SlideShare a Scribd company logo
1 of 72
Download to read offline
(1) Area Below x axis
y

Areas
y = f(x)

x
Areas

(1) Area Below x axis
y

y = f(x)
A1

a

b

x
Areas

(1) Area Below x axis
y

y = f(x)
A1

a

 f  x dx  0
b

a

b

x
Areas

(1) Area Below x axis
y

y = f(x)
A1

a

 f  x dx  0
b

a

 A1   f  x dx
b

a

b

x
Areas

(1) Area Below x axis
y

y = f(x)
A1

a

 f  x dx  0
b

a

 A1   f  x dx
b

a

b

A2

c

x
Areas

(1) Area Below x axis
y

y = f(x)
A1

a



b

a

f  x dx  0

 A1   f  x dx
b

a

b

A2

c

x

 f  x dx  0
c

b
Areas

(1) Area Below x axis
y

y = f(x)
A1

a



b

a

f  x dx  0

 A1   f  x dx
b

a

b

A2

c

x

 f  x dx  0
c

b

 A2    f  x dx
c

b
Area below x axis is given by;
Area below x axis is given by;
A    f  x dx
c

b
Area below x axis is given by;
A    f  x dx
c

b

OR



 f  x dx
c

b
Area below x axis is given by;
A    f  x dx
c

b

OR



 f  x dx
c

b

OR
  f  x dx
b

c
e.g. (i)

y  x3

y

-1

1

x
e.g. (i)

y  x3

y

0

1

-1

1

x

1

A    x dx   x 3 dx
3

0
e.g. (i)

y  x3

y

0

1

A    x dx   x 3 dx
1

3

0

1 40 1 41
  x 1  x 0
4
4
-1

1

x
e.g. (i)

y  x3

y

0

1

-1

1

x

1

A    x dx   x 3 dx
3

0

1 40 1 41
  x 1  x 0
4
4
1
1
4
1
  0   1   4  0
4
4
1 1
 
4 4
1
 units 2
2




e.g. (i)

y  x3

y

0

1

-1

1

x

OR using symmetry of odd function

1

A    x dx   x 3 dx
3

0

1 40 1 41
  x 1  x 0
4
4
1
1
4
1
  0   1   4  0
4
4
1 1
 
4 4
1
 units 2
2




e.g. (i)

y  x3

y

0

1

-1

1

x

OR using symmetry of odd function
1

A  2  x 3 dx
0

1

A    x dx   x 3 dx
3

0

1 40 1 41
  x 1  x 0
4
4
1
1
4
1
  0   1   4  0
4
4
1 1
 
4 4
1
 units 2
2




e.g. (i)

y  x3

y

0

1

-1

1

x

OR using symmetry of odd function
1

A  2  x 3 dx
0

1 41
 x 0
2

1

A    x dx   x 3 dx
3

0

1 40 1 41
  x 1  x 0
4
4
1
1
4
1
  0   1   4  0
4
4
1 1
 
4 4
1
 units 2
2




e.g. (i)

y  x3

y

0

1

-1

1

x

OR using symmetry of odd function
1

A  2  x 3 dx
0

1 41
 x 0
2
1
  4  0
1
2
1
 units 2
2

1

A    x dx   x 3 dx
3

0

1 40 1 41
  x 1  x 0
4
4
1
1
4
1
  0   1   4  0
4
4
1 1
 
4 4
1
 units 2
2




(ii)

y

-2

-1

y  x x  1 x  2 

x
(ii)

y

-2

y  x x  1 x  2 

x

-1

A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
1

2

3

2

0

1
(ii)

y  x x  1 x  2 

y

-2

x

-1

A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
1

3

0

2

1

2

1

1

1 x 4  x3  x 2   1 x 4  x3  x 2 

 2  4
0
4



(ii)

y  x x  1 x  2 

y

-2

x

-1

A   x  3 x  2 x dx   x 3  3 x 2  2 x dx
1

3

0

2

1

2

1

1

1 x 4  x3  x 2   1 x 4  x3  x 2 

 2  4
0
4



1
4
3
2  1
4
3
2
 2  1   1   1     2    2    2    0


 4
4
1
 units 2
2
(2) Area On The y axis

y
y = f(x)
(b,d)
(a,c)

x
(2) Area On The y axis

(1) Make x the subject
i.e. x = g(y)

y
y = f(x)
(b,d)
(a,c)

x
(2) Area On The y axis

(1) Make x the subject
i.e. x = g(y)

y
y = f(x)
(b,d)

