SlideShare uma empresa Scribd logo
1 de 53
Baixar para ler offline
Mathematical Induction
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
Test: n = 1
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1
Test: n = 1       L.H .S  2
                          1
                         1
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1                             1
Test: n = 1       L.H .S  2                R.H .S  2 
                          1                              1
                         1                        1
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1                                  1
Test: n = 1       L.H .S  2                     R.H .S  2 
                          1                                   1
                         1                             1
                                L.H .S  R.H .S
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1                                  1
Test: n = 1       L.H .S  2                     R.H .S  2 
                          1                                   1
                         1                             1
                                L.H .S  R.H .S

                 1 1       1       1
A n  k  1       2  2  2 
                 22 3     k        k
Mathematical Induction
                    1 1         1       1
e.g. i  Prove 1  2  2    2  2 
                   2 3         n        n
                           1                                  1
Test: n = 1       L.H .S  2                     R.H .S  2 
                          1                                   1
                         1                             1
                                L.H .S  R.H .S

                 1 1       1       1
A n  k  1       2  2  2 
                 22 3     k        k
                  1 1            1            1
P n  k  1 1  2  2              2
                 2 3          k  12
                                            k 1
Proof:
     1 1          1          1 1       1   1
1      2            1 2  2  2 
     22 3      k  12     2 3       k k  12
Proof:
     1 1          1          1 1         1   1
1      2            1 2  2  2 
     22 3      k  12     2 3         k k  12
                             1    1
                         2 
                             k k  12
Proof:
     1 1          1          1 1          1   1
1      2            1 2  2  2 
     22 3      k  12      2 3         k k  12
                             1       1
                         2 
                             k k  12
                             k  1  k
                                    2
                         2
                              k k  1
                                       2
Proof:
     1 1          1          1 1          1    1
1      2            1 2  2  2 
     22 3      k  12      2 3          k k  12
                             1        1
                         2 
                             k k  12
                             k  1  k
                                     2
                         2
                              k k  1
                                        2

                              k 2  k 1
                         2
                              k k  1
                                        2
Proof:
     1 1          1          1 1            1      1
1      2            1 2  2  2 
     22 3      k  12      2 3            k k  12
                             1        1
                         2 
                             k k  12
                             k  1  k
                                     2
                         2
                               k k  1
                                        2

                              k 2  k 1
                         2
                              k k  1
                                        2


                                k2  k       1
                         2              
                              k k  1 k k  1
                                       2         2
Proof:
     1 1          1          1 1             1     1
1      2            1 2  2  2 
     22 3      k  12      2 3             k k  12
                             1        1
                         2 
                             k k  12
                             k  1  k
                                     2
                         2
                               k k  1
                                         2

                              k 2  k 1
                         2
                              k k  1
                                         2


                                k2  k        1
                         2               
                              k k  1 k k  1
                                        2        2

                              k k  1
                         2
                              k k  1
                                       2
Proof:
     1 1          1           1 1             1     1
1      2            1 2  2  2 
     22 3      k  12      2 3              k k  12
                              1        1
                         2 
                              k k  12
                              k  1  k
                                      2
                         2
                                k k  1
                                          2

                               k 2  k 1
                         2
                               k k  1
                                          2


                                 k2  k        1
                         2                
                               k k  1 k k  1
                                         2        2

                               k k  1
                         2
                               k k  1
                                        2

                                    1
                            2
                                  k 1
Proof:
  1 1            1           1 1             1     1
1   2              1 2  2  2 
  22 3        k  12      2 3              k k  12
                             1        1
                        2 
                             k k  12
                             k  1  k
                                     2
                        2
                               k k  1
                                         2

                              k 2  k 1
                         2
                              k k  1
                                         2


                                k2  k        1
                        2                
                              k k  1 k k  1
                                        2        2

                              k k  1
                        2
                              k k  1
                                       2

                                   1
                           2
                                 k 1
     1 1            1              1
1  2  2              2
    2 3          k  12
                                 k 1
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
   Show that an  2 for n  1
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
   Show that an  2 for n  1
Test: n = 1
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
   Show that an  2 for n  1
Test: n = 1   a1  2  2
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
   Show that an  2 for n  1
Test: n = 1   a1  2  2
A n  k  a k  2
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
      ak 1  2  ak
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
      ak 1  2  ak
           22
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
      ak 1  2  ak
           22
           4
          2
(ii) A sequence is defined by;
                a1  2         an1  2  an for n  1
    Show that an  2 for n  1
Test: n = 1    a1  2  2
A n  k  a k  2

