SlideShare uma empresa Scribd logo
1 de 26
Counting Atoms for Astrophysics: Atom Traps, Neutrino Detectors,  and Radioactive Background Measurements   Chad Orzel  Union College Dept. of Physics and Astronomy D. N. McKinsey  Yale University Dept. of Physics Students:  M. Mastroianni R. McMartin   M. Lockwood J. Smith   E. Greenwood M. Martin   M. Mulligan J. Anderson   C. Fletcher $$: Research Corporation NSF
Summary Why Are We Doing This, Anyway? What We’re Doing: Using  A tom  T rap  T race  A nalysis for Radioactive Background Evaluation Measure krypton contamination in other rare gases Fast measurement:  Kr/Rg ~ 10 -14  in only 3 hours What We’re Not Doing: NOT a Purification Method Complementary to purification efforts
Who Cares About Krypton? Astrophysicists! Next Generation of Neutrino Detectors: Liquid Rare Gas Scintillation 85 Kr is a source of background noise: Eliminate all krypton
Neutrinos Fundamental particles Incredibly numerous: ~300/cm 3  from Big Bang ~40,000,000,000/cm 2 /s from the Sun Very small mass: Electron neutrino: m  e  < 3eV/c 2 Tau neutrino: m   < 15 MeV/c 2 (electron mass: ~500 keV/c 2 ) Weak interactions: Interact only through weak nuclear force Neutral particles    Extremely Difficult to Detect
Neutrino Detection Radiochemical:  e  +  37 Cl     37 Ar + e -  e  +  71 Ga     71 Ge + e - Neutrino interaction converts neutron to proton    Change element Ray Davis Nobel Prize 2002 Problem: Very slow readout (every few months)  No real-time information
Neutrino Detection 2 Scintillation Detectors: Neutrino collision produces light flash Electron: Nucleus: Allows real-time detection, energy measurement Problem: High energy threshold (5-8 MeV) Masatoshi Koshiba Nobel Prize 2002  Detect light with phototubes
Sudbury Neutrino Observatory Top-of-the-Line Scintillation Detector: http://www.sno.phy.queensu.ca/ 1000 tons heavy water (D 2 O) 9600 Photomultiplier Tubes (PMT’s) Detect Cerenkov light Location, Location, Location: Creighton Mine, Sudbury, Ontario 2070 m (6800 ft) underground (Screen out background radiation)
Solar Neutrinos How do detectors stack up? Need a better detector… Gallium Chlorine Radiochemical: Ga/Cl Low threshold No time resolution Water Scintillation: H 2 O/D 2 O Time, energy resolution High threshold
Neutrino Detection: The Next Generation Use some other substance as scintillator Want: Time resolution Low threshold XMASS:  ~ 20 tons of liquid xenon CLEAN:   C ryogenic  L ow  E nergy A strophysics with  N oble gases http://mckinseygroup.physics.yale.edu/CLEAN.html (astro-ph/0402007) ~100 tons of liquid neon
CLEAN http://mckinseygroup.physics.yale.edu/CLEAN.html (astro-ph/0402007) Advantages of liquid rare gases: 3) Little or no intrinsic radioactivity Scintillation detection with low threshold 1) High yield Ne:   = 80nm,  15,000 photons/ MeV 2) Self-shielding Dense liquid, absorbs radiation
CLEAN Sensitivity Gallium Chlorine Water 0.01 0.1 C L E A N
Krypton Contamination Problem: Krypton Contamination 85 Kr:     ½  = 10.76 yr  -decay at 687 keV Looks like detection event in energy range of interest… Need to remove all Kr from detector 40 ppb Rare isotope: 2.5  × 10 -11 Major source of background
Krypton Removal Need extremely high purity  Kr/Ne ~ 4  × 10 -15  (any isotope) 85 Kr much lower ~100,000 atoms in full CLEAN Difficult to purify gas to this level Kr chemically inert Distillation, Charcoal Filter Xe distillation, Takeuchi  et al. ~3.3 ppt Kr Difficult to measure purity Gas chromatography Accelerator mass spectrometry Days or weeks to measure
