SlideShare uma empresa Scribd logo
1 de 82
Baixar para ler offline
International Summer School on Surfaces and Interfaces in Correlated Oxiides, Vancouver, 29 Aug – 01 Sep 2011



                                                                                   FOR


                                                                                           1346


Photoelectron spectroscopy of functional oxides:
Heterostructures and buried interfaces
Ralph Claessen (U Würzburg, Germany)


• Photoelectron spectroscopy (PES)

• PES theory in a nutshell

• PES with hard x-rays (HAXPES)

• HAXPES of oxide heterostructures
Heterostructures of functional oxides
3d transition metal oxides
strong coupling between charge/orbital/spin/lattice
degrees of freedom lead to:
   - metal-insulator transitions
   - charge and orbital ordering
   - local magnetism (ferro, antiferro,…)
   - high-temperature superconductivity
   - collossal magnetoresistance
   -…

Epitaxial heterostructures by MBE, PLD
controlled interfaces, additional functionalities:
  - strain engineering
  - interfacial 2dim electron gas (2DEG)
  - electrostatic doping (by polarity or field effect)
  - artificial multiferroics
  - spin injection
  -…
Oxide heterostructures




                     "The interface is the device"
                   (H. Kroemer, Nobel lecture 2000)

                         Want information on:
                           • chemical composition
                           • electronic structure
                           • vertical depth profile

                         photoelectron spectroscopy (PES)
                          with soft and hard x-rays
Photoelectron spectroscopy (PES)
Photoelectron spectroscopy (PES)



                  spectrum




                                 hν
sample

                                                             Ekin



                                      Ekin = hν – EB - Φ0
                                      measure kinetic energy
                                      distribution of photoelectrons
Photoelectron spectroscopy (PES)



                  spectrum




sample                        Chemistry (core levels):
                              → composition
                              → chemical bonding
                              → valencies

                              Electronic structure (valence band):
                              → density of states
                              → band structure
                              → Fermi surface
                              → spectral function A<(k,E)
Core level spectroscopy: ESCA

Electron Spectroscopy for Chemical Analysis


                                     Bi2Sr2CaCu2O8+δ
                                                                                                                    Bi 4f5/2        Bi 4f7/2




                                                                                 Intensity [a.u.]
                                           O 1s

                                                                 Bi 4f
 Intensity [a.u.]




                                                  Bi 4d
                                                          C 1s                                                    1310     1320     1330        1340
                                                                                                                         Kinetic Energy [eV]


                                                      Ca 2p
                          •Cu 2p                                     Sr 3d                                                        Fermi level




                                                                                              Intensity [a.u.]
                          •CuO
                                                                         Bi 5d


                          hν = 1486.6 eV [Al - Kα]
                                                                                                                 1470      1480        1490        1500
                    400      600     800    1000 1200 1400                                                                Kinetic Energy [eV]

                                   Kinetic Energy [eV]
                                                                                                                               courtesy of A.F. Santander-Syro
Core level spectroscopy: Chemical shift and valency

Example: alkali metal doping of TiOCl


                                                              Ti2p 3/2 (+ Na)    Na1s
                                                      3+
                                                  Ti                2+
                                                                   Ti


Na




                                 doping x (%)
                                                                                                            37%
                                                                                                            32%
                                                                                                            23%
                                                                                                            15%
                                                                                                            10%
                                                                                                             4%
      valence change:
      Ti3+(3d1)  Ti2+(3d2)                     462    460   458   456   454    1080   1075   1070   1065

                                                 binding energy (eV)              binding energy (eV)



                                                                                         PRL 106, 056403 (2011)
Valence band spectroscopy



            k-integrated spectrum
 TiOCl




                             Ti 3d

         O 2p / Cl 3p




                                     PRB 72, 125127 (2005)
Valence band spectroscopy: ARPES

Angle-Resolved PhotoElectron Spectroscopy
 band structure and Fermi surface
 emission angle (i.e. momentum)




                                           energy
                                                                     courtesy T. Deveraux/A. Damascelli
PES instrumentation
• rare gas discharge lamp (<40.2 eV)
                                           • hemispherical anylzer
• x-ray tube (1.256 and 1.486 keV)
                                           • time of flight (TOF) analyzer)
• synchrotron radiation (10 eV … 10 keV)




                                                typically 10-10 mbar

                                                                       Wikipedia
PES theory in a nutshell:
1) Independent electron approximation
PES theory: Independent electrons

Time-dependent perturbation theory

Unperturbed electron system:
one-electron states ψ with energy E
Perturbation:                                                i ( k ⋅r −2πνt )
                                                                    
classical radiation field with vector potential   A(r , t ) = A0e

 Fermi´s Golden Rule
  for the photoinduced transition rate from initial to final states:
                          ik ⋅r 
                                   2
   wi → f ∝ ψ f          A0e ⋅ p ψ i δ ( E f − Ei − hν )

   Hence, the total photoelectron current is:
    I PES (ε ) ∝ ∑ wi → f δ (ε − E f )
                  i, f
PES theory: Independent electrons

                       ik ⋅r 
                                2
  wi → f ∝ ψ f        A0e ⋅ p ψ i δ ( E f − Ei − hν )

final state:                                         energy conservation
inverted LEED state                   initial state:
(eigenstate of semi-infinite crystal) Bloch wave or core level
PES theory: Independent electrons

                        ik ⋅r 
                                 2
  wi → f ∝ ψ f         A0e ⋅ p ψ i δ ( E f − Ei − hν )

final state: high-energy Bloch state of infinite crystal,
inverted LEED stateand 3 incoherently decoupled
             steps 2
(eigenstate of semi-infinite crystal)

 One-step model                               Three-step model




                                                                      courtesy
                                                                 A. Damascelli
PES theory: Independent electrons

                   ik ⋅r 
                            2
wi → f ∝ ψ f      A0e ⋅ p ψ i δ ( E f − Ei − hν )

                  transition matrix element

If the radiadion field is only weakly modulated on 
             
                                                   atomic length scales,
(i.e. λ = 2π k >> few Å), the photon momentum k can be neglected in
the transition matrix element:
     ik ⋅r 
                                
  f A0e ⋅ p i ≈ f A0 ⋅ p i ∝ A0 ⋅ f er i

Examples:
                                              Dipole approximation
hν = 20 eV  λ ≈ 600 Å
hν = 2000 eV  λ ≈ 6 Å
PES theory: Independent electrons

Dipole approximation and k-selection rule for Bloch states




                                  momentum conservation:      only"vertical"
                                           
                                    k f = ki + G + k photon   transitions

                                            ARPES
Transition metal oxides: electronic correlations

oxides of the 3d transition metals: M = Ti, V, … ,Ni, Cu
                                                                                             O2-
basic building blocks: MO6 octahedra (or other ligand shells)

electronic configuration: O 2s2p6 = [Ne]
                                                                                             TMX+
                                      TM   3dn
                                                    quasi-atomic,
                                                    strongly localized
                                                     strong intraatomic Coulomb interaction
                                                        and breakdown of independent electron approx.




cubic perovskites   perovskite-like        anatas              rutile         spinel
PES theory in a nutshell:
 2) Many-body picture
Many-body effects in photoemission

     N interacting electrons:

                                     Ekin
hν
                                    Photoemission process:
                                    sudden removal of an electron from
                                    N-particle system

                                    "loss" of kinetic energy due to
                                    interaction-related excitation energy
                                    stored in the remaining N-1 electron
                                    system !
Reinterpretation of Fermi´s Golden Rule

Fermi´s Golden Rule for N-particle states:
                                     2
I (ε ) ∝ ∑ Ψ f , s      ∆ Ψi ,0 δ ( E N , s − E N ,0 − hν )
                        ˆ
               s

with
Ψi ,0 = N ,0                      N-electron ground state of energy EN, 0 ("initial state")
               
Ψ f ,s       = k , N − 1, s       N-electron excited state of energy EN, s, ("final state")
                                  consisting of N-1 electrons in the solid and
                                                                        
                                  a free photoelectron of momentum k and
                                  energy ε
        
         N
ˆ = ∑ A(ri ) ⋅ pi = M if c + ci
∆                          f
                                           in second quantization with suitable one-
       i =1                                electron basis