P   n  k  1 ak 1  2
Proof:
      ak 1  2  ak
           22
             4
            2
     ak 1  2
iii  The sequences xn and yn are defined by;
                                           xn  y n          2 xn y n
           x1  5, y1  2         xn1             , yn1 
                                              2              xn  y n
     Prove xn yn  10 for n  1
iii  The sequences xn and yn are defined by;
                                           xn  y n          2 xn y n
              x1  5, y1  2      xn1             , yn1 
                                              2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1
iii  The sequences xn and yn are defined by;
                                           xn  y n          2 xn y n
           x1  5, y1  2         xn1             , yn1 
                                              2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
iii  The sequences xn and yn are defined by;
                                           xn  y n          2 xn y n
           x1  5, y1  2         xn1             , yn1 
                                              2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10
iii  The sequences xn and yn are defined by;
                                            xn  y n          2 xn y n
             x1  5, y1  2        xn1             , yn1 
                                               2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P   n  k  1 xk 1 yk 1  10
iii  The sequences xn and yn are defined by;
                                            xn  y n          2 xn y n
             x1  5, y1  2        xn1             , yn1 
                                               2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P   n  k  1 xk 1 yk 1  10
Proof:
iii  The sequences xn and yn are defined by;
                                                     xn  y n          2 xn y n
               x1  5, y1  2               xn1             , yn1 
                                                        2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P     n  k  1 xk 1 yk 1  10
Proof:
                   xk  yk  2 xk yk 
    xk 1 yk 1            x  y 
                                      
                   2  k            k 
iii  The sequences xn and yn are defined by;
                                                     xn  y n          2 xn y n
               x1  5, y1  2               xn1             , yn1 
                                                        2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P     n  k  1 xk 1 yk 1  10
Proof:
                   xk  yk  2 xk yk 
    xk 1 yk 1            x  y 
                                      
                   2  k            k 

               xk y k
               10
iii  The sequences xn and yn are defined by;
                                                     xn  y n          2 xn y n
               x1  5, y1  2               xn1             , yn1 
                                                        2              xn  y n
     Prove xn yn  10 for n  1
Test: n = 1 x1 y1  52 
                    10
A n  k  xk yk  10

P     n  k  1 xk 1 yk 1  10
Proof:
                   xk  yk  2 xk yk 
    xk 1 yk 1            x  y 
                                      
                   2  k            k 

               xk y k
               10
 xk 1 yk 1  10
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2
  L.H .S  a1
        1
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                          1  5 
  L.H .S  a1                    R.H .S        
                                           2 
        1
                                         1.62
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                       1  5 
  L.H .S  a1                 R.H .S        
                                        2 
        1
                                      1.62
                  L.H .S  R.H .S
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                       1  5 
  L.H .S  a1                 R.H .S        
                                        2 
        1
                                      1.62
                  L.H .S  R.H .S
  L.H .S  a2
         1
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                       1  5 
  L.H .S  a1                 R.H .S        
                                        2 
        1
                                      1.62
                  L.H .S  R.H .S              2
                                       1  5 
  L.H .S  a2                 R.H .S        
                                        2 
         1
                                      2.62
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                             n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                             1
                                       1  5 
  L.H .S  a1                 R.H .S        
                                        2 
        1
                                      1.62
                  L.H .S  R.H .S              2
                                       1  5 
  L.H .S  a2                 R.H .S        
                                        2 
         1
                                      2.62
                  L.H .S  R.H .S
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                                n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                                  1
                                             1  5 
  L.H .S  a1                     R.H .S           
                                              2 
         1
                                          1.62
                  L.H .S  R.H .S                     2
                                              1  5 
  L.H .S  a2                      R.H .S          
                                               2 
         1
                                           2.62
                   L.H .S  R.H .S
                                           k 1                  k
                                 1  5                1  5 
  A n  k  1 & n  k  ak 1               & ak         
                                  2                    2 
(iv) The Fibonacci sequence is defined by;
              a1  a2  1       an1  an  an1 for n  1
                                n
                     1  5 
     Prove that an         for n  1
                      2 
Test: n = 1 and n =2                                  1
                                             1  5 
  L.H .S  a1                     R.H .S           
                                              2 
         1
                                          1.62
                  L.H .S  R.H .S                     2
                                              1  5 
  L.H .S  a2                      R.H .S          
                                               2 
         1
                                           2.62
                   L.H .S  R.H .S
                                           k 1                  k
                                 1  5                1  5 
  A n  k  1 & n  k  ak 1               & ak         
                                  2                    2 
                                    k 1
                         1 5 
 P   n  k  1 ak 1  
                             