Atom Trap Trace Analysis Technique developed by Z.-T. Lu and colleagues at Argonne National Laboratory Used to measure  85 Kr abundance Used for radioisotope dating Trap, detect single atoms of rare isotopes Determine abundance by counting Proposal:  Use ATTA to measure Kr in Ne or Xe 7  × 10 16  atoms/s in    3× 10 -14  abundance in 3 hrs (1 atom detected) Load source with ultra-pure Ne, Xe Detect single Kr atoms
Laser Cooling and Trapping Use light forces to slow and trap atoms Photons carry momentum p Transfer to atoms on absorption p Very small velocity change 84 Kr  =811 nm  v=5.8 mm/s Lots of photons  (10 15  per second) Room-temperature velocity ~ 300 m/s    100,000 photons to decelerate Use scattering force to slow thermal motion
Doppler Cooling Exploit Doppler effect to selectively cool atoms Use single laser beam to slow and stop beams of atoms   o Tune laser to lower frequency (red)    <   o |e> |g> Stationary atoms do not absorb Atoms moving toward laser see blue shift Absorb photons, slow down Use pairs of beams to cool sample Reach microkelvin temperatures (v~10 cm/s)
Magneto-Optical Trap Add spatially varying magnetic fields Confine atoms to small volume Trapping due to photon scattering 10 8  photons/s per atom (Na MOT at NIST) Detect trapped atoms using fluorescence
ATTA Count trapped atoms to determine abundance APD Detect single atoms by trap laser fluorescence (data from Lu group) Atom Source Zeeman Slower MOT ATTA Technique Prepare Kr* atoms in metastable state Slow beam Trap atoms in MOT
Selectivity (Figure from Lu group at ANL) 85 Kr ~ 10 -11 81 Kr ~ 10 -13 83 Kr ~ 0.11 Only Kr atoms detected Extremely selective technique Need to scatter 10 5  photons No off-resonant background Trap only one isotope Trap over ~ 30 MHz Out of 370 THz
Background Kr atoms trapped in metastable state ~10 eV above ground state,   ~30 s Ground-state Kr  not trapped not detected 0) Sample Handling 1) Outgassing:  Keep Kr out of system. Background ~10 -16  level laser cooling 5p[5/2] 3 5s[3/2] 2 811nm ~10 eV Atoms only excited in source    Only contamination in source matters 2) Cross-contamination : Kr from calibration samples embedded in source Eliminate with optical excitation
Sensitivity Procedure: 1) Load system with Ne or Xe 2) Set lasers to trap  84 Kr (57% abundance) 3) Count atoms, compare to input flux  One atom in three hours: 3  × 10 -14  abundance Typical source consumption: 7  × 10 16  atoms/s Trapping efficiency: 10 -8
Apparatus Metastable Source 145 MHz RF Plasma discharge Zeeman Slower Two-stage magnet Decelerates beam Trapping  Chamber Undergraduate student for scale: Ryan McMartin ‘05
Optical Excitation Metastable excitation methods 1) Electron impact: RF plasma discharge Simple, robust Potentially higher efficiency (10 -2 )    Improved sensitivity Eliminate cross-contamination    Lower background 5p[5/2] 3 5s[3/2] 2 811nm ~10 eV Low efficiency (10 -4  – 10 -3 ) “ Memory Effect” cross-contamination 5s[3/2] 1 5p[5/2] 2 124 nm Kr lamp 819 nm laser 2) Two-photon optical excitation 124 nm lamp, 819 nm laser Excite only Kr*
Optical Excitation 124 nm lamp Kr inlet 819 nm laser Mike Mastroianni ‘07
Future Prospects 1) Other Species Same technique works for other rare gases. 39 Ar evaluation   Ar*, Kr* < 1nm apart: use same optical system 2) Continuous monitoring 3hrs for 10 -14  level Less time for lower sensitivity (XENON): continuous purity check? 3) Other systems? 3 He/ 4 He?
Conclusions Next generation of neutrino detectors will require ultra-pure rare gases Can use  Atom Trap Trace Analysis  to measure Kr contamination High sensitivity, low background Independent of purification method Fast measurement (3 hrs for 3 ×10 -14 ) Complement to experimental efforts to purify gases (see also:  astro-ph/0406526,  Nucl. Instr. Meth. A  545 , 524 (2005))