                              one-particle matrix element
Electron removal spectrum

Fermi´s Golden Rule for N-particle states:
                               2
I (ε ) ∝ ∑ Ψ f , s   ∆ Ψi ,0 δ ( E N , s − E N ,0 − hν )
                     ˆ
          s



                               a little bit of math
                               and a few plausible assumptions
                               (sudden approximation)




The ARPES signal I (ε ) is directly proportional to the
                                   <            1
single-particle spectral function A (ω ) = −        Im G (ω ) × f (ω )
                                               π

       probability of removing an electron
                                                        single-particle
       at energy ω from the system
                                                        Green´s function
Example: PES of the Mott insulator TiOCl

                                                  spectral function A<(ω) (DMFT)

TiOCl




                         Ti 3d1

         O 2p / Cl 3p




                          d1 → d0       d1 → d2
                          LHB           UHB


                                    U

                                    µ               ω
Photoemission probing depth:
   soft and hard x-ray PES
Inelastic scattering of the photoelectron

                                    Step 2: photoelectron transport to the surface
                                     inelastic scattering with other electrons
         Three-step model
                                      (excitation of e-h-pairs, plasmons)




                                    •    generation of secondary electrons
                                         ("inelastic background")

                                     intensity                  intrinsic spectrum
                                                                incl. background



                                                                       Ekin

courtesy
A. Damascelli
Inelastic scattering of the photoelectron

                                    Step 2: photoelectron transport to the surface
                                     inelastic scattering with other electrons
         Three-step model
                                      (excitation of e-h-pairs, plasmons)




                                    •   generation of secondary electrons
                                        ("inelastic background")
                                    •   loss of unscattered photoelectron current
                                        ⇒ inelastic mean free path λ




courtesy
A. Damascelli
Photoemission probing depth



         λ(Ekin) "universal curve"                       hν
                                                                   Ekin



                                                      λ(Ekin)




                                             hard x-ray PES = HAXPES
                                              soft x-ray PES (SX-PES)
"conventional" VUV/XUV-PES:
surface sensitive on                  probing depth (3λ) up to >10 nm
atomic length scale !                 access to bulk, buried nanostructures, and
                                       interfaces
                                      depth profiling of thin films
Transition metal oxides: Instability of polar surfaces
                                                                                   O2-
Transition metal (TM) oxides form lattice of ionic charges

                                                                                     TMX+
 Classification of surfaces (Tasker):
  - surface charge Q
                               
  - electrical dipole moment µ in repeat unit



            Q=0                     Q≠0                            Q≠0
                        
                        µ =0                      
                                                  µ =0                                
                                                                                     µ≠0




       TMX+       O2-

                                                         P. W. Tasker, J. Phys. C 12, 4977 (1979)
Transition metal oxides: Instability of polar surfaces
                                                                            O2-
     type 3 surfaces are energetically unfavorable:

                                                                             TMX+

                        charge      field   potential
-σ
+σ                                                      "polarization catastrophe"
-σ
+σ                                                      will be avoided by
                                                        atomic/ionic/electronic
                                                        surface reconstruction
                                                        ⇒ surface ≠ bulk
Transition metal oxides: Instability of polar surfaces
                                          different reconstructions
Example: Fe3O4 (magnetite)
                                          of the (111) surface (STM)




                       8.2 Å




                                                            PRB 76, 075412 (2007)
Transition metal oxides: Instability of polar surfaces

Example: Fe3O4 (magnetite)


           VUV-PES                 Soft X-ray PES
       surface-sensitive       probing depth 2x larger




                                                          EPL 70, 789 (2005)
Surface effects in Mott-Hubbard-type oxides

                                    U
                                                  spectral function (DMFT for n=1)



   t


                                            U/t
 kinetic energy,
   itinerancy


H = −t
ˆ         ∑ σ
           ci+ c jσ + U ∑ ni ↓ ni ↑
         i , j ,σ                   i


                    local Coulomb energy,
                          localization
Surface effects in Mott-Hubbard-type oxides

      Example: CaVO3
                                                       spectral function (DMFT for n=1)


                                 quasiparticle
                       surface      peak

                       "bulk"
                                                 U/t




                  lower
                  Hubbard band




A. Sekiyama et al., PRL 2004
Surface effects in Mott-Hubbard-type oxides

      Example: CaVO3


                                 quasiparticle
                       surface      peak

                       "bulk"




                                                 reduced atomic coordination @ surface:
                  lower
                  Hubbard band
                                                  stronger electron localization
                                                  smaller effective bandwidth
                                                    Wsurf < Wbulk
                                                  surface stronger correlated:
                                                   U / Wsurf >U / Wbulk

A. Sekiyama et al., PRL 2004
Photoemission probing depth



         λ(Ekin) "universal curve"                       hν
                                                                   Ekin



                                                      λ(Ekin)




                                             hard x-ray PES = HAXPES
                                              soft x-ray PES (SX-PES)
"conventional" VUV/XUV-PES:
surface sensitive on                  probing depth (3λ) up to >10 nm
atomic length scale !                 access to bulk, buried nanostructures, and
                                       interfaces
                                      depth profiling of thin films
HAXPES: drawbacks and caveats

Non-negligible photon momentum       hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1
HAXPES: drawbacks and caveats

Non-negligible photon momentum                        hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1


• suppression of direct (k-conserving) transitions
                                                               (
  Debye-Waller factor for direct transitions Wdir = exp − αk photT M atom
                                                             2
                                                                                    )




                   ARPES of W(110) @ hν = 870 eV
                   Plucinski et al., PRB 78, 035108 (2008)
HAXPES: drawbacks and caveats

Non-negligible photon momentum                hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1


• suppression of direct (k-conserving) transitions
• atomic recoil effect
  photon-absorbing atom takes up recoil energy
  Ekin =  2 k phot 2 M at the expense of
               2

  photoelectron energy,
  depending on atom mass and lattice stiffness




                                                      Y. Takata et al., PRB 75, 233404 (2007)
HAXPES: drawbacks and caveats

Non-negligible photon momentum                hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1


• suppression of direct (k-conserving) transitions
• atomic recoil effect
• quadrupolar contribution to transition matrix element
                              
                                   (          )
       ik ⋅r 
                  
    f A0e ⋅ p i ≈ f A0 1 + ik ⋅ r ⋅ p i
HAXPES: drawbacks and caveats

Non-negligible photon momentum                hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1


• suppression of direct (k-conserving) transitions
• atomic recoil effect
• quadrupolar contribution to transition matrix element


Low photoemission signal


• cross section for photoemission σ ∝ (hν )
                                            −3

                                      −1
• electron analyzer transmission t ∝ Ekin


 need bright x-ray source…
HAXPES set-up @ PETRA III (DESY, Hamburg)



                                        X-rays from
                                         PETRA III

                                          "High-resolution hard x-ray
                                          photoemission for materials
                                          science" (BMBF)
                                          • joint project with C. Felser (U
                                            Mainz) and W. Drube (DESY)
                                          • photon energy: 2.5…15 keV
                                          • energy resolution: 30 meV
other HAXPES instruments worldwide:
                                          • linearly/circularly polarized x-
- Spring-8, Japan (>4)
- BESSY, Germany (HIKE)                     ray radiation
- ESRF, France (ID-9)                     • commissioned in 2010
- Soleil, France (under construction)     • user operation since 2011
- Diamond, UK (under construction)
HAXPES of oxide heterostructures:
        (1) Fe3O4/GaAs
Epitaxial growth of Fe3O4/GaAs
                                                               PRB 79, 233101 (2009)




surface                                   Datta-Das spin transistor

Fe3O4




 GaAs



                                                              semiconductor with
          semimetallic ferromagnet
                                                              large spin diffusion
          (100% spin polarization @ EF)
                                                              length
          resistively matched to semiconductor


           Fe3O4 (magnetite), (RE,Sr)MnO3, CrO2, Heusler compounds, …
Epitaxial growth of Fe3O4/GaAs
                                                   PRB 79, 233101 (2009)




surface
              MBE growth of thin magnetite film:
Fe3O4
              • epitaxial Fe deposition @ RT
              • postoxidation @ 600 - 800K / p(O2) = 10-5 mbar
                (10-30 min)
 GaAs