(2) Substitute the y coordinates

(a,c)

x
(2) Area On The y axis

(1) Make x the subject
i.e. x = g(y)

y
y = f(x)
(b,d)

(2) Substitute the y coordinates
d

3 A   g  y dy
c

(a,c)

x
(2) Area On The y axis

(1) Make x the subject
i.e. x = g(y)

y
y = f(x)
(b,d)

(2) Substitute the y coordinates
d

3 A   g  y dy
c

(a,c)
x
e.g.

y  x4

y

1

2

x
(2) Area On The y axis

(1) Make x the subject
i.e. x = g(y)

y
y = f(x)
(b,d)

(2) Substitute the y coordinates
d

3 A   g  y dy
c

(a,c)
x
e.g.

y  x4

y

x y

1

2

x

1
4
(2) Area On The y axis

(1) Make x the subject
i.e. x = g(y)

y
y = f(x)
(b,d)

(2) Substitute the y coordinates
d

3 A   g  y dy
c

(a,c)
16

A   y dy

x

1

e.g.

y  x4

y

x y

1

2

x

1
4

1
4
(2) Area On The y axis

(1) Make x the subject
i.e. x = g(y)

y
y = f(x)
(b,d)

(2) Substitute the y coordinates
d

3 A   g  y dy
c

(a,c)
16

A   y dy

x

1

e.g.

yx

y

x y

1

2

x

1
4

4
1
4

5 16
4

4 
 y 
5  1
(2) Area On The y axis

(1) Make x the subject
i.e. x = g(y)

y
y = f(x)
(b,d)

(2) Substitute the y coordinates
d

3 A   g  y dy
c

(a,c)
16

A   y dy

x

1

e.g.

yx

y

x y

1
4

4
1
4

5 16
4

4 
 y 
5  1

5
5
4 4 4
 16  1 
5


1

2

x

124
units 2

5
(3) Area Between Two Curves

y

x
(3) Area Between Two Curves

y

y = f(x)…(1)

x
(3) Area Between Two Curves

y

y = g(x)…(2)

y = f(x)…(1)

x
(3) Area Between Two Curves

y

y = g(x)…(2)

a

b

y = f(x)…(1)

x
(3) Area Between Two Curves

y

y = g(x)…(2)

a

b

y = f(x)…(1)

x

Area = Area under (1) – Area under (2)
(3) Area Between Two Curves

y

y = g(x)…(2)

a

b

y = f(x)…(1)

x

Area = Area under (1) – Area under (2)
b

b

a

a

  f  x dx   g  x dx
(3) Area Between Two Curves

y

y = g(x)…(2)

a

b

y = f(x)…(1)

x

Area = Area under (1) – Area under (2)
b

b

a
b

a

  f  x dx   g  x dx
   f  x   g  x dx
a
e.g. Find the area enclosed between the curves y  x 5 and y  x
in the positive quadrant.
e.g. Find the area enclosed between the curves y  x 5 and y  x
in the positive quadrant.
y

y  x5

yx

x
e.g. Find the area enclosed between the curves y  x 5 and y  x
in the positive quadrant.
y

y  x5

x x
5

yx

x
e.g. Find the area enclosed between the curves y  x 5 and y  x
in the positive quadrant.
y

y  x5

x x
x5  x  0
5

yx

x

xx 4  1  0
x  0 or x  1
e.g. Find the area enclosed between the curves y  x 5 and y  x
in the positive quadrant.
y

