SlideShare uma empresa Scribd logo
1 de 34
Baixar para ler offline
F 4.1
Flow of Particulate Solids in Bunkers and Flow Problems
Funnel or Core Flow Mass Flow Mass Flow with Funnel Flow Effect
(Expanded Flow)
Numbers show the sequence of discharge of bulk layers
height
levels of
free bulk
surface velocity
profiles
5
7
6
4
3
2
8
1
Θ
1
7
6
8
5
4
3
2
1
Θ
ϕb
ϕb
3 3
4 4
2 2
5 5
6
7
6
7
1 1
8 8
Θ1
Θ2
plug
flow
angle of
repose
dead
zones
Θ
Channelling, Piping, Ratholing Bridging, Arching
dead
zones
ΘΘ
F 4.2
F 4.3
Dynamics of Force Balance at Cohesive Powder Bridge
B
Θ
dFT
h
Θ
W
´1
dFV
b
dFf
VF
dFV
dFG
dhB
´1
slot length l
Dead weight of powder bridge
Wall force
Force of inertia
Drag force of penetrating fluid
F = 0 = - dFG + dFT + dFV + dFf
dFG = b g b dhB l. . . .
dFV = 1' sin dhB cos 2l. . . .
dFT = dFG
. a
g
dFf = Eu b l dhB
. 3 f u2 (1 - )
4 d 2
. . .
. .
...
F 4.4
1. Mass Flow
- Avoid Channelling:
Hopper angle = f(wall friction angle W, effektive angle of internal
friction e)
see diagrams F 4.6 and F 4.7
- Avoid Bridging:
1.1 Free Flowing Bulk Solid (avoid machanical blocking of coarse lumps or rocks):
σc,crit critical uniaxial compressive strength
ρb,crit bulk density at σ1,crit
g gravitational acceleration
article size
k = 0.6 ... 1.4 shape dependent parameter
bmin
1.2 Cohesive Powder (avoid cohesive bridges):
- Effective wall stress at arch: ´ = 1/ff (2)
- Flow factor (diagram F 4.11): ff = f( e, W, ) (3)
(4)
(1a)
(1b)
Apparatus Design of Silo Hopper to Avoid Bridging
F 4.5
slot width (1c)
bmin
= + W
b · g · b
´1
´1
0 10 20 30 40 50 60
45
40
35
30
25
20
15
10
5
0
hopper angle versus vertical in deg
angleofwallfrictionwindeg
Mass Flow
Core Flow
effective angle of
internal friction
e = 70°
60°
50°
40°
30°
1
2
180° - arccos
1 - sin e
2 sin e
- W - arc sin sin W
sin e
Bounds between Mass and Core Flow
axisymmetric Flow
(conical hopper)
select
F 4.6
50
45
40
35
30
25
20
15
10
5
0
angleofwallfrictionwindeg
55
0 10 20 30 40 50 60
hopper angle versus vertical in deg
Core Flow
effective angle of
internal friction
e = 70°
60°
50°
40°
30°
Mass Flow
60,5° +
arc tan
50° - e
7,73°
15,07°
1-
42,3° + 0,131° · exp(0,06 · e)
W
with W
3° ande
60°
Bounds between Mass and Core Flow
Plane Flow
(wedge-shaped hopper)
F 4.7
max
lmin > 3 · b
min
bmin
bmin
D
lmin >3·b
min
bmin
max max
wall
b
min
- Conical Hopper (axisymmetric stress field)
Cone Pyramid
shape factor m = 1 [ 3a ]
- Wedge-shaped Hopper (plane stress field)
vertical front walls
shape factor m = 0
F 4.8
inclined front walls
1,5 b
min
bmin
lmin > 6 · b
min
3 b
min
B
L
1max
2max
1,5 b
min
F 4.9
unconfinedyieldstrengthc
c,0
major principal stress during
consolidation (steady-state flow) 1
0
c = a1 · 1 + c,0
effectivewallstress'
' = 1 / ff1
bmin
1
'
1
'
c,crit
uniaxial compressive strength c
' c flow
' c stable arch
' c,crit
Arching/Flow Criterion of a Cohesive Powder
in a Convergent Hopper
F 4.10
20 30 40 50 60 70
1,5
flowfactorff
effective angle of internal friction e in deg
2
1
conical hopper
wedge-shaped hopper
Ascertainment of Approximated Flow Factor
(angle of wall friction W = 10° - 30°)
F 4.11
F 4.12
bulkdensityb
b,0
*
90°
1
1
unconfinedyieldstrengthc
1 = c,st
ff = 1
c,0
c,st
major principal stress during
consolidation (steady-state flow) 1
0
c = a1 · 1 + c,0
anglesofinternal
frictione,st,i
effectivewallstress'
b,crit
b,st
' = 1 / ff1
bmin
1
'
bmin,st
1
'
stationary angle of internal friction st = const.
angle of internal friction i ≈ const.
effective angle of internal friction e
uniaxial compressive strength c
bulk density b
c,crit