               Fe valency?
               mixed-valent Fe3O4 vs. (Fe2+ )O and (Fe 3+)2O3 ?
               chemical depth profile ?
Valence signatures in Fe 2p spectrum



  Fe2O3

  Fe3O4
                                                                       Fe3+
  FeO                                                                  Fe2+/Fe3+

                         charge transfer satellites
                                                                       Fe2+
  Fe
                                       2p1/2           2p3/2
                                                                       Fe0
700    705   710   715     720   725     730    735   740      745   750

                         binding energy (eV)
Depth profiling of Fe3O4/GaAs
                                        PRB 79, 233101 (2009)


                      Fe 2p spectra
surface

Fe3O4




 GaAs                                 interface




                                      surface
Depth profiling of Fe3O4/GaAs

Tuning the information depth by variation of

(1) photon energy, or                              (2) photoelectron escape angle


                                                                               θ


                                                                                   λeff
  mean free path




                                                          λeff = λIMFP cos θ



                       energy
Depth profiling of Fe3O4/GaAs
                                                   PRB 79, 233101 (2009)


                       Fe 2p spectra
surface

Fe3O4




 GaAs                                            interface




                                                 surface


                  film:        mixed-valent Fe2+/3+
                  interface:   divalent and metallic Fe (O-deficient)
Depth profiling of Fe3O4/GaAs
                                                          PRB 79, 233101 (2009)


                              Fe 2p spectra             As 2p3/2 spectra
      surface

       Fe3O4
       interface
(Fe, FeOx, GaOx, AsOx)

        GaAs




                         film:        mixed-valent Fe2+/3+
                         interface:   divalent and metallic Fe (O-deficient)
                                      oxidized Ga,As
Validation by electron microscopy
                              TEM

                                                              STEM-EELS
      surface

       Fe3O4
       interface
(Fe, FeOx, GaOx, AsOx)

        GaAs




                                J. Verbeeck, H. Tian, and G. van Tendeloo, U Antwerp
Fe3O4/ZnO: An all-oxide structure
                                                                  APL 98, 012512 2011
            film grown by reactive deposition
Fe3O4
            in O2-atmosphere (∼10-6 mbar)


ZnO
                 HAXPES                                  TEM




                                                also PLD-grown contacts: R. Gross et al.
HAXPES of oxide heterostructures:
(2) Interface 2DEG in LaAlO3/SrTiO3
LAO/STO heterostructures in a nutshell

• epitaxial growth by PLD


                                        LaAlO3
                                       ∆=5.6eV




                                          SrTiO3
                                        ∆=3.2eV




                                        A. Ohtomo et al., Nature 419, 378 (2004)
                                        S. Thiel et al., Science 313, 1942 (2006)
                                        N. Reyren et al., Science 317, 1196 (2007)
LAO/STO heterostructures in a nutshell

• epitaxial growth by PLD
• both oxides: wide gap insulators
• if LaAlO3 film thicker than 3 unit cells (uc) :
 → formation of a high-mobility 2DEG                 LaAlO3
   at the interface                                 ∆=5.6eV

          conductivity
                                                      2DEG


                                                      SrTiO3
                                                    ∆=3.2eV
          sheet carrier density (Hall)




                                                    A. Ohtomo et al., Nature 419, 378 (2004)
                                                    S. Thiel et al., Science 313, 1942 (2006)
                                                    N. Reyren et al., Science 317, 1196 (2007)
LAO/STO heterostructures in a nutshell


properties of the 2DEG:
• tunable conductivity by electric gate field
                                                 LaAlO3
• superconducting below 200 mK                  ∆=5.6eV
• magnetoresistance
                                                  2DEG
• coexistence of s.c and magnetism /
 electronic phase separation
                                                  SrTiO3
                                                ∆=3.2eV
 origin of 2DEG, threshold behavior ?




                                                A. Ohtomo et al., Nature 419, 378 (2004)
                                                S. Thiel et al., Science 313, 1942 (2006)
                                                N. Reyren et al., Science 317, 1196 (2007)
Polar catastrophe and how to avoid it
charge:       -1        AlO2
              +1        LaO
                                                   electrostatic energy increases
              -1        AlO2
              +1        LaO
                                                   linearly with thickness of
              -1        AlO2                       polar film
              +1        LaO
               0        TiO2                        polar catastrophe
               0        SrO
               0        TiO2
               0        SrO


         -1/2            AlO2
           +1            LaO
                                                   charge reconstruction
           -1            AlO2
                                                   electronic or ionic
∆q = -1/2 +1             LaO
           -1            AlO2                      0.5e- per layer unit cell
           +1            LaO
         -1/2
                                                    n2D = 3.5×1014 cm-2
                         TiO2
            0            SrO                       partial Ti 3d occupation
            0            TiO2
            0
                                                    Ti3.5 (d0.5) = Ti3+/Ti4+
                         SrO
Nakagawa et al., Nature Mat. 5, 204 (2006)
HAXPES of LAO/STO heterostructures

                  Ti 2p spectrum

                        Ti4+
                                                                  LaAlO3


                                                                  2DEG



                                   Ti3+                           SrTiO3
          2p1/2            2p3/2




undoped SrTiO3: |3d0>  Ti4+
doped LAO/STO interface: |3d0> + |3d1>  Ti3+/Ti4+
                                                     PRL 102, 176805 (2009)
Dependence on LAO overlayer thickness




                                                         Ti3+
           Ti4+
                       Ti3+




 interface charge density increases with LAO overlayer thickness
 non-zero Ti d1 signal already for 2uc sample (?)

                                                      PRL 102, 176805 (2009)
Depth profiling by angle-resolved HAXPES



                             e-        θ
                                           e-


                                                d




                            2DEG thickness
                            sheet carrier density



                                                PRL 102, 176805 (2009)
Quantitative analysis: 2DEG thickness


                        Sample        2 uc        4 uc        5 uc        6 uc

                        d (uc*)      3±1        1 ± 0.5      6±2          8±2
e-
          θ
                        *lattice constant of STO unit cell (uc) = 3.8 Å
              e-

                                   interface thickness < 3 nm

                   d     consistent with
                         - CT-AFM Basletic et al. (2008)
                         - TEM-EELS Nakagawa et al. (2006)
                         - density functional theory Pentcheva et al. (2009)
                         - 2D superconductivity Reyren et al. (2007)
                         - ellipsometry Dubroka et al. (2010)



                                                             PRL 102, 176805 (2009)
Quantitative analysis: sheet carrier density

Sample            2 uc    4 uc     5 uc     6 uc      el. reconstruction

n2D (1013 cm-2)   2.1      3.9     8.1      11.1             35




                                    n2D << electronic reconstruction value
                                    n2D >> Hall effect data




                                                          PRL 102, 176805 (2009)
RIXS on LAO/STO

                                    RIXS eg-excitation as fct. of # LAO-overlayers



           Ti3+ (3d1)
                    eg
        Ti 3d
 photon             t2g
      in                   photon
                           out



       Ti 2p




PRB 82, 241405(R) (2010)
Sheet carrier density: HAXPES, RIXS & Hall effect


                                                • n2D much smaller than
                                                 expected for purely electronic
                                                 reconstruction (35 x 1013 cm-2)

                                                • n2D higher than Hall effect data

                                                • photo-generated carriers
                                                 cannot fully account for
                                                 observed excess

                                                • remaining excess due to
                                                 additional localized Ti 3d
                                                 electrons?
                                                 (cf. DFT - Popovic et al., PRL 2008)




PRB 82, 241405(R) (2010)
LAO/STO: Valence band spectroscopy with HAXPES




                                                                LaAlO3


                                                                2DEG


                     ~3 eV                                      SrTiO3
    O2p-derived
     vb states




                             Ti 3d electrons should be here,
                             but HAXPES cross-section too small !
                             (theor. estimate: 10-4 of O2p emission)
Band situation from density-functional theory


    STO          LAO

          2DEG
E




                       surface
    CBM
                            EF

    VBM




     core levels




                                 Yu Lin et al., arXiv 0904.1636 (2009)
                                 Pentcheva and Pickett, PRL 102, 107602 (2009)
Band situation from density-functional theory


    STO          LAO

          2DEG
E                                                                  holes




                        surface
                                                                   @ LAO VBM
    CBM            e-                               e-
                             EF