y  x5

yx

A   x  x 5 dx
1

x x
x5  x  0
5

x

xx 4  1  0
x  0 or x  1

0
e.g. Find the area enclosed between the curves y  x 5 and y  x
in the positive quadrant.
y

y  x5

yx

A   x  x 5 dx
1

x x
x5  x  0
5

x

xx 4  1  0
x  0 or x  1

0

1

1 2 1 6 
 x  x 
6 0
2
e.g. Find the area enclosed between the curves y  x 5 and y  x
in the positive quadrant.
y

y  x5

yx

A   x  x 5 dx
1

x x
x5  x  0
5

x

xx 4  1  0
x  0 or x  1

0

1

1 2 1 6 
 x  x 
6 0
2
1 1 2  1 1 6   0
  

6
2

1
 unit 2
3
2002 HSC Question 4d)

The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
2002 HSC Question 4d)

The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A

(2)
2002 HSC Question 4d)

The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A
To find points of intersection, solve simultaneously

(2)
2002 HSC Question 4d)

The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A
To find points of intersection, solve simultaneously
x  4  x2  4x

(2)
2002 HSC Question 4d)

The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A
To find points of intersection, solve simultaneously
x  4  x2  4x
x2  5x  4  0

(2)
2002 HSC Question 4d)

The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A
To find points of intersection, solve simultaneously
x  4  x2  4x
x2  5x  4  0
 x  4  x  1  0

(2)
2002 HSC Question 4d)

The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A
To find points of intersection, solve simultaneously
x  4  x2  4x
x2  5x  4  0
 x  4  x  1  0

x  1 or x  4

(2)
2002 HSC Question 4d)

The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
(i) Find the coordinates of A

To find points of intersection, solve simultaneously
x  4  x2  4x
x2  5x  4  0
 x  4  x  1  0
x  1 or x  4
 A is (1, 3)

(2)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and

y  x  4.

(3)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and

y  x  4.

4

A    x  4   x 2  4 x  dx
1

(3)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and

y  x  4.

4

A    x  4   x 2  4 x  dx
1
4

    x 2  5 x  4 dx
1

(3)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and

y  x  4.

4

A    x  4   x 2  4 x  dx
1
4

    x 2  5 x  4 dx
1

4

  1 x3  5 x 2  4 x 

1
2
 3


(3)
(ii) Find the area of the shaded region bounded by y  x 2  4 x and

y  x  4.

(3)

4

A    x  4   x 2  4 x  dx
1
4

    x 2  5 x  4 dx
1

4

  1 x3  5 x 2  4 x 

1
2
 3

1 3 5 2
1 3 5 2
   4    4   4  4    1  1  4 1
3
2
3
2




(ii) Find the area of the shaded region bounded by y  x 2  4 x and
y  x  4.
4
A    x  4   x 2  4 x  dx

(3)

1
4

    x 2  5 x  4 dx
1

4

  1 x3  5 x 2  4 x 

1
2
 3

1 3 5 2
1 3 5 2
   4    4   4  4    1  1  4 1
3
2
3
2





9
units 2
2


2005 HSC Question 8b)

(3)

The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
2005 HSC Question 8b)

(3)

The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
Note: area must be broken up into two areas, due to the different
boundaries.
2005 HSC Question 8b)

(3)

The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
Note: area must be broken up into two areas, due to the different
boundaries.
2005 HSC Question 8b)

(3)

The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
Note: area must be broken up into two areas, due to the different
boundaries.
Area between circle and parabola
2005 HSC Question 8b)

(3)

The shaded region in the diagram is bounded by the circle of radius 2
centred at the origin, the parabola y  x 2  3 x  2 , and the x axis.
By considering the difference of two areas, find the area of the shaded
region.
Note: area must be broken up into two areas, due to the different
boundaries.
Area between circle and parabola and area between circle and x axis
It is easier to subtract the area under the parabola from the quadrant.
It is easier to subtract the area under the parabola from the quadrant.
1
1
2
A    2     x 2  3 x  2 dx
4
0
It is easier to subtract the area under the parabola from the quadrant.
1
1
2
A    2     x 2  3 x  2 dx
4
0
1
 1 x3  3 x 2  2 x 
 
