SlideShare a Scribd company logo
1 of 68
Download to read offline
Acceleration with Uniform
     Circular Motion
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                   A
             r
         O
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                            A particle moves from A to P with constant
                   A
                            angular velocity.
             r
         O
             

                       P
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                            A particle moves from A to P with constant
                   A
                            angular velocity.
             r
         O
                           The acceleration of the particle is the change
                            in velocity with respect to time.
                       P
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                            A particle moves from A to P with constant
                   A
                            angular velocity.
             r         v
         O
                           The acceleration of the particle is the change
                            in velocity with respect to time.
                       P
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                            A particle moves from A to P with constant
                   A
                            angular velocity.
             r         v
         O
                           The acceleration of the particle is the change
                            in velocity with respect to time.
                       P
                 v’
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                            A particle moves from A to P with constant
                   A
                            angular velocity.
             r         v
         O
                           The acceleration of the particle is the change
                            in velocity with respect to time.
                       P
                 v’                      v
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                            A particle moves from A to P with constant
                   A
                            angular velocity.
             r         v
         O
                           The acceleration of the particle is the change
                            in velocity with respect to time.
                       P
                 v’                      v
                               v’
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                            A particle moves from A to P with constant
                   A
                            angular velocity.
             r         v
         O
                           The acceleration of the particle is the change
                            in velocity with respect to time.
                       P
                 v’                      v
                               v’

                                    v
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                   A        A particle moves from A to P with constant
                            angular velocity.
             r         v
         O
                           The acceleration of the particle is the change
                            in velocity with respect to time.
                       P
                 v’            v’       v

                                    v
Acceleration with Uniform
       Circular Motion
Uniform circular motion is when a particle moves with constant angular
velocity.  the magnitude of the linear velocity will also be constant 

                   A        A particle moves from A to P with constant
                            angular velocity.
             r         v
         O
                           The acceleration of the particle is the change
                            in velocity with respect to time.
                       P

                               v’       v
                 v’                            This triangle of vectors
                                               is similar to OAP
                                    v
A
v’ 
        v       r
            O
                
   v           r
A
v’ 
        v       r
            O
                
   v           r
                        P
v v
  
AP r
A
 v’ 
          v       r
              O
                  
     v           r
                          P
v v
   
AP r
     v  AP
v 
        r
A
 v’ 
          v       r
              O
                  
     v           r
                          P
v v
   
AP r
     v  AP
v 
        r
     v
 a
     t
A
 v’ 
          v       r
              O
                  
     v           r
                          P
v v
   
AP r
     v  AP
v 
         r
     v
 a
     t
     v  AP
 a
     r  t
A
        v’ 
                 v               r
                             O
                                 
            v                   r
                                         P
        v v
           
        AP r
             v  AP
        v 
                 r
             v
         a
             t
             v  AP
         a
             r  t
But, as Δt  0, AP  arcAP
A
        v’ 
                   v             r
                             O
                                 
             v                  r
                                         P
        v v
           
        AP r
             v  AP
        v 
                 r
             v
         a
             t
             v  AP
         a
             r  t
But, as Δt  0, AP  arcAP
                v  arcAP
     a  lim
          t 0    r  t
A
        v’ 
                   v             r
                                         distance  speed  time
                             O
                                             arcAP  v  t
             v                  r
                                         P
        v v
           
        AP r
             v  AP
        v 
                 r
             v
         a
             t
             v  AP
         a
             r  t
But, as Δt  0, AP  arcAP
                v  arcAP
     a  lim
          t 0    r  t
A
        v’        v             r
                                          distance  speed  time
                             O
                                              arcAP  v  t
             v                  r
                                          P
        v v
                                                  v  v  t
        AP r                          a  lim
                                             t 0 r  t
             v  AP
        v 
                 r                                v2
                                            lim
             v                              t 0 r
         a
             t                              v2
                                           