                         2 
Proof:   ak 1  ak  ak 1
Proof:   ak 1  ak  ak 1
                              k    k 1
               1  5  1  5 
                          
                2   2 
Proof:   ak 1  ak  ak 1
                              k     k 1
               1  5  1       5
                              
                2   2           
                        k 1         1         2
                1  5   1    5    1  5  
                                        
                2   2              2      
Proof:   ak 1  ak  ak 1
                              k   k 1
               1  5  1 5
                        
                2   2     
                        k 1   1         2
                1  5   1 
                            5    1  5  
                                  
                2   2    
                                  2      
                       k 1
               1  5   2       4 
                                 2
                2  1  5 1  5  
Proof:   ak 1  ak  ak 1
                              k                k 1
               1  5  1        5
                               
                2   2            
                        k 1          1         2
                1  5   1     5    1  5  
                                         
                2   2               2      
                           k 1
               1      5  2           4 
                                        2
                2         1  5 1  5  
                           k 1
               1      5  2  2 5  4
                                  2 
                2          1  5  
                              k 1
               1  5               62 5 
                                           2
                2                   1  5  
Proof:   ak 1  ak  ak 1
                              k       k 1
               1  5  1        5
                               
                2   2            
                        k 1          1         2
                1  5   1     5    1  5  
                                         
                2   2               2      
                           k 1
               1      5  2           4 
                                        2
                2         1  5 1  5  
                           k 1
               1      5  2  2 5  4
                                  2 
                2          1  5  
                              k 1
               1  5   6  2 5 
                               
                  2   1  5 2 
                        k 1
               1  5 
                    
                2 
Proof:     ak 1  ak  ak 1
                                k       k 1
                 1  5  1        5
                                 
                  2   2            
                          k 1          1         2
                  1  5   1     5    1  5  
                                           
                  2   2               2      
                             k 1
                 1      5  2           4 
                                          2
                  2         1  5 1  5  
                             k 1
                 1      5  2  2 5  4
                                    2 
                  2          1  5  
                                k 1
                   1  5   6  2 5 
                                   
                      2   1  5 2 
                            k 1
                   1  5 
                        
                    2 
                            k 1
                   1  5 
          ak 1        
                    2 
Proof:           ak 1  ak  ak 1
                                      k       k 1
                       1  5  1        5
                                       
                        2   2            
                                k 1          1         2
                        1  5   1     5    1  5  
                                                 
                        2   2               2      
                                   k 1
                       1      5  2           4 
     Sheets                                     2
                        2         1  5 1  5  
                                   k 1
         +             1      5  2  2 5  4
                                          2 
                        2          1  5  
 Exercise 10E*
                                      k 1
                        1  5   6  2 5 
                                        
                           2   1  5 2 
                                 k 1
                        1  5 
                             
                         2 
                                 k 1
                        1  5 
               ak 1        
                         2 

Mais conteúdo relacionado

Destaque

3 2 absolute value equations-x
3 2 absolute value equations-x3 2 absolute value equations-x
3 2 absolute value equations-xmath123b
 
Plate Tectonics Notes
Plate Tectonics NotesPlate Tectonics Notes
Plate Tectonics Notesduncanpatti
 
Changes In Education
Changes In EducationChanges In Education
Changes In Educationbritte2204
 
Prueba de la teoría de la deriva continental
Prueba de la teoría de la deriva continentalPrueba de la teoría de la deriva continental
Prueba de la teoría de la deriva continentalEdu 648
 
Class at PSTTI on "Math Skills"
Class at PSTTI on "Math Skills"Class at PSTTI on "Math Skills"
Class at PSTTI on "Math Skills"PSTTI
 
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshopCv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshopCERTyou Formation
 
Final semestral alice ciencia
Final semestral alice cienciaFinal semestral alice ciencia
Final semestral alice cienciaSUSY84
 
Recommendation for successful “the saem” facebook page
Recommendation for successful “the saem” facebook pageRecommendation for successful “the saem” facebook page
Recommendation for successful “the saem” facebook pageFloria Hong
 
New features in .NET 4.5, C# and VS2012
New features in .NET 4.5, C# and VS2012New features in .NET 4.5, C# and VS2012
New features in .NET 4.5, C# and VS2012Subodh Pushpak
 
Modulo2.T3.Que necesito para tener un blog
Modulo2.T3.Que necesito para tener un blogModulo2.T3.Que necesito para tener un blog
Modulo2.T3.Que necesito para tener un blogProfesorOnline
 