                                                                  interface
    VBM
                                                                   electrons
                                                                   @ STO CBM


     core levels




                                  Yu Lin et al., arXiv 0904.1636 (2009)
                                  Pentcheva and Pickett, PRL 102, 107602 (2009)
Band situation from density-functional theory


    STO          LAO

          2DEG
E                                 E                                         holes




                        surface
                                                                            @ LAO VBM
    CBM            e-                                        e-
                                      EF

    VBM
                                                                            electrons
                                                                            @ STO CBM


     core levels




                                           Yu Lin et al., arXiv 0904.1636 (2009)
                                           Pentcheva and Pickett, PRL 102, 107602 (2009)
Results from HAXPES


    valence band               Al 1s core level




                   ~3 eV




      VBM: ~ 3 eV below EF   same width for all samples!
band theory versus experiment


    STO          LAO

          2DEG
E
                                           STO              LAO




                        surface
    CBM            e-
                                  EF

    VBM




     core levels




                                       also observed by Segal et al.,
                                       PRB 80, 241107(R) (2009)
Valence band offsets

            band alignment
                                        valence band analysis
                   CB

     STO     LAO   VB   STO   LAO

       type I            type II

• VBMLAO above VBMSTO
• type II interface
  (valence band offset: 0.35 ± 0.1eV)
• confirmed by core level analysis
                                                          0.35eV
Band alignment: A possible scenario




DFT band theory:




                          STO            LAO              localized hole states
                                                          induced by surface
                                                          O-vacancies
Photoemission:




                                  interface states (itinerant and localized)
HAXPES of oxide heterostructures:
(3) LaVO3/SrTiO3 – electrostatic doping of a
             Mott a insulator
Electrostatic doping of a Mott insulator

              LAO/STO                                               LVO/STO


 LaAlO3                                   polar       LaVO3
band ins.                                            Mott ins.




                                             …
∆=5.6eV                                              ∆≈1 eV
                                          (AlO2)-     Idea:
                                           (LaO)+     replace Al3+ by
 q2DEG                                     (TiO2)0
                                                       ???
                                                      trivalent transition metal
                                           (SrO)0
                                                       LaVO
                                                      SrTiO3 3
 SrTiO3
band ins.                                    …
                                         non-polar
                                                     band ins.
∆=3.2eV                                              ∆=3.2eV


  Ohtomo/Hwang, Nature 427, 423 (2004)                  Hotta et al., PRL 99, 236805 (2007)
Electrostatic doping of a Mott insulator


              LVO/STO
                                   LaVO3: - valence configuration V3+ (d2)
 LaVO3                                    - polar oxide
Mott ins.
∆≈1 eV                                    - Mott insulator (∆LVO << ∆STO)

                                    electronic reconstruction and
  ???                                formation of interface 2DEG ?
                                    extra carriers on which side of interface
 SrTiO3                              (LVO or STO) ?
band ins.
∆=3.2eV                             band-filling controlled Mott transition
                                     without chemical doping ?
LVO/STO: Sample growth and characterization
       RHEED pattern   AFM image
                                   pulsed laser deposition




RHEED oscillations

                                    STEM image




                                                             interface
LVO/STO: metal-insulator transition in transport




 metal-insulator transition for n-type interface
 p-type interface insulating
 critical thickness: ∼ 9 uc LVO (Hotta et al.: 5 uc)
 high carrier mobility
HAXPES of LVO/STO: V 2p depth profiles
insulating                      conducting




                                               extra electronic
                homogeneous        10 uc LVO
                                               charge on V
     6 uc LVO   "V3+" profile                  near interface

        STO                            STO
HAXPES of LVO/STO: Ti 2p




                                                   extra electronic
                                       10 uc LVO
                                                   charge on V
                                                   near interface
                 no Ti3+ (d1) signal
       possibly some bandbending         STO
           on STO side of interface
LVO/STO: electronic reconstruction picture
Electrostatic doping of a Mott insulator



                                LaVO3/SrTiO3:
 LaVO3                          • creation of 2D metal states in a
Mott ins.                         correlated electron system
∆≈1 eV                            by interface engeering
                                • purely electrostatic doping
"q2DEG"
                                • no disorder by chemical dopants
 SrTiO3
band ins.
∆=3.2eV
Summary

Photoelectron spectroscopy of functional oxides:
Heterostructures and buried interfaces

• Photoelectron spectroscopy (PES)
 yields (destruction-free) information on
 - chemical composition, valencies, local chemistry
 - electronic structure (band structure, spectral function)

• PES with hard x-rays (HAXPES)
 - enhanced probing depth giving access to bulk and buried interfaces
 - needs high x-ray intensity ( synchrotron radiation)
 - caveat: high photon momentum (ARPES difficult, recoil effects)

• Future directions:
 - magnetic information with polarized x-rays (XMCD, XMLD) and/or spin detection
 - soft x-ray ARPES: band mapping of buried interfaces
Reading

Photoemission:
• S. Hüfner, Photoelectron Spectroscopy – Principles and Applications, 3rd ed. (Berlin,
  Springer, 2003)
• A. Damascelli, Angle-resolved photoemission studies of the cuprate superconductors,
   Rev. Mod. Phys. 75, 473 (2003)


HAXPES:
• K. Kobayashi: Hard x-ray photoemission spectroscopy,
  Nucl. Instr. Meth. Phys. Res. A 601, 32 (2009)
• László Kövér: X-ray photoelectron spectroscopy using hard X-rays,
  J. Electron Spectrosc. Rel. Phen. 178-179, 241 (2010)


HAXPES of oxide heterostructures
• R. Claessen et al.: Hard x-ray photoelectron specroscopy of oxide hybrid and
  heterostructures: a new method for the study of buried interfaces,
  New J. Phys. 11, 125007 (2009)

Mais conteúdo relacionado

Mais procurados

Photoacoustic Spectroscopy
Photoacoustic SpectroscopyPhotoacoustic Spectroscopy
Photoacoustic SpectroscopyDeepak Rajput
 
Metal alkene complexes.ppt
Metal alkene complexes.pptMetal alkene complexes.ppt
Metal alkene complexes.pptDrGeetaTewari
 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONSHarsh Mohan
 
Auger electron spectroscopy
Auger electron spectroscopyAuger electron spectroscopy
Auger electron spectroscopyGulfam Hussain
 
Bonding in Metal Carbonyls.pdf
Bonding in Metal Carbonyls.pdfBonding in Metal Carbonyls.pdf
Bonding in Metal Carbonyls.pdfSpaceTime6
 
Electronic spectra problems
Electronic spectra problemsElectronic spectra problems
Electronic spectra problemsSANTHANAM V
 
Raman spectroscopy (1)
Raman spectroscopy (1)Raman spectroscopy (1)
Raman spectroscopy (1)MadhuraDatar
 
ESR SPECTROSCOPY
ESR SPECTROSCOPYESR SPECTROSCOPY
ESR SPECTROSCOPYRaguM6
 
Raman spectroscopy for nanomaterials
Raman spectroscopy for nanomaterialsRaman spectroscopy for nanomaterials
Raman spectroscopy for nanomaterialskrishslide
 
Ultra Fast Pump Probe
Ultra Fast Pump ProbeUltra Fast Pump Probe
Ultra Fast Pump ProbeErich Wanzek
 
X-ray Photoelectron Spectrocopy (XPS)
X-ray Photoelectron Spectrocopy (XPS)X-ray Photoelectron Spectrocopy (XPS)
X-ray Photoelectron Spectrocopy (XPS)CNPEM
 
Photoconductivity.pptx
Photoconductivity.pptxPhotoconductivity.pptx
Photoconductivity.pptxMAbrarMalik1
 
X ray spectroscopy. ppt
X ray spectroscopy. ppt X ray spectroscopy. ppt
X ray spectroscopy. ppt AkankshaBehl3
 
Electron Spin Resonance (ESR) Spectroscopy
Electron Spin Resonance (ESR) SpectroscopyElectron Spin Resonance (ESR) Spectroscopy
Electron Spin Resonance (ESR) SpectroscopyHaris Saleem
 
How to read a character table
How to read a character tableHow to read a character table
How to read a character tablesourabh muktibodh
 