0
2
3

It is easier to subtract the area under the parabola from the quadrant.
1
1
2
A    2     x 2  3 x  2 dx
4
0
1
 1 x3  3 x 2  2 x 
 
0
2
3

1 3 3 2
   1  1  2 1  0
3
2




It is easier to subtract the area under the parabola from the quadrant.
1
1
2
A    2     x 2  3 x  2 dx
4
0
1
 1 x3  3 x 2  2 x 
 
0
2
3

1 3 3 2
   1  1  2 1  0
3
2
   5  units 2


6





Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18*

Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*

More Related Content

What's hot

CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCarlon Baird
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookRushane Barnes
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltossialalsi
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiationJaydevVadachhak
 
Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Sunaina Rawat
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)sanjay gupta
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add mathsSasi Villa
 
Orthogonal Range Searching
Orthogonal Range SearchingOrthogonal Range Searching
Orthogonal Range SearchingBenjamin Sach
 
F4 02 Quadratic Expressions And
F4 02 Quadratic Expressions AndF4 02 Quadratic Expressions And
F4 02 Quadratic Expressions Andguestcc333c
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
Pc12 sol c04_4-3
Pc12 sol c04_4-3Pc12 sol c04_4-3
Pc12 sol c04_4-3Garden City
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 

What's hot (20)

CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
Unit 7 Review A
Unit 7 Review AUnit 7 Review A
Unit 7 Review A
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Tricky log graphs
Tricky log graphsTricky log graphs
Tricky log graphs
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
Function graphs
Function graphsFunction graphs
Function graphs
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
 
Orthogonal Range Searching
Orthogonal Range SearchingOrthogonal Range Searching
Orthogonal Range Searching
 
F4 02 Quadratic Expressions And
F4 02 Quadratic Expressions AndF4 02 Quadratic Expressions And
F4 02 Quadratic Expressions And
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
Class 12 practice paper
Class 12 practice paperClass 12 practice paper
Class 12 practice paper
 
Pc12 sol c04_4-3
Pc12 sol c04_4-3Pc12 sol c04_4-3
Pc12 sol c04_4-3
 
Modul 1 functions
Modul 1 functionsModul 1 functions
Modul 1 functions
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 

Similar to 11 x1 t16 04 areas (2013)

11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practicetschmucker
 
Higher formal homeworks unit 1
Higher formal homeworks   unit 1Higher formal homeworks   unit 1
Higher formal homeworks unit 1sjamaths
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsNigel Simmons
 
Ejercicios radhames ultima unidad
Ejercicios radhames ultima unidadEjercicios radhames ultima unidad
Ejercicios radhames ultima unidadyusmelycardoza
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
Pc12 sol c04_review
Pc12 sol c04_reviewPc12 sol c04_review
Pc12 sol c04_reviewGarden City
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1Garden City
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
 
1603 plane sections of real and complex tori
1603 plane sections of real and complex tori1603 plane sections of real and complex tori
1603 plane sections of real and complex toriDr Fereidoun Dejahang
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2Laurie Smith
 

Similar to 11 x1 t16 04 areas (2013) (20)

11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practice
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Higher formal homeworks unit 1
Higher formal homeworks   unit 1Higher formal homeworks   unit 1
Higher formal homeworks unit 1
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical Shells
 
Ejercicios radhames ultima unidad
Ejercicios radhames ultima unidadEjercicios radhames ultima unidad
Ejercicios radhames ultima unidad
 
Calc 7.2b
Calc 7.2bCalc 7.2b
Calc 7.2b
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
Pc12 sol c04_review
Pc12 sol c04_reviewPc12 sol c04_review
Pc12 sol c04_review
 