Analisis laporan keuangan
Analisis laporan keuanganAnalisis laporan keuangan
Analisis laporan keuanganadelaa09
 
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861Marcial Pons Argentina
 

Destaque (19)

3 2 absolute value equations-x
3 2 absolute value equations-x3 2 absolute value equations-x
3 2 absolute value equations-x
 
Plate Tectonics Notes
Plate Tectonics NotesPlate Tectonics Notes
Plate Tectonics Notes
 
Teoria tributaria
Teoria tributariaTeoria tributaria
Teoria tributaria
 
Changes In Education
Changes In EducationChanges In Education
Changes In Education
 
Bio3º
Bio3ºBio3º
Bio3º
 
Recomendaciones valiosas
Recomendaciones valiosasRecomendaciones valiosas
Recomendaciones valiosas
 
Optimistasiempre
OptimistasiempreOptimistasiempre
Optimistasiempre
 
Acta sesion evaluacion_2
Acta sesion evaluacion_2Acta sesion evaluacion_2
Acta sesion evaluacion_2
 
Prueba de la teoría de la deriva continental
Prueba de la teoría de la deriva continentalPrueba de la teoría de la deriva continental
Prueba de la teoría de la deriva continental
 
Class at PSTTI on "Math Skills"
Class at PSTTI on "Math Skills"Class at PSTTI on "Math Skills"
Class at PSTTI on "Math Skills"
 
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshopCv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
Cv312 g formation-db2-for-z-os-new-features-in-version-10-workshop
 
Final semestral alice ciencia
Final semestral alice cienciaFinal semestral alice ciencia
Final semestral alice ciencia
 
Ruta de cuba
Ruta de cubaRuta de cuba
Ruta de cuba
 
Recommendation for successful “the saem” facebook page
Recommendation for successful “the saem” facebook pageRecommendation for successful “the saem” facebook page
Recommendation for successful “the saem” facebook page
 
New features in .NET 4.5, C# and VS2012
New features in .NET 4.5, C# and VS2012New features in .NET 4.5, C# and VS2012
New features in .NET 4.5, C# and VS2012
 
Modulo2.T3.Que necesito para tener un blog
Modulo2.T3.Que necesito para tener un blogModulo2.T3.Que necesito para tener un blog
Modulo2.T3.Que necesito para tener un blog
 
Resume 123
Resume 123Resume 123
Resume 123
 
Analisis laporan keuangan
Analisis laporan keuanganAnalisis laporan keuangan
Analisis laporan keuangan
 
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
LA LUCHA POR LOS DERECHOS.AUTOR: José María Enríquez Sánchez.ISBN: 9788416402861
 

Semelhante a X2 T08 02 induction

X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)Nigel Simmons
 
X2 t08 02 induction (2012)
X2 t08 02 induction (2012)X2 t08 02 induction (2012)
X2 t08 02 induction (2012)Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)Nigel Simmons
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)Nigel Simmons
 
11X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 211X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 2Nigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)Nigel Simmons
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)Nigel Simmons
 

Semelhante a X2 T08 02 induction (14)

X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)
 
X2 t08 02 induction (2012)
X2 t08 02 induction (2012)X2 t08 02 induction (2012)
X2 t08 02 induction (2012)
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
 
11X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 211X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 2
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)
 

Mais de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEaurabinda banchhor
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 

Último (20)

4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSE
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 

