SlideShare uma empresa Scribd logo
1 de 26
Baixar para ler offline
Mathematical Induction
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25
             32
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                       RHS  52
             32                            25
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                       RHS  52
             32                            25
                        LHS  RHS
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                       RHS  52
             32                            25
                      LHS  RHS
                 Hence the result is true for n = 5
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                       RHS  52
             32                            25
                      LHS  RHS
                 Hence the result is true for n = 5

Step 2: Assume the result is true for n = k, where k is a positive
        integer > 4
        i.e. 2k  k 2
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                            RHS  52
             32                                 25
                      LHS  RHS
                 Hence the result is true for n = 5

Step 2: Assume the result is true for n = k, where k is a positive
        integer > 4
        i.e. 2k  k 2
Step 3: Prove the result is true for n = k + 1
                         k 1
                                 k  1
                                        2
        i.e. Prove : 2
Proof:
Proof:
         2 k 1
Proof:
         2 k 1  2 2k
Proof:
         2 k 1  2 2k
                 2k 2
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k     k  4
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
                  k 2  2k  8
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
                  k 2  2k  8    k  4
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
                  k 2  2k  8    k  4
                  k 2  2k  1
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
                  k 2  2k  8    k  4
                  k 2  2k  1
                  k  1
                          2
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k           k  4
                 k 2  2k  2k
                  k 2  2k  8      k  4
                  k 2  2k  1
                  k  1
                          2


                  2  k  1
                     k 1       2
Proof:
      2 k 1  2 2k
              2k 2
              k2  k2
              k2  k k
              k 2  4k            k  4
              k 2  2k  2k
               k 2  2k  8       k  4
               k 2  2k  1
               k  1
                       2


               2  k  1
                  k 1       2


  Hence the result is true for n = k + 1 if it is also true for n = k
Proof:
       2 k 1  2 2k
               2k 2
               k2  k2
               k2  k k
               k 2  4k            k  4
               k 2  2k  2k
                k 2  2k  8       k  4
                k 2  2k  1
                k  1
                        2


                2  k  1
                   k 1       2


   Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 5, then the result is true for
        all positive integral values of n > 4 by induction .
Proof:
       2 k 1  2 2k
               2k 2
               k2  k2
               k2  k k
               k 2  4k            k  4             Exercise 6N;
               k 2  2k  2k                            6 abc, 8a, 15
                k 2  2k  8       k  4
                k 2  2k  1
                k  1
                        2


                2  k  1
                   k 1       2


   Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 5, then the result is true for
        all positive integral values of n > 4 by induction .

Mais conteúdo relacionado

Semelhante a 11X1 T14 10 mathematical induction 3 (2010)

11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
Nigel Simmons
 
11X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 211X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 2
Nigel Simmons
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
Nigel Simmons
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)
Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
Nigel Simmons
 
X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)
Nigel Simmons
 
X2 t08 02 induction (2012)
X2 t08 02 induction (2012)X2 t08 02 induction (2012)
X2 t08 02 induction (2012)
Nigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
Nigel Simmons
 
12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)
Nigel Simmons
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
Nigel Simmons
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)
Nigel Simmons
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
Nigel Simmons
 

Semelhante a 11X1 T14 10 mathematical induction 3 (2010) (15)

11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
 
11X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 211X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 2
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
 
X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)
 
X2 harder induction
X2 harder inductionX2 harder induction
X2 harder induction
 
X2 t08 02 induction (2012)
X2 t08 02 induction (2012)X2 t08 02 induction (2012)
X2 t08 02 induction (2012)
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 

Mais de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 

Último (20)

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 

11X1 T14 10 mathematical induction 3 (2010)

  • 2. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4
  • 3. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5
  • 4. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25  32
  • 5. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25
  • 6. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25  LHS  RHS
  • 7. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25  LHS  RHS Hence the result is true for n = 5
  • 8. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25  LHS  RHS Hence the result is true for n = 5 Step 2: Assume the result is true for n = k, where k is a positive integer > 4 i.e. 2k  k 2
  • 9. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25  LHS  RHS Hence the result is true for n = 5 Step 2: Assume the result is true for n = k, where k is a positive integer > 4 i.e. 2k  k 2 Step 3: Prove the result is true for n = k + 1 k 1  k  1 2 i.e. Prove : 2
  • 11. Proof: 2 k 1
  • 12. Proof: 2 k 1  2 2k
  • 13. Proof: 2 k 1  2 2k  2k 2
  • 14. Proof: 2 k 1  2 2k  2k 2  k2  k2
  • 15. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k
  • 16. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k
  • 17. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4
  • 18. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k
  • 19. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8
  • 20. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4
  • 21. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1
  • 22. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1  k  1 2
  • 23. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1  k  1 2  2  k  1 k 1 2
  • 24. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1  k  1 2  2  k  1 k 1 2 Hence the result is true for n = k + 1 if it is also true for n = k
  • 25. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1  k  1 2  2  k  1 k 1 2 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 5, then the result is true for all positive integral values of n > 4 by induction .
  • 26. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4 Exercise 6N;  k 2  2k  2k 6 abc, 8a, 15  k 2  2k  8  k  4  k 2  2k  1  k  1 2  2  k  1 k 1 2 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 5, then the result is true for all positive integral values of n > 4 by induction .