             v  AP                           r
         a
             r  t
But, as Δt  0, AP  arcAP
                v  arcAP
     a  lim
          t 0    r  t
A
        v’        v             r
                                          distance  speed  time
                             O
                                              arcAP  v  t
             v                  r
                                          P
        v v
                                                  v  v  t
        AP r                          a  lim
                                             t 0 r  t
             v  AP
        v 
                 r                                v2
                                            lim
             v                              t 0 r
         a
             t                              v2
                                           
             v  AP                           r
         a
             r  t
                              the acceleration in uniform circular
But, as Δt  0, AP  arcAP
                                                        v2
                v  arcAP        motion has magnitude and is
     a  lim                                           r
          t 0    r  t
                                 directed towards the centre
Acceleration Involved in
Uniform Circular Motion
           v2
       a
            r
Acceleration Involved in
Uniform Circular Motion
           v2
       a
            r
         OR
       a  r 2
Acceleration Involved in     Forces Involved in
Uniform Circular Motion    Uniform Circular Motion
           v2
       a
            r
         OR
       a  r 2
Acceleration Involved in     Forces Involved in
Uniform Circular Motion    Uniform Circular Motion
           v2                        mv 2
       a                        F
            r                          r
         OR
       a  r 2
Acceleration Involved in     Forces Involved in
Uniform Circular Motion    Uniform Circular Motion
           v2                        mv 2
       a                        F
            r                          r
         OR                        OR
       a  r 2                  F  mr 2
Acceleration Involved in                 Forces Involved in
   Uniform Circular Motion                Uniform Circular Motion
              v2                                    mv 2
          a                                    F
               r                                      r
             OR                                     OR
          a  r 2                               F  mr 2
e.g. (i) (2003)
         A particle P of mass m moves with constant angular velocity 
         on a circle of radius r. Its position at time t is given by;
                         x  r cos
                         y  r sin  ,   where   t
Acceleration Involved in                 Forces Involved in
    Uniform Circular Motion                Uniform Circular Motion
               v2                                    mv 2
           a                                    F
                r                                      r
              OR                                     OR
            a  r 2                              F  mr 2
 e.g. (i) (2003)
          A particle P of mass m moves with constant angular velocity 
          on a circle of radius r. Its position at time t is given by;
                          x  r cos
                          y  r sin  ,   where   t
a) Show that there is an inward radial force of magnitude mr 2 acting
   on P.
y

            P
    r      y  r sin 
    
        x  r cos       x
x  r cos   y

                         P
                 r      y  r sin 
                 
                     x  r cos       x
x  r cos   y                            y  r sin 
                         P
                 r      y  r sin 
                 
                     x  r cos       x
x  r cos           y                            y  r sin 
                d
x   r sin  
                                P
                dt
                         r      y  r sin 
    r sin 
                         
                             x  r cos       x
x  r cos           y                            y  r sin 
                d                                               d
x   r sin  
                                P                y  r cos 
                                                  
                dt                                               dt
                         r      y  r sin 
    r sin                                        r cos
                         
                             x  r cos       x
x  r cos            y                            y  r sin 
                 d                                                d
 x   r sin  
                                  P                y  r cos 
                                                    
                 dt                                                dt
                           r      y  r sin 
      r sin                                        r cos
                           
                  d           x  r cos       x
   r cos 
x
                  dt
     r 2 cos
    2 x
x  r cos            y                           y  r sin 
                 d                                               d
 x   r sin  
                                  P               y  r cos 
                                                   
                 dt                                               dt
                           r      y  r sin 
      r sin                                       r cos
                           
   r cos 
x
                  d           x  r cos       x    r sin   d
                                                  y
                  dt                                                dt
     r 2 cos                                       r 2 sin 
    x2                                             2 y
x  r cos            y                           y  r sin 
                 d                                               d
 x   r sin  
                                  P               y  r cos 
                                                   
                 dt                                               dt
                           r      y  r sin 
      r sin                                       r cos
                           
   r cos 
x
                  d           x  r cos       x    r sin   d
                                                  y
                  dt                                                dt
     r 2 cos                                       r 2 sin 
    x   2                                          2 y




                y
                


      x
      
x  r cos            y                           y  r sin 
                 d                                               d
 x   r sin  
                                  P               y  r cos 
                                                   