X2 T08 02 induction

  • 2. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n
  • 3. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n Test: n = 1
  • 4. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 Test: n = 1 L.H .S  2 1 1
  • 5. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 1 Test: n = 1 L.H .S  2 R.H .S  2  1 1 1 1
  • 6. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 1 Test: n = 1 L.H .S  2 R.H .S  2  1 1 1 1  L.H .S  R.H .S
  • 7. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 1 Test: n = 1 L.H .S  2 R.H .S  2  1 1 1 1  L.H .S  R.H .S 1 1 1 1 A n  k  1   2  2  2  22 3 k k
  • 8. Mathematical Induction 1 1 1 1 e.g. i  Prove 1  2  2    2  2  2 3 n n 1 1 Test: n = 1 L.H .S  2 R.H .S  2  1 1 1 1  L.H .S  R.H .S 1 1 1 1 A n  k  1   2  2  2  22 3 k k 1 1 1 1 P n  k  1 1  2  2     2 2 3 k  12 k 1
  • 9. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12
  • 10. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12
  • 11. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2
  • 12. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2
  • 13. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2 k2  k 1  2  k k  1 k k  1 2 2
  • 14. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2 k2  k 1  2  k k  1 k k  1 2 2 k k  1  2 k k  1 2
  • 15. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2 k2  k 1  2  k k  1 k k  1 2 2 k k  1  2 k k  1 2 1  2 k 1
  • 16. Proof: 1 1 1 1 1 1 1 1  2   1 2  2  2  22 3 k  12 2 3 k k  12 1 1  2  k k  12 k  1  k 2  2 k k  1 2 k 2  k 1  2 k k  1 2 k2  k 1  2  k k  1 k k  1 2 2 k k  1  2 k k  1 2 1  2 k 1 1 1 1 1 1  2  2     2 2 3 k  12 k 1
  • 17. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1
  • 18. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1
  • 19. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2
  • 20. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2
  • 21. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2
  • 22. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof:
  • 23. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof: ak 1  2  ak
  • 24. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof: ak 1  2  ak  22
  • 25. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof: ak 1  2  ak  22  4 2
  • 26. (ii) A sequence is defined by; a1  2 an1  2  an for n  1 Show that an  2 for n  1 Test: n = 1 a1  2  2 A n  k  a k  2 P n  k  1 ak 1  2 Proof: ak 1  2  ak  22  4 2  ak 1  2
  • 27. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1
  • 28. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1
  • 29. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10
  • 30. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10
  • 31. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10
  • 32. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10 Proof:
  • 33. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10 Proof:  xk  yk  2 xk yk  xk 1 yk 1   x  y     2  k k 
  • 34. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10 Proof:  xk  yk  2 xk yk  xk 1 yk 1   x  y     2  k k   xk y k  10
  • 35. iii  The sequences xn and yn are defined by; xn  y n 2 xn y n x1  5, y1  2 xn1  , yn1  2 xn  y n Prove xn yn  10 for n  1 Test: n = 1 x1 y1  52   10 A n  k  xk yk  10 P n  k  1 xk 1 yk 1  10 Proof:  xk  yk  2 xk yk  xk 1 yk 1   x  y     2  k k   xk y k  10  xk 1 yk 1  10
  • 36. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2 
  • 37. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2
  • 38. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 L.H .S  a1 1
  • 39. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62
  • 40. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S
  • 41. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S L.H .S  a2 1
  • 42. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S 2 1  5  L.H .S  a2 R.H .S     2  1  2.62
  • 43. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S 2 1  5  L.H .S  a2 R.H .S     2  1  2.62  L.H .S  R.H .S
  • 44. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S 2 1  5  L.H .S  a2 R.H .S     2  1  2.62  L.H .S  R.H .S k 1 k 1  5  1  5  A n  k  1 & n  k  ak 1    & ak     2   2 
  • 45. (iv) The Fibonacci sequence is defined by; a1  a2  1 an1  an  an1 for n  1 n 1  5  Prove that an    for n  1  2  Test: n = 1 and n =2 1 1  5  L.H .S  a1 R.H .S     2  1  1.62  L.H .S  R.H .S 2 1  5  L.H .S  a2 R.H .S     2  1  2.62  L.H .S  R.H .S k 1 k 1  5  1  5  A n  k  1 & n  k  ak 1    & ak     2   2  k 1 1 5  P n  k  1 ak 1      2 
  • 46. Proof: ak 1  ak  ak 1
  • 47. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5       2   2 
  • 48. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2   
  • 49. Proof: ak 1  ak  ak 1 k k 1 1  5  1 5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5   2 4      2  2  1  5 1  5  
  • 50. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5  2 4      2  2  1  5 1  5   k 1 1  5  2  2 5  4    2   2   1  5   k 1 1  5  62 5     2  2   1  5  
  • 51. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5  2 4      2  2  1  5 1  5   k 1 1  5  2  2 5  4    2   2   1  5   k 1 1  5   6  2 5       2   1  5 2  k 1 1  5     2 
  • 52. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5  2 4      2  2  1  5 1  5   k 1 1  5  2  2 5  4    2   2   1  5   k 1 1  5   6  2 5       2   1  5 2  k 1 1  5     2  k 1 1  5   ak 1     2 
  • 53. Proof: ak 1  ak  ak 1 k k 1 1  5  1  5      2   2  k 1 1 2  1  5   1  5 1  5           2   2    2    k 1 1  5  2 4  Sheets     2  2  1  5 1  5   k 1 + 1  5  2  2 5  4    2   2   1  5   Exercise 10E* k 1 1  5   6  2 5       2   1  5 2  k 1 1  5     2  k 1 1  5   ak 1     2 