Mais procurados (20)

plastocyanin
plastocyaninplastocyanin
plastocyanin
 
Electron Spin Resonance Spectroscopy
Electron Spin Resonance Spectroscopy Electron Spin Resonance Spectroscopy
Electron Spin Resonance Spectroscopy
 
Photoacoustic Spectroscopy
Photoacoustic SpectroscopyPhotoacoustic Spectroscopy
Photoacoustic Spectroscopy
 
Metal alkene complexes.ppt
Metal alkene complexes.pptMetal alkene complexes.ppt
Metal alkene complexes.ppt
 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS
 
Metallobiomolecules
MetallobiomoleculesMetallobiomolecules
Metallobiomolecules
 
Auger electron spectroscopy
Auger electron spectroscopyAuger electron spectroscopy
Auger electron spectroscopy
 
Bonding in Metal Carbonyls.pdf
Bonding in Metal Carbonyls.pdfBonding in Metal Carbonyls.pdf
Bonding in Metal Carbonyls.pdf
 
Electronic spectra problems
Electronic spectra problemsElectronic spectra problems
Electronic spectra problems
 
Raman spectroscopy (1)
Raman spectroscopy (1)Raman spectroscopy (1)
Raman spectroscopy (1)
 
ESR SPECTROSCOPY
ESR SPECTROSCOPYESR SPECTROSCOPY
ESR SPECTROSCOPY
 
Mossbauer Spectroscopy
Mossbauer SpectroscopyMossbauer Spectroscopy
Mossbauer Spectroscopy
 
Raman spectroscopy for nanomaterials
Raman spectroscopy for nanomaterialsRaman spectroscopy for nanomaterials
Raman spectroscopy for nanomaterials
 
Ultra Fast Pump Probe
Ultra Fast Pump ProbeUltra Fast Pump Probe
Ultra Fast Pump Probe
 
X-ray Photoelectron Spectrocopy (XPS)
X-ray Photoelectron Spectrocopy (XPS)X-ray Photoelectron Spectrocopy (XPS)
X-ray Photoelectron Spectrocopy (XPS)
 
Photoconductivity.pptx
Photoconductivity.pptxPhotoconductivity.pptx
Photoconductivity.pptx
 
X ray spectroscopy. ppt
X ray spectroscopy. ppt X ray spectroscopy. ppt
X ray spectroscopy. ppt
 
Ldb Convergenze Parallele_08
Ldb Convergenze Parallele_08Ldb Convergenze Parallele_08
Ldb Convergenze Parallele_08
 
Electron Spin Resonance (ESR) Spectroscopy
Electron Spin Resonance (ESR) SpectroscopyElectron Spin Resonance (ESR) Spectroscopy
Electron Spin Resonance (ESR) Spectroscopy
 
How to read a character table
How to read a character tableHow to read a character table
How to read a character table
 

Destaque

X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopynirupam12
 
X ray photoelectron spectroscopy
X ray photoelectron spectroscopyX ray photoelectron spectroscopy
X ray photoelectron spectroscopyZubair Aslam
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Zaahir Salam
 
Ionic Equilibria
Ionic EquilibriaIonic Equilibria
Ionic Equilibriabernard_ng
 
Practical Implications of Group Theory in Chemistry
Practical Implications of Group Theory in ChemistryPractical Implications of Group Theory in Chemistry
Practical Implications of Group Theory in ChemistryVenkatesan Thimmakondu Samy
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopynirupam12
 
X ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgpX ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgpak21121991
 
X ray production (Emission and Filtration)
X ray production (Emission and Filtration)X ray production (Emission and Filtration)
X ray production (Emission and Filtration)Edonna Jim
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffractionShivaram
 

Destaque (10)

Xps
XpsXps
Xps
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
 
X ray photoelectron spectroscopy
X ray photoelectron spectroscopyX ray photoelectron spectroscopy
X ray photoelectron spectroscopy
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)
 
Ionic Equilibria
Ionic EquilibriaIonic Equilibria
Ionic Equilibria
 
Practical Implications of Group Theory in Chemistry
Practical Implications of Group Theory in ChemistryPractical Implications of Group Theory in Chemistry
Practical Implications of Group Theory in Chemistry
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
 
X ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgpX ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgp
 
X ray production (Emission and Filtration)
X ray production (Emission and Filtration)X ray production (Emission and Filtration)
X ray production (Emission and Filtration)
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffraction
 

Semelhante a Photoelectron Spectroscopy for Functional Oxides

Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003Nityanand Gopalika
 
Polarization, strain induced phase transitions and dielectric response in ult...
Polarization, strain induced phase transitions and dielectric response in ult...Polarization, strain induced phase transitions and dielectric response in ult...
Polarization, strain induced phase transitions and dielectric response in ult...Ghanshyam Pilania
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometrynirupam12
 
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...Sanjay Ram
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopynirupam12
 
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Sanjay Ram
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resourceManuel Silva
 
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Sanjay Ram
 
Electron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materialsElectron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materialsJoke Hadermann
 
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Anax Fotopoulos
 
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...Sanjay Ram
 
Principle Of A F S
Principle Of  A F SPrinciple Of  A F S
Principle Of A F Sguestc5e21a
 

Semelhante a Photoelectron Spectroscopy for Functional Oxides (20)

Spintronics
SpintronicsSpintronics
Spintronics
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
Semiconductor lasers
Semiconductor lasersSemiconductor lasers
Semiconductor lasers
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
 
Polarization, strain induced phase transitions and dielectric response in ult...
Polarization, strain induced phase transitions and dielectric response in ult...Polarization, strain induced phase transitions and dielectric response in ult...
Polarization, strain induced phase transitions and dielectric response in ult...
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
Lecture 5: Junctions
Lecture 5: JunctionsLecture 5: Junctions
Lecture 5: Junctions
 
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
 
Chap6 photodetectors
Chap6 photodetectorsChap6 photodetectors
Chap6 photodetectors
 
Compton effect
Compton effectCompton effect
Compton effect
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resource
 
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
 
Electron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materialsElectron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materials
 
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
 
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
 
quantum dots
quantum dotsquantum dots
quantum dots
 
Principle Of A F S
Principle Of  A F SPrinciple Of  A F S
Principle Of A F S
 
Basic i
Basic iBasic i
Basic i
 

Mais de nirupam12

D Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam EpitaxyD Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam Epitaxynirupam12
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesnirupam12
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimernirupam12
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfacesnirupam12
 
Resonant X Ray Diffraction
Resonant X Ray DiffractionResonant X Ray Diffraction
Resonant X Ray Diffractionnirupam12
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopynirupam12
 
Band structure
Band structureBand structure
Band structurenirupam12
 
Piezoelectric mems
Piezoelectric memsPiezoelectric mems
Piezoelectric memsnirupam12
 

Mais de nirupam12 (8)

D Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam EpitaxyD Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam Epitaxy
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxides
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimer
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfaces
 
Resonant X Ray Diffraction
Resonant X Ray DiffractionResonant X Ray Diffraction
Resonant X Ray Diffraction
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopy
 
Band structure
Band structureBand structure
Band structure
 
Piezoelectric mems
Piezoelectric memsPiezoelectric mems
Piezoelectric mems
 

Último

Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 

Último (20)

Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 

Photoelectron Spectroscopy for Functional Oxides

  • 1. International Summer School on Surfaces and Interfaces in Correlated Oxiides, Vancouver, 29 Aug – 01 Sep 2011 FOR 1346 Photoelectron spectroscopy of functional oxides: Heterostructures and buried interfaces Ralph Claessen (U Würzburg, Germany) • Photoelectron spectroscopy (PES) • PES theory in a nutshell • PES with hard x-rays (HAXPES) • HAXPES of oxide heterostructures
  • 2. Heterostructures of functional oxides 3d transition metal oxides strong coupling between charge/orbital/spin/lattice degrees of freedom lead to: - metal-insulator transitions - charge and orbital ordering - local magnetism (ferro, antiferro,…) - high-temperature superconductivity - collossal magnetoresistance -… Epitaxial heterostructures by MBE, PLD controlled interfaces, additional functionalities: - strain engineering - interfacial 2dim electron gas (2DEG) - electrostatic doping (by polarity or field effect) - artificial multiferroics - spin injection -…
  • 3. Oxide heterostructures "The interface is the device" (H. Kroemer, Nobel lecture 2000) Want information on: • chemical composition • electronic structure • vertical depth profile photoelectron spectroscopy (PES) with soft and hard x-rays
  • 5. Photoelectron spectroscopy (PES) spectrum hν sample Ekin Ekin = hν – EB - Φ0 measure kinetic energy distribution of photoelectrons
  • 6. Photoelectron spectroscopy (PES) spectrum sample Chemistry (core levels): → composition → chemical bonding → valencies Electronic structure (valence band): → density of states → band structure → Fermi surface → spectral function A<(k,E)
  • 7. Core level spectroscopy: ESCA Electron Spectroscopy for Chemical Analysis Bi2Sr2CaCu2O8+δ Bi 4f5/2 Bi 4f7/2 Intensity [a.u.] O 1s Bi 4f Intensity [a.u.] Bi 4d C 1s 1310 1320 1330 1340 Kinetic Energy [eV] Ca 2p •Cu 2p Sr 3d Fermi level Intensity [a.u.] •CuO Bi 5d hν = 1486.6 eV [Al - Kα] 1470 1480 1490 1500 400 600 800 1000 1200 1400 Kinetic Energy [eV] Kinetic Energy [eV] courtesy of A.F. Santander-Syro
  • 8. Core level spectroscopy: Chemical shift and valency Example: alkali metal doping of TiOCl Ti2p 3/2 (+ Na) Na1s 3+ Ti 2+ Ti Na doping x (%) 37% 32% 23% 15% 10% 4% valence change: Ti3+(3d1)  Ti2+(3d2) 462 460 458 456 454 1080 1075 1070 1065 binding energy (eV) binding energy (eV) PRL 106, 056403 (2011)
  • 9. Valence band spectroscopy k-integrated spectrum TiOCl Ti 3d O 2p / Cl 3p PRB 72, 125127 (2005)
  • 10. Valence band spectroscopy: ARPES Angle-Resolved PhotoElectron Spectroscopy  band structure and Fermi surface emission angle (i.e. momentum) energy courtesy T. Deveraux/A. Damascelli
  • 11. PES instrumentation • rare gas discharge lamp (<40.2 eV) • hemispherical anylzer • x-ray tube (1.256 and 1.486 keV) • time of flight (TOF) analyzer) • synchrotron radiation (10 eV … 10 keV) typically 10-10 mbar Wikipedia
  • 12. PES theory in a nutshell: 1) Independent electron approximation
  • 13. PES theory: Independent electrons Time-dependent perturbation theory Unperturbed electron system: one-electron states ψ with energy E Perturbation:    i ( k ⋅r −2πνt )  classical radiation field with vector potential A(r , t ) = A0e  Fermi´s Golden Rule for the photoinduced transition rate from initial to final states:  ik ⋅r   2 wi → f ∝ ψ f A0e ⋅ p ψ i δ ( E f − Ei − hν ) Hence, the total photoelectron current is: I PES (ε ) ∝ ∑ wi → f δ (ε − E f ) i, f
  • 14. PES theory: Independent electrons  ik ⋅r   2 wi → f ∝ ψ f A0e ⋅ p ψ i δ ( E f − Ei − hν ) final state: energy conservation inverted LEED state initial state: (eigenstate of semi-infinite crystal) Bloch wave or core level
  • 15. PES theory: Independent electrons  ik ⋅r   2 wi → f ∝ ψ f A0e ⋅ p ψ i δ ( E f − Ei − hν ) final state: high-energy Bloch state of infinite crystal, inverted LEED stateand 3 incoherently decoupled steps 2 (eigenstate of semi-infinite crystal) One-step model Three-step model courtesy A. Damascelli
  • 16. PES theory: Independent electrons  ik ⋅r   2 wi → f ∝ ψ f A0e ⋅ p ψ i δ ( E f − Ei − hν ) transition matrix element If the radiadion field is only weakly modulated on   atomic length scales, (i.e. λ = 2π k >> few Å), the photon momentum k can be neglected in the transition matrix element:  ik ⋅r       f A0e ⋅ p i ≈ f A0 ⋅ p i ∝ A0 ⋅ f er i Examples: Dipole approximation hν = 20 eV  λ ≈ 600 Å hν = 2000 eV  λ ≈ 6 Å
  • 17. PES theory: Independent electrons Dipole approximation and k-selection rule for Bloch states momentum conservation: only"vertical"     k f = ki + G + k photon transitions  ARPES
  • 18. Transition metal oxides: electronic correlations oxides of the 3d transition metals: M = Ti, V, … ,Ni, Cu O2- basic building blocks: MO6 octahedra (or other ligand shells) electronic configuration: O 2s2p6 = [Ne] TMX+ TM 3dn quasi-atomic, strongly localized  strong intraatomic Coulomb interaction and breakdown of independent electron approx. cubic perovskites perovskite-like anatas rutile spinel
  • 19. PES theory in a nutshell: 2) Many-body picture
  • 20. Many-body effects in photoemission N interacting electrons: Ekin hν Photoemission process: sudden removal of an electron from N-particle system "loss" of kinetic energy due to interaction-related excitation energy stored in the remaining N-1 electron system !
  • 21. Reinterpretation of Fermi´s Golden Rule Fermi´s Golden Rule for N-particle states: 2 I (ε ) ∝ ∑ Ψ f , s ∆ Ψi ,0 δ ( E N , s − E N ,0 − hν ) ˆ s with Ψi ,0 = N ,0 N-electron ground state of energy EN, 0 ("initial state")  Ψ f ,s = k , N − 1, s N-electron excited state of energy EN, s, ("final state") consisting of N-1 electrons in the solid and  a free photoelectron of momentum k and energy ε    N ˆ = ∑ A(ri ) ⋅ pi = M if c + ci ∆ f in second quantization with suitable one- i =1 electron basis one-particle matrix element
  • 22. Electron removal spectrum Fermi´s Golden Rule for N-particle states: 2 I (ε ) ∝ ∑ Ψ f , s ∆ Ψi ,0 δ ( E N , s − E N ,0 − hν ) ˆ s a little bit of math and a few plausible assumptions (sudden approximation) The ARPES signal I (ε ) is directly proportional to the < 1 single-particle spectral function A (ω ) = − Im G (ω ) × f (ω ) π probability of removing an electron single-particle at energy ω from the system Green´s function
  • 23. Example: PES of the Mott insulator TiOCl spectral function A<(ω) (DMFT) TiOCl Ti 3d1 O 2p / Cl 3p d1 → d0 d1 → d2 LHB UHB U µ ω
  • 24. Photoemission probing depth: soft and hard x-ray PES
  • 25. Inelastic scattering of the photoelectron Step 2: photoelectron transport to the surface  inelastic scattering with other electrons Three-step model (excitation of e-h-pairs, plasmons) • generation of secondary electrons ("inelastic background") intensity intrinsic spectrum incl. background Ekin courtesy A. Damascelli
  • 26. Inelastic scattering of the photoelectron Step 2: photoelectron transport to the surface  inelastic scattering with other electrons Three-step model (excitation of e-h-pairs, plasmons) • generation of secondary electrons ("inelastic background") • loss of unscattered photoelectron current ⇒ inelastic mean free path λ courtesy A. Damascelli