Consolidation Functions of a Cohesive Powder for Hopper Design
for Reliable Flow
F 4.13
0
Consolidation Functions of Cohesive Powders for Hopper Designbulkdensityb
b,0
*
b = b,0
* · (1 + )n
90°
effektive angle of internal friction e
1
1
unconfinedyieldstrengthc
ff = 1
c,0
c,st
major principal stress during consolidation 10
c = a1 · 1 + c,0
anglesofinternalfrictione,st,i
0 < n < 1
effectivewallstress'
e = arc sin sin st · 1 + 0
1 - sin st · 0
(
bmin =
(m+1) · c,crit· sin 2( w + )
b,crit · g
a1 =
c,0 =
2 · (sin st - sin i)
(1 + sin st) · (1 - sin i)
2 · (1 + sin i) · sin st
(1 + sin st) · (1 - sin i)
· 0
c,crit =
c,0
1 - a1 · ff
b,crit
b,st
' = 1 / ff1
bmin
1
'
bmin,st
1
'
stationary angle of internal friction st = const.
angle of internal friction i ≈ const.
F 4.14
0
c,st
F 4.15
F 4.16
(9a)
pv
CF
bC,min
G (angle of internal friction i or it) - function, see F 4.22
Vertical pressure at filling, F 4.20:
1 pv = f ( e, W, b, shaft cross section,
silo height) (8a)
c,crit see F 4.19
≈
a) Maximum approach at filling and
consolidation:
F 4.172. Core Flow
Avoid channelling (stable funnel)
Hopper angle
2.1 Free Flowing Bulk Solid see 1.1
2.2 Cohesive Powder
2. Core Flow - Supplement
Avoid channelling (stable funnel)
Hopper angle: W
2.1 Free Flowing Bulk Solid see 1.1
2.2 Cohesive Powder
bC,min
AA
Channel
A - A: Ring stress 1'' at surface of
channel wall
1'' 1''
bC,min
G (Angle of internal friction i or it) - function, see F 4.22
b) Filling, consolidation and
anisotropy1):
Horizontal pressure at filling, F 4.20:
1'' ph = f ( e, W, b, shaft cross section
silo height)
≈
(8b)
(9b)
c) Flow and radial stress field,
F 4.10, Ring stress:
(8c)
1'' = 1
ffd
Flow factor of channelling:
(8d)
Two additional options:
F 4.18
ct
angleofwallfriction
w
stationaryangleof
internalfriction
st
bulkdensity
ρb
mass flow hopper
core flow hopper
major principal stress 1
angleofinternalfriction
iandit
b
e st
it
i
w
uniaxialcompressivestrength
c
effectivewallstress
1
`
c
1´
1
1
1
1
Consolidation Functions of Cohesive Powders for Hopper Design
c,crit(core flow)
c,crit
ct,crit(mass flow)
ct,crit(core flow)
effectiveangleof
internalfriction
st
F 4.19
Calculation of Silo Pressures according to Slice-Element Method
Force Balance F = 0
Shaft (Filling F):
H
HTr
pv
pv
pn
pn pW
pW
dA
y
y
pW
pW
dydy
ph ph
H*
b · g · dy
b · g · dy
pv + dpv
pv + dpv
Hopper:
F 4.20
1.7
1.6
1.5
1.4
1.3
1.2
1.1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0
0.1
0 10 20 30 40 50 60 70 80 90
effective angle of internal friction e in deg
w=30°
w=25°
w=35°
w=40°
w=45°
w=50°
w=55°
w=60°
w=65°
lateralpressureratioactive-plasticpassive-plasticLateral Pressure Ratio = ph/pv versus Effective Angle
of Internal Friction e and Angle of Wall Friction w
isostatic pressure ph = pv
w=0°
w=5°
w=10°
w=15°
w=20°
TGL 32 274/09
DIN 1055 part 6
= 0.5 0.1
e = 32° 4°
= 0.6 0.1
passive soil pressure
p =
1 + sin e
1 - sin e
rough wall w = e=
1 - sin2
e
1 +sin2
e
smooth wall w = 0
a =
1 - sin e
1 + sin e
generally 0 ≤ w ≤ e
a =
1 - sin2
w
1 +sin2
w+
(1 - sin2
w).
(sin2
e - sin2
w)-
0 = 1 - sin e soil pressure at rest
1.0
D
H
y
pw
ph
pv
pvph
pw
pw
(1 - sin2
w).
(sin2
e - sin2
w)
F 4.21
functionGi)
0 10 20 30 40 50 60 70 80
angle of internal friction i in deg
10
9
8
7
6
5
4
3
2
1
0
Function G( i) to Design a Hopper for Core Flow
F 4.22
Estimation of Minimum Shaft Diameter
Process Parameters and Geometrical Apparatus Parameters
pressures p
heigthH
pW
pv
ph
shaft diameter Dmin
heightH
a) Calculation of vertical pressure
Filling /Storage
b) Consolidation function
c
1