Mais conteúdo relacionado

Mais procurados

Chapter 3 detection devices
Chapter 3 detection devicesChapter 3 detection devices
Chapter 3 detection devices
ROBERT ESHUN
 
HPS Neutron Meter presentation(updated)
HPS Neutron Meter presentation(updated)HPS Neutron Meter presentation(updated)
HPS Neutron Meter presentation(updated)
James P Menge PE, CHP
 
Basic principle of liquid scintillation counter norfaizal
Basic principle of liquid scintillation counter norfaizalBasic principle of liquid scintillation counter norfaizal
Basic principle of liquid scintillation counter norfaizal
Mahbubul Hassan
 

Mais procurados (20)

Active methods of neutron detection
Active methods of neutron detectionActive methods of neutron detection
Active methods of neutron detection
 
Radiation detectors
Radiation detectors Radiation detectors
Radiation detectors
 
Chapter 3 detection devices
Chapter 3 detection devicesChapter 3 detection devices
Chapter 3 detection devices
 
Radiation detection and measurement
Radiation detection and measurement Radiation detection and measurement
Radiation detection and measurement
 
Niab 2016
Niab 2016Niab 2016
Niab 2016
 
Tmp 27936 gamma ray spectroscopy-1322102526
Tmp 27936 gamma ray spectroscopy-1322102526Tmp 27936 gamma ray spectroscopy-1322102526
Tmp 27936 gamma ray spectroscopy-1322102526
 
Scintillation Counter and Semiconductor Detector
Scintillation Counter and Semiconductor DetectorScintillation Counter and Semiconductor Detector
Scintillation Counter and Semiconductor Detector
 
PEPTIDE LABELLING & GAMMA RAY SPECTROSCOPY
PEPTIDE LABELLING & GAMMA RAY SPECTROSCOPYPEPTIDE LABELLING & GAMMA RAY SPECTROSCOPY
PEPTIDE LABELLING & GAMMA RAY SPECTROSCOPY
 
Ionization Chambers
Ionization ChambersIonization Chambers
Ionization Chambers
 
HPS Neutron Meter presentation(updated)
HPS Neutron Meter presentation(updated)HPS Neutron Meter presentation(updated)
HPS Neutron Meter presentation(updated)
 
Quantum mechanics by dr. vishal jain
Quantum mechanics by dr. vishal jainQuantum mechanics by dr. vishal jain
Quantum mechanics by dr. vishal jain
 
GAMMA-RAY SPECTROSCOPY
GAMMA-RAY SPECTROSCOPYGAMMA-RAY SPECTROSCOPY
GAMMA-RAY SPECTROSCOPY
 
A comparative study of the scintillation detector na i(tl) in two sizes
A comparative study of the scintillation detector na i(tl) in two sizesA comparative study of the scintillation detector na i(tl) in two sizes
A comparative study of the scintillation detector na i(tl) in two sizes
 
Measurement of Radiation (Thimble Ionization Chamber, Free air Ionization Cha...
Measurement of Radiation (Thimble Ionization Chamber, Free air Ionization Cha...Measurement of Radiation (Thimble Ionization Chamber, Free air Ionization Cha...
Measurement of Radiation (Thimble Ionization Chamber, Free air Ionization Cha...
 