                 dt                                               dt
                           r      y  r sin 
      r sin                                       r cos
                           
   r cos 
x
                  d           x  r cos       x    r sin   d
                                                  y
                  dt                                                dt
     r 2 cos                                       r 2 sin 
    x   2                                          2 y




     a          y
                
 
      x
      
x  r cos                         y                           y  r sin 
                 d                                                            d
 x   r sin  
                                               P               y  r cos 
                                                                
                 dt                                                            dt
                                        r      y  r sin 
      r sin                                                    r cos
                                        
   r cos 
x
                  d                        x  r cos       x    r sin   d
                                                               y
                  dt                                                             dt
     r 2 cos                                                    r 2 sin 
    x   2
                     a     
                       2
                          x
                             2
                                  y
                                    2                              2 y




     a          y
                
 
      x
      
x  r cos                              y                              y  r sin 
                 d                                                                    d
 x   r sin  
                                                       P               y  r cos 
                                                                        
                 dt                                                                    dt
                                                r      y  r sin 
      r sin                                                            r cos
                                                
   r cos 
x
                  d                                x  r cos       x    r sin   d
                                                                       y
                  dt                                                                     dt
     r 2 cos                                                            r 2 sin 
    x   2
                     a     
                       2
                          x
                                 2
                                  y
                                         2                                 2 y
                             4 x2   4 y2
                             4 x 2  y 2 
     a          y
                           4r 2

 
      x
      
x  r cos                              y                              y  r sin 
                 d                                                                    d
 x   r sin  
                                                       P               y  r cos 
                                                                        
                 dt                                                                    dt
                                                r      y  r sin 
      r sin                                                            r cos
                                                
   r cos 
x
                  d                                x  r cos       x    r sin   d
                                                                       y
                  dt                                                                     dt
     r 2 cos                                                            r 2 sin 
    x   2
                   a     
                       2
                        x       y
                                 2       2                                 2 y
                             4 x2   4 y2
                             4 x 2  y 2 
     a          y
                     4r 2
                   a  r 2
 
      x
      
x  r cos                              y                              y  r sin 
                 d                                                                    d
 x   r sin  
                                                       P               y  r cos 
                                                                        
                 dt                                                                    dt
                                                r      y  r sin 
      r sin                                                            r cos
                                                
   r cos 
x
                  d                                x  r cos       x    r sin   d
                                                                       y
                  dt                                                                     dt
     r 2 cos                                                            r 2 sin 
    x   2
                   a     
                       2
                        x       y
                                 2       2                                 2 y
                             4 x2   4 y2
                             4 x 2  y 2 
     a          y
                     4r 2
                   a  r 2
 
      x
                 F  ma
                    F  mr 2
x  r cos                              y                                 y  r sin 
                 d                                                                       d
 x   r sin  
                                                       P                  y  r cos 
                                                                           
                 dt                                                                       dt
                                                r      y  r sin 
      r sin                                                               r cos
                                                
   r cos 
x
                  d                                x  r cos          x    r sin   d
                                                                          y
                  dt                                                                        dt
     r 2 cos                                                               r 2 sin 
                                                                   y
                                                                   
    x   2
                   a     
                       2
                        x       y
                                 2       2              tan 1              2 y
                                                                   x
                                                                   
                             4 x2   4 y2
                             4 x 2  y 2 
     a          y
                     4r 2
                   a  r 2
 
      x
                 F  ma
                    F  mr 2
x  r cos                              y                                y  r sin 
                 d                                                                      d
 x   r sin  
                                                       P                 y  r cos 
                                                                          
                 dt                                                                      dt
                                                r      y  r sin 
      r sin                                                              r cos
                                                
   r cos 
x
                  d                                x  r cos         x    r sin   d
                                                                         y
                  dt                                                                       dt
     r 2 cos                                                              r 2 sin 
                                                                 y
                                                                 
    x   2
                   a     
                       2
                        x       y
                                 2       2              tan 1          2 y
                                                                 x
                                                                 
                             4 x2   4 y2                       2 y 
                                                         tan 1         
                             4 x 2  y 2                       x 
                                                                      2


     a          y
                     4r 2                                      y
                                                         tan 1
                   a  r 2                                        x
 