c,0
c) Shaft design equation
D H
b
or
F 4.23
a = 1 - sin2
w
1 + sin2
w
+
- (1 - sin2
w).
(sin2
e - sin2
w)
(1 - sin2
w).
(sin2
e - sin2
w)
(1a) (1b)
(1c)
(2)
(3)
(4)
(5)
detail "Z"
maximum roof loads:
filter load: 6 kN
snow load: 1 kN /m2
gangway:
walking monoload: 1,5 kN
evenly distributed: 0,75 kN/m2
h2h3
18
d3Fl 100 x15
name and rated width of support
rated
volume
V
m3
input
outputND6
TGL0-2501
by-pass
filterlink
FTFN
reserve
workopening
levelindication
safetydevice
liftingarm
~TGL31-461
carriereye
~TGL31-343
20
40
80
100
160
320
100 200 200 600 600 150/50 200 B 160 A 300
250
300
893 x
666
B 90
B 110
B 220
B 325
A 250
-
p1 p2 p3 p4 p5 r1 r2 s1 s2 t2t1
3000
5000
3075
5080
24
36
d1) d3
numberof
bolts
workopening
20
40
80
100
160
320
rated
volume
V
m3
d1) R1 R2 1 2
[ °] [ °]
h1 h2 h4 h5 h7h3 h9
=30°
mass2)
kg
3000
3000
3000
5000
5000
3000
775 1050 35 40 325 1820 750
1750 1550 25 30 420 3200 - 900
300
200
150
350
1130
1550
2990
3480
3875
8180
300
800
2800
4290
3000
6000
11000
14000
7000
16000
5920
8920
13920
16920
11870
20870
1)
d = vessel outer diameter
2)
total mass for Al Mg 3 ( sS = 2,7 t / m3
)
=30°
Standard Silo
earthing
F 4.24
Comparison of Models to Calculate the
Hopper Discharge Mass Flow Rate
valid for: consider:
cohesion-
less
hopper
shape
flow
condi-
tions
airdrag
pressure
dependencyof
cohesive
F 4.25
F 4.26
Stationary Discharge Flow Rate versus Particle Size for Sand
conical mass flow hopper
1,5
1,4
1,3
1,2
1,1
1,0
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0
dischargeflowratevsinm/s
b = 0,156 m
= 10°
b = 0,036 m
= 10°
b = 0,036 m
= 15°
b = 0,0167 m
= 10°
b = 0,0103 m
= 10°
calculated (Tomas)
measured (Carleton)
5 10 -2
2 5 10-1
2 5 10 0
2 5 101
2 5 102
particle size d in mm
k =3, = 1, ff > 10b c
F 4.27
F 4.28
F 4.29
Equipment for Filling of Silos
- to avoid segregation
F 4.30
Methods to Control the Level of Silos
1. Pressure gauges 2. Mechanical
plumb
3. Revolving blade devices
4. Membrane pressure switch
5. Conductivity measurement
6. Capacity measurement
7. Radiometric measurement 8. Ultra-sonic measurement
F 4.31
blade
type
material installation
length in m
type
N
St
N C - 0,4 - 0,14 - N
St C - 0,4 - 0,14 - St
N C - 0,4 - 0,36 - N
St C - 0,4 - 0,36 - St
N C - 0,4 - 0,11 - N
St C - 0,4 - 0,11 - St
0,25
0,5
1,0
0,25
0,5
1,0
0,4
bended
protection
pipe
C - 0,25 - 0,14 - N
C - 0,5 - 0,14 - N
C - 1,0 - 0,14 - N
C - 0,25 - 0,14 - St
C - 0,5 - 0,14 - St
C - 1,0 - 0,14 - St
145
0,14 C
145
0,14
360
0,36
110
∅10
0,11
Revolving Blade Level Indicator LS 40
LS 40/A - 0,1 to
LS 40/A - 3,0
normal edition
LS 40/B - 0,25 to
LS 40/B - 6,0
with protection pipe from
carbon (St) or
stainless steel (N)
LS 40/C - 0,25 to
LS 40/C - 1,0
LS 40/C - 0,4 - 0,14
installation at
inclined wall
ratedlength
ratedlength
F 4.32
Hopper Locks
horizontal gate vertical gate horizontal rotary
slide-valve
double rotary
slide-valve
ball valve rotary disk valve
discharge chute with
claw lever lock
lock with swivel chute
F 4.33
Size in mm h1 h2 l1 l2 l3 Mass P
in kg in kW
250 120 136 1245 905 180 200
315 1450 1045 217 230
400 140 1735 1235 265 260
500 119 2050 1445 317 325
630 2405 1685 380 410
800 2915 2025 465 535
1000 180 101 3530 2435 570 785
Hopper gates with drive
118
111160
0.75
1.1
b1 see table above
0.55
Size in mm b1 d1 h1 h2 l1 l2 l3 Mass in
kg
250 250 120 86 1097 982 180 70
315 315 1230 1115 218 92
400 410 315 140 100 1420 1305 265 123
500 515 1630 1515 318 147
630 630 1925 1810 380 221
800 800 400 160 114 2652 2362 465 393
1000 1000 180 132 3100 2810 570 570
Hopper gates
F 4.34

