SlideShare a Scribd company logo
1 of 55
Download to read offline
Volumes By Non Circular
    Cross-Sections
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid


          h



                      a

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h



                         a   x

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x

          b
                                                   z
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x
                                 2y
          b
                                                   z
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x
                                 2y
          b
                                            2x     z
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a x
                                 2y
          b
                                            2x         z
                                       A z   4 xy
Find x in terms of z
          z
         h




 1                 1 x
 b                  b
 2                 2
Find x in terms of z
          z
         h




 1                 1 x
 b                  b
 2                 2
Find x in terms of z
          z
         h
             x


 1                 1 x
 b                  b
 2                 2
Find x in terms of z
          z
         h
             x   (x,z)


 1                   1 x
 b                    b
 2                   2
Find x in terms of z
           z
           h
               x   (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
Find x in terms of z
           z
           h
               x   (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s

 h

     1
       b
     2
Find x in terms of z
           z
            h
                x   (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s

  h

      1
        b
      2

h-z
       x
Find x in terms of z
           z
            h
                x    (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                     h hz
  h                     
                    1     x
                      b
      1             2
        b
      2

h-z
       x
Find x in terms of z
           z
            h
                x      (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                     h hz
  h                     
                    1       x
                      b
      1             2
        b            2h h  z
      2                 
                      b      x
h-z                       b h  z 
                       x
       x                      2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
            h
                x      (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                     h hz
  h                     
                    1       x
                      b
      1             2
        b            2h h  z
      2                 
                      b      x
h-z                       b h  z 
                       x
       x                      2h
Find x in terms of z             Method 2 : using coordinate geometry
           z
            h (0,h)
               x (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
            h (0,h)
               x (x,z)

                            1 b,0 
 1                   1 x 2 
 b                    b          
 2                   2
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2 
 b                    b          
 2                   2
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2                          2h
 b                    b                     zh        x  0
 2                   2                                b
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2                          2h
 b                    b                     zh        x  0
 2                   2                                b
Method 1 : using similar s                   b z  h   2hx
                h hz
                                                           b h  z 
  h
               1                                       x
                 b     x                                       2h
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2                          2h
 b                    b                     zh        x  0
 2                   2                                b
Method 1 : using similar s                   b z  h   2hx
                h hz
                                                           b h  z 
  h
               1                                       x
                 b     x                                       2h
      1        2
        b       2h h  z                       Similarly;
      2            
                 b      x                         a h  z 
h-z                  b h  z                 y
                  x                                 2h
       x                 2h
 bh  z   ah  z 
A z   4 
            2h   2h 
                                 
 bh  z   ah  z 
A z   4 
            2h   2h 
                                 
         abh  z 
                     2
       
            h2
 bh  z   ah  z 
A z   4 
            2h   2h 
                                 
      abh  z 
                     2
    
          h2
      abh  z 
                2
 V       2
                   z
         h
 b h  z    a  h  z  
A z   4 
            2h   2h                                     abh  z 
                                                       h             2
                                         V  lim             2
                                                                        z
                                                z  0         h
      abh  z 
                        2                              z 0
    
          h2
      abh  z 
                2
 V       2
                   z
         h
 bh  z   ah  z 
A z   4 
            2h   2h                                abh  z 
                                                    h           2
                                    V  lim             2
                                                                   z
                                           z  0         h
      abh  z 
                     2                            z 0
                                          ab
                                                h
          h2                               2  h  z  dz
                                                        2

      abh  z                            h 0
                2
 V       2
                   z
         h
 bh  z   ah  z 
A z   4 
            2h   2h                                abh  z 
                                                    h            2
                                    V  lim             2
                                                                   z
                                           z  0         h
      abh  z 
                     2                            z 0
                                          ab
                                                h
          h2                               2  h  z  dz
                                                        2

      abh  z                            h 0
                2
 V               z
                                           ab  h  z  
                                                         3   h
           2
         h                                 2
                                           h   3 0    
 b h  z    a  h  z  
A z   4 
            2h   2h                                     abh  z 
                                                         h             2
                                         V  lim             2
                                                                        z
                                                z  0         h
      abh  z 
                        2                              z 0
                                               ab
                                                     h
          h2                                    2  h  z  dz
                                                             2

      abh  z                                 h 0
                2
 V               z
                                                ab  h  z  
                                                               3   h
           2
         h                                      2
                                                h   3 0    
                                                ab  h 3 
                                                2 0  
                                                h     3
                                                 abh
                                                    units 3
                                                  3
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x

        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x

        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2




                       x
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                     2 x
          -2




2y

                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                       2 x
          -2


                        A x   4 y 2

2y

                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                       2 x
          -2


                        A x   4 y 2
                                44  x 2 
2y

                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                        2 x
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                   x  0
                                                            
                                                            x  2


                   2

     -2                        2 x
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                     x  0
                                                              
                                                              x  2
                                                       2

                   2                                8 4  x 2 dx
                                                       0


     -2                        2 x
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                     x  0
                                                              
                                                              x  2
                                                       2

                   2                                8 4  x 2 dx
                                                       0
                                                                       2
                                                      4 x  1 x 3 
                                                    8
     -2                        2 x                          3 0  
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                     x  0
                                                              
