieza. Los moldes se hacen de varios materiales que incluyen arena, yeso, cerámica y metal. Los procesos de fundición se clasifican frecuentemente de acuerdo a los diferentes tipos de moldes. FIGURA 2.1 Dos formas de molde: (a) molde abierto, simplemente un recipiente con la forma de la parte de fundición; y (b) molde cerrado, de forma más compleja que requiere un sistema de vaciado (vía de paso) conectado con la cavidad. En una operación de fundición, se calienta primero el metal a una temperatura lo suficientemente alta para transformarlo completamente al estado líquido. Después se vierte directamente en la cavidad del molde. En un molde abierto figura 2.1(a), el metal líquido se vacía simplemente hasta llenar la cavidad abierta. En un molde cerrado figura 2.1(b) una vía de paso llamada sistema de vaciado permite el flujo del metal fundido desde fuera del molde hasta la cavidad. El molde cerrado es la forma más importante de producción en operaciones de fundición. El sistema de vaciado en un molde de fundición es el canal o red UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 4. Capítulo II 33 de canales por donde fluye el metal fundido hacia la cavidad desde el exterior. El sistema de vaciado, consiste típicamente en un bebedero de colada (también llamado simplemente bebedero) a través del cual entra el metal a un canal de alimentación que conduce a la cavidad principal. En la parte superior del bebedero existe frecuentemente una copa de vaciado para minimizar las salpicaduras y la turbulencia del metal que fluye en el bebedero. En el diagrama aparece como un simple embudo en forma de cono. Algunas copas de vaciado se diseñan en forma de tazón con un canal abierto que conduce al bebedero de colada. Tan pronto como el material fundido en el molde empieza a enfriarse, y conforme desciende la temperatura (al punto de congelación de un metal puro), empieza la solidificación que involucra un cambio de fase del metal. Se requiere tiempo para completar este cambio de fase, porque es necesario disipar una considerable cantidad de calor. Durante este proceso, el metal adopta la forma de la cavidad del molde y se establecen muchas de las propiedades y características de la fundición. En cualquier fundición cuya contracción sea significativa se requiere, además del sistema de vaciado, una mazarota conectada a la cavidad principal. La mazarota es una reserva en el molde que sirve como fuente de metal líquido para compensar la contracción de la fundición durante la solidificación. A fin de que la mazarota cumpla adecuadamente con su función, debe diseñarse de tal forma que solidifique después de la fundición principal. Una vez que la fundición se ha enfriado lo suficiente, se remueve del molde. Pueden necesitarse procesamientos posteriores, dependiendo del método de fundición y del metal que se usa. Entre éstos se encuentran el desbaste del metal excedente de la fundición, la limpieza de la superficie, la inspección del producto y el tratamiento térmico para mejorar sus propiedades. Además, puede requerirse maquinado para lograr tolerancias estrechas en ciertas partes de la pieza y para remover la superficie fundida y microestructura metalúrgica asociada. 2.2.2. CALENTAMIENTO Y VACIADO Para desarrollar la operación de fundición, el metal se calienta a temperatura ligeramente mayor que su punto de fusión y después se vacía en la cavidad del molde para que se solidifique. En esta sección consideramos varios aspectos de estos dos pasos en la fundición. 2.2.2.1. CALENTAMIENTO DEL METAL Se usan varias clases de hornos, para calentar el metal a la temperatura necesaria de fusión. La energía calorífica requerida es la suma de 1) calor para elevar la temperatura hasta el punto de fusión, 2) calor de fusión para convertir el metal sólido a líquido y 3) calor para elevar al metal fundido a la temperatura de vaciado. Esto se puede expresar como: H = ρV {C S (Tm − To ) + H f + C t (T p − Tm )} 2.1 UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 5. Capítulo II 34 Donde: H = calor requerido para elevar la temperatura del metal a la temperatura de fusión, (J) ρ = densidad, (Kg/m3) C s = calor específico en peso para el material sólido, (J/Kg ºC) Tm = temperatura de fusión del metal, (ºC) T0 = Temperatura inicial, generalmente la ambiente, (ºC); H f = calor de fusión, (J/Kg) C t = calor específico en peso del metal líquido, (J/KgºC) T p = temperatura de vaciado, (ºC) V = Volumen del metal que se calienta, (m3). Ejemplo 2.1: Calentamiento del metal para fundición. Un volumen de 0.03 m3 de una cierta aleación eutéctica se va a calentar en un crisol desde la temperatura ambiente hasta 100 ºC por encima de su punto de fusión. Las propiedades de la aleación son densidad = 4160 kg/m3, punto de fusión = 700 ºC, calor específico del metal = 343.32 J/kgoC en el estado sólido y 297.26 J/kgoC en el estado líquido; y el calor de fusión = 167120.85 J/kg. ¿Cuánta energía calorífica se debe añadir para alcanzar el calentamiento, asumiendo que no hay pérdidas? Solución: Si aceptamos que la temperatura ambiente en la fundición = 26 ºC y que las densidades en los estados líquido y sólido del metal son las mismas, al sustituir los valores de las propiedades en la ecuación (2.1) se tiene: H = (4160)(0.03){343.32(700-26) + 167120.85 +297.26(800-700} = 53444917.34 J . La ecuación 2.1 tiene un valor conceptual y su cálculo es de utilidad limitada, no obstante se usa como ejemplo. El cálculo de la ecuación 2.1 es complicado por los siguientes factores: 1) el calor específico y otras propiedades térmicas del metal sólido varían con una temperatura, especialmente si el metal sufre un cambio de fase durante el calentamiento; 2) el calor específico de un metal puede ser diferente en el estado sólido y en estado líquido; 3) la mayoría de los metales de fundición son aleaciones que funden en un intervalo de temperaturas entre sólidos y líquidos en lugar de un punto único de fusión, por lo tanto, el calor de fusión no puede aplicarse tan fácilmente como se indica arriba; 4) en la mayoría de los casos no se dispone de los valores requeridos en la ecuación para una aleación particular y 5) durante el calentamiento hay pérdidas de calor significativas. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 6. Capítulo II 35 2.1.3.2 VACIADO DEL METAL FUNDIDO Después del calentamiento, el material está listo para vaciarse. La introducción del metal fundido en el molde y su flujo dentro del sistema de vaciado y de la cavidad es un paso crítico en el proceso. Para que este paso tenga éxito, el metal debe fluir antes de solidificarse a través de todas las regiones del molde, incluida la región más importante que es la cavidad principal. Los factores que afectan la operación de vaciado son la temperatura de vaciado, la velocidad de vaciado y la turbulencia. La temperatura de vaciado es la temperatura del metal fundido al momento de su introducción en el molde. Lo importante aquí es la diferencia entre la temperatura de vaciado y la temperatura a la que empieza la solidificación (el punto de fusión para un metal puro, o la temperatura líquidus para una aleación). A esta diferencia de temperaturas se le llama algunas veces sobrecalentamiento. La velocidad de vaciado se refiere a la velocidad volumétrica a la que se vierte el metal fundido dentro del molde. Si la velocidad es muy lenta, el metal puede enfriarse antes de llenar la cavidad. Si la velocidad de vaciado es excesiva, la turbulencia puede convertirse en un problema serio. La turbulencia de flujo se caracteriza por variaciones erráticas de la velocidad a través del fluido; cuando éste se agita, genera corrientes irregulares en lugar de fluir en forma laminar. El flujo turbulento debe evitarse durante el vaciado por varias razones. Tiende a acelerar la formación de óxidos metálicos que pueden quedar atrapados durante la solidificación, degradando así la calidad de la fundición. La turbulencia también agrava la erosión del molde, que es el desgaste gradual de las superficies del molde debido al impacto del flujo de metal fundido. Las densidades de la mayoría de los metales fundidos son más altas que las del agua y de otros fluidos que conocemos normalmente. Los metales fundidos son químicamente mucho más reactivos que a temperatura ambiente. Por consiguiente, el desgaste causado por el flujo de estos metales en el molde es significativo, especialmente bajo condiciones turbulencias. La erosión es especialmente seria cuando ocurre en la cavidad principal porque afecta la forma de la parte fundida. 