Mais conteúdo relacionado

Mais procurados

Lect.9 centifugal pump ppt. 2021.pdf
Lect.9 centifugal pump ppt.  2021.pdfLect.9 centifugal pump ppt.  2021.pdf
Lect.9 centifugal pump ppt. 2021.pdf
fabmovieKhatri
 

Mais procurados (20)

Hydraulic Turbines
Hydraulic TurbinesHydraulic Turbines
Hydraulic Turbines
 
A presentation on shear stress (10.01.03.139)
A presentation on shear stress (10.01.03.139)A presentation on shear stress (10.01.03.139)
A presentation on shear stress (10.01.03.139)
 
Jarring basics
Jarring basicsJarring basics
Jarring basics
 
Basics of pump
Basics of pump Basics of pump
Basics of pump
 
Valves operation and functions complete guide
Valves operation and functions complete guideValves operation and functions complete guide
Valves operation and functions complete guide
 
Lect.9 centifugal pump ppt. 2021.pdf
Lect.9 centifugal pump ppt.  2021.pdfLect.9 centifugal pump ppt.  2021.pdf
Lect.9 centifugal pump ppt. 2021.pdf
 
Pump, Submersible pump
Pump, Submersible pumpPump, Submersible pump
Pump, Submersible pump
 
Raise boring,organisation of shaft sinking,lining
Raise boring,organisation of shaft sinking,liningRaise boring,organisation of shaft sinking,lining
Raise boring,organisation of shaft sinking,lining
 
VERTICAL PRESSURE VESSEL DESIGN 5.docx
VERTICAL PRESSURE VESSEL DESIGN 5.docxVERTICAL PRESSURE VESSEL DESIGN 5.docx
VERTICAL PRESSURE VESSEL DESIGN 5.docx
 
Unit 4 Forced Vibration
Unit 4 Forced VibrationUnit 4 Forced Vibration
Unit 4 Forced Vibration
 
Transverse vibrations
Transverse vibrationsTransverse vibrations
Transverse vibrations
 
Buoyancy and flotation _ forces on immersed body
Buoyancy and flotation _ forces on immersed bodyBuoyancy and flotation _ forces on immersed body
Buoyancy and flotation _ forces on immersed body
 
Flow through pipe
Flow through pipeFlow through pipe
Flow through pipe
 
pump Basics.pptx
pump Basics.pptxpump Basics.pptx
pump Basics.pptx
 
Centrifugal pump lecture 1
Centrifugal pump lecture 1Centrifugal pump lecture 1
Centrifugal pump lecture 1
 
Pump
PumpPump
Pump
 
Dynamics of Machinery Unit IV
Dynamics of Machinery Unit IVDynamics of Machinery Unit IV
Dynamics of Machinery Unit IV
 
Design of Machine Element "Thick Wall Pressure Vessel "
Design of Machine Element "Thick Wall Pressure Vessel "Design of Machine Element "Thick Wall Pressure Vessel "
Design of Machine Element "Thick Wall Pressure Vessel "
 
Fluid machines turbines
Fluid machines turbinesFluid machines turbines
Fluid machines turbines
 