Review
ReviewReview
Review
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 
Ejercicios victor
Ejercicios victorEjercicios victor
Ejercicios victor
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
1603 plane sections of real and complex tori
1603 plane sections of real and complex tori1603 plane sections of real and complex tori
1603 plane sections of real and complex tori
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2
 
Μαθηματικά Γ Λυκείου - Ν. Ράπτης
Μαθηματικά Γ Λυκείου - Ν. ΡάπτηςΜαθηματικά Γ Λυκείου - Ν. Ράπτης
Μαθηματικά Γ Λυκείου - Ν. Ράπτης
 
Areas under curve
Areas under curveAreas under curve
Areas under curve
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 

Recently uploaded

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsRommel Regala
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEaurabinda banchhor
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 

Recently uploaded (20)

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World Politics
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSE
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 

11 x1 t16 04 areas (2013)

  • 1. (1) Area Below x axis y Areas y = f(x) x
  • 2. Areas (1) Area Below x axis y y = f(x) A1 a b x
  • 3. Areas (1) Area Below x axis y y = f(x) A1 a  f  x dx  0 b a b x
  • 4. Areas (1) Area Below x axis y y = f(x) A1 a  f  x dx  0 b a  A1   f  x dx b a b x
  • 5. Areas (1) Area Below x axis y y = f(x) A1 a  f  x dx  0 b a  A1   f  x dx b a b A2 c x
  • 6. Areas (1) Area Below x axis y y = f(x) A1 a  b a f  x dx  0  A1   f  x dx b a b A2 c x  f  x dx  0 c b
  • 7. Areas (1) Area Below x axis y y = f(x) A1 a  b a f  x dx  0  A1   f  x dx b a b A2 c x  f  x dx  0 c b  A2    f  x dx c b
  • 8. Area below x axis is given by;
  • 9. Area below x axis is given by; A    f  x dx c b
  • 10. Area below x axis is given by; A    f  x dx c b OR   f  x dx c b
  • 11. Area below x axis is given by; A    f  x dx c b OR   f  x dx c b OR   f  x dx b c
  • 12. e.g. (i) y  x3 y -1 1 x
  • 13. e.g. (i) y  x3 y 0 1 -1 1 x 1 A    x dx   x 3 dx 3 0
  • 14. e.g. (i) y  x3 y 0 1 A    x dx   x 3 dx 1 3 0 1 40 1 41   x 1  x 0 4 4 -1 1 x
  • 15. e.g. (i) y  x3 y 0 1 -1 1 x 1 A    x dx   x 3 dx 3 0 1 40 1 41   x 1  x 0 4 4 1 1 4 1   0   1   4  0 4 4 1 1   4 4 1  units 2 2  
  • 16. e.g. (i) y  x3 y 0 1 -1 1 x OR using symmetry of odd function 1 A    x dx   x 3 dx 3 0 1 40 1 41   x 1  x 0 4 4 1 1 4 1   0   1   4  0 4 4 1 1   4 4 1  units 2 2  
  • 17. e.g. (i) y  x3 y 0 1 -1 1 x OR using symmetry of odd function 1 A  2  x 3 dx 0 1 A    x dx   x 3 dx 3 0 1 40 1 41   x 1  x 0 4 4 1 1 4 1   0   1   4  0 4 4 1 1   4 4 1  units 2 2  
  • 18. e.g. (i) y  x3 y 0 1 -1 1 x OR using symmetry of odd function 1 A  2  x 3 dx 0 1 41  x 0 2 1 A    x dx   x 3 dx 3 0 1 40 1 41   x 1  x 0 4 4 1 1 4 1   0   1   4  0 4 4 1 1   4 4 1  units 2 2  
  • 19. e.g. (i) y  x3 y 0 1 -1 1 x OR using symmetry of odd function 1 A  2  x 3 dx 0 1 41  x 0 2 1   4  0 1 2 1  units 2 2 1 A    x dx   x 3 dx 3 0 1 40 1 41   x 1  x 0 4 4 1 1 4 1   0   1   4  0 4 4 1 1   4 4 1  units 2 2  
  • 20. (ii) y -2 -1 y  x x  1 x  2  x
  • 21. (ii) y -2 y  x x  1 x  2  x -1 A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 2 3 2 0 1