                   F  ma                               
      x
      
                    F  mr 2
x  r cos                              y                                y  r sin 
                 d                                                                      d
 x   r sin  
                                                       P                 y  r cos 
                                                                          
                 dt                                                                      dt
                                                r      y  r sin 
      r sin                                                              r cos
                                                
   r cos 
x
                  d                                x  r cos         x    r sin   d
                                                                         y
                  dt                                                                       dt
     r 2 cos                                                              r 2 sin 
                                                                 y
                                                                 
    x   2
                   a     
                       2
                        x       y
                                 2       2              tan 1          2 y
                                                                 x
                                                                 
                             4 x2   4 y2                       2 y 
                                                         tan 1         
                             4 x 2  y 2                       x 
                                                                      2


     a          y
                     4r 2                                      y
                                                         tan 1
                   a  r 2                                        x
 
                   F  ma                            
      x
      
                    F  mr 2                   There is a force , F  mr 2 , acting
                                                  towards the centre
b) A telecommunications satellite, of mass m, orbits Earth with constant
   angular velocity  at a distance r from the centre of the Earth.
   The gravitational force exerted by Earth on the satellite is Am where
                                                                 r2
   A is a constant. By considering all other forces on the satellite to be
   negligible, show that;
                                A
                          r  3
                                2
b) A telecommunications satellite, of mass m, orbits Earth with constant
   angular velocity  at a distance r from the centre of the Earth.
   The gravitational force exerted by Earth on the satellite is Am where
                                                                 r2
   A is a constant. By considering all other forces on the satellite to be
   negligible, show that;
                                A
                          r  3
                                2
b) A telecommunications satellite, of mass m, orbits Earth with constant
   angular velocity  at a distance r from the centre of the Earth.
   The gravitational force exerted by Earth on the satellite is Am where
                                                                 r2
   A is a constant. By considering all other forces on the satellite to be
   negligible, show that;
                                A
                          r  3
                                2




  m  mr 2
   x
b) A telecommunications satellite, of mass m, orbits Earth with constant
   angular velocity  at a distance r from the centre of the Earth.
   The gravitational force exerted by Earth on the satellite is Am where
                                                                 r2
   A is a constant. By considering all other forces on the satellite to be
   negligible, show that;
                                A
                          r  3
                                2




                  Am
  m  mr 2
   x
                  r2
b) A telecommunications satellite, of mass m, orbits Earth with constant
   angular velocity  at a distance r from the centre of the Earth.
   The gravitational force exerted by Earth on the satellite is Am where
                                                                 r2
   A is a constant. By considering all other forces on the satellite to be
   negligible, show that;
                                A
                          r  3
                                2



                                       Am
                             mr 2 
                  Am                   r2
  m  mr 2
   x
                  r2
b) A telecommunications satellite, of mass m, orbits Earth with constant
   angular velocity  at a distance r from the centre of the Earth.
   The gravitational force exerted by Earth on the satellite is Am where
                                                                 r2
   A is a constant. By considering all other forces on the satellite to be
   negligible, show that;
                                A
                          r  3
                                2



                                      Am
                             mr 2 
                  Am                  r2
  m  mr 2
   x
                  r2                  Am
                                 r3 
                                      m 2
                                      A
                                     2
                                       
b) A telecommunications satellite, of mass m, orbits Earth with constant
   angular velocity  at a distance r from the centre of the Earth.
   The gravitational force exerted by Earth on the satellite is Am where
                                                                 r2
   A is a constant. By considering all other forces on the satellite to be
   negligible, show that;
                                A
                          r  3
                                2



                                      Am
                             mr 2 
                  Am                  r2
  m  mr 2
   x
                  r2                  Am
                                 r3 
                                      m 2
                                      A
                                     2
                                       
                                           A
                                   r3
                                           2
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.




   m
    x
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.




   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.