11. to 14. CONSTRUCTION EQUIPMENTS (ACE) 2160601 GTU
11. to 14. CONSTRUCTION EQUIPMENTS (ACE) 2160601 GTU11. to 14. CONSTRUCTION EQUIPMENTS (ACE) 2160601 GTU
11. to 14. CONSTRUCTION EQUIPMENTS (ACE) 2160601 GTU
 

Destaque

51989151 din-1055-6-2005 silos
51989151 din-1055-6-2005 silos51989151 din-1055-6-2005 silos
51989151 din-1055-6-2005 silos
141jdf
 
Query Handling System
Query Handling SystemQuery Handling System
Query Handling System
himabindu54
 
ASP.NET Session 1
ASP.NET Session 1ASP.NET Session 1
ASP.NET Session 1
Sisir Ghosh
 

Destaque (11)

Improving the Quality of Existing Software
Improving the Quality of Existing SoftwareImproving the Quality of Existing Software
Improving the Quality of Existing Software
 
Common asp.net design patterns aspconf2012
Common asp.net design patterns aspconf2012Common asp.net design patterns aspconf2012
Common asp.net design patterns aspconf2012
 
Introduction to MeteorJS
Introduction to MeteorJSIntroduction to MeteorJS
Introduction to MeteorJS
 
Onion Architecture with S#arp
Onion Architecture with S#arpOnion Architecture with S#arp
Onion Architecture with S#arp
 
51989151 din-1055-6-2005 silos
51989151 din-1055-6-2005 silos51989151 din-1055-6-2005 silos
51989151 din-1055-6-2005 silos
 
Query Handling System
Query Handling SystemQuery Handling System
Query Handling System
 
ASP.NET Session 1
ASP.NET Session 1ASP.NET Session 1
ASP.NET Session 1
 
50 ideas for using beacons
50 ideas for using beacons50 ideas for using beacons
50 ideas for using beacons
 
Beacons: The Retail Revolution
Beacons: The Retail RevolutionBeacons: The Retail Revolution
Beacons: The Retail Revolution
 
BEACON TECHNOLOGY OVERVIEW
BEACON TECHNOLOGY OVERVIEWBEACON TECHNOLOGY OVERVIEW
BEACON TECHNOLOGY OVERVIEW
 
In-Store Marketing via Micro-Location: Beacon
In-Store Marketing via Micro-Location: BeaconIn-Store Marketing via Micro-Location: Beacon
In-Store Marketing via Micro-Location: Beacon
 

Semelhante a Folien sfps 4

Rectangular tank example_latest
Rectangular tank example_latestRectangular tank example_latest
Rectangular tank example_latest
Vedachalam Mani
 
10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paper
Eddy Ching
 
6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs
BrajeshRanjanAcharya
 

Semelhante a Folien sfps 4 (20)

worked examples
worked examples worked examples
worked examples
 
Free ebooks downloads
Free ebooks downloadsFree ebooks downloads
Free ebooks downloads
 
World Trade Center Collapse
World Trade Center CollapseWorld Trade Center Collapse
World Trade Center Collapse
 
6._Bearing_Capacity_from_other_methods.pdf
6._Bearing_Capacity_from_other_methods.pdf6._Bearing_Capacity_from_other_methods.pdf
6._Bearing_Capacity_from_other_methods.pdf
 
Rc19 footing1
Rc19 footing1Rc19 footing1
Rc19 footing1
 
Ans1
Ans1Ans1
Ans1
 
Lecture5-Chapter4_Soil_Bearing Capacity_fall21-nf(1) (2).pdf
Lecture5-Chapter4_Soil_Bearing Capacity_fall21-nf(1) (2).pdfLecture5-Chapter4_Soil_Bearing Capacity_fall21-nf(1) (2).pdf
Lecture5-Chapter4_Soil_Bearing Capacity_fall21-nf(1) (2).pdf
 
Presentation on khosla's theory (Numerical Example)
Presentation on khosla's theory (Numerical Example)Presentation on khosla's theory (Numerical Example)
Presentation on khosla's theory (Numerical Example)
 
Rectangular tank example_latest
Rectangular tank example_latestRectangular tank example_latest
Rectangular tank example_latest
 
Padeye calculation example
Padeye calculation examplePadeye calculation example
Padeye calculation example
 
90 mm pipe 45 deg
90 mm pipe 45 deg90 mm pipe 45 deg
90 mm pipe 45 deg
 
Capítulo 17 elementos mecânicos flexíveis
Capítulo 17   elementos mecânicos flexíveisCapítulo 17   elementos mecânicos flexíveis
Capítulo 17 elementos mecânicos flexíveis
 