  • 22. (ii) y  x x  1 x  2  y -2 x -1 A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 3 0 2 1 2 1 1 1 x 4  x3  x 2   1 x 4  x3  x 2    2  4 0 4   
  • 23. (ii) y  x x  1 x  2  y -2 x -1 A   x  3 x  2 x dx   x 3  3 x 2  2 x dx 1 3 0 2 1 2 1 1 1 x 4  x3  x 2   1 x 4  x3  x 2    2  4 0 4    1 4 3 2  1 4 3 2  2  1   1   1     2    2    2    0    4 4 1  units 2 2
  • 24. (2) Area On The y axis y y = f(x) (b,d) (a,c) x
  • 25. (2) Area On The y axis (1) Make x the subject i.e. x = g(y) y y = f(x) (b,d) (a,c) x
  • 26. (2) Area On The y axis (1) Make x the subject i.e. x = g(y) y y = f(x) (b,d) (2) Substitute the y coordinates (a,c) x
  • 27. (2) Area On The y axis (1) Make x the subject i.e. x = g(y) y y = f(x) (b,d) (2) Substitute the y coordinates d 3 A   g  y dy c (a,c) x
  • 28. (2) Area On The y axis (1) Make x the subject i.e. x = g(y) y y = f(x) (b,d) (2) Substitute the y coordinates d 3 A   g  y dy c (a,c) x e.g. y  x4 y 1 2 x
  • 29. (2) Area On The y axis (1) Make x the subject i.e. x = g(y) y y = f(x) (b,d) (2) Substitute the y coordinates d 3 A   g  y dy c (a,c) x e.g. y  x4 y x y 1 2 x 1 4
  • 30. (2) Area On The y axis (1) Make x the subject i.e. x = g(y) y y = f(x) (b,d) (2) Substitute the y coordinates d 3 A   g  y dy c (a,c) 16 A   y dy x 1 e.g. y  x4 y x y 1 2 x 1 4 1 4
  • 31. (2) Area On The y axis (1) Make x the subject i.e. x = g(y) y y = f(x) (b,d) (2) Substitute the y coordinates d 3 A   g  y dy c (a,c) 16 A   y dy x 1 e.g. yx y x y 1 2 x 1 4 4 1 4 5 16 4 4   y  5  1
  • 32. (2) Area On The y axis (1) Make x the subject i.e. x = g(y) y y = f(x) (b,d) (2) Substitute the y coordinates d 3 A   g  y dy c (a,c) 16 A   y dy x 1 e.g. yx y x y 1 4 4 1 4 5 16 4 4   y  5  1 5 5 4 4 4  16  1  5  1 2 x 124 units 2  5
  • 33. (3) Area Between Two Curves y x
  • 34. (3) Area Between Two Curves y y = f(x)…(1) x
  • 35. (3) Area Between Two Curves y y = g(x)…(2) y = f(x)…(1) x
  • 36. (3) Area Between Two Curves y y = g(x)…(2) a b y = f(x)…(1) x
  • 37. (3) Area Between Two Curves y y = g(x)…(2) a b y = f(x)…(1) x Area = Area under (1) – Area under (2)
  • 38. (3) Area Between Two Curves y y = g(x)…(2) a b y = f(x)…(1) x Area = Area under (1) – Area under (2) b b a a   f  x dx   g  x dx
  • 39. (3) Area Between Two Curves y y = g(x)…(2) a b y = f(x)…(1) x Area = Area under (1) – Area under (2) b b a b a   f  x dx   g  x dx    f  x   g  x dx a
  • 40. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant.
  • 41. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx x
  • 42. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 x x 5 yx x
  • 43. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 x x x5  x  0 5 yx x xx 4  1  0 x  0 or x  1
  • 44. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x x x5  x  0 5 x xx 4  1  0 x  0 or x  1 0
  • 45. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x x x5  x  0 5 x xx 4  1  0 x  0 or x  1 0 1 1 2 1 6   x  x  6 0 2
  • 46. e.g. Find the area enclosed between the curves y  x 5 and y  x in the positive quadrant. y y  x5 yx A   x  x 5 dx 1 x x x5  x  0 5 x xx 4  1  0 x  0 or x  1 0 1 1 2 1 6   x  x  6 0 2 1 1 2  1 1 6   0     6 2  1  unit 2 3
