SlideShare uma empresa Scribd logo
1 de 25
Baixar para ler offline
Integrating Quadratic
       Denominators
1 2 dx 2      dx
    a x    a  x a  x 
      dx            dx
2 2 2  
    x a      x  a  x  a 
Integrating Quadratic
       Denominators
1 2 dx 2      dx           
    a x    a  x a  x   done via
                                
      dx            dx          
2 2 2                       partial fractions
    x a      x  a  x  a  
                                
Integrating Quadratic
       Denominators
1 2 dx 2      dx                                1     a  x  c
                                                     log 
    a x    a  x a  x   done via
                                                     2a    a  x 
                                
                                 partial fractions  1 log  x  a   c
      dx            dx
2 2 2  
    x a      x  a  x  a  
                                                     2a    x  a
                                                                   
Integrating Quadratic
       Denominators
1 2 dx 2      dx                                1     a  x  c
                                                     log 
    a x    a  x a  x   done via
                                                     2a    a  x 
                                
                                 partial fractions  1 log  x  a   c
      dx            dx
2 2 2  
    x a      x  a  x  a  
                                                     2a    x  a
                                                                   

      dx  1   1 x
3 2 2  tan  c
    a x  a      a
Integrating Quadratic
       Denominators
1 2 dx 2      dx                                1     a  x   c
                                                     log 
    a x    a  x a  x   done via
                                                     2a    a  x 
                                
                                 partial fractions  1 log  x  a   c
      dx            dx
2 2 2  
    x a      x  a  x  a  
                                                     2a    x  a
                                                                   

      dx  1   1 x
3 2 2  tan  c
    a x  a      a

        dx          1 x
4           sin      c
       a x
        2   2
                       a
Integrating Quadratic
       Denominators
1 2 dx 2      dx                                1     a  x   c
                                                     log 
    a x    a  x a  x   done via
                                                     2a    a  x 
                                
                                 partial fractions  1 log  x  a   c
      dx            dx
2 2 2  
    x a      x  a  x  a  
                                                     2a    x  a
                                                                   

      dx  1   1 x
3 2 2  tan  c               5
                                         dx
                                        x2  a2
                                                                 
                                                 log x  x 2  a 2  c
    a x  a      a

        dx          1 x
4           sin      c
       a x
        2   2
                       a
Integrating Quadratic
       Denominators
1 2 dx 2      dx                                1     a  x   c
                                                     log 
    a x    a  x a  x   done via
                                                     2a    a  x 
                                
                                 partial fractions  1 log  x  a   c
      dx            dx
2 2 2  
    x a      x  a  x  a  
                                                     2a    x  a
                                                                   

      dx  1   1 x
3 2 2  tan  c               5
                                         dx
                                        x2  a2
                                                                 
                                                 log x  x 2  a 2  c
    a x  a      a

4
        dx
               sin 1 x
                         c      6
                                         dx
                                        a2  x2
                                                                 
                                                 log x  a 2  x 2  c
       a x
        2   2
                       a
5dx
e.g. i 
             x2  4x  9
5dx
e.g. i 
        x2  4x  9
               5dx
       
           x  22  5
5dx
e.g. i 
         x2  4x  9
               5dx
       
           x  22  5
              1       1  x  2 
        5      tan            c
               5          5 
                 1  x  2 
        5 tan              c
                     5 
e.g. i 
             5dx                                3x  2dx
         x2  4x  9
                                       ii 
                                                x2  4x 1
               5dx
       