2.1.3.2.1 ANÁLISIS INGENIERIL DEL VACIADO Varias relaciones gobiernan el flujo del metal líquido a través del sistema de vaciado y dentro del molde. Una relación importante es el teorema de Bernoulli, el cual establece que la suma de las energías (altura, presión dinámica, energía cinética y fricción) en dos puntos cualquiera de un líquido que fluye son iguales. Esto se puede escribir en la siguiente forma: P1 v12 P v2 h1 + + + F1 = h2 + 2 + 2 + F1− 2 2.2 gρ 2 g gρ 2 g Donde: h = altura, (m) P = presión en el líquido, (N/m2) UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 7. Capítulo II 36 ρ= densidad, (Kg/m3) v = velocidad de flujo en (m/seg) g = Constante de la aceleración gravitacional, (9.81 m/seg2); F = Pérdidas de carga debidas a la fricción, (metros). Los subíndices 1 y 2 indican los dos puntos cualquiera en el flujo del líquido. La ecuación de Bernoulli se puede simplificar de varias maneras. Si ignoramos las pérdidas por fricción (de seguro, la fricción afectará el flujo del líquido a través del molde de arena) y asumimos que el sistema permanece a presión atmosférica en toda su extensión, entonces la ecuación puede reducirse a: v12 v2 h1 + = h2 2 2.3 2g 2g La cual puede usarse para determinar la velocidad del metal fundido en la base del bebedero de colada. Definamos un punto (1) en la parte superior del bebedero y un punto (2) en la base. Si el punto (2) se usa como referencia, entonces la altura en ese punto es cero ( h2 = 0 ) y h1 es la altura (longitud) del bebedero. Cuando se vierte el metal en la copa de vaciado y fluye hacia abajo, su velocidad inicial en la parte superior es cero ( v1 = 0 ). Entonces la ecuación 1.3 se simplifica a 2 v2 h1 = 2g que se pede resolver para la velocidad del flujo: v = 2 gh 2.4 Donde: v = Velocidad del metal líquido en la base del bebedero de colada, (m/seg); g = 9.81 m/seg2 h = altura del bebedero (m) Otra relación de importancia durante el vaciado es la ley de continuidad, la cual establece que la velocidad volumétrica del flujo permanece constante a través del líquido. La velocidad del flujo volumétrico m3/seg es igual a la velocidad multiplicada por el área de la sección transversal del flujo líquido. La ley de continuidad puede expresarse como: Q = v1 A1 = v 2 A2 2.5 Donde: Q = Velocidad de flujo volumétrico, (m3/seg); UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 8. Capítulo II 37 v = Velocidad, (m/seg); A = área de la sección transversal del líquido, (m2) Los subíndices se refieren a cualquiera de los dos puntos en el sistema de flujo. Entonces, un incremento en el área produce un decremento en la velocidad y viceversa. Las ecuaciones 2.4 y 2.5 indican que el bebedero debe ser ahusado. El área de la sección transversal del canal debe reducirse conforme el metal se acelera durante su descenso en el bebedero de colada; de otra manera, puede aspirar aire dentro del líquido debido al incremento de la velocidad del metal que fluye hacia la base del bebedero y conducirlo a la cavidad del molde. Para prevenir esta condición, se diseña el bebedero con un ahusamiento de manera que la velocidad volumétrica de flujo vA sea misma en la parte superior y en el fondo del bebedero. Si aceptamos que el canal alimentador de la base del bebedero a la cavidad del molde sea horizontal (y por tanto que la altura sea la misma que la de la base del bebedero), la velocidad volumétrica de flujo a través del sistema de vaciado y dentro de al cavidad del molde permanece igual a vA en la base. Por consiguiente, podemos estimar el tiempo requerido para llenar una cavidad de volumen V como sigue: V MFT = 2.6 Q Donde: MFT = tiempo de llenado del molde, seg. (s); V = Volumen de la cavidad del molde, (m3); Q = Velocidad volumétrica de flujo. (m3/seg) El tiempo de llenado del molde calculado por la ecuación 2.6 debe considerarse como tiempo mínimo, debido a que el análisis ignora las pérdidas por fricción y la posible constricción del flujo en el sistema de vaciado; por tanto, el tiempo de llenado del molde será mayor que el resultante de la ecuación 2.6 Ejemplo 2.2: Cálculos de vaciado. Un molde tiene un bebedero de colada cuya longitud es 0.20 m y el área de la sección transversal en la base del bebedero es 0.000258 m2. El bebedero alimenta a un canal horizontal que conduce a la cavidad del molde cuyo volumen es 0.0016387 m3. Determine a) la velocidad del metal fundido en la base del bebedero, b) la velocidad volumétrica de flujo y c) el tiempo de llenado del molde. Solución: a) La velocidad del flujo de metal en la base del bebedero está dada por la ecuación 2.4 UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 9. Capítulo II 38 v = 2hg = 2 ⋅ 9.81 ⋅ 0.20 = 1.98 m /seg b) La velocidad volumétrica de flujo es Q = (0.000258 m2)(1.98 m/seg) = 0.00051107 m3/seg c) El tiempo requerido para llenar una cavidad de 0.0016387 m2 con este flujo es MFT = 0.0016387/0.0005152 = 3.2 seg. 2.1.3.3 FLUIDEZ Las características del metal fundido se describen frecuentemente con el término fluidez, una medida de la capacidad del metal par llenar el molde antes de enfriar. Existen métodos normales de ensayo para valorar la fluidez, como el molde espiral de prueba que se muestra en la figura 2.2, donde la fluidez se mide por la longitud del metal solidificado en el canal espiral. A mayor longitud, mayor fluidez del metal fundido. FIGURA 2.2 Molde espiral para ensayo de la fluidez, ésta se mide por la longitud del canal espiral lleno antes de la solidificación Los factores que afectan la fluidez son la temperatura de vaciado, la composición del metal, la viscosidad del metal líquido y el calor transferido de los alrededores. Una temperatura mayor, con respecto al punto de solidificación del metal, incrementa el tiempo que el metal permanece en estado líquido permitiéndole avanzar más, antes de solidificarse. Esto tiende a agravar ciertos problemas como la formación de óxido, la porosidad gaseosa y la penetración del metal líquido en los espacios intersticiales entre los gramos de arena que componen el molde. Este último problema causa que la superficie de la fundición incorpore partículas de arena que la hacen más rugosa y abrasiva de lo normal. La composición también afecta la fluidez, particularmente en lo que respecta a los mecanismos de solidificación del metal. Los metales que se solidifican a temperatura constante tienen mejor fluidez (por ejemplo, metales puros y aleaciones eutécticas). Cuando la solidificación ocurre en un intervalo de temperaturas, como es el caso de muchas aleaciones, la porción parcialmente solidificada interfiere en el UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 10. Capítulo II 39 flujo de la porción líquida, reduciendo así la fluidez. La composición del metal determina, además de los mecanismos de solidificación, el calor de fusión, la cantidad de calor requerida para que el metal pase del estado líquido al sólido. Un mayor calor de fusión tiende a incrementar la medida de la fluidez en la fundición. 2.1.4 SOLIDIFICACIÓN Y ENFRIAMIENTO Después de vaciar el metal fundido en el molde, éste se enfría y solidifica. En esta sección examinaremos los mecanismos físicos de solidificación que ocurren durante la fundición. Los aspectos asociados con la solidificación incluyen el tiempo de enfriamiento del metal, la contracción, la solidificación direccional y el diseño de las mazarotas. 2.1.3.6 SOLIDIFICACIÓN DE LOS METALES La solidificación involucra el regreso del metal fundido al estado sólido. El proceso de solidificación difiere, dependiendo de si el metal es un elemento puro o una aleación. FIGURA 2.3 Curva de enfriamiento para un metal puro durante la fundición. Metales puros. Un metal puro solidifica a una temperatura constante que constituye su punto de congelación o punto de fusión. Los puntos de fusión de los metales puros son bien conocidos. El proceso ocurre en un tiempo determinado como se muestra en la figura 2.3, conocida como curva de enfriamiento. La solidificación real toma un tiempo llamado, tiempo local de solidificación, durante el cual el calor latente de fusión del metal escapa fuera del molde. El tiempo total de solidificación va desde el momento de vaciar el metal hasta su completa solidificación. Después que la fundición se ha solidificado UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 11. Capítulo II 40 completamente, el enfriamiento continúa a una velocidad indicada por la pendiente hacia debajo de la curva de enfriamiento. Debido a la acción refrigerante de la pared del molde, se forma una delgada película inicial de metal sólido en la pared inmediatamente después del vaciado. El espesor de esta película aumenta para formar una costra alrededor del metal fundido que va creciendo hacia el centro de la cavidad conforme progresa la solidificación. La velocidad del enfriamiento depende del calor que se transfiere en el molde y de las propiedades térmicas del metal. Es interesante examinar la formación del grano metálico y su crecimiento durante este proceso de solidificación. El metal que forma la película inicial se ha enfriado rápidamente por la extracción de calor a través de la pared del molde. Esta acción de enfriamiento causa que los granos de la película sean finos, equiaxiales y orientados aleatoriamente. Al continuar el enfriamiento se forman más granos y el crecimiento ocurre en direcciones alejadas de la transferencia de calor. Como el calor se transfiere a través de la costra y la pared del molde, los granos crecen hacia adentro como agujas o espinas de metal sólido. Al agrandarse estas espinas se forman ramas laterales que siguen creciendo y forman ramas adicionales en ángulos rectos con las primeras. Este tipo de crecimiento llamado crecimiento dendrítico del grano ocurre no solamente en la solidificación de los metales puros, sino también en la de las aleaciones. Estas estructuras tipo árbol se llevan a cabo en forma gradual durante el enfriamiento, al depositarse continuamente metal adicional en las dendritas hasta completar la solidificación. Los granos resultantes de este crecimiento dendrítico adoptan una orientación preferente y tienden a ser burdos y alinearse en forma de granos columnares hacia el centro de la fundición. La estructura granulada resultante se ilustra en la figura 2.4 FIGURA 2.4 Estructura cristalina característica del un metal puro, mostrando los granos, pequeños orientados aleatoriamente cerca de las paredes del molde, y los granos columnares grandes orientados hacia el centro de la fundición UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 12. Capítulo II 41 FIGURA 2.5 (a) Diagrama de fase para un sistema, de aleación cobre-níquel y (b) curva de enfriamiento asociada para una composición Ni-Cu 50-50% durante la fundición. Aleaciones en general. Las aleaciones solidifican generalmente en un intervalo de temperaturas en lugar de una temperatura única. El rango exacto depende del sistema de aleación y su composición particular. Se puede explicar la solidificación de una aleación con referencia a la figura 2.5, que