  • 47. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A.
  • 48. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A (2)
  • 49. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A To find points of intersection, solve simultaneously (2)
  • 50. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A To find points of intersection, solve simultaneously x  4  x2  4x (2)
  • 51. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0 (2)
  • 52. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 (2)
  • 53. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4 (2)
  • 54. 2002 HSC Question 4d) The graphs of y  x  4 and y  x 2  4 x intersect at the points  4,0  A. (i) Find the coordinates of A To find points of intersection, solve simultaneously x  4  x2  4x x2  5x  4  0  x  4  x  1  0 x  1 or x  4  A is (1, 3) (2)
  • 55. (ii) Find the area of the shaded region bounded by y  x 2  4 x and y  x  4. (3)
  • 56. (ii) Find the area of the shaded region bounded by y  x 2  4 x and y  x  4. 4 A    x  4   x 2  4 x  dx 1 (3)
  • 57. (ii) Find the area of the shaded region bounded by y  x 2  4 x and y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 (3)
  • 58. (ii) Find the area of the shaded region bounded by y  x 2  4 x and y  x  4. 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   1 2  3  (3)
  • 59. (ii) Find the area of the shaded region bounded by y  x 2  4 x and y  x  4. (3) 4 A    x  4   x 2  4 x  dx 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   1 2  3  1 3 5 2 1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2  
  • 60. (ii) Find the area of the shaded region bounded by y  x 2  4 x and y  x  4. 4 A    x  4   x 2  4 x  dx (3) 1 4     x 2  5 x  4 dx 1 4   1 x3  5 x 2  4 x   1 2  3  1 3 5 2 1 3 5 2    4    4   4  4    1  1  4 1 3 2 3 2   9 units 2 2 
  • 61. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region.
  • 62. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 63. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries.
  • 64. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola
  • 65. 2005 HSC Question 8b) (3) The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola y  x 2  3 x  2 , and the x axis. By considering the difference of two areas, find the area of the shaded region. Note: area must be broken up into two areas, due to the different boundaries. Area between circle and parabola and area between circle and x axis
  • 66.
  • 67. It is easier to subtract the area under the parabola from the quadrant.
  • 68. It is easier to subtract the area under the parabola from the quadrant. 1 1 2 A    2     x 2  3 x  2 dx 4 0
  • 69. It is easier to subtract the area under the parabola from the quadrant. 1 1 2 A    2     x 2  3 x  2 dx 4 0 1  1 x3  3 x 2  2 x    0 2 3 
  • 70. It is easier to subtract the area under the parabola from the quadrant. 1 1 2 A    2     x 2  3 x  2 dx 4 0 1  1 x3  3 x 2  2 x    0 2 3  1 3 3 2    1  1  2 1  0 3 2  
  • 71. It is easier to subtract the area under the parabola from the quadrant. 1 1 2 A    2     x 2  3 x  2 dx 4 0 1  1 x3  3 x 2  2 x    0 2 3  1 3 3 2    1  1  2 1  0 3 2    5  units 2   6   
  • 72. Exercise 11E; 2bceh, 3bd, 4bd, 5bd, 7begj, 8d, 9a, 11, 18* Exercise 11F; 1bdeh, 4bd, 7d, 10, 11b, 13, 15*