           x  22  5
              1       1  x  2 
        5      tan            c
               5          5 
                 1  x  2 
        5 tan              c
                     5 
e.g. i 
             5dx                                3x  2dx
         x2  4x  9
                                       ii 
                                             x2  4x 1
               5dx                                2x  4
                                          3
                                             2           dx   2
                                                                    8dx
           x  22  5                     2    x  4x 1        x  4x 1
              1       1  x  2 
        5      tan            c
               5          5 
                 1  x  2 
        5 tan              c
                     5 
e.g. i 
             5dx                                3x  2dx
         x2  4x  9
                                       ii 
                                              x2  4x 1
               5dx                                 2x  4
                                           3
                                             2              dx   2
                                                                       8dx
           x  22  5                      2    x  4x 1          x  4x 1
              1       1  x  2 
        5      tan            c         u  x2  4x 1
               5          5 
                                            du  2 x  4 dx
                 1  x  2 
        5 tan              c
                     5 
e.g. i 
             5dx                                3x  2dx
         x2  4x  9
                                       ii 
                                              x2  4x 1
               5dx                                 2x  4
                                           3
                                             2              dx   2
                                                                       8dx
           x  22  5                      2    x  4x 1          x  4x 1
              1       1  x  2 
        5      tan            c         u  x2  4x 1
               5          5 
                                            du  2 x  4 dx
                 1  x  2 
        5 tan              c            3 2
                                                     1
                                                               8dx
                     5                     u du  
                                            2                 x  2  3
                                                                     2
e.g. i 
             5dx                                3x  2dx
         x2  4x  9
                                       ii 
                                              x2  4x 1
               5dx                                 2x  4
                                           3
                                             2              dx   2
                                                                       8dx
           x  22  5                      2    x  4x 1          x  4x 1
              1       1  x  2 
        5      tan            c         u  x2  4x 1
               5          5 
                                            du  2 x  4 dx
                 1  x  2 
        5 tan              c            3 2
                                                       1
                                                                   8dx
                     5                     u du  
                                            2                     x  2  3
                                                                         2



                                                                               
                                                   1
                                         3
                                          2u 2  8 log x  2  x 2  4 x  1  c
                                         2
e.g. i 
             5dx                                3x  2dx
         x2  4x  9
                                       ii 
                                              x2  4x 1
               5dx                                 2x  4
                                           3
                                             2              dx   2
                                                                       8dx
           x  22  5                      2    x  4x 1          x  4x 1
              1       1  x  2 
        5      tan            c         u  x2  4x 1
               5          5 
                                            du  2 x  4 dx
                 1  x  2 
        5 tan              c            3 2
                                                       1
                                                                   8dx
                     5                     u du  
                                            2                     x  2  3
                                                                         2



                                                                               
                                                   1
                                         3
                                          2u 2  8 log x  2  x 2  4 x  1  c
                                         2
                                                                               
                                  3 x 2  4 x  1  8 log x  2  x 2  4 x  1  c
iii  x  3dx
       2 x
iii  x  3dx   x  3  x  3dx
      2 x          2 x    x3
iii  x  3dx   x  3  x  3dx
      2 x          2 x x3
                     x3
                            dx
                    6 x x 2
iii  x  3dx   x  3  x  3dx
      2 x          2 x x3
                     x3
                            dx
                    6 x x 2

                  1     2x 1        1   5dx
                               dx  
                  2 6 x x     2
                                      2 6  x  x2
iii  x  3dx   x  3  x  3dx
      2 x          2 x x3                   u  6  x  x2
                     x3
                            dx              du   2 x  1dx
                    6 x x 2

                  1     2x 1        1   5dx
                               dx  
                  2 6 x x     2
                                      2 6  x  x2
iii  x  3dx   x  3  x  3dx
      2 x          2 x x3                   u  6  x  x2
                     x3
                            dx              du   2 x  1dx
                    6 x x 2

                  1     2x 1        1   5dx
                               dx  
                  2 6 x x     2
                                      2 6  x  x2
                        1
                  1 2     5     dx
                  u du             2
                  2        2  25    1
                                x  
                              4     2
iii  x  3dx   x  3  x  3dx
      2 x          2 x x3                   u  6  x  x2
                     x3
                            dx              du   2 x  1dx
                    6 x x 2

                  1     2x 1        1   5dx
                               dx  
                  2 6 x x     2
                                      2 6  x  x2
                        1
                  1 2     5         dx
                  u du                  2
                  2        2   25        1
                                   x  
                               4         2
                                      1 
                                  2 x   
                           5 1  
                        1
                    1                   2
                   2u  sin 
                        2
                                           c
                    2      2         5    
                                