muestra el diagrama de fase de un sistema particular de aleación y a la curva de enfriamiento para una composición dada. Conforme desciende la temperatura, empieza la solidificación en la temperatura que indica la línea liquidus y se completa cuando se alcanza la solidus. El inicio de la solidificación es similar a la del metal puro. Se forma una delgada película en la pared del molde debido a un alto gradiente de temperatura en esta superficie. La solidificación progresa entonces igual que antes, mediante la formación de dendritas alejadas de las paredes. Sin embargo, debido a la propagación de la temperatura entre liquidus y solidus, el crecimiento de las dendritas es tal que se forma una zona avanzada donde el metal sólido y el líquido coexisten. La porción sólida está constituida por estructuras dendríticas que se han formado lo suficiente y han atrapado en la matriz pequeñas islas de líquido. La región sólido-líquido tiene una consistencia suave que da lugar a su nombre de zona blanda. Dependiendo de las condiciones del enfriamiento, la zona blanda puede ser relativamente angosta o puede ocupar la mayor parte de la fundición. Los factores que promueven la última condición son una lenta transferencia de calor fuera del metal caliente y una amplia diferencia entre liquidus y solidus. Las islas de líquido en la matriz de dendrita se solidifican gradualmente al bajar la temperatura de la fundición hasta la temperatura solidus que corresponde a la composición de la aleación. Otro factor que complica la solidificación de las aleaciones es la composición de las dendritas que al iniciar su formación son favorecidas por el metal que tiene el punto de fusión mayor Al continuar la solidificación las dendritas crecen y se genera un desbalance entre la composición del metal solidificado y el metal fundido remanente. Este desbalance de composición se manifiesta finalmente como segregación UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 13. Capítulo II 42 de elementos en las fundiciones terminadas. La segregación es de dos tipos, microscópica y macroscópica. A nivel microscópico, la composición química varía a través de cada grano individual. Esto se debe a que la espina inicial de cada dendrita tiene una proporción más alta de uno de los elementos de la aleación La dendrita crece a expensas del líquido remanente que ha sido parcialmente agotado de este primer elemento. Finalmente, el último metal que solidifica en cada grano es el que quedó atrapado en las ramas de las dendritas, cuya composición es aún más desbalanceada. El resultado es una variación en composición química dentro de cada grano de la fundición. A nivel macroscópico, la composición química varía a través de la fundición en sí. Como las regiones de la fundición que se solidifica primero (generalmente cerca de las paredes del molde) son más ricas en un componente que en otro, la composición de la aleación fundida remanente queda modificada cuando ocurre la solidificación en el interior. Se genera entonces, una segregación general a través de la sección transversal de la fundición, llamada algunas veces segregación de lingote como se muestra en la figura 2.6. FIGURA 2.6 Estructura cristalina característica de fundición para una aleación, mostrando la segregación de los componentes en el centro de la fundición. Aleaciones eutécticas. Las aleaciones eutécticas constituyen una excepción del proceso general de solidificación de las aleaciones. Una aleación eutéctica tiene una composición particular en la cual las temperaturas sólidus y líquidus son iguales. En consecuencia, la solidificación ocurre a una temperatura constante, y no en un rango de temperaturas como se describió anteriormente, el hierro fundido (4.3%C) son ejemplos de aleaciones eutécticas que se usan en fundición. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 14. Capítulo II 43 2.1.3.7 TIEMPO DE SOLIDIFICACIÓN Si la fundición es metal puro o aleación, de todos modos, su solidificación toma tiempo. El tiempo total de solidificación es el tiempo necesario para que la fundición solidifique después del vaciado. Este tiempo depende del tamaño y de la forma de la fundición expresada por una relación empírica conocida como regla de Chvorinov que establece n V  TST = C m   2.7  A Donde: TST = Tiempo de solidificación total, min; V = Volumen de fundición, (m3); A = Área superficial de la fundición, (m2); n = Exponente que toma usualmente un valor de 2; C m = Es la constante del molde. Dado que n = 2, las unidades de C m son (min/m2), su valor depende de las condiciones particulares de la operación de fundición, entre las cuales se incluyen el material del molde (calor específico y conductividad térmica), propiedades térmicas del metal de fundición (calor de fusión, calor específico y conductividad térmica), y la temperatura relativa de vaciado con respecto al punto de fusión del metal. El valor de C m para una operación dada se puede basar en datos experimentales de operaciones previas con el mismo material de molde, metal y temperatura de vaciado, incluso cuando la forma de la parte haya sido bastante diferente. La regla de Chvorinov indica que una fundición con una relación de volumen a área superficial se enfriará y solidificará más lentamente que otra con una relación más baja. Este principio ayuda en el diseño de la mazarota del molde. Para cumplir su función de alimentar metal fundido a al cavidad principal, el metal en la mazarota debe permanecer en fase líquida más tiempo que el de la fundición. En otras palabras, la TST para la mazarota debe exceder la TST de la fundición principal. Como la condición del molde para la mazarota y la fundición es la misma, las constantes del molde serán iguales. Si el diseño de la mazarota incluye una relación de volumen a área más grande, podemos estar más o menos seguros de que la fundición principal solidificará primero y se reducirán los efectos de la contracción. Antes de considerar el diseño de la mazarota mediante la regla de Chvorinov tomemos en cuenta el tema de la contracción, razón por la cual se necesitan las mazarotas. 2.1.3.8 CONTRACCIÓN Nuestro análisis de la solidificación ha omitido el impacto de la contracción que ocurre durante el enfriamiento y la solidificación. La contracción ocurre en tres pasos: 1) contracción líquida durante el UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 15. Capítulo II 44 enfriamiento anterior a la solidificación; 2) contracción durante el cambio de fase de líquido a sólido, llamada contracción de solidificación, y 3) contracción térmica de la fundición solidificada durante el enfriamiento hasta la temperatura ambiente. Los tres pasos pueden explicarse con referencia a una fundición cilíndrica hipotética hecha en un molde abierto, como se muestra en la figura 2.7. FIGURA 2.7 Contracción de una fundición cilíndrica durante la solidificación y enfriamiento: (0) niveles iniciales del metal fundido inmediatamente después del vaciado; (1) reducción del nivel causada por la contracción del líquido durante el enfriamiento; (2) reducción de la altura y formación de la bolsa de contracción causada por la contracción por solidificación; y (3) reducción posterior de la altura y diámetro debida a la contracción térmica durante el enfriado del metal sólido. Las reducciones están exageradas para mayor claridad. El metal fundido inmediatamente después de vaciado se muestra en la parte (0) de la serie. La contracción del metal líquido durante el enfriamiento, desde la temperatura de vaciado hasta la UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 16. Capítulo II 45 temperatura de solidificación, causa que la altura del líquido se reduzca desde el nivel inicial como en (1) de la Fig. La cantidad de esta concentración líquida es generalmente alrededor del 0.5%. La contracción de solidificación que se observa en la parte (2) tiene dos efectos. Primero, la contracción causa una reducción posterior en la altura de la fundición. Segundo, la cantidad de metal líquido disponible para alimentar la porción superior del centro de la fundición se restringe. Ésta es usualmente la última región en solidificar; la ausencia de metal crea un vacío en este lugar de la fundición. Esta cavidad de encogimiento es llamada por los fundidores rechupe. Una vez solidificada, la fundición experimenta una contracción posterior en altura y diámetro mientras se enfría como en (3). Esta contracción se determina por el coeficiente de expansión térmica del metal sólido, que en este caso se aplica a la inversa para determinar la contracción. La Tabla 2.1, presenta algunos valores típicos de la contracción volumétrica para diferentes metales de fundición debidos a la contracción por solidificación y a la contracción sólida paso (2) y (3). La contracción por solidificación ocurre casi en todos los metales porque la fase sólida tiene una mayor densidad que la fase líquida. La transformación de fase que acompaña la solidificación causa una reducción en el volumen por unidad de peso del metal. La excepción en la tabla 2.1 es el hierro fundido con un contenido alto de carbono, cuya solidificación se complica por un período de grafitación durante las etapas finales de enfriamiento, que provoca una expansión tendiente a contrarrestar el crecimiento volumétrico asociado con el cambio de fase. TABLA 2.1 Contracción volumétrica para diferentes metales de fundición debida a la contracción por solidificación y contracción del sólido Contracción volumétrica debida a: Metal Contracción Contracción por solidificación % térmica del sólido % Aluminio 7.0 5.6 Aleación de aluminio (típica) 7.0 5.0 Fundición de hierro gris 1.8 3.0 Fundición de hierro gris al alto carbono 0 3.0 Fundición de acero al bajo carbono. 