                                                              x  2
                                                       2

                   2                                8 4  x 2 dx
                                                       0
                                                                       2
                                                      4 x  1 x 3 
                                                    8
     -2                        2 x                          3 0  
          -2                                          8  8  0
                                                    8           
                                                          3 
                                                     128
                        A x   4 y 2                  units 3
                                                      3
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                   x  0
                                                            
                                                            x  2
                                                     2

                   2                              8 4  x 2 dx
                                                     0
                                                                     2
                                                    4 x  1 x 3 
                                                  8
     -2                        2 x                        3 0  
          -2                                        8  8  0
                                                  8           
                                                        3 
                                                   128
                        A x   4 y 2                units 3
                                                    3
                                 44  x 2 
2y
                            V  44  x  x
                                          2
                                                   Exercise 3A; 16ade, 19

                       x                             Exercise 3C; 2, 7, 8
          2y

More Related Content

What's hot

Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reducedKyro Fitkry
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration MethodsSilvius
 
11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)Nigel Simmons
 

What's hot (6)

Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration Methods
 
11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)
 
Em03 t
Em03 tEm03 t
Em03 t
 
11X1 T14 05 volumes
11X1 T14 05 volumes11X1 T14 05 volumes
11X1 T14 05 volumes
 

Similar to X2 T06 03 parallel crosssections (2010)

11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functionslgemgnani
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functionslgemgnani
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functionsTarun Gehlot
 
Solving trignometric equations
Solving trignometric equationsSolving trignometric equations
Solving trignometric equationsTarun Gehlot
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theoremsmiller5
 

Similar to X2 T06 03 parallel crosssections (2010) (12)

11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functions
 
Week 8 - Trigonometry
Week 8 - TrigonometryWeek 8 - Trigonometry
Week 8 - Trigonometry
 
sol pg 89
sol pg 89 sol pg 89
sol pg 89
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functions
 
Solving trignometric equations
Solving trignometric equationsSolving trignometric equations
Solving trignometric equations
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theorem
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 

Recently uploaded (20)

USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 

X2 T06 03 parallel crosssections (2010)

  • 1. Volumes By Non Circular Cross-Sections
  • 2. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid h a b
  • 3. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h a x b
  • 4. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x b
  • 5. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x b
  • 6. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x b z
  • 7. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x 2y b z
  • 8. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x 2y b 2x z
  • 9. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x 2y b 2x z A z   4 xy
  • 10. Find x in terms of z z h 1 1 x  b b 2 2
  • 11. Find x in terms of z z h 1 1 x  b b 2 2
  • 12. Find x in terms of z z h x 1 1 x  b b 2 2
  • 13. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2
  • 14. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s
  • 15. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h 1 b 2
  • 16. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h 1 b 2 h-z x
  • 17. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2 h-z x
  • 18. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 19. Find x in terms of z Method 2 : using coordinate geometry z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 20. Find x in terms of z Method 2 : using coordinate geometry z h (0,h) x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 21. Find x in terms of z Method 2 : using coordinate geometry z h (0,h) x (x,z)  1 b,0  1 1 x 2   b b   2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 22. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   b b   2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 23. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   2h  b b   zh   x  0 2 2 b Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 24. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   2h  b b   zh   x  0 2 2 b Method 1 : using similar s b z  h   2hx h hz  b h  z  h 1 x b x 2h 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 25. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   2h  b b   zh   x  0 2 2 b Method 1 : using similar s b z  h   2hx h hz  b h  z  h 1 x b x 2h 1 2 b 2h h  z Similarly; 2  b x a h  z  h-z b h  z  y x 2h x 2h
  • 26.  bh  z   ah  z  A z   4   2h   2h   
  • 27.  bh  z   ah  z  A z   4   2h   2h    abh  z  2  h2
  • 28.  bh  z   ah  z  A z   4   2h   2h    abh  z  2  h2 abh  z  2 V  2  z h
  • 29.  b h  z    a  h  z   A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  h2 abh  z  2 V  2  z h
  • 30.  bh  z   ah  z  A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  ab h h2  2  h  z  dz 2 abh  z  h 0 2 V  2  z h
  • 31.  bh  z   ah  z  A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  ab h h2  2  h  z  dz 2 abh  z  h 0 2 V   z ab  h  z   3 h 2 h  2 h   3 0 
  • 32.  b h  z    a  h  z   A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  ab h h2  2  h  z  dz 2 abh  z  h 0 2 V   z ab  h  z   3 h 2 h  2 h   3 0  ab  h 3   2 0   h  3 abh  units 3 3
  • 33. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base.
  • 34. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 35. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 36. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 37. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 38. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 39. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 40. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 41. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 42. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 43. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 44. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 45. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 46. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 x
  • 47. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 2y x 2y
  • 48. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 A x   4 y 2 2y x 2y
  • 49. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 A x   4 y 2  44  x 2  2y x 2y
  • 50. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 51. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 -2 2 x -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 52. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 -2 2 x -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 53. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 2 4 x  1 x 3   8 -2 2 x  3 0  -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 54. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 2 4 x  1 x 3   8 -2 2 x  3 0  -2 8  8  0  8   3  128 A x   4 y 2  units 3 3  44  x 2  2y V  44  x 2  x x 2y
  • 55. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 2 4 x  1 x 3   8 -2 2 x  3 0  -2 8  8  0  8   3  128 A x   4 y 2  units 3 3  44  x 2  2y V  44  x  x 2 Exercise 3A; 16ade, 19 x Exercise 3C; 2, 7, 8 2y