                                          
                                           
iii  x  3dx   x  3  x  3dx
      2 x          2 x x3                   u  6  x  x2
                     x3
                            dx              du   2 x  1dx
                    6 x x 2

                  1     2x 1        1   5dx
                               dx  
                  2 6 x x     2
                                      2 6  x  x2
                        1
                  1 2     5         dx
                  u du                  2
                  2        2   25        1
                                   x  
                               4         2
                                      1 
                                  2 x   
                           5 1  
                        1
                    1                   2
                   2u  sin 
                        2
                                           c
                    2      2         5    
                                
                                          
                                           
                                            2 x  1
                   6  x  x 2  sin 1 
                                  5
                                  2        5 c
                                                  
Exercise 2F; odd

Exercise 2H; 1, 2, 5, 6, 9, 15, 17 to 20

Mais conteúdo relacionado

Mais procurados

康軒 國中數學 3下 課本ppt 1-2 二次函數的最大值、最小值
康軒 國中數學 3下 課本ppt 1-2 二次函數的最大值、最小值康軒 國中數學 3下 課本ppt 1-2 二次函數的最大值、最小值
康軒 國中數學 3下 課本ppt 1-2 二次函數的最大值、最小值Jimmy Ma
 
康軒 國中數學 3下 課本ppt 1-1 二次函數的圖形
康軒 國中數學 3下 課本ppt 1-1 二次函數的圖形康軒 國中數學 3下 課本ppt 1-1 二次函數的圖形
康軒 國中數學 3下 課本ppt 1-1 二次函數的圖形Jimmy Ma
 

Mais procurados (6)

康軒 國中數學 3下 課本ppt 1-2 二次函數的最大值、最小值
康軒 國中數學 3下 課本ppt 1-2 二次函數的最大值、最小值康軒 國中數學 3下 課本ppt 1-2 二次函數的最大值、最小值
康軒 國中數學 3下 課本ppt 1-2 二次函數的最大值、最小值
 
康軒 國中數學 3下 課本ppt 1-1 二次函數的圖形
康軒 國中數學 3下 課本ppt 1-1 二次函數的圖形康軒 國中數學 3下 課本ppt 1-1 二次函數的圖形
康軒 國中數學 3下 課本ppt 1-1 二次函數的圖形
 
3 3克拉瑪公式
3 3克拉瑪公式3 3克拉瑪公式
3 3克拉瑪公式
 
3 1矩陣列運算
3 1矩陣列運算3 1矩陣列運算
3 1矩陣列運算
 
11. límite de funciones
11. límite de funciones11. límite de funciones
11. límite de funciones
 
Part 6 2010
Part 6 2010Part 6 2010
Part 6 2010
 

Destaque

Destaque (6)

Xarxa que reequilibra el territori
Xarxa que reequilibra el territoriXarxa que reequilibra el territori
Xarxa que reequilibra el territori
 
Xalki sta dodekanisa
Xalki sta dodekanisaXalki sta dodekanisa
Xalki sta dodekanisa
 
Expanding access tp chinese language instruction
Expanding access tp chinese language instructionExpanding access tp chinese language instruction
Expanding access tp chinese language instruction
 
Xalapa y la intervencion de 1847
Xalapa y la intervencion de 1847Xalapa y la intervencion de 1847
Xalapa y la intervencion de 1847
 
X3Revelations_manual
X3Revelations_manualX3Revelations_manual
X3Revelations_manual
 
X3850x5techpresentation09 29-2010-101118124714-phpapp01
X3850x5techpresentation09 29-2010-101118124714-phpapp01X3850x5techpresentation09 29-2010-101118124714-phpapp01
X3850x5techpresentation09 29-2010-101118124714-phpapp01
 

Semelhante a X2 T05 07 quadratic denominators (2010)

11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integralNigel Simmons
 
11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)Nigel Simmons
 
X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)Nigel Simmons
 
X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)Nigel Simmons
 
X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function
11 x1 t16 06 derivative times function11 x1 t16 06 derivative times function
11 x1 t16 06 derivative times functionNigel Simmons
 