Basic principle of liquid scintillation counter norfaizal
Basic principle of liquid scintillation counter norfaizalBasic principle of liquid scintillation counter norfaizal
Basic principle of liquid scintillation counter norfaizal
 
Gas filled detectors
Gas filled detectorsGas filled detectors
Gas filled detectors
 
Detection and Applications of Radioactivity in Clinical Chemistry
Detection and Applications of Radioactivity in Clinical ChemistryDetection and Applications of Radioactivity in Clinical Chemistry
Detection and Applications of Radioactivity in Clinical Chemistry
 
Prnciples of ionisation detection-Kiran
Prnciples of ionisation detection-KiranPrnciples of ionisation detection-Kiran
Prnciples of ionisation detection-Kiran
 
Radioisotopes in biology
Radioisotopes in biologyRadioisotopes in biology
Radioisotopes in biology
 
ELECTRON SPIN RESONANCE SPECTROSCOPY
ELECTRON SPIN RESONANCE SPECTROSCOPYELECTRON SPIN RESONANCE SPECTROSCOPY
ELECTRON SPIN RESONANCE SPECTROSCOPY
 

Semelhante a "Counting Atoms for Astrophysics"

Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclear
blachman
 
JEE-AS-SM-DONE.pptx-1_compressed.pdf qaq
JEE-AS-SM-DONE.pptx-1_compressed.pdf qaqJEE-AS-SM-DONE.pptx-1_compressed.pdf qaq
JEE-AS-SM-DONE.pptx-1_compressed.pdf qaq
Rick238279
 

Semelhante a "Counting Atoms for Astrophysics" (20)

Laser lecture01
Laser lecture01Laser lecture01
Laser lecture01
 
Laser lecture 01
Laser lecture 01Laser lecture 01
Laser lecture 01
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Microprobing with electrons
Microprobing with electronsMicroprobing with electrons
Microprobing with electrons
 
Atomic Fluorescence Spectroscopy (AFS)
Atomic Fluorescence Spectroscopy (AFS)Atomic Fluorescence Spectroscopy (AFS)
Atomic Fluorescence Spectroscopy (AFS)
 
DarkSide_GDR_Perasso
DarkSide_GDR_PerassoDarkSide_GDR_Perasso
DarkSide_GDR_Perasso
 
The Sun and the Particle Physics
The Sun and the Particle PhysicsThe Sun and the Particle Physics
The Sun and the Particle Physics
 
Radioactivity and detection of radioactivity.pptx
Radioactivity and detection of radioactivity.pptxRadioactivity and detection of radioactivity.pptx
Radioactivity and detection of radioactivity.pptx
 
Chapter 9. Nuclear Analysis Methods.pptx
Chapter 9. Nuclear Analysis Methods.pptxChapter 9. Nuclear Analysis Methods.pptx
Chapter 9. Nuclear Analysis Methods.pptx
 
Laser cooling & trapping
Laser cooling & trappingLaser cooling & trapping
Laser cooling & trapping
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
 
X-RayTechnology.ppt
X-RayTechnology.pptX-RayTechnology.ppt
X-RayTechnology.ppt
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclear
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentation
 
JEE-AS-SM-DONE.pptx-1_compressed.pdf qaq
JEE-AS-SM-DONE.pptx-1_compressed.pdf qaqJEE-AS-SM-DONE.pptx-1_compressed.pdf qaq
JEE-AS-SM-DONE.pptx-1_compressed.pdf qaq
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013
 
Combinatorial approach to materials discovery.
Combinatorial approach to materials discovery.Combinatorial approach to materials discovery.
Combinatorial approach to materials discovery.
 
X - RAY DIFFRACTION TECHNIQUE
X - RAY DIFFRACTION TECHNIQUEX - RAY DIFFRACTION TECHNIQUE
X - RAY DIFFRACTION TECHNIQUE
 
Introduction ISIS accelerator and target general
Introduction ISIS accelerator and target generalIntroduction ISIS accelerator and target general
Introduction ISIS accelerator and target general
 
Q canalytic aas2
Q canalytic aas2Q canalytic aas2
Q canalytic aas2
 

Mais de Chad Orzel

Lasers in the Undergraduate Laboratory: Precision Measurement for the Masses
Lasers in the Undergraduate Laboratory: Precision Measurement for the MassesLasers in the Undergraduate Laboratory: Precision Measurement for the Masses
Lasers in the Undergraduate Laboratory: Precision Measurement for the Masses
Chad Orzel
 