3.0 7.2 Cobre 4.5 7.5 Bronce (CuSn) 5.5 6.0 Los modelistas toman en cuenta la contracción por solidificación para sobredimensionar las cavidades de los moldes. La cantidad que hay que aumentar a las dimensiones del molde con respecto al tamaño de la pieza final se llama tolerancia de contracción del modelo. Aunque la contracción es volumétrica, las dimensiones de la fundición se expresan linealmente. Para hacer los modelos y los moldes más grandes que la pieza, se usan reglas especiales de contracción que consideran una ligera elongación en proporción adecuada. Estas reglas varían en elongación desde menos de 3 mm. a 16 mm. por cada 300 mm de longitud con respecto a una regla normal, dependiendo del metal a fundir. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 17. Capítulo II 46 2.1.3.9 SOLIDIFICACIÓN DIRECCIONAL Para minimizar los efectos dañinos de la contracción es conveniente que las regiones de la fundición más distantes de la fuente de metal líquido se solidifiquen primero y que la solidificación progrese de estas regiones hacia la mazarota. En esta forma, el metal fundido continuará disponible en las mazarotas para prevenir los vacíos de contracción durante la solidificación. Se usa el término - solidificación direccional para describir este aspecto del proceso de solidificación y sus métodos de control La solidificación direccional deseada se logra aplicando la regla de Chvorinov al diseño de la fundición, a su orientación dentro del molde y al diseño del sistema de mazarotas. Por ejemplo, al localizar las secciones de la fundición con menores relaciones V/A lejos de las mazarotas la solidificación aparecerá primero en estas regiones y el suministro de metal líquido para el resto de la fundición permanecerá abierto hasta que solidifiquen las secciones más voluminosas. Otra forma de fomentar la solidificación direccional es usar enfriadores sumideros de calor internos o externos que causan un, enfriamiento rápido en ciertas regiones de la fundición, Los enfriadores internos son pequeñas partes de metal colocadas dentro de la cavidad antes del vaciado, cuyo objetivo es que el metal fundido solidifiqué primero alrededor de estas partes. El refrigerante interno debe tener una composición química igual a la del metal que se vacía. Esto se logra fabricando él, enfriador del mismo metal que la fundición. FIGURA 2.8 (a) Enfriadores externos para alentar la solidificación rápida del metal fundido en una zona delgada de la fundición y (b) resultado probable si no se usan los enfriadores. Los enfriadores externos son insertos metálicos en las paredes de la cavidad del molde que remueven el calor del metal fundido más rápidamente que la arena circundante, a fin de promover solidificación. Se usan a menudo en secciones de la fundición que son difíciles de alimentar con metal líquido, el cual encuentra así un enfriamiento rápido que lo hace solidificar en estas secciones mientras la conexión con el metal líquido está todavía abierta. La figura 2.8 ilustra una posible aplicación de refrigerantes externos y el resultado probable si no se usaran. Tan importante como iniciar la solidificación en las regiones apropiadas de la cavidad, es evitar la solidificación prematura en las secciones del molde cercanas a la mazarota. De particular interés es la vía UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 18. Capítulo II 47 de paso entre la mazarota y la cavidad principal. Esta conexión debe diseñarse de manera que no se solidifique antes de la fundición, porque puede aislar el metal fundido en la mazarota. Aunque generalmente es deseable minimizar el volumen en la conexión (para reducir el desperdicio), la sección transversal del área debe ser adecuada para retardar la solidificación prematura. Con este objeto se hace el pasaje de corta longitud para que reciba calor del metal fundido en la mazarota y en la fundición. 2.1.3.10 DISEÑO DE LA MAZAROTA Tal como se describió antes, una mazarota figura 2.1(b) se usa en un molde de fundición para alimentar metal líquido al proceso durante el enfriamiento y compensar así la contracción por solidificación. La mazarota debe permanecer fundida hasta después de que la fundición solidifique. Para satisfacer este requerimiento se puede calcular el tamaño de la mazarota usando la regla de Chvorinov. El siguiente ejemplo ilustra los cálculos. Ejemplo 2.3: Diseño de la mazarota usando la regla de Chvorinov Debe diseñarse una mazarota cilíndrica para un molde de fundición en arena. La fundición es una placa rectangular de acero con dimensiones 0.0762 m x 0.127 X 0.0254 m. En observaciones previas se ha indicado que el tiempo de solidificación total ( TST ) para esta fundición = 1.6 min. La mazarota cilíndrica tendrá una relación de diámetro a altura de 1.0. Determine la dimensión que la mazarota de manera que TST = 2.0 minutos. Solución: Determine primero la relación V/A para la placa. Su volumen V = 0.0762 x 0.127 x 0.0254 = 0.0002458 m3, y la superficie del área A = 2(0.0762 x 0.127 + 0.0762 x 0.0254 + 0.127 x 0.0254) = 0.032258 m2. Dado que TST = 1.6 min podemos determinar la constante del molde Cm mediante la ecuación (2.7) usando un valor de n = 2 en la ecuación. Cm = TST 2 = 1.6 [ = 27560.36 min m 2 ] (V / A) (0.0002458 / 0.03226) 2 Después debemos diseñar la mazarota de manera que su tiempo de solidificación total sea de 2.0 min, usando el mismo valor de la constante del molde ya que tanto la fundición como la mazarota están en el mismo molde. El volumen de la mazarota esta dado por πD 2 h V= 4 y el área de la superficie esta dada por 2πD 2 A = πDh + 4 UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 19. Capítulo II 48 Como estamos usando una relación D/h = 1.0, entonces D = h. Al sustituir D por h en las formulas del volumen y el área tenemos πD 3 V= 4 y 2πD 2 A = πD +2 = 1.5πD 2 4 entonces la relación V/A = D/6. Usando esta relación en la ecuación de Chvorinov tenemos: 2 D TST = 2.0 = 27560.36  = 4593.4 D 2 6 D2 = 2.0 4593.4 [ ] = 4.35 × 10 − 4 m 2 D = 2.09 × 10 −2 [m] Como h = D, también h = 2.09x10-2[m] La mazarota representa el metal de desperdicio que se separa del proceso y se refunde para hacer fundiciones subsecuentes. Es deseable que este volumen de metal en la mazarota sea el mínimo. Como la forma geométrica de la mazarota se selecciona normalmente para maximizar V/A, esto tiende a reducir el volumen de la mazarota lo más posible. Nótese que el volumen de la mazarota en nuestro ejemplo es V = π(2.09X10-2)3 /4 = 7.14X10-6 m3, solamente 55% del volumen de la placa (fundición), incluso cuando el tiempo de solidificación total es más grande por un 25%. La mazarota se puede diseñar en diferentes formas. El diseño mostrado en la figura 2.1 (b) es una mazarota lateral. Está anexada a un lado de la fundición por medio de un pequeño canal. Una mazarota superior se conecta en la parte superior de la superficie de la fundición. Las mazarotas pueden ser abiertas o sumergidas. Una mazarota abierta está expuesta al exterior en la superficie superior de la tapa, pero tiene la desventaja de permitir que escape más calor, promoviendo una solidificación más rápida. Una mazarota sumergida está completamente encerrada dentro del molde como en la figura 2.1 (b). 2.3 PROCESOS DE FUNDICIÓN DE METALES Los procesos de fundición del metal se dividen en dos categorías de acuerdo al tipo de moldes 1) moldes desechables y 2) moldes permanentes. En las operaciones de fundición con molde desechable, éste se destruye para remover la parte fundida. Como se requiere un nuevo molde por cada nueva fundición, las velocidades de producción en procesos de molde desechable son limitadas, más a causa del tiempo que se requiere para hacer el molde, que al tiempo para hacer la fundición. Sin embargo, para ciertas partes se pueden producir moldes y fundiciones a velocidades de 400 partes por hora o mayores. En los procesos de moldeo permanente, el molde se fabrica con metal (u otro material durable) que UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 20. Capítulo II 49 permite usarlos en repetidas operaciones de fundición. En consecuencia, estos procesos tienen una ventaja natural para mayores velocidades de producción. 2.3.1 FUNDICIÓN EN ARENA La fundición en arena es el proceso más utilizado, la producción por medio de este método representa la mayor parte del tonelaje total de fundición. Casi todas las aleaciones pueden fundirse en arena; de hecho, es uno de los pocos procesos que pueden usarse para metales con altas temperaturas de fusión, como son el acero, el níquel y el titanio. Su versatilidad permite fundir partes muy pequeñas o muy grandes (véase la figura 2.9) y en cantidades de producción que van de una pieza a millones de éstas. FIGURA 2.9 Fundición en arena para el cuerpo de un compresor con un peso de 680 Kg (Cortesía de Elkhart Foundry, Foto por Paragon Inc. , Elkhart, Indiana). La fundición en arena consiste en vaciar un metal fundido en un molde de arena, dejarlo solidificar y romper después el molde para remover la fundición. Posteriormente la fundición pasa por un proceso de limpieza e inspección, pero en ocasiones requiere un tratamiento térmico para mejorar sus propiedades metalúrgicas. Se da forma a la cavidad del molde de arena recubriendo con arena un modelo o patrón (un duplicado aproximado de la parte que se va a fundir), después se remueve el modelo para separar el molde en dos mitades. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 21. Capítulo II 50 El molde contiene el sistema de vaciado y la mazarota, pero si la fundición tiene superficies internas (por ejemplo partes huecas o agujeros) debe incluirse también un corazón. Como el molde se sacrifica para remover la fundición, se tiene que hacer un nuevo molde de arena por cada parte a producir. En esta breve descripción se puede observar que la fundición en arena no solamente incluye operaciones de fundición, sino también la fabricación de modelos y manufactura de moldes. La secuencia se muestra en la figura 2.10. FIGURA 2.10 Pasos en la secuencia de producción de la fundición en arena. Los pasos incluyen no solamente las operaciones de fundición si no también la manufactura del modelo y del molde. 