11X1 T17 06 derivative times function (2010)
11X1 T17 06 derivative times function (2010)11X1 T17 06 derivative times function (2010)
11X1 T17 06 derivative times function (2010)Nigel Simmons
 
11X1 T16 06 derivative times function (2011)
11X1 T16 06 derivative times function (2011)11X1 T16 06 derivative times function (2011)
11X1 T16 06 derivative times function (2011)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12X1 T01 02 differentiating logs
12X1 T01 02 differentiating logs12X1 T01 02 differentiating logs
12X1 T01 02 differentiating logsNigel Simmons
 
12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2012)
12 x1 t01 02 differentiating logs (2012)12 x1 t01 02 differentiating logs (2012)
12 x1 t01 02 differentiating logs (2012)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
Ch1習作簿word檔
Ch1習作簿word檔Ch1習作簿word檔
Ch1習作簿word檔lyt199529
 
11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)Nigel Simmons
 

Semelhante a X2 T05 07 quadratic denominators (2010) (19)

11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral
 
11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)11X1 T16 03 indefinite integral (2011)
11X1 T16 03 indefinite integral (2011)
 
11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)11 x1 t16 03 indefinite integral (2012)
11 x1 t16 03 indefinite integral (2012)
 
X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)X2 T04 06 partial fractions (2011)
X2 T04 06 partial fractions (2011)
 
X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)
 
X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)X2 t04 06 partial fractions (2013)
X2 t04 06 partial fractions (2013)
 
11 x1 t16 06 derivative times function
11 x1 t16 06 derivative times function11 x1 t16 06 derivative times function
11 x1 t16 06 derivative times function
 
11X1 T17 06 derivative times function (2010)
11X1 T17 06 derivative times function (2010)11X1 T17 06 derivative times function (2010)
11X1 T17 06 derivative times function (2010)
 
11X1 T16 06 derivative times function (2011)
11X1 T16 06 derivative times function (2011)11X1 T16 06 derivative times function (2011)
11X1 T16 06 derivative times function (2011)
 
Jesus olvera mata
Jesus olvera mataJesus olvera mata
Jesus olvera mata
 
Jesus olvera mata
Jesus olvera mataJesus olvera mata
Jesus olvera mata
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12X1 T01 02 differentiating logs
12X1 T01 02 differentiating logs12X1 T01 02 differentiating logs
12X1 T01 02 differentiating logs
 
12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)12X1 T01 02 differentiating logs (2010)
12X1 T01 02 differentiating logs (2010)
 
12 x1 t01 02 differentiating logs (2012)
12 x1 t01 02 differentiating logs (2012)12 x1 t01 02 differentiating logs (2012)
12 x1 t01 02 differentiating logs (2012)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
Ch1習作簿word檔
Ch1習作簿word檔Ch1習作簿word檔
Ch1習作簿word檔
 
1 4對數函數
1 4對數函數1 4對數函數
1 4對數函數
 
11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)11 x1 t09 04 chain rule (2012)
11 x1 t09 04 chain rule (2012)
 

Mais de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Último

法国蒙彼利埃国家高等建筑学院毕业证制作/德语歌德B1证书/加拿大新斯科舍省农业学院文凭加急制作一个
法国蒙彼利埃国家高等建筑学院毕业证制作/德语歌德B1证书/加拿大新斯科舍省农业学院文凭加急制作一个法国蒙彼利埃国家高等建筑学院毕业证制作/德语歌德B1证书/加拿大新斯科舍省农业学院文凭加急制作一个
法国蒙彼利埃国家高等建筑学院毕业证制作/德语歌德B1证书/加拿大新斯科舍省农业学院文凭加急制作一个michaelell902
 
taibif_開放資料流程-清理資料01-通則_20240509_20240509.pdf
taibif_開放資料流程-清理資料01-通則_20240509_20240509.pdftaibif_開放資料流程-清理資料01-通則_20240509_20240509.pdf
taibif_開放資料流程-清理資料01-通則_20240509_20240509.pdfjhujyunjhang
 