             T



   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.

                    m  mg  T
                     x
             T



   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.

                    m  mg  T
                     x
             T       0  mg  T



   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.

                    m  mg  T
                      x
             T        0  mg  T
                     T  40 9.8
                         392 N
   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.

                    m  mg  T
                      x
             T        0  mg  T
                     T  40 9.8
                         392 N
   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.                             m
                                                        x

                    m  mg  T
                      x
             T        0  mg  T
                     T  40 9.8
                         392 N
   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.                             m
                                                        x

                                                     T
                    m  mg  T
                      x
             T        0  mg  T
                     T  40 9.8
                         392 N
   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.                             m
                                                        x

                                                     T
                    m  mg  T
                      x                          T  mr 2
             T        0  mg  T
                     T  40 9.8
                         392 N
   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.                             m
                                                        x

                                                     T
                    m  mg  T
                      x                          T  mr 2
                      0  mg  T
             T                                 392  2 0.5 2
                     T  40 9.8
                         392 N
   m
    x        mg
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.                             m
                                                        x

                                                     T
                    m  mg  T
                      x                          T  mr 2
                      0  mg  T
             T                                 392  2 0.5 2
                     T  40 9.8
                                                 2  392
                         392 N
             mg
                                                   392
   m
    x
                                                   2 98rad/s
(ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is
     hung from it.
     A mass of 2kg is attached to one end of the string and it is revolved
     in a circle.
     Find the greatest angular velocity which may be imparted without
     breaking the string.                             m
                                                        x

                                                     T
                    m  mg  T
                      x                          T  mr 2
                      0  mg  T
             T                                 392  2 0.5 2
                     T  40 9.8
                                                 2  392
                         392 N
             mg
                                                   392
   m
    x
                                                   2 98rad/s


                            Exercise 9B; all

More Related Content

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 

More from Nigel Simmons (20)

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Recently uploaded

Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 

Recently uploaded (20)

INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 

X2 t06 04 uniform circular motion (2012)