Trial terengganu spm 2014 physics k1 k2 k3 skema
Trial terengganu spm 2014 physics k1 k2 k3 skemaTrial terengganu spm 2014 physics k1 k2 k3 skema
Trial terengganu spm 2014 physics k1 k2 k3 skema
 
Solucion ejercicios beer
Solucion ejercicios beerSolucion ejercicios beer
Solucion ejercicios beer
 
Problemas resueltos rozamiento
Problemas resueltos rozamientoProblemas resueltos rozamiento
Problemas resueltos rozamiento
 
AS4100 Steel Design Webinar Worked Examples
AS4100 Steel Design Webinar Worked ExamplesAS4100 Steel Design Webinar Worked Examples
AS4100 Steel Design Webinar Worked Examples
 
10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paper
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs
 
Shi20396 ch17
Shi20396 ch17Shi20396 ch17
Shi20396 ch17
 

Último

Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 

Último (20)

(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 

Folien sfps 4

  • 2. Flow of Particulate Solids in Bunkers and Flow Problems Funnel or Core Flow Mass Flow Mass Flow with Funnel Flow Effect (Expanded Flow) Numbers show the sequence of discharge of bulk layers height levels of free bulk surface velocity profiles 5 7 6 4 3 2 8 1 Θ 1 7 6 8 5 4 3 2 1 Θ ϕb ϕb 3 3 4 4 2 2 5 5 6 7 6 7 1 1 8 8 Θ1 Θ2 plug flow angle of repose dead zones Θ Channelling, Piping, Ratholing Bridging, Arching dead zones ΘΘ F 4.2
  • 4. Dynamics of Force Balance at Cohesive Powder Bridge B Θ dFT h Θ W ´1 dFV b dFf VF dFV dFG dhB ´1 slot length l Dead weight of powder bridge Wall force Force of inertia Drag force of penetrating fluid F = 0 = - dFG + dFT + dFV + dFf dFG = b g b dhB l. . . . dFV = 1' sin dhB cos 2l. . . . dFT = dFG . a g dFf = Eu b l dhB . 3 f u2 (1 - ) 4 d 2 . . . . . ... F 4.4
  • 5. 1. Mass Flow - Avoid Channelling: Hopper angle = f(wall friction angle W, effektive angle of internal friction e) see diagrams F 4.6 and F 4.7 - Avoid Bridging: 1.1 Free Flowing Bulk Solid (avoid machanical blocking of coarse lumps or rocks): σc,crit critical uniaxial compressive strength ρb,crit bulk density at σ1,crit g gravitational acceleration article size k = 0.6 ... 1.4 shape dependent parameter bmin 1.2 Cohesive Powder (avoid cohesive bridges): - Effective wall stress at arch: ´ = 1/ff (2) - Flow factor (diagram F 4.11): ff = f( e, W, ) (3) (4) (1a) (1b) Apparatus Design of Silo Hopper to Avoid Bridging F 4.5 slot width (1c) bmin = + W b · g · b ´1 ´1
  • 6. 0 10 20 30 40 50 60 45 40 35 30 25 20 15 10 5 0 hopper angle versus vertical in deg angleofwallfrictionwindeg Mass Flow Core Flow effective angle of internal friction e = 70° 60° 50° 40° 30° 1 2 180° - arccos 1 - sin e 2 sin e - W - arc sin sin W sin e Bounds between Mass and Core Flow axisymmetric Flow (conical hopper) select F 4.6
  • 7. 50 45 40 35 30 25 20 15 10 5 0 angleofwallfrictionwindeg 55 0 10 20 30 40 50 60 hopper angle versus vertical in deg Core Flow effective angle of internal friction e = 70° 60° 50° 40° 30° Mass Flow 60,5° + arc tan 50° - e 7,73° 15,07° 1- 42,3° + 0,131° · exp(0,06 · e) W with W 3° ande 60° Bounds between Mass and Core Flow Plane Flow (wedge-shaped hopper) F 4.7
  • 8. max lmin > 3 · b min bmin bmin D lmin >3·b min bmin max max wall b min - Conical Hopper (axisymmetric stress field) Cone Pyramid shape factor m = 1 [ 3a ] - Wedge-shaped Hopper (plane stress field) vertical front walls shape factor m = 0 F 4.8
  • 9. inclined front walls 1,5 b min bmin lmin > 6 · b min 3 b min B L 1max 2max 1,5 b min F 4.9