1.🎉“黑客”如何修改成绩?🤔🎉 在这个信息爆炸的时代,我们经常会看到各种作弊手段。但是你知道吗?有一种作弊方式可能比你想象中更巧妙:它就是——黑客![单...
1.🎉“黑客”如何修改成绩?🤔🎉 在这个信息爆炸的时代,我们经常会看到各种作弊手段。但是你知道吗?有一种作弊方式可能比你想象中更巧妙:它就是——黑客![单...1.🎉“黑客”如何修改成绩?🤔🎉 在这个信息爆炸的时代,我们经常会看到各种作弊手段。但是你知道吗?有一种作弊方式可能比你想象中更巧妙:它就是——黑客![单...
1.🎉“黑客”如何修改成绩?🤔🎉 在这个信息爆炸的时代,我们经常会看到各种作弊手段。但是你知道吗?有一种作弊方式可能比你想象中更巧妙:它就是——黑客![单...微信 tytyqqww业务接单
 
10.2.1 马来西亚各州名称的由来六年级历史单元练习马来西亚各州名称的由来练习
10.2.1 马来西亚各州名称的由来六年级历史单元练习马来西亚各州名称的由来练习10.2.1 马来西亚各州名称的由来六年级历史单元练习马来西亚各州名称的由来练习
10.2.1 马来西亚各州名称的由来六年级历史单元练习马来西亚各州名称的由来练习PUAXINYEEMoe
 
啟思中國語文 - 中二 單元一 - 孟嘗君列傳 - 記敍的方法和人稱1.pptx
啟思中國語文 - 中二 單元一 - 孟嘗君列傳 - 記敍的方法和人稱1.pptx啟思中國語文 - 中二 單元一 - 孟嘗君列傳 - 記敍的方法和人稱1.pptx
啟思中國語文 - 中二 單元一 - 孟嘗君列傳 - 記敍的方法和人稱1.pptxbusinesshealthwise
 
taibif_資料標準概念介紹_20240509_20240509_20340509.pdf
taibif_資料標準概念介紹_20240509_20240509_20340509.pdftaibif_資料標準概念介紹_20240509_20240509_20340509.pdf
taibif_資料標準概念介紹_20240509_20240509_20340509.pdfjhujyunjhang
 

Último (6)

法国蒙彼利埃国家高等建筑学院毕业证制作/德语歌德B1证书/加拿大新斯科舍省农业学院文凭加急制作一个
法国蒙彼利埃国家高等建筑学院毕业证制作/德语歌德B1证书/加拿大新斯科舍省农业学院文凭加急制作一个法国蒙彼利埃国家高等建筑学院毕业证制作/德语歌德B1证书/加拿大新斯科舍省农业学院文凭加急制作一个
法国蒙彼利埃国家高等建筑学院毕业证制作/德语歌德B1证书/加拿大新斯科舍省农业学院文凭加急制作一个
 
taibif_開放資料流程-清理資料01-通則_20240509_20240509.pdf
taibif_開放資料流程-清理資料01-通則_20240509_20240509.pdftaibif_開放資料流程-清理資料01-通則_20240509_20240509.pdf
taibif_開放資料流程-清理資料01-通則_20240509_20240509.pdf
 
1.🎉“黑客”如何修改成绩?🤔🎉 在这个信息爆炸的时代,我们经常会看到各种作弊手段。但是你知道吗?有一种作弊方式可能比你想象中更巧妙:它就是——黑客![单...
1.🎉“黑客”如何修改成绩?🤔🎉 在这个信息爆炸的时代,我们经常会看到各种作弊手段。但是你知道吗?有一种作弊方式可能比你想象中更巧妙:它就是——黑客![单...1.🎉“黑客”如何修改成绩?🤔🎉 在这个信息爆炸的时代,我们经常会看到各种作弊手段。但是你知道吗?有一种作弊方式可能比你想象中更巧妙:它就是——黑客![单...
1.🎉“黑客”如何修改成绩?🤔🎉 在这个信息爆炸的时代,我们经常会看到各种作弊手段。但是你知道吗?有一种作弊方式可能比你想象中更巧妙:它就是——黑客![单...
 