  • 1. Acceleration with Uniform Circular Motion
  • 2. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.
  • 3. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant 
  • 4. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A r O
  • 5. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A particle moves from A to P with constant A angular velocity. r O  P
  • 6. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A particle moves from A to P with constant A angular velocity. r O  The acceleration of the particle is the change in velocity with respect to time. P
  • 7. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A particle moves from A to P with constant A angular velocity. r v O  The acceleration of the particle is the change in velocity with respect to time. P
  • 8. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A particle moves from A to P with constant A angular velocity. r v O  The acceleration of the particle is the change in velocity with respect to time. P v’
  • 9. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A particle moves from A to P with constant A angular velocity. r v O  The acceleration of the particle is the change in velocity with respect to time. P v’ v
  • 10. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A particle moves from A to P with constant A angular velocity. r v O  The acceleration of the particle is the change in velocity with respect to time. P v’ v v’
  • 11. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A particle moves from A to P with constant A angular velocity. r v O  The acceleration of the particle is the change in velocity with respect to time. P v’ v v’ v
  • 12. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A A particle moves from A to P with constant angular velocity. r v O  The acceleration of the particle is the change in velocity with respect to time. P v’ v’  v v
  • 13. Acceleration with Uniform Circular Motion Uniform circular motion is when a particle moves with constant angular velocity.  the magnitude of the linear velocity will also be constant  A A particle moves from A to P with constant angular velocity. r v O  The acceleration of the particle is the change in velocity with respect to time. P v’  v v’ This triangle of vectors is similar to OAP v
  • 14. A v’  v r O  v r
  • 15. A v’  v r O  v r P v v  AP r
  • 16. A v’  v r O  v r P v v  AP r v  AP v  r
  • 17. A v’  v r O  v r P v v  AP r v  AP v  r v a t
  • 18. A v’  v r O  v r P v v  AP r v  AP v  r v a t v  AP a r  t
  • 19. A v’  v r O  v r P v v  AP r v  AP v  r v a t v  AP a r  t But, as Δt  0, AP  arcAP
  • 20. A v’  v r O  v r P v v  AP r v  AP v  r v a t v  AP a r  t But, as Δt  0, AP  arcAP v  arcAP  a  lim t 0 r  t
  • 21. A v’  v r distance  speed  time O  arcAP  v  t v r P v v  AP r v  AP v  r v a t v  AP a r  t But, as Δt  0, AP  arcAP v  arcAP  a  lim t 0 r  t
  • 22. A v’  v r distance  speed  time O  arcAP  v  t v r P v v  v  v  t AP r  a  lim t 0 r  t v  AP v  r v2  lim v t 0 r a t v2  v  AP r a r  t But, as Δt  0, AP  arcAP v  arcAP  a  lim t 0 r  t
  • 23. A v’  v r distance  speed  time O  arcAP  v  t v r P v v  v  v  t AP r  a  lim t 0 r  t v  AP v  r v2  lim v t 0 r a t v2  v  AP r a r  t  the acceleration in uniform circular But, as Δt  0, AP  arcAP v2 v  arcAP motion has magnitude and is  a  lim r t 0 r  t directed towards the centre
  • 24. Acceleration Involved in Uniform Circular Motion v2 a r
  • 25. Acceleration Involved in Uniform Circular Motion v2 a r OR a  r 2
  • 26. Acceleration Involved in Forces Involved in Uniform Circular Motion Uniform Circular Motion v2 a r OR a  r 2
  • 27. Acceleration Involved in Forces Involved in Uniform Circular Motion Uniform Circular Motion v2 mv 2 a F r r OR a  r 2
  • 28. Acceleration Involved in Forces Involved in Uniform Circular Motion Uniform Circular Motion v2 mv 2 a F r r OR OR a  r 2 F  mr 2
  • 29. Acceleration Involved in Forces Involved in Uniform Circular Motion Uniform Circular Motion v2 mv 2 a F r r OR OR a  r 2 F  mr 2 e.g. (i) (2003) A particle P of mass m moves with constant angular velocity  on a circle of radius r. Its position at time t is given by; x  r cos y  r sin  , where   t
  • 30. Acceleration Involved in Forces Involved in Uniform Circular Motion Uniform Circular Motion v2 mv 2 a F r r OR OR a  r 2 F  mr 2 e.g. (i) (2003) A particle P of mass m moves with constant angular velocity  on a circle of radius r. Its position at time t is given by; x  r cos y  r sin  , where   t a) Show that there is an inward radial force of magnitude mr 2 acting on P.
  • 31. y P r y  r sin   x  r cos x
  • 32. x  r cos y P r y  r sin   x  r cos x
  • 33. x  r cos y y  r sin  P r y  r sin   x  r cos x
  • 34. x  r cos y y  r sin  d x   r sin    P dt r y  r sin    r sin   x  r cos x
  • 35. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos  x  r cos x
  • 36. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos  d x  r cos x    r cos  x dt   r 2 cos   2 x
  • 37. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin    x2   2 y
  • 38. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin    x 2   2 y y  x 
  • 39. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin    x 2   2 y a y   x 
  • 40. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin    x 2 a      2 x 2 y 2   2 y a y   x 