2.3.1.1 MODELOS Y CORAZONES La fundición en arena requiere un patrón o modelo al tamaño natural de la parte, ligeramente agrandado, tomando en consideración la contracción y las tolerancias para el maquinado de la pieza final. Los materiales que se usan para hacer estos modelos incluyen la madera, los plásticos y los metales. La madera es un material común para modelos, por la facilidad de trabajarla y darle forma. Sus desventajas son la tendencia a la torsión y al desgaste por la abrasión de la arena que se compacta a su alrededor, lo cual limita el número de veces que puede usarse. Los modelos de metal son más costosos pero duran más. Los plásticos representan un término medio entre la madera y los metales. La selección del material apropiado para patrones o modelos depende en gran parte de la cantidad total de piezas a producir. Hay varios tipos de modelos, como se ilustra en la figura 2.11. El más simple está hecho de una pieza, llamado modelo sólido, que tiene la misma forma de la fundición y los ajustes en tamaño por contracción y maquinado. Su manufactura es fácil, pero la complicación surge cuando se utiliza para hacer el molde de arena. Determinar la localización del plano de separación entre las dos mitades del molde e incorporar el sistema de vaciado y el vertedero de colada para un modelo sólido, puede ser un problema que se dejará al juicio y habilidad del operario del taller de fundición. Por tanto, los modelos sólidos se usan solamente en producciones de muy baja cantidad. Los modelos divididos constan de dos piezas que separan la pieza a lo largo de un plano, éste coincide con el plano de separación del molde. Los modelos divididos son apropiados para partes de UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 22. Capítulo II 51 forma compleja y cantidades moderadas de producción. El plano de separación del molde queda predeterminado por las dos mitades del molde, más que por el juicio del operador. Para altos volúmenes de producción se emplean los modelos con placa de acoplamiento o los modelos dé doble placa (superior e inferior). En un modelo con placa de acoplamiento, las dos piezas del modelo dividido se adhieren a los lados opuestos de una placa de madera o metal. Los agujeros de la placa permiten una alineación precisa entre la parte superior y el fondo (cope y drag) del molde. Los modelos con doble placa de acoplamiento son similares a los patrones con una placa, excepto que las mitades del patrón dividido se pegan a placas separadas, de manera que las secciones de la parte superior e inferior del molde se puedan fabricar independientemente, en lugar de usar la misma herramienta para ambas. La parte (d) de la figura 2.11 incluye el sistema de vaciado y de mazarota en los modelos con placa de acoplamiento doble. FIGURA 2.11 Tipos de patrones utilizados en la fundición en arena: a) modelo sólido, b)modelo dividido, c) modelo con placa de acoplamiento d) modelo de doble placa superior e inferior Los patrones definen la forma externa de la fundición. Si posee superficies internas, se necesita un corazón para definirlas. Un corazón es un modelo de tamaño natural de las superficies interiores de la parte. El corazón se inserta en la cavidad del molde antes del vaciado, para que al fluir el metal fundido, solidifique entre la cavidad del molde y el corazón, formando así las superficies externas e internas de la fundición. El corazón se hace generalmente de arena compactada. El tamaño real del corazón debe incluir las tolerancias para contracción y maquinado lo mismo que el patrón. El corazón, dependiendo de la forma, puede o no requerir soportes que lo mantengan en posición en la cavidad del molde durante el vaciado. Estos soportes, llamados sujetadores, se hacen de un metal cuya temperatura de fusión sea mayor que la de la pieza a fundir. Por ejemplo, para fundiciones de hierro colado se usan sujetadores de acero. Los sujetadores quedan atrapados en la fundición durante el vaciado y la solidificación. En la figura 2.12 se muestra un posible arreglo del corazón usando sujetadores. La porción de los sujetadores que sobresalen de la fundición se recortan después. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 23. Capítulo II 52 FIGURA 2.12 (a) corazón mantenido en su lugar dentro de la cavidad del molde por los sujetadores (b) Diseño posible del sujetador (c) Fundición con cavidad interna. 2.3.1.2 MOLDES Y FABRICACIÓN DE MOLDES El molde es una cavidad que tiene la forma geométrica de la pieza que se va fundir. La arena de fundición es sílice (Si02) o sílice mezclada con otros minerales. Esta arena debe tener buenas propiedades refractarias, expresadas como la capacidad de resistir altas temperaturas sin fundirse o degradarse. Otras características importantes son: el tamaño del grano, la distribución de tamaños del grano en la mezcla y la forma de los granos. Los granos pequeños proporcionan mejor acabado superficial en la fundición, pero los granos grandes son más permeables, para que los gases escapen durante el vaciado. Los moldes hechos de granos irregulares tienden a ser más fuertes que los moldes de granos redondos debido al entrelazado de los granos, pero esto tiende a restringir la permeabilidad. En la fabricación del molde, los granos de arena se aglutinan por medio de una mezcla de agua y arcilla. La proporción típica (en volumen) es 90% de arena, 3% de agua y 7% de arcilla. Se pueden usar otros agentes aglutinantes en lugar de la arcilla, como resinas orgánicas (por ejemplo resinas fenólicas) y aglutinantes inorgánicos (por ejemplo, silicato y fosfato de sodio). Algunas veces se añaden a la mezcla de arena y aglutinante ciertos aditivos para mejorar las propiedades del molde como la resistencia y permeabilidad. En el método tradicional para formar la cavidad del molde se compacta la arena alrededor del modelo en la parte superior e inferior de un recipiente llamado caja de moldeo. El proceso de empaque se realiza por varios métodos. El más simple es el apisonado a mano realizado manualmente por un operario. Además, se han desarrollado varias máquinas para mecanizar el procedimiento de empacado, las cuales operan por medio de los siguientes mecanismos: 1) compactación de la arena alrededor del patrón o modelo mediante presión neumática; 2) acción de sacudimiento, dejando caer repetidamente la arena contenida en la caja junto al modelo, a fin de compactarla en su lugar; y 3) lanzamiento, haciendo que los granos de arena se impacten contra el patrón a alta velocidad. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 24. Capítulo II 53 Una alternativa a las cajas tradicionales para moldes de arena es el moldeo sin caja, que consiste en el uso de una caja maestra en un sistema mecanizado de producción de moldes. Cada molde de arena se produce usando la misma caja maestra. Se estima que la producción por este método automatizado puede ascender hasta seiscientos moldes por hora. Se usan varios indicadores para determinar la calidad de la arena para el molde: 1) resistencia, capacidad del molde para mantener su forma y soportar la erosión causada por el flujo del metal líquido, depende del tamaño del grano, las cualidades adhesivas del aglutinante y otros factores; 2) permeabilidad, capacidad del molde para permitir que el aire caliente y los gases de fundición pasen a través de los poros de la arena; 3) estabilidad térmica, capacidad de la arena en la superficie de la cavidad del molde para resistir el agrietamiento y encorvamiento en contacto con el metal fundido; 4) retractibilidad, capacidad del molde para dejar que la fundición se contraiga sin agrietarse; también se refiere a la capacidad de remover la arena de la fundición durante su limpieza; y 5) reutilización, ¿puede reciclarse la arena del molde roto para hacer otros moldes?. Estas medidas son algunas veces incompatibles, por ejemplo, un molde con una gran resistencia tiene menos capacidad de contracción. Los moldes de arena se clasifican frecuentemente como arena verde, arena seca o de capa seca. Los moldes de arena verde se hacen de una mezcla de arena, arcilla y agua, el término "verde" se refiere al hecho de que el molde contiene humedad al momento del vaciado. Los moldes de arena verde tienen suficiente resistencia en la mayoría de sus aplicaciones, así como buena retractibilidad, permeabilidad y reutilización, también son los menos costosos. Por consiguiente, son los mas ampliamente usados, aunque también tienen sus desventajas. La humedad en la arena puede causar defectos en algunas fundiciones, dependiendo del metal y de la forma geométrica de la pieza. Un molde de arena seca se fabrica con aglomerantes orgánicos en lugar de arcilla. El molde se cuece en una estufa grande a temperaturas que fluctúan entre 204 ºC y 316 ºC. El cocido en estufa refuerza el molde y endurece la superficie de la cavidad. El molde de arena seca proporciona un mejor control dimensional en la fundición que los moldes de arena verde. Sin embargo, el molde de arena seca es más costoso y la velocidad de producción es reducida debido al tiempo de secado. Sus aplicaciones se limitan generalmente a fundiciones de tamaño medio y grande y en velocidades de producción bajas. En los moldes de capa seca, la superficie de la cavidad de un molde de arena verde se seca a una profundidad entre 10 mm y 25 mm, usando sopletes, lámparas de calentamiento u otros medios, aprovechando parcialmente las ventajas del molde de arena seca. Se pueden añadir materiales adhesivos especiales a la mezcla de arena para reforzar la superficie de la cavidad. La clasificación precedente de moldes se refiere al uso de aglutinantes convencionales, ya sea agua, arcilla u otros que requieren del calentamiento para curar. Se han desarrollado también moldes aglutinados, químicamente diferentes de cualquiera de los aglutinantes tradicionales. Algunos de estos materiales aglutinantes, utilizados en sistemas que no requieren cocimiento, incluyen las resinas furánicas (que consisten en alcohol furfural, urea y formaldehído), las fenólicas y los aceites alquídicos. La popularidad de los moldes que no requieren cocimiento está creciendo debido a su buen control dimensional en aplicaciones de alta producción. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 25. Capítulo II 54 A continuación se muestra una serie de fotografías que describen el proceso de fundición en molde de arena Se fabrica una amplia variedad de tipos de vaciado. Abajo se muestra una fábrica que produce vaciados en molde de arena maquinados hechos de fierro dúctil. Lingotes de hierro dúctil Llenando un molde con arena Cerniendo y Comprimiendo Arena Medio molde de arena Corazón de arena en medio molde Medio molde con corazón en su lugar Ensamblando las mitades del molde Vaciando acero fundido Vaciado laminar Llenando un molde Seis moldes a la vez Laboratorio con reactivos Inspección con Microscopio Vaciado con tratamiento de arena UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 26. Capítulo II 55 2.3.2 FUNDICIÓN CENTRÍFUGA La fundición centrífuga se refiere a varios métodos de fundición caracterizados por utilizar un, molde que gira a alta velocidad para que la fuerza centrífuga distribuya el metal fundido en las regiones exteriores de la cavidad del dado. El grupo incluye: 1) fundición centrífuga real, 2) fundición semicentrífuga y 3) fundición centrifugada o centrifugado. Fundición centrífuga real En la fundición centrífuga real, el metal fundido se vacía en un molde que está girando para producir una parte tubular. Ejemplos de partes hechas por este proceso incluyen tubos, caños, manguitos y anillos. Este método se ilustra en la figura 2.13. El metal fundido se vacía en el extremo de un molde rotatorio horizontal. FIGURA 2.13 Disposición de la centrífuga real UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 27. Capítulo II 56 La rotación del molde empieza en algunos casos después del vaciado. La alta velocidad genera fuerzas centrífugas que impulsan al metal a tomar la forma de la cavidad del molde. Por tanto, la forma exterior de la fundición puede ser redonda, octagonal, hexagonal o cualquier otra. Sin embargo, la forma interior de la fundición es perfectamente redonda (al menos teóricamente), debido a la simetría radial de las fuerzas en juego. La orientación del eje de rotación del molde puede ser horizontal o vertical, pero esta última es la más común. Para que el proceso trabaje satisfactoriamente se calcula la velocidad de rotación del molde en la fundición centrifuga horizontal. La fuerza centrífuga está definida por la ecuación: mv 2 F= 2.8 R F mv 2 v2 GF = = = 2.9 W Rmg Rg Donde: F = fuerza (N) m = masa (Kg) v = velocidad (m/s) R = radio interior del molde (m) W = mg es su peso (N) g = aceleración de la gravedad (m/s2) El factor-G GF es la relación de fuerza centrífuga dividida por el peso La velocidad v puede expresarse como 2πRN / 60 = πRN / 30, donde N velocidad rotacional rev/min. Al sustituir esta expresión en la ecuación (2.9) obtenemos R(πN ) 2 GF = 30 2.10 g Con un arreglo matemático para despejar la velocidad rotacional N y usando el diámetro D en lugar del radio, tenemos 30 2 gGF N= 2.11 π D Donde: D = diámetro interior del molde (m) N= velocidad de rotación (rev/min) Si el factor-G es demasiado bajo en la fundición centrífuga, el metal líquido no quedará pegado a la pared del molde durante la mitad superior de la ruta circular sino que “lloverá” dentro de la cavidad. Ocurren deslizamientos entre el metal fundido y la pared del molde, lo cual significa que la velocidad rotacional del metal es menor que la del molde. Empíricamente, los valores de GF = 60 a 80 son UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 28. Capítulo II 57 apropiados para la fundición centrífuga horizontal, aunque esto depende hasta cierto punto del metal que se funde Ejemplo 2.4 Velocidad de rotación en la fundición centrífuga real Se realizará una operación de fundición centrífuga real horizontal para hacer secciones de tubo de cobre de 0.3 m de longitud con un diámetro externo = 0.25 m y diámetro interno = 0.22 m ¿Qué velocidad de rotación se requiere, si se usa un factor-G de 65 para fundir la tubería? Solución: El diámetro interno del molde D = diámetro externo de la fundición = 0.25 m. Podemos calcular la velocidad rotacional requerida por medio de la ecuación (2.11) como sigue: 30 2 ⋅ 9.81 ⋅ 65 N= = 681.69[rev / min ] π 0.25 En la fundición centrifuga vertical el efecto de la gravedad que actúa en el metal líquido causa que la pared de la fundición sea más gruesa en la base que en la parte superior. El perfil interior de la fundición tomará una forma parabólica. La diferencia entre el radio de la parte superior y del fondo se relaciona con la velocidad de rotación como sigue: 30 2 gl N= 2.12 π R − Rb2 i 2 Donde: L = longitud vertical de la fundición (m) Rt = radio interno de la parte superior de la fundición (m) Rb = radio interior en el fondo de la fundición (m). Se puede usar la ecuación (2.12) para determinar la velocidad rotacional requerida para la fundición centrífuga vertical, dadas las especificaciones de los radios internos en la parte superior y en el fondo. De la fórmula se desprende que para igualar a Rt, y a Rb, la velocidad de rotación N tendría que ser infinita, lo cual desde luego es imposible. En la práctica es conveniente que la longitud de las partes hechas por fundición centrífuga vertical no exceda de dos veces su diámetro. Esto es satisfactorio para bujes y otras partes que tengan diámetros grandes en relación con sus longitudes, especialmente si se va a usar el maquinado para dimensionar con precisión el diámetro interior. Las fundiciones hechas por fundición centrífuga real se caracterizan por su alta densidad, especialmente en las regiones externas de la pieza, donde F es más grande. La contracción por solidificación en el exterior del tubo fundido no es de consideración, debido a que la fuerza centrífuga relocaliza continuamente el metal fundido hacia la pared del molde durante la congelación. Cualquier impureza en la fundición tiende a ubicarse en la pared interna y puede eliminarse mediante maquinado si es necesario, UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 29. Capítulo II 58 Fundición semicentrífuga En este método se usa la fuerza centrífuga para producir fundiciones sólidas en lugar de partes tubulares, como se muestra en la figura 2.14. La velocidad de rotación se ajusta generalmente para un factor-G alrededor de 15, y los moldes se diseñan con mazarotas que alimenten metal fundido desde el centro. La densidad del metal en la fundición final es más grande en la sección externa que en el centro de rotación. El centro tiene poco material o es de poca densidad. Por lo regular el centro en este tipo de sistemas de fundición es maquinado posteriormente, excluyendo así la porción de más baja calidad. Los volantes y las poleas son ejemplos de fundiciones que pueden hacerse por este proceso. Se usan frecuentemente moldes consumibles o desechables en la fundición semicentrífuga, como sugiere nuestra ilustración del proceso. FIGURA 2.14 Fundición semicentrífuga FIGURA 2.15 (a) Fundición centrifugada: la fuerza centrífuga hace que el metal fluya a las cavidades del molde lejos del eje de rotación y (b) la fundición. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 30. Capítulo II 59 Fundición centrifugada Es un sistema donde por medio de un tallo se hace llegar metal fundido a racimos de cavidades colocadas simétricamente en la periferia (figura 2.15), de manera que la fuerza centrífuga distribuya la colada del metal entre estas cavidades. El proceso se usa para partes pequeñas, la simetría radial de la parte no es un requerimiento como en los otros dos métodos de fundición centrífuga. 2.3.3 FUNDICIÓN EN MOLDE DE YESO La fundición con moldes de yeso es similar a la fundición en arena, excepto que el molde está hecho de yeso (2CaSO4 – H20) en lugar de arena. Se mezclan aditivos como el talco y la arena de sílice con el yeso para controlar la contracción y el tiempo de fraguado, reducir los agrietamientos e incrementar la resistencia. Para fabricar el molde, se hace una mezcla de yeso y agua, se vacía en un modelo de plástico o metal en una caja de moldeo y se deja fraguar. En este método, los modelos de madera son generalmente insatisfactorios, debido al extenso contacto con el agua del yeso. La consistencia permite a la mezcla de yeso fluir fácilmente alrededor del patrón, capturando los detalles y el acabado de la superficie. Ésta es la causa de que las fundiciones hechas en moldes de yeso sean notables por su fidelidad al patrón. El curado del molde de yeso es una de las desventajas de este proceso, al menos para altos volúmenes de producción. El molde debe dejarse fraguar cerca de 20 minutos antes de sacar el molde y, posteriormente, debe cocerse por varias horas para remover la humedad. Aun cocido, el yeso no se desprende de todo el contenido de humedad. El problema que enfrentan los fundidores es que la resistencia del molde se pierde cuando el yeso se deshidrata y, en el caso contrario, la humedad remanente puede causar defectos en el producto de fundición, por tanto es necesario encontrar un equilibrio entre estas alternativas indeseables. Otra desventaja del molde de yeso es que no es permeable limitando el escape de los gases de la cavidad del molde. Este problema puede resolverse de varias maneras: 1) evacuar el aire de la cavidad del molde antes de vaciar; 2) batir la pasta de yeso antes de hacer el molde, de manera que el yeso fraguado contenga pequeños poros dispersados; y 3) usar composiciones especiales del molde y un tratamiento conocido como proceso Antioch. Este proceso consiste en utilizar cerca de un 50% de arena mezclada con el yeso, calentar el molde en una autoclave (estufa que usa vapor sobrecalentado a presión), y después secar. El molde resultante tiene una permeabilidad considerablemente más grande que el molde de yeso convencional. Los moldes de yeso no pueden soportar temperaturas tan elevadas como los moldes de arena. Por tanto, están limitados a fundiciones de bajo punto de fusión como aluminio, magnesio y algunas aleaciones de cobre. Su campo de aplicación incluye moldes de metal para plásticos y hule, impulsores para bombas y turbinas, y otras partes cuyas formas son relativamente intrincadas. Los tamaños de las fundiciones varían desde menos de una onza hasta varios cientos de libras; las partes que pesan menos de 20 lb. son las más comunes. Las ventajas de los moldes de yeso para estas aplicaciones son su buen acabado superficial, su precisión dimensional y su capacidad para hacer fundiciones de sección transversal delgada. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 31. Capítulo II 60 2.3.4 FUNDICIÓN EN MOLDE DE CERÁMICA Las fundiciones con moldes cerámicos son similares a las fundiciones con molde de yeso, el modelo se introduce varias veces en una lechada refractaria (yeso con polvo de mármol) la que cada vez que el modelo se introduce este se recubre de una capa de la mezcla, generando una cubierta en el modelo. Posteriormente el modelo se extrae y luego el molde se introduce en un horno con lo que el material refractario se endurece. Así, los moldes cerámicos pueden usarse para fundiciones de acero, hierro y otras aleaciones de alta temperatura. Sus aplicaciones (moldes y piezas relativamente intrincadas) son similares a las de los moldes de yeso excepto por los metales que se funden. Sus ventajas (buena precisión y acabado) son también similares. 2.2.9 FUNDICIÓN EN MOLDE CON REVESTIMIENTO (MODELO PERDIDO) Es un proceso muy antiguo para la fabricación de piezas artísticas. Consiste en la creación de un modelo en cera de la pieza que se requiere, este modelo debe tener exactamente las características deseadas en la pieza a fabricar. El modelo de cera es revestido (se cubre completamente) con yeso o un material cerámico que soporte el metal fundido. Luego el conjunto se introduce a un horno, con ello el material cerámico se endurece y el modelo de cera se derrite, obteniendo así el molde. En el molde fabricado se vacía el metal fundido y se obtiene la pieza deseada. Es un proceso de fundición capaz de hacer piezas de alta precisión e intrincados detalles y se conoce también como fundición a la cera perdida, debido a que el modelo de cera se pierde en el molde antes de fundirse. Los pasos en la fundición por revestimiento se describen en la figura 2.16. Como los modelos de cera se funden después que se hace el molde refractario, se debe fabricar un modelo para cada fundición. La producción de modelos se realiza mediante una operación de moldeo, que consiste en vaciar o inyectar cera caliente en un dado maestro, diseñado con las tolerancias apropiadas para la contracción de la cera y del metal de fundición. En los casos donde la forma de la pieza es complicada, se juntan varias piezas de cera para hacer el patrón. En operaciones de alta producción se pegan varios patrones a un bebedero de colada, hecho también de cera, para formar un modelo de árbol, ésta es la forma que tomará el metal fundido. El recubrimiento con refractario (paso 3) se hace generalmente por inmersión del árbol patrón en un lodo de sílice u otro refractario de grano muy, fino (casi en forma de polvo) mezclado con yeso que sirve para unir el molde. El grano fino del material refractario provee una superficie lisa que captura los intrincados detalles del modelo de cera. El molde final (paso 4) se forma por inmersiones repetidas del árbol en el lodo refractario o por una compactación cuidadosa del refractario alrededor del árbol en un recipiente. El molde se deja secar al aire, aproximadamente ocho horas, para que endurezca el aglutinante. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 32. Capítulo II 61 FIGURA 2.16 Pasos en la fundición por revestimiento. (1) se producen los patrones o modelos de cera; (2) se adhieren varios modelos a un bebedero para formar el modelo de árbol; (3) el modelo de árbol se recubre con una capa delgada de material refractario; (4) se forma el molde entero, cubriendo el árbol revestido con suficiente material para hacerlo rígido; (5) el molde se sostiene en posición invertida y se calienta para fundir la cera y dejar que escurra fuera de la cavidad; (6) el molde se precalienta a una alta temperatura para asegurar la eliminación de todos los contaminantes del molde, esto también facilita que el metal fluya dentro de la cavidad y sus detalles, el metal se vacía y solidifica; (7) el molde se rompe y se separa de la fundición terminada. Las partes se separan del bebedero de colada. Las ventajas de la fundición por revestimiento son: 1) capacidad para fundir piezas complejas e intrincadas; 2) estrecho control dimensional con posibles tolerancias de ±0.076 mm; 3) buen acabado de la superficie; 4) recuperación de la cera para reutilizarla y 5) por lo general no se requiere maquinado adicional. Éste es un proceso de forma neta, aunque relativamente costoso por la cantidad de pasos que involucra su operación. Las partes hechas por este método son normalmente de tamaño pequeño, aunque se han fundido satisfactoriamente partes de formas complejas de hasta 34 Kg. Pueden fundirse todos los tipos metales, incluyendo aceros, aceros inoxidables y otras aleaciones de alta temperatura. Algunos ejemplos de partes fundidas por este proceso son: partes complejas de maquinaria paletas y otros componentes para motores de turbina, así como joyería y accesorios dentales. En la figura 2,17 se UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 33. Capítulo II 62 muestra una pieza que ilustra las características intrincadas que son posibles con la fundición por revestimiento. FIGURA 2.17 Estator de una sola pieza para compresor hecho mediante fundición por con 108 aletas aerodinámicas separadas (cortesía de Howmet Corp.). 2.2.10 FUNDICIÓN EN MOLDE PERMANENTE La desventaja económica de cualquiera de los procesos con molde desechable es la necesidad de un nuevo molde para cada fundición. En la fundición con molde permanente, el molde se reutiliza muchas veces. En esta sección analizaremos la fundición en molde permanente, tratándola como un proceso básico del grupo de procesos que utilizan moldes reutilizables. La fundición en molde permanente usa un molde metálico construido en dos secciones que están diseñadas para cerrar y abrir con precisión y facilidad. Los moldes se hacen comúnmente de acero o hierro fundido. La cavidad junto con el sistema de vaciado se forma por maquinado en las dos mitades del molde a fin de lograr una alta precisión dimensional y un buen acabado superficial. Los metales que se funden comúnmente en molde permanente son: aluminio, magnesio, aleaciones de cobre y hierro fundido, Sin embargo, el hierro fundido requiere una alta temperatura de vaciado, 1250 ºC a 1500 ºC, lo cual acorta significativamente la vida del molde. Las temperaturas más altas de vaciado para el acero, hacen inapropiado el uso de moldes permanentes para este metal, a menos que se hagan en moldes de material refractario. En este proceso es posible usar corazones para formar las superficies interiores del producto de fundición. Los corazones pueden ser metálicos, pero su forma debe permitir la remoción de la fundición, o deben ser mecánicamente desmontables para permitir esta operación. Si la remoción del corazón UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 34. Capítulo II 63 metálico es difícil o imposible se pueden usar corazones de arena, en este caso el proceso de fundición es frecuentemente llamado fundición en molde semipermanente. Los pasos en el proceso de fundición con molde permanente se describen en la figura 2.18. Los moldes se precalientan primero para prepararlos, y se rocía la cavidad con uno o más recubrimientos. El precalentamiento facilita el flujo del metal a través del sistema de vaciado y de la cavidad. Los recubrimientos ayudan a disipar el calor y a lubricar la superficie del molde para separar fácilmente la fundición. Tan pronto como solidifica el metal, el molde se abre y se remueve la fundición. A diferencia de, los moldes desechables, los moldes permanentes no se retraen, así que deben abrirse antes de que ocurra la contracción por enfriamiento a fin de prevenir el desarrollo de grietas en la fundición. FIGURA 2.18 Pasos en la fundición en molde permanente: (1) el molde se precalienta y se recubre; (2) se insertan los corazones (en su caso) y se cierra el molde; (3) el metal fundido se vacía en el molde y (4) el molde se abre. La parte terminada se muestra en (5). Las ventajas de la fundición en molde permanente incluyen buen acabado de la superficie y control dimensional estrecho, como ya se mencionó. Además, la solidificación más rápida causada por el molde metálico genera una estructura de grano más fino, de esta forma pueden producirse fundiciones más resistentes. El proceso está limitado generalmente a metales de bajo punto de fusión. La manufactura de formas geométricas más simples que las fundidas en molde de arena (debido a la necesidad de abrir el UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 35. Capítulo II 64 molde) constituye otra limitación, además del costo. Debido al costo sustancial del molde, el proceso se adapta mejor a producciones de alto volumen que pueden automatizarse. Las partes típicas que se producen con proceso de molde permanente incluyen pistones automotrices, cuerpos de bombas y ciertas fundiciones para aviones y proyectiles. Fundición hueca La fundición hueca es un proceso de molde permanente en el cual se forma un hueco al invertir el molde, después que el metal ha solidificado Parcialmente en la superficie del molde, drenando así el metal líquido del centro. La solidificación empieza en las paredes relativamente frías del molde y progresa con el tiempo hacia la parte media de la fundición (sección 2.1.3). El espesor del casco se controla por el tiempo que transcurre antes de drenar. La fundición hueca se usa para hacer estatuas, pedestales de lámparas y juguetes a partir de metales de bajo punto de fusión como plomo, zinc y estaño. En estos artículos lo importante es la apariencia exterior, pero la resistencia y la geometría interior de la fundición no son relevantes. 