Mais de Chad Orzel (20)

The Quantum Physics of Your Toaster
The Quantum Physics of Your ToasterThe Quantum Physics of Your Toaster
The Quantum Physics of Your Toaster
 
The Exotic Physics of an Ordinary Morning
The Exotic Physics of an Ordinary MorningThe Exotic Physics of an Ordinary Morning
The Exotic Physics of an Ordinary Morning
 
Talking Dogs and Galileian Blogs: Social Media for Communicating Science
Talking Dogs and Galileian Blogs: Social Media for Communicating ScienceTalking Dogs and Galileian Blogs: Social Media for Communicating Science
Talking Dogs and Galileian Blogs: Social Media for Communicating Science
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
 
Discovering Your Inner Scientist
Discovering Your Inner ScientistDiscovering Your Inner Scientist
Discovering Your Inner Scientist
 
Space Travel, Relativity, and GPS
Space Travel, Relativity, and GPSSpace Travel, Relativity, and GPS
Space Travel, Relativity, and GPS
 
History of Quantum Mechanics
History of Quantum MechanicsHistory of Quantum Mechanics
History of Quantum Mechanics
 
A History of Atomic Clocks
A History of Atomic ClocksA History of Atomic Clocks
A History of Atomic Clocks
 
History of Quantum Mechanics
History of Quantum MechanicsHistory of Quantum Mechanics
History of Quantum Mechanics
 
How to Give a Good PowerPoint Presentation
How to Give a Good PowerPoint PresentationHow to Give a Good PowerPoint Presentation
How to Give a Good PowerPoint Presentation
 
What's So Interesting About AMO Phyiscs?
What's So Interesting About AMO Phyiscs?What's So Interesting About AMO Phyiscs?
What's So Interesting About AMO Phyiscs?
 
What Physics Knowledge Is Assessed in TIMSS Advanced 2008?
What Physics Knowledge Is Assessed in TIMSS Advanced 2008?What Physics Knowledge Is Assessed in TIMSS Advanced 2008?
What Physics Knowledge Is Assessed in TIMSS Advanced 2008?
 
What Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum PhysicsWhat Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum Physics
 
What Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum PhysicsWhat Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum Physics
 
Talking to My Dog About Science: Why Public Communication of Science Matters ...
Talking to My Dog About Science: Why Public Communication of Science Matters ...Talking to My Dog About Science: Why Public Communication of Science Matters ...
Talking to My Dog About Science: Why Public Communication of Science Matters ...
 
What Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum PhysicsWhat Every Dog Should Know About Quantum Physics
What Every Dog Should Know About Quantum Physics
 
Lasers in the Undergraduate Laboratory: Precision Measurement for the Masses
Lasers in the Undergraduate Laboratory: Precision Measurement for the MassesLasers in the Undergraduate Laboratory: Precision Measurement for the Masses
Lasers in the Undergraduate Laboratory: Precision Measurement for the Masses
 
Talking to My Dog About Science: Why Public Communication of Science Matters ...
Talking to My Dog About Science: Why Public Communication of Science Matters ...Talking to My Dog About Science: Why Public Communication of Science Matters ...
Talking to My Dog About Science: Why Public Communication of Science Matters ...
 
A Brief History of Timekeeping
A Brief History of TimekeepingA Brief History of Timekeeping
A Brief History of Timekeeping
 

Último

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
SoniaTolstoy
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Krashi Coaching
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 

Último (20)

Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 

"Counting Atoms for Astrophysics"