10.2.1 马来西亚各州名称的由来六年级历史单元练习马来西亚各州名称的由来练习
10.2.1 马来西亚各州名称的由来六年级历史单元练习马来西亚各州名称的由来练习10.2.1 马来西亚各州名称的由来六年级历史单元练习马来西亚各州名称的由来练习
10.2.1 马来西亚各州名称的由来六年级历史单元练习马来西亚各州名称的由来练习
 
啟思中國語文 - 中二 單元一 - 孟嘗君列傳 - 記敍的方法和人稱1.pptx
啟思中國語文 - 中二 單元一 - 孟嘗君列傳 - 記敍的方法和人稱1.pptx啟思中國語文 - 中二 單元一 - 孟嘗君列傳 - 記敍的方法和人稱1.pptx
啟思中國語文 - 中二 單元一 - 孟嘗君列傳 - 記敍的方法和人稱1.pptx
 
taibif_資料標準概念介紹_20240509_20240509_20340509.pdf
taibif_資料標準概念介紹_20240509_20240509_20340509.pdftaibif_資料標準概念介紹_20240509_20240509_20340509.pdf
taibif_資料標準概念介紹_20240509_20240509_20340509.pdf
 

X2 T05 07 quadratic denominators (2010)

  • 1. Integrating Quadratic Denominators 1 2 dx 2   dx a x a  x a  x  dx dx 2 2 2   x a  x  a  x  a 
  • 2. Integrating Quadratic Denominators 1 2 dx 2   dx  a x a  x a  x   done via  dx dx  2 2 2    partial fractions x a  x  a  x  a   
  • 3. Integrating Quadratic Denominators 1 2 dx 2   dx  1 a  x  c  log  a x a  x a  x   done via  2a a  x    partial fractions  1 log  x  a   c dx dx 2 2 2   x a  x  a  x  a    2a x  a  
  • 4. Integrating Quadratic Denominators 1 2 dx 2   dx  1 a  x  c  log  a x a  x a  x   done via  2a a  x    partial fractions  1 log  x  a   c dx dx 2 2 2   x a  x  a  x  a    2a x  a   dx 1 1 x 3 2 2  tan  c a x a a
  • 5. Integrating Quadratic Denominators 1 2 dx 2   dx  1 a  x   c  log  a x a  x a  x   done via  2a a  x    partial fractions  1 log  x  a   c dx dx 2 2 2   x a  x  a  x  a    2a x  a   dx 1 1 x 3 2 2  tan  c a x a a dx 1 x 4  sin c a x 2 2 a
  • 6. Integrating Quadratic Denominators 1 2 dx 2   dx  1 a  x   c  log  a x a  x a  x   done via  2a a  x    partial fractions  1 log  x  a   c dx dx 2 2 2   x a  x  a  x  a    2a x  a   dx 1 1 x 3 2 2  tan  c 5 dx x2  a2    log x  x 2  a 2  c a x a a dx 1 x 4  sin c a x 2 2 a
  • 7. Integrating Quadratic Denominators 1 2 dx 2   dx  1 a  x   c  log  a x a  x a  x   done via  2a a  x    partial fractions  1 log  x  a   c dx dx 2 2 2   x a  x  a  x  a    2a x  a   dx 1 1 x 3 2 2  tan  c 5 dx x2  a2    log x  x 2  a 2  c a x a a 4 dx  sin 1 x c 6 dx a2  x2    log x  a 2  x 2  c a x 2 2 a
  • 8. 5dx e.g. i  x2  4x  9
  • 9. 5dx e.g. i  x2  4x  9 5dx   x  22  5
  • 10. 5dx e.g. i  x2  4x  9 5dx   x  22  5 1 1  x  2   5 tan  c 5  5  1  x  2   5 tan  c  5 