  • 27. Photoemission probing depth λ(Ekin) "universal curve" hν Ekin λ(Ekin) hard x-ray PES = HAXPES soft x-ray PES (SX-PES) "conventional" VUV/XUV-PES: surface sensitive on  probing depth (3λ) up to >10 nm atomic length scale !  access to bulk, buried nanostructures, and interfaces  depth profiling of thin films
  • 28. Transition metal oxides: Instability of polar surfaces O2- Transition metal (TM) oxides form lattice of ionic charges TMX+  Classification of surfaces (Tasker): - surface charge Q  - electrical dipole moment µ in repeat unit Q=0 Q≠0 Q≠0  µ =0  µ =0  µ≠0 TMX+ O2- P. W. Tasker, J. Phys. C 12, 4977 (1979)
  • 29. Transition metal oxides: Instability of polar surfaces O2- type 3 surfaces are energetically unfavorable: TMX+ charge field potential -σ +σ "polarization catastrophe" -σ +σ will be avoided by atomic/ionic/electronic surface reconstruction ⇒ surface ≠ bulk
  • 30. Transition metal oxides: Instability of polar surfaces different reconstructions Example: Fe3O4 (magnetite) of the (111) surface (STM) 8.2 Å PRB 76, 075412 (2007)
  • 31. Transition metal oxides: Instability of polar surfaces Example: Fe3O4 (magnetite) VUV-PES Soft X-ray PES surface-sensitive probing depth 2x larger EPL 70, 789 (2005)
  • 32. Surface effects in Mott-Hubbard-type oxides U spectral function (DMFT for n=1) t U/t kinetic energy, itinerancy H = −t ˆ ∑ σ ci+ c jσ + U ∑ ni ↓ ni ↑ i , j ,σ i local Coulomb energy, localization
  • 33. Surface effects in Mott-Hubbard-type oxides Example: CaVO3 spectral function (DMFT for n=1) quasiparticle surface peak "bulk" U/t lower Hubbard band A. Sekiyama et al., PRL 2004
  • 34. Surface effects in Mott-Hubbard-type oxides Example: CaVO3 quasiparticle surface peak "bulk" reduced atomic coordination @ surface: lower Hubbard band  stronger electron localization  smaller effective bandwidth Wsurf < Wbulk  surface stronger correlated: U / Wsurf >U / Wbulk A. Sekiyama et al., PRL 2004
  • 35. Photoemission probing depth λ(Ekin) "universal curve" hν Ekin λ(Ekin) hard x-ray PES = HAXPES soft x-ray PES (SX-PES) "conventional" VUV/XUV-PES: surface sensitive on  probing depth (3λ) up to >10 nm atomic length scale !  access to bulk, buried nanostructures, and interfaces  depth profiling of thin films
  • 36. HAXPES: drawbacks and caveats Non-negligible photon momentum hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1
  • 37. HAXPES: drawbacks and caveats Non-negligible photon momentum hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1 • suppression of direct (k-conserving) transitions ( Debye-Waller factor for direct transitions Wdir = exp − αk photT M atom 2 ) ARPES of W(110) @ hν = 870 eV Plucinski et al., PRB 78, 035108 (2008)
  • 38. HAXPES: drawbacks and caveats Non-negligible photon momentum hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1 • suppression of direct (k-conserving) transitions • atomic recoil effect photon-absorbing atom takes up recoil energy Ekin =  2 k phot 2 M at the expense of 2 photoelectron energy, depending on atom mass and lattice stiffness Y. Takata et al., PRB 75, 233404 (2007)
  • 39. HAXPES: drawbacks and caveats Non-negligible photon momentum hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1 • suppression of direct (k-conserving) transitions • atomic recoil effect • quadrupolar contribution to transition matrix element    ( )  ik ⋅r    f A0e ⋅ p i ≈ f A0 1 + ik ⋅ r ⋅ p i
  • 40. HAXPES: drawbacks and caveats Non-negligible photon momentum hν = 6 keV  λ ≈ 2 Å, kphot ≈ 3 Å-1 • suppression of direct (k-conserving) transitions • atomic recoil effect • quadrupolar contribution to transition matrix element Low photoemission signal • cross section for photoemission σ ∝ (hν ) −3 −1 • electron analyzer transmission t ∝ Ekin  need bright x-ray source…
  • 41. HAXPES set-up @ PETRA III (DESY, Hamburg) X-rays from PETRA III "High-resolution hard x-ray photoemission for materials science" (BMBF) • joint project with C. Felser (U Mainz) and W. Drube (DESY) • photon energy: 2.5…15 keV • energy resolution: 30 meV other HAXPES instruments worldwide: • linearly/circularly polarized x- - Spring-8, Japan (>4) - BESSY, Germany (HIKE) ray radiation - ESRF, France (ID-9) • commissioned in 2010 - Soleil, France (under construction) • user operation since 2011 - Diamond, UK (under construction)
  • 42. HAXPES of oxide heterostructures: (1) Fe3O4/GaAs
  • 43. Epitaxial growth of Fe3O4/GaAs PRB 79, 233101 (2009) surface Datta-Das spin transistor Fe3O4 GaAs semiconductor with semimetallic ferromagnet large spin diffusion (100% spin polarization @ EF) length resistively matched to semiconductor  Fe3O4 (magnetite), (RE,Sr)MnO3, CrO2, Heusler compounds, …
  • 44. Epitaxial growth of Fe3O4/GaAs PRB 79, 233101 (2009) surface MBE growth of thin magnetite film: Fe3O4 • epitaxial Fe deposition @ RT • postoxidation @ 600 - 800K / p(O2) = 10-5 mbar (10-30 min) GaAs  Fe valency?  mixed-valent Fe3O4 vs. (Fe2+ )O and (Fe 3+)2O3 ?  chemical depth profile ?
  • 45. Valence signatures in Fe 2p spectrum Fe2O3 Fe3O4 Fe3+ FeO Fe2+/Fe3+ charge transfer satellites Fe2+ Fe 2p1/2 2p3/2 Fe0 700 705 710 715 720 725 730 735 740 745 750 binding energy (eV)
  • 46. Depth profiling of Fe3O4/GaAs PRB 79, 233101 (2009) Fe 2p spectra surface Fe3O4 GaAs interface surface
  • 47. Depth profiling of Fe3O4/GaAs Tuning the information depth by variation of (1) photon energy, or (2) photoelectron escape angle θ λeff mean free path λeff = λIMFP cos θ energy
  • 48. Depth profiling of Fe3O4/GaAs PRB 79, 233101 (2009) Fe 2p spectra surface Fe3O4 GaAs interface surface film: mixed-valent Fe2+/3+ interface: divalent and metallic Fe (O-deficient)
  • 49. Depth profiling of Fe3O4/GaAs PRB 79, 233101 (2009) Fe 2p spectra As 2p3/2 spectra surface Fe3O4 interface (Fe, FeOx, GaOx, AsOx) GaAs film: mixed-valent Fe2+/3+ interface: divalent and metallic Fe (O-deficient) oxidized Ga,As
  • 50. Validation by electron microscopy TEM STEM-EELS surface Fe3O4 interface (Fe, FeOx, GaOx, AsOx) GaAs J. Verbeeck, H. Tian, and G. van Tendeloo, U Antwerp
  • 51. Fe3O4/ZnO: An all-oxide structure APL 98, 012512 2011 film grown by reactive deposition Fe3O4 in O2-atmosphere (∼10-6 mbar) ZnO HAXPES TEM also PLD-grown contacts: R. Gross et al.
  • 52. HAXPES of oxide heterostructures: (2) Interface 2DEG in LaAlO3/SrTiO3
  • 53. LAO/STO heterostructures in a nutshell • epitaxial growth by PLD LaAlO3 ∆=5.6eV SrTiO3 ∆=3.2eV A. Ohtomo et al., Nature 419, 378 (2004) S. Thiel et al., Science 313, 1942 (2006) N. Reyren et al., Science 317, 1196 (2007)
  • 54. LAO/STO heterostructures in a nutshell • epitaxial growth by PLD • both oxides: wide gap insulators • if LaAlO3 film thicker than 3 unit cells (uc) : → formation of a high-mobility 2DEG LaAlO3 at the interface ∆=5.6eV conductivity 2DEG SrTiO3 ∆=3.2eV sheet carrier density (Hall) A. Ohtomo et al., Nature 419, 378 (2004) S. Thiel et al., Science 313, 1942 (2006) N. Reyren et al., Science 317, 1196 (2007)