  • 10. unconfinedyieldstrengthc c,0 major principal stress during consolidation (steady-state flow) 1 0 c = a1 · 1 + c,0 effectivewallstress' ' = 1 / ff1 bmin 1 ' 1 ' c,crit uniaxial compressive strength c ' c flow ' c stable arch ' c,crit Arching/Flow Criterion of a Cohesive Powder in a Convergent Hopper F 4.10
  • 11. 20 30 40 50 60 70 1,5 flowfactorff effective angle of internal friction e in deg 2 1 conical hopper wedge-shaped hopper Ascertainment of Approximated Flow Factor (angle of wall friction W = 10° - 30°) F 4.11
  • 13. bulkdensityb b,0 * 90° 1 1 unconfinedyieldstrengthc 1 = c,st ff = 1 c,0 c,st major principal stress during consolidation (steady-state flow) 1 0 c = a1 · 1 + c,0 anglesofinternal frictione,st,i effectivewallstress' b,crit b,st ' = 1 / ff1 bmin 1 ' bmin,st 1 ' stationary angle of internal friction st = const. angle of internal friction i ≈ const. effective angle of internal friction e uniaxial compressive strength c bulk density b c,crit Consolidation Functions of a Cohesive Powder for Hopper Design for Reliable Flow F 4.13 0
  • 14. Consolidation Functions of Cohesive Powders for Hopper Designbulkdensityb b,0 * b = b,0 * · (1 + )n 90° effektive angle of internal friction e 1 1 unconfinedyieldstrengthc ff = 1 c,0 c,st major principal stress during consolidation 10 c = a1 · 1 + c,0 anglesofinternalfrictione,st,i 0 < n < 1 effectivewallstress' e = arc sin sin st · 1 + 0 1 - sin st · 0 ( bmin = (m+1) · c,crit· sin 2( w + ) b,crit · g a1 = c,0 = 2 · (sin st - sin i) (1 + sin st) · (1 - sin i) 2 · (1 + sin i) · sin st (1 + sin st) · (1 - sin i) · 0 c,crit = c,0 1 - a1 · ff b,crit b,st ' = 1 / ff1 bmin 1 ' bmin,st 1 ' stationary angle of internal friction st = const. angle of internal friction i ≈ const. F 4.14 0 c,st
  • 17. (9a) pv CF bC,min G (angle of internal friction i or it) - function, see F 4.22 Vertical pressure at filling, F 4.20: 1 pv = f ( e, W, b, shaft cross section, silo height) (8a) c,crit see F 4.19 ≈ a) Maximum approach at filling and consolidation: F 4.172. Core Flow Avoid channelling (stable funnel) Hopper angle 2.1 Free Flowing Bulk Solid see 1.1 2.2 Cohesive Powder
  • 18. 2. Core Flow - Supplement Avoid channelling (stable funnel) Hopper angle: W 2.1 Free Flowing Bulk Solid see 1.1 2.2 Cohesive Powder bC,min AA Channel A - A: Ring stress 1'' at surface of channel wall 1'' 1'' bC,min G (Angle of internal friction i or it) - function, see F 4.22 b) Filling, consolidation and anisotropy1): Horizontal pressure at filling, F 4.20: 1'' ph = f ( e, W, b, shaft cross section silo height) ≈ (8b) (9b) c) Flow and radial stress field, F 4.10, Ring stress: (8c) 1'' = 1 ffd Flow factor of channelling: (8d) Two additional options: F 4.18
  • 19. ct angleofwallfriction w stationaryangleof internalfriction st bulkdensity ρb mass flow hopper core flow hopper major principal stress 1 angleofinternalfriction iandit b e st it i w uniaxialcompressivestrength c effectivewallstress 1 ` c 1´ 1 1 1 1 Consolidation Functions of Cohesive Powders for Hopper Design c,crit(core flow) c,crit ct,crit(mass flow) ct,crit(core flow) effectiveangleof internalfriction st F 4.19
  • 20. Calculation of Silo Pressures according to Slice-Element Method Force Balance F = 0 Shaft (Filling F): H HTr pv pv pn pn pW pW dA y y pW pW dydy ph ph H* b · g · dy b · g · dy pv + dpv pv + dpv Hopper: F 4.20