  • 11. e.g. i  5dx 3x  2dx x2  4x  9 ii  x2  4x 1 5dx   x  22  5 1 1  x  2   5 tan  c 5  5  1  x  2   5 tan  c  5 
  • 12. e.g. i  5dx 3x  2dx x2  4x  9 ii  x2  4x 1 5dx 2x  4  3   2 dx   2 8dx  x  22  5 2 x  4x 1 x  4x 1 1 1  x  2   5 tan  c 5  5  1  x  2   5 tan  c  5 
  • 13. e.g. i  5dx 3x  2dx x2  4x  9 ii  x2  4x 1 5dx 2x  4  3   2 dx   2 8dx  x  22  5 2 x  4x 1 x  4x 1 1 1  x  2   5 tan  c u  x2  4x 1 5  5  du  2 x  4 dx 1  x  2   5 tan  c  5 
  • 14. e.g. i  5dx 3x  2dx x2  4x  9 ii  x2  4x 1 5dx 2x  4  3   2 dx   2 8dx  x  22  5 2 x  4x 1 x  4x 1 1 1  x  2   5 tan  c u  x2  4x 1 5  5  du  2 x  4 dx 1  x  2   5 tan  c 3 2 1 8dx  5    u du   2  x  2  3 2
  • 15. e.g. i  5dx 3x  2dx x2  4x  9 ii  x2  4x 1 5dx 2x  4  3   2 dx   2 8dx  x  22  5 2 x  4x 1 x  4x 1 1 1  x  2   5 tan  c u  x2  4x 1 5  5  du  2 x  4 dx 1  x  2   5 tan  c 3 2 1 8dx  5    u du   2  x  2  3 2   1 3   2u 2  8 log x  2  x 2  4 x  1  c 2
  • 16. e.g. i  5dx 3x  2dx x2  4x  9 ii  x2  4x 1 5dx 2x  4  3   2 dx   2 8dx  x  22  5 2 x  4x 1 x  4x 1 1 1  x  2   5 tan  c u  x2  4x 1 5  5  du  2 x  4 dx 1  x  2   5 tan  c 3 2 1 8dx  5    u du   2  x  2  3 2   1 3   2u 2  8 log x  2  x 2  4 x  1  c 2    3 x 2  4 x  1  8 log x  2  x 2  4 x  1  c
  • 17. iii  x  3dx 2 x
  • 18. iii  x  3dx   x  3  x  3dx 2 x 2 x x3
  • 19. iii  x  3dx   x  3  x  3dx 2 x 2 x x3 x3  dx 6 x x 2
  • 20. iii  x  3dx   x  3  x  3dx 2 x 2 x x3 x3  dx 6 x x 2 1  2x 1 1 5dx   dx   2 6 x x 2 2 6  x  x2
  • 21. iii  x  3dx   x  3  x  3dx 2 x 2 x x3 u  6  x  x2 x3  dx du   2 x  1dx 6 x x 2 1  2x 1 1 5dx   dx   2 6 x x 2 2 6  x  x2
  • 22. iii  x  3dx   x  3  x  3dx 2 x 2 x x3 u  6  x  x2 x3  dx du   2 x  1dx 6 x x 2 1  2x 1 1 5dx   dx   2 6 x x 2 2 6  x  x2 1 1 2 5 dx    u du   2 2 2 25  1 x   4  2
  • 23. iii  x  3dx   x  3  x  3dx 2 x 2 x x3 u  6  x  x2 x3  dx du   2 x  1dx 6 x x 2 1  2x 1 1 5dx   dx   2 6 x x 2 2 6  x  x2 1 1 2 5 dx    u du   2 2 2 25  1 x   4  2   1  2 x    5 1   1 1 2    2u  sin  2 c 2 2  5     
  • 24. iii  x  3dx   x  3  x  3dx 2 x 2 x x3 u  6  x  x2 x3  dx du   2 x  1dx 6 x x 2 1  2x 1 1 5dx   dx   2 6 x x 2 2 6  x  x2 1 1 2 5 dx    u du   2 2 2 25  1 x   4  2   1  2 x    5 1   1 1 2    2u  sin  2 c 2 2  5      2 x  1   6  x  x 2  sin 1  5 2  5 c  
  • 25. Exercise 2F; odd Exercise 2H; 1, 2, 5, 6, 9, 15, 17 to 20