  • 1. Counting Atoms for Astrophysics: Atom Traps, Neutrino Detectors, and Radioactive Background Measurements Chad Orzel Union College Dept. of Physics and Astronomy D. N. McKinsey Yale University Dept. of Physics Students: M. Mastroianni R. McMartin M. Lockwood J. Smith E. Greenwood M. Martin M. Mulligan J. Anderson C. Fletcher $$: Research Corporation NSF
  • 2. Summary Why Are We Doing This, Anyway? What We’re Doing: Using A tom T rap T race A nalysis for Radioactive Background Evaluation Measure krypton contamination in other rare gases Fast measurement: Kr/Rg ~ 10 -14 in only 3 hours What We’re Not Doing: NOT a Purification Method Complementary to purification efforts
  • 3. Who Cares About Krypton? Astrophysicists! Next Generation of Neutrino Detectors: Liquid Rare Gas Scintillation 85 Kr is a source of background noise: Eliminate all krypton
  • 4. Neutrinos Fundamental particles Incredibly numerous: ~300/cm 3 from Big Bang ~40,000,000,000/cm 2 /s from the Sun Very small mass: Electron neutrino: m  e < 3eV/c 2 Tau neutrino: m  < 15 MeV/c 2 (electron mass: ~500 keV/c 2 ) Weak interactions: Interact only through weak nuclear force Neutral particles  Extremely Difficult to Detect
  • 5. Neutrino Detection Radiochemical:  e + 37 Cl  37 Ar + e -  e + 71 Ga  71 Ge + e - Neutrino interaction converts neutron to proton  Change element Ray Davis Nobel Prize 2002 Problem: Very slow readout (every few months) No real-time information
  • 6. Neutrino Detection 2 Scintillation Detectors: Neutrino collision produces light flash Electron: Nucleus: Allows real-time detection, energy measurement Problem: High energy threshold (5-8 MeV) Masatoshi Koshiba Nobel Prize 2002 Detect light with phototubes
  • 7. Sudbury Neutrino Observatory Top-of-the-Line Scintillation Detector: http://www.sno.phy.queensu.ca/ 1000 tons heavy water (D 2 O) 9600 Photomultiplier Tubes (PMT’s) Detect Cerenkov light Location, Location, Location: Creighton Mine, Sudbury, Ontario 2070 m (6800 ft) underground (Screen out background radiation)
  • 8. Solar Neutrinos How do detectors stack up? Need a better detector… Gallium Chlorine Radiochemical: Ga/Cl Low threshold No time resolution Water Scintillation: H 2 O/D 2 O Time, energy resolution High threshold
  • 9. Neutrino Detection: The Next Generation Use some other substance as scintillator Want: Time resolution Low threshold XMASS: ~ 20 tons of liquid xenon CLEAN: C ryogenic L ow E nergy A strophysics with N oble gases http://mckinseygroup.physics.yale.edu/CLEAN.html (astro-ph/0402007) ~100 tons of liquid neon
  • 10. CLEAN http://mckinseygroup.physics.yale.edu/CLEAN.html (astro-ph/0402007) Advantages of liquid rare gases: 3) Little or no intrinsic radioactivity Scintillation detection with low threshold 1) High yield Ne:  = 80nm, 15,000 photons/ MeV 2) Self-shielding Dense liquid, absorbs radiation
  • 11. CLEAN Sensitivity Gallium Chlorine Water 0.01 0.1 C L E A N
  • 12. Krypton Contamination Problem: Krypton Contamination 85 Kr:  ½ = 10.76 yr  -decay at 687 keV Looks like detection event in energy range of interest… Need to remove all Kr from detector 40 ppb Rare isotope: 2.5 × 10 -11 Major source of background
  • 13. Krypton Removal Need extremely high purity Kr/Ne ~ 4 × 10 -15 (any isotope) 85 Kr much lower ~100,000 atoms in full CLEAN Difficult to purify gas to this level Kr chemically inert Distillation, Charcoal Filter Xe distillation, Takeuchi et al. ~3.3 ppt Kr Difficult to measure purity Gas chromatography Accelerator mass spectrometry Days or weeks to measure