2.2.11 FUNDICIÓN A PRESIÓN La fundición a presión es un proceso que necesariamente utiliza moldes permanentes y se puede clasificar en: fundición a baja presión, fundición con molde permanente al vació y fundición en dados. FIGURA 2.19 Fundición a baja presión. El diagrama muestra cómo se usa la presión del aire para forzar el metal fundido, dentro de la cuchara de colada, hacia la cavidad molde. La presión se mantiene hasta que solidifica la fundición. Fundición a baja presión En el proceso de fundición con molde permanente básico y en la fundición hueca, el flujo de metal en la cavidad del molde es causado por la gravedad. En la fundición a UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 36. Capítulo II 65 baja presión, el metal líquido se introduce dentro de la cavidad a una presión aproximada de 0.1 MPa, aplicada desde abajo, de manera que el metal fluye hacia arriba como sé, ilustra en la figura 2.19. La ventaja de este método sobre el vaciado tradicional es que se introduce en el molde un metal limpio desde el centro del crisol, en lugar de un metal que ha sido expuesto al aire. Lo anterior reduce la porosidad producida por el gas y los defectos generados por la oxidación, y se mejoran las propiedades mecánicas. Fundición con molde permanente al vacío La fundición con molde permanente al vació es una variante de la fundición a baja presión en la cual se usa vacío para introducir el metal fundido en la cavidad del molde. La configuración general del proceso es similar a la operación de fundición a baja presión. La diferencia es que se usa la presión reducida del vacío en el molde para atraer el metal líquido a la cavidad, en lugar de forzarlo por una presión positiva de aire desde abajo. Los beneficios de la técnica al vacío, en relación con la fundición a baja presión, son que se reduce la porosidad del aire y los efectos relacionados, obteniendo una mayor resistencia del producto de fundición. La fundición en dados es un proceso de fundición en molde permanente en el cual se inyecta el metal fundido en la cavidad del molde a alta presión. Las presiones típicas son de 7 a 350 MPa. La presión se mantiene durante la solidificación; posteriormente, el molde se abre para remover la pieza. Los moldes en la operación de fundición se llaman dados, de aquí el nombre de fundición en dados. El uso de alta presión para forzar al metal dentro de la cavidad del dado es la característica más notable que distingue a este proceso de otros en la categoría de molde permanente. Las operaciones de fundición en dados se llevan a cabo en máquinas especiales. Las máquinas modernas de fundición en dados están diseñadas para mantener un cierre preciso de las dos mitades del molde y mantenerlas cerradas, mientras el metal fundido permanece a presión dentro de la cavidad. La configuración general se muestra en la figura 2.20 FIGURA 2.20 Configuración general de una máquina de fundición en dados (cámara fría). UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 37. Capítulo II 66 Existen dos tipos principales de máquinas de fundición en dados: 1) de cámara caliente y 2) de cámara fría; sus diferencias radican en la forma en que se inyecta el metal a la cavidad. En las máquinas de cámara caliente, el metal se funde en un recipiente adherido a la máquina y se inyecta en el dado usando un pistón de alta presión. Las presiones típicas de inyección son de (7 a 35 MPa). La fundición se resume en la figura 2.21. Son velocidades características de producción de hasta 500 partes por hora. La fundición en dados con cámara caliente impone una dificultad especial en el sistema de inyección, porque gran parte de dicho sistema queda sumergido en el metal fundido. Por esa causa, las aplicaciones del proceso quedan limitadas a metales de bajo punto de fusión que no atacan químicamente al pistón y a otros componentes mecánicos. Estos metales incluyen al zinc, al estaño, al plomo y algunas veces al magnesio. FIGURA 2.21 Ciclo de la fundición en cámara caliente: (1) el metal fluye en la cámara con el dado cerrado y el émbolo levantado; (2) el émbolo fuerza al metal de la cámara a fluir hacia el dado, manteniendo la presión durante el enfriamiento y la solidificación, y (3) se levanta el émbolo, se abre el dado y se expulsa la parte solidificada. La parte terminada se muestra en (4). UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 38. Capítulo II 67 En las máquinas de fundición en dados con cámara fría, el metal fundido procedente de un contenedor externo para colar, se vacía en una cámara sin calentar y se usa un pistón para inyectar el metal a alta presión en la cavidad del dado. Las presiones de inyección usadas en estas máquinas van típicamente (14 a 140 MPa). El ciclo de producción se explica en la figura 2.22. La velocidad de ciclo no es tan rápida con respecto a las máquinas de cámara caliente, debido a que es necesaria una cuchara de colada para vaciar el metal líquido desde una fuente externa en la cámara. Sin embargo, este proceso de fundición es una operación de alta producción. Las máquinas de cámara fría se usan típicamente para fundiciones de aluminio, latón y aleaciones de magnesio. Las aleaciones de bajo punto de fusión (zinc, estaño, plomo) pueden también fundirse en máquinas de cámara fría, pero las ventajas del proceso de cámara caliente favorecen más el uso de estos metales. FIGURA 2.22 Ciclo de la fundición en cámara fría: (1) se vacía el metal en la cámara con el dado cerrado y el pisón retraído; (2) el pisón fuerza al metal a fluir en el dado, manteniendo la presión durante el enfriamiento y la solidificación; y (3) se retrae el pisón, se abre el dado y se expulsa la fundición. El sistema de vaciado está simplificado. Los moldes que se usan en operaciones de fundición en dados se hacen generalmente con acero de herramienta y acero para moldes refractarios. El tungsteno y el molibdeno con buenas cualidades refractarias también se utilizan, especialmente en los intentos para fundir el acero y el hierro en dados. Los dados pueden tener una cavidad única o múltiple. Los dados de cavidad única se muestran en las figuras 2.21 y 2.22. Se requieren pernos expulsores para remover la parte del dado cuando éste se abre, como se muestra en los diagramas. Estos pernos empujan la parte de manera que puedan removerse de la superficie del dado. También es necesario rociar lubricantes en las cavidades para prevenir el pegado. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II
  • 39. Capítulo II 68 Como los materiales del dado no tienen porosidad natural y el metal fundido fluye rápidamente en el dado durante la inyección, se deben construir barrenos o vías de paso en el plano de separación de los dados para evacuar el aire y los gases de la cavidad. Aun cuando los orificios son bastante pequeños, se llenan con el metal durante la inyección, pero éste debe quitarse después. También es común la formación de rebabas en lugares donde el metal líquido a alta presión penetra entre los pequeños espacios del plano de separación o en los claros alrededor de los corazones y de los pernos expulsores. La rebaba debe recortarse de la fundición junto con el bebedero y el sistema de vaciado. Las ventajas de la fundición en dados incluyen: 1) altas velocidades de producción; 2) son económicas para volúmenes grandes de producción; 3) son posibles tolerancias estrechas, del orden de ± 0.076 mm en partes pequeñas; 4) buen acabado de la superficie; 5) son posibles secciones delgadas hasta cerca de 0.05 mm y 6) el enfriamiento rápido proporciona a la fundición granos de tamaño pequeño y buena resistencia. Las limitaciones de este proceso, además de los metales que maneja, son la restricción en la forma de las piezas. La geometría dé la parte debe ser tal que pueda removerse de la cavidad del dado. 2.2.12 CALIDAD DE LA FUNDICIÓN Hay numerosas contingencias que causan dificultades en una operación de fundición y originan defectos de calidad en el producto. En esta sección recopilamos una lista de defectos comunes que ocurren en la fundición e indicamos los procedimientos de inspección para detectarlos. Defectos de la fundición Existen defectos comunes en todos los procesos de fundición. Estos defectos se ilustran en la figura 2.23 y se describen brevemente a continuación: FIGURA 2.23 Algunos defectos comunes en las fundiciones: (a) llenado incompleto, (b) junta fría, (c) gránulos fríos. (d) cavidad por contracción, (e) microporosidad y (f) desgarramientos calientes. UMSS – Facultad de Ciencias y Tecnología Ing. Mecánica –Tecnología Mecánica II