  • 41. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin    x 2 a      2 x 2 y 2   2 y   4 x2   4 y2   4 x 2  y 2  a y    4r 2  x 
  • 42. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin    x 2 a      2 x y 2 2   2 y   4 x2   4 y2   4 x 2  y 2  a y    4r 2 a  r 2  x 
  • 43. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin    x 2 a      2 x y 2 2   2 y   4 x2   4 y2   4 x 2  y 2  a y    4r 2 a  r 2  x  F  ma  F  mr 2
  • 44. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin  y    x 2 a      2 x y 2 2   tan 1   2 y x    4 x2   4 y2   4 x 2  y 2  a y    4r 2 a  r 2  x  F  ma  F  mr 2
  • 45. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin  y    x 2 a      2 x y 2 2   tan 1   2 y x    4 x2   4 y2   2 y   tan 1     4 x 2  y 2    x  2 a y    4r 2 y  tan 1 a  r 2 x  F  ma  x   F  mr 2
  • 46. x  r cos y y  r sin  d d x   r sin    P y  r cos   dt dt r y  r sin    r sin   r cos     r cos  x d x  r cos x    r sin   d y dt dt   r 2 cos   r 2 sin  y    x 2 a      2 x y 2 2   tan 1   2 y x    4 x2   4 y2   2 y   tan 1     4 x 2  y 2    x  2 a y    4r 2 y  tan 1 a  r 2 x  F  ma  x   F  mr 2  There is a force , F  mr 2 , acting towards the centre
  • 47. b) A telecommunications satellite, of mass m, orbits Earth with constant angular velocity  at a distance r from the centre of the Earth. The gravitational force exerted by Earth on the satellite is Am where r2 A is a constant. By considering all other forces on the satellite to be negligible, show that; A r 3  2
  • 48. b) A telecommunications satellite, of mass m, orbits Earth with constant angular velocity  at a distance r from the centre of the Earth. The gravitational force exerted by Earth on the satellite is Am where r2 A is a constant. By considering all other forces on the satellite to be negligible, show that; A r 3  2
  • 49. b) A telecommunications satellite, of mass m, orbits Earth with constant angular velocity  at a distance r from the centre of the Earth. The gravitational force exerted by Earth on the satellite is Am where r2 A is a constant. By considering all other forces on the satellite to be negligible, show that; A r 3  2 m  mr 2 x
  • 50. b) A telecommunications satellite, of mass m, orbits Earth with constant angular velocity  at a distance r from the centre of the Earth. The gravitational force exerted by Earth on the satellite is Am where r2 A is a constant. By considering all other forces on the satellite to be negligible, show that; A r 3  2 Am m  mr 2 x r2
  • 51. b) A telecommunications satellite, of mass m, orbits Earth with constant angular velocity  at a distance r from the centre of the Earth. The gravitational force exerted by Earth on the satellite is Am where r2 A is a constant. By considering all other forces on the satellite to be negligible, show that; A r 3  2 Am mr 2  Am r2 m  mr 2 x r2
  • 52. b) A telecommunications satellite, of mass m, orbits Earth with constant angular velocity  at a distance r from the centre of the Earth. The gravitational force exerted by Earth on the satellite is Am where r2 A is a constant. By considering all other forces on the satellite to be negligible, show that; A r 3  2 Am mr 2  Am r2 m  mr 2 x r2 Am r3  m 2 A  2 
  • 53. b) A telecommunications satellite, of mass m, orbits Earth with constant angular velocity  at a distance r from the centre of the Earth. The gravitational force exerted by Earth on the satellite is Am where r2 A is a constant. By considering all other forces on the satellite to be negligible, show that; A r 3  2 Am mr 2  Am r2 m  mr 2 x r2 Am r3  m 2 A  2  A r3 2
  • 54. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string.
  • 55. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string.
  • 56. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m x
  • 57. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m x mg
  • 58. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. T m x mg
  • 59. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m  mg  T x T m x mg
  • 60. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m  mg  T x T 0  mg  T m x mg
  • 61. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m  mg  T x T 0  mg  T T  40 9.8  392 N m x mg
  • 62. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m  mg  T x T 0  mg  T T  40 9.8  392 N m x mg
  • 63. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m x m  mg  T x T 0  mg  T T  40 9.8  392 N m x mg
  • 64. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m x T m  mg  T x T 0  mg  T T  40 9.8  392 N m x mg
  • 65. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m x T m  mg  T x T  mr 2 T 0  mg  T T  40 9.8  392 N m x mg
  • 66. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m x T m  mg  T x T  mr 2 0  mg  T T 392  2 0.5 2 T  40 9.8  392 N m x mg
  • 67. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m x T m  mg  T x T  mr 2 0  mg  T T 392  2 0.5 2 T  40 9.8  2  392  392 N mg   392 m x   2 98rad/s
  • 68. (ii) A string is 50cm long and it will break if a ,mass exceeding 40kg is hung from it. A mass of 2kg is attached to one end of the string and it is revolved in a circle. Find the greatest angular velocity which may be imparted without breaking the string. m x T m  mg  T x T  mr 2 0  mg  T T 392  2 0.5 2 T  40 9.8  2  392  392 N mg   392 m x   2 98rad/s Exercise 9B; all