  • 55. LAO/STO heterostructures in a nutshell properties of the 2DEG: • tunable conductivity by electric gate field LaAlO3 • superconducting below 200 mK ∆=5.6eV • magnetoresistance 2DEG • coexistence of s.c and magnetism / electronic phase separation SrTiO3 ∆=3.2eV  origin of 2DEG, threshold behavior ? A. Ohtomo et al., Nature 419, 378 (2004) S. Thiel et al., Science 313, 1942 (2006) N. Reyren et al., Science 317, 1196 (2007)
  • 56. Polar catastrophe and how to avoid it charge: -1 AlO2 +1 LaO electrostatic energy increases -1 AlO2 +1 LaO linearly with thickness of -1 AlO2 polar film +1 LaO 0 TiO2 polar catastrophe 0 SrO 0 TiO2 0 SrO -1/2 AlO2 +1 LaO charge reconstruction -1 AlO2 electronic or ionic ∆q = -1/2 +1 LaO -1 AlO2 0.5e- per layer unit cell +1 LaO -1/2  n2D = 3.5×1014 cm-2 TiO2 0 SrO partial Ti 3d occupation 0 TiO2 0  Ti3.5 (d0.5) = Ti3+/Ti4+ SrO Nakagawa et al., Nature Mat. 5, 204 (2006)
  • 57. HAXPES of LAO/STO heterostructures Ti 2p spectrum Ti4+ LaAlO3 2DEG Ti3+ SrTiO3 2p1/2 2p3/2 undoped SrTiO3: |3d0>  Ti4+ doped LAO/STO interface: |3d0> + |3d1>  Ti3+/Ti4+ PRL 102, 176805 (2009)
  • 58. Dependence on LAO overlayer thickness Ti3+ Ti4+ Ti3+  interface charge density increases with LAO overlayer thickness  non-zero Ti d1 signal already for 2uc sample (?) PRL 102, 176805 (2009)
  • 59. Depth profiling by angle-resolved HAXPES e- θ e- d  2DEG thickness  sheet carrier density PRL 102, 176805 (2009)
  • 60. Quantitative analysis: 2DEG thickness Sample 2 uc 4 uc 5 uc 6 uc d (uc*) 3±1 1 ± 0.5 6±2 8±2 e- θ *lattice constant of STO unit cell (uc) = 3.8 Å e-  interface thickness < 3 nm d consistent with - CT-AFM Basletic et al. (2008) - TEM-EELS Nakagawa et al. (2006) - density functional theory Pentcheva et al. (2009) - 2D superconductivity Reyren et al. (2007) - ellipsometry Dubroka et al. (2010) PRL 102, 176805 (2009)
  • 61. Quantitative analysis: sheet carrier density Sample 2 uc 4 uc 5 uc 6 uc el. reconstruction n2D (1013 cm-2) 2.1 3.9 8.1 11.1 35  n2D << electronic reconstruction value  n2D >> Hall effect data PRL 102, 176805 (2009)
  • 62. RIXS on LAO/STO RIXS eg-excitation as fct. of # LAO-overlayers Ti3+ (3d1) eg Ti 3d photon t2g in photon out Ti 2p PRB 82, 241405(R) (2010)
  • 63. Sheet carrier density: HAXPES, RIXS & Hall effect • n2D much smaller than expected for purely electronic reconstruction (35 x 1013 cm-2) • n2D higher than Hall effect data • photo-generated carriers cannot fully account for observed excess • remaining excess due to additional localized Ti 3d electrons? (cf. DFT - Popovic et al., PRL 2008) PRB 82, 241405(R) (2010)
  • 64. LAO/STO: Valence band spectroscopy with HAXPES LaAlO3 2DEG ~3 eV SrTiO3 O2p-derived vb states Ti 3d electrons should be here, but HAXPES cross-section too small ! (theor. estimate: 10-4 of O2p emission)
  • 65. Band situation from density-functional theory STO LAO 2DEG E surface CBM EF VBM core levels Yu Lin et al., arXiv 0904.1636 (2009) Pentcheva and Pickett, PRL 102, 107602 (2009)
  • 66. Band situation from density-functional theory STO LAO 2DEG E holes surface @ LAO VBM CBM e- e- EF interface VBM electrons @ STO CBM core levels Yu Lin et al., arXiv 0904.1636 (2009) Pentcheva and Pickett, PRL 102, 107602 (2009)
  • 67. Band situation from density-functional theory STO LAO 2DEG E E holes surface @ LAO VBM CBM e- e- EF VBM electrons @ STO CBM core levels Yu Lin et al., arXiv 0904.1636 (2009) Pentcheva and Pickett, PRL 102, 107602 (2009)
  • 68. Results from HAXPES valence band Al 1s core level ~3 eV VBM: ~ 3 eV below EF same width for all samples!
  • 69. band theory versus experiment STO LAO 2DEG E STO LAO surface CBM e- EF VBM core levels also observed by Segal et al., PRB 80, 241107(R) (2009)
  • 70. Valence band offsets band alignment valence band analysis CB STO LAO VB STO LAO type I type II • VBMLAO above VBMSTO • type II interface (valence band offset: 0.35 ± 0.1eV) • confirmed by core level analysis 0.35eV
  • 71. Band alignment: A possible scenario DFT band theory: STO LAO localized hole states induced by surface O-vacancies Photoemission: interface states (itinerant and localized)
  • 72. HAXPES of oxide heterostructures: (3) LaVO3/SrTiO3 – electrostatic doping of a Mott a insulator
  • 73. Electrostatic doping of a Mott insulator LAO/STO LVO/STO LaAlO3 polar LaVO3 band ins. Mott ins. … ∆=5.6eV ∆≈1 eV (AlO2)- Idea: (LaO)+ replace Al3+ by q2DEG (TiO2)0 ??? trivalent transition metal (SrO)0  LaVO SrTiO3 3 SrTiO3 band ins. … non-polar band ins. ∆=3.2eV ∆=3.2eV Ohtomo/Hwang, Nature 427, 423 (2004) Hotta et al., PRL 99, 236805 (2007)
  • 74. Electrostatic doping of a Mott insulator LVO/STO LaVO3: - valence configuration V3+ (d2) LaVO3 - polar oxide Mott ins. ∆≈1 eV - Mott insulator (∆LVO << ∆STO)  electronic reconstruction and ??? formation of interface 2DEG ?  extra carriers on which side of interface SrTiO3 (LVO or STO) ? band ins. ∆=3.2eV  band-filling controlled Mott transition without chemical doping ?
  • 75. LVO/STO: Sample growth and characterization RHEED pattern AFM image pulsed laser deposition RHEED oscillations STEM image interface
  • 76. LVO/STO: metal-insulator transition in transport  metal-insulator transition for n-type interface  p-type interface insulating  critical thickness: ∼ 9 uc LVO (Hotta et al.: 5 uc)  high carrier mobility
  • 77. HAXPES of LVO/STO: V 2p depth profiles insulating conducting extra electronic homogeneous 10 uc LVO charge on V 6 uc LVO "V3+" profile near interface STO STO
  • 78. HAXPES of LVO/STO: Ti 2p extra electronic 10 uc LVO charge on V near interface no Ti3+ (d1) signal possibly some bandbending STO on STO side of interface
  • 80. Electrostatic doping of a Mott insulator LaVO3/SrTiO3: LaVO3 • creation of 2D metal states in a Mott ins. correlated electron system ∆≈1 eV by interface engeering • purely electrostatic doping "q2DEG" • no disorder by chemical dopants SrTiO3 band ins. ∆=3.2eV
  • 81. Summary Photoelectron spectroscopy of functional oxides: Heterostructures and buried interfaces • Photoelectron spectroscopy (PES) yields (destruction-free) information on - chemical composition, valencies, local chemistry - electronic structure (band structure, spectral function) • PES with hard x-rays (HAXPES) - enhanced probing depth giving access to bulk and buried interfaces - needs high x-ray intensity ( synchrotron radiation) - caveat: high photon momentum (ARPES difficult, recoil effects) • Future directions: - magnetic information with polarized x-rays (XMCD, XMLD) and/or spin detection - soft x-ray ARPES: band mapping of buried interfaces
  • 82. Reading Photoemission: • S. Hüfner, Photoelectron Spectroscopy – Principles and Applications, 3rd ed. (Berlin, Springer, 2003) • A. Damascelli, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75, 473 (2003) HAXPES: • K. Kobayashi: Hard x-ray photoemission spectroscopy, Nucl. Instr. Meth. Phys. Res. A 601, 32 (2009) • László Kövér: X-ray photoelectron spectroscopy using hard X-rays, J. Electron Spectrosc. Rel. Phen. 178-179, 241 (2010) HAXPES of oxide heterostructures • R. Claessen et al.: Hard x-ray photoelectron specroscopy of oxide hybrid and heterostructures: a new method for the study of buried interfaces, New J. Phys. 11, 125007 (2009)