  • 14. Atom Trap Trace Analysis Technique developed by Z.-T. Lu and colleagues at Argonne National Laboratory Used to measure 85 Kr abundance Used for radioisotope dating Trap, detect single atoms of rare isotopes Determine abundance by counting Proposal: Use ATTA to measure Kr in Ne or Xe 7 × 10 16 atoms/s in  3× 10 -14 abundance in 3 hrs (1 atom detected) Load source with ultra-pure Ne, Xe Detect single Kr atoms
  • 15. Laser Cooling and Trapping Use light forces to slow and trap atoms Photons carry momentum p Transfer to atoms on absorption p Very small velocity change 84 Kr  =811 nm  v=5.8 mm/s Lots of photons (10 15 per second) Room-temperature velocity ~ 300 m/s  100,000 photons to decelerate Use scattering force to slow thermal motion
  • 16. Doppler Cooling Exploit Doppler effect to selectively cool atoms Use single laser beam to slow and stop beams of atoms   o Tune laser to lower frequency (red)  <  o |e> |g> Stationary atoms do not absorb Atoms moving toward laser see blue shift Absorb photons, slow down Use pairs of beams to cool sample Reach microkelvin temperatures (v~10 cm/s)
  • 17. Magneto-Optical Trap Add spatially varying magnetic fields Confine atoms to small volume Trapping due to photon scattering 10 8 photons/s per atom (Na MOT at NIST) Detect trapped atoms using fluorescence
  • 18. ATTA Count trapped atoms to determine abundance APD Detect single atoms by trap laser fluorescence (data from Lu group) Atom Source Zeeman Slower MOT ATTA Technique Prepare Kr* atoms in metastable state Slow beam Trap atoms in MOT
  • 19. Selectivity (Figure from Lu group at ANL) 85 Kr ~ 10 -11 81 Kr ~ 10 -13 83 Kr ~ 0.11 Only Kr atoms detected Extremely selective technique Need to scatter 10 5 photons No off-resonant background Trap only one isotope Trap over ~ 30 MHz Out of 370 THz
  • 20. Background Kr atoms trapped in metastable state ~10 eV above ground state,  ~30 s Ground-state Kr not trapped not detected 0) Sample Handling 1) Outgassing: Keep Kr out of system. Background ~10 -16 level laser cooling 5p[5/2] 3 5s[3/2] 2 811nm ~10 eV Atoms only excited in source  Only contamination in source matters 2) Cross-contamination : Kr from calibration samples embedded in source Eliminate with optical excitation
  • 21. Sensitivity Procedure: 1) Load system with Ne or Xe 2) Set lasers to trap 84 Kr (57% abundance) 3) Count atoms, compare to input flux One atom in three hours: 3 × 10 -14 abundance Typical source consumption: 7 × 10 16 atoms/s Trapping efficiency: 10 -8
  • 22. Apparatus Metastable Source 145 MHz RF Plasma discharge Zeeman Slower Two-stage magnet Decelerates beam Trapping Chamber Undergraduate student for scale: Ryan McMartin ‘05
  • 23. Optical Excitation Metastable excitation methods 1) Electron impact: RF plasma discharge Simple, robust Potentially higher efficiency (10 -2 )  Improved sensitivity Eliminate cross-contamination  Lower background 5p[5/2] 3 5s[3/2] 2 811nm ~10 eV Low efficiency (10 -4 – 10 -3 ) “ Memory Effect” cross-contamination 5s[3/2] 1 5p[5/2] 2 124 nm Kr lamp 819 nm laser 2) Two-photon optical excitation 124 nm lamp, 819 nm laser Excite only Kr*
  • 24. Optical Excitation 124 nm lamp Kr inlet 819 nm laser Mike Mastroianni ‘07
  • 25. Future Prospects 1) Other Species Same technique works for other rare gases. 39 Ar evaluation  Ar*, Kr* < 1nm apart: use same optical system 2) Continuous monitoring 3hrs for 10 -14 level Less time for lower sensitivity (XENON): continuous purity check? 3) Other systems? 3 He/ 4 He?
  • 26. Conclusions Next generation of neutrino detectors will require ultra-pure rare gases Can use Atom Trap Trace Analysis to measure Kr contamination High sensitivity, low background Independent of purification method Fast measurement (3 hrs for 3 ×10 -14 ) Complement to experimental efforts to purify gases (see also: astro-ph/0406526, Nucl. Instr. Meth. A 545 , 524 (2005))