  • 21. 1.7 1.6 1.5 1.4 1.3 1.2 1.1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0 0.1 0 10 20 30 40 50 60 70 80 90 effective angle of internal friction e in deg w=30° w=25° w=35° w=40° w=45° w=50° w=55° w=60° w=65° lateralpressureratioactive-plasticpassive-plasticLateral Pressure Ratio = ph/pv versus Effective Angle of Internal Friction e and Angle of Wall Friction w isostatic pressure ph = pv w=0° w=5° w=10° w=15° w=20° TGL 32 274/09 DIN 1055 part 6 = 0.5 0.1 e = 32° 4° = 0.6 0.1 passive soil pressure p = 1 + sin e 1 - sin e rough wall w = e= 1 - sin2 e 1 +sin2 e smooth wall w = 0 a = 1 - sin e 1 + sin e generally 0 ≤ w ≤ e a = 1 - sin2 w 1 +sin2 w+ (1 - sin2 w). (sin2 e - sin2 w)- 0 = 1 - sin e soil pressure at rest 1.0 D H y pw ph pv pvph pw pw (1 - sin2 w). (sin2 e - sin2 w) F 4.21
  • 22. functionGi) 0 10 20 30 40 50 60 70 80 angle of internal friction i in deg 10 9 8 7 6 5 4 3 2 1 0 Function G( i) to Design a Hopper for Core Flow F 4.22
  • 23. Estimation of Minimum Shaft Diameter Process Parameters and Geometrical Apparatus Parameters pressures p heigthH pW pv ph shaft diameter Dmin heightH a) Calculation of vertical pressure Filling /Storage b) Consolidation function c 1 c,0 c) Shaft design equation D H b or F 4.23 a = 1 - sin2 w 1 + sin2 w + - (1 - sin2 w). (sin2 e - sin2 w) (1 - sin2 w). (sin2 e - sin2 w) (1a) (1b) (1c) (2) (3) (4) (5)
  • 24. detail "Z" maximum roof loads: filter load: 6 kN snow load: 1 kN /m2 gangway: walking monoload: 1,5 kN evenly distributed: 0,75 kN/m2 h2h3 18 d3Fl 100 x15 name and rated width of support rated volume V m3 input outputND6 TGL0-2501 by-pass filterlink FTFN reserve workopening levelindication safetydevice liftingarm ~TGL31-461 carriereye ~TGL31-343 20 40 80 100 160 320 100 200 200 600 600 150/50 200 B 160 A 300 250 300 893 x 666 B 90 B 110 B 220 B 325 A 250 - p1 p2 p3 p4 p5 r1 r2 s1 s2 t2t1 3000 5000 3075 5080 24 36 d1) d3 numberof bolts workopening 20 40 80 100 160 320 rated volume V m3 d1) R1 R2 1 2 [ °] [ °] h1 h2 h4 h5 h7h3 h9 =30° mass2) kg 3000 3000 3000 5000 5000 3000 775 1050 35 40 325 1820 750 1750 1550 25 30 420 3200 - 900 300 200 150 350 1130 1550 2990 3480 3875 8180 300 800 2800 4290 3000 6000 11000 14000 7000 16000 5920 8920 13920 16920 11870 20870 1) d = vessel outer diameter 2) total mass for Al Mg 3 ( sS = 2,7 t / m3 ) =30° Standard Silo earthing F 4.24
  • 25. Comparison of Models to Calculate the Hopper Discharge Mass Flow Rate valid for: consider: cohesion- less hopper shape flow condi- tions airdrag pressure dependencyof cohesive F 4.25
  • 27. Stationary Discharge Flow Rate versus Particle Size for Sand conical mass flow hopper 1,5 1,4 1,3 1,2 1,1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 dischargeflowratevsinm/s b = 0,156 m = 10° b = 0,036 m = 10° b = 0,036 m = 15° b = 0,0167 m = 10° b = 0,0103 m = 10° calculated (Tomas) measured (Carleton) 5 10 -2 2 5 10-1 2 5 10 0 2 5 101 2 5 102 particle size d in mm k =3, = 1, ff > 10b c F 4.27
  • 30. Equipment for Filling of Silos - to avoid segregation F 4.30
  • 31. Methods to Control the Level of Silos 1. Pressure gauges 2. Mechanical plumb 3. Revolving blade devices 4. Membrane pressure switch 5. Conductivity measurement 6. Capacity measurement 7. Radiometric measurement 8. Ultra-sonic measurement F 4.31
  • 32. blade type material installation length in m type N St N C - 0,4 - 0,14 - N St C - 0,4 - 0,14 - St N C - 0,4 - 0,36 - N St C - 0,4 - 0,36 - St N C - 0,4 - 0,11 - N St C - 0,4 - 0,11 - St 0,25 0,5 1,0 0,25 0,5 1,0 0,4 bended protection pipe C - 0,25 - 0,14 - N C - 0,5 - 0,14 - N C - 1,0 - 0,14 - N C - 0,25 - 0,14 - St C - 0,5 - 0,14 - St C - 1,0 - 0,14 - St 145 0,14 C 145 0,14 360 0,36 110 ∅10 0,11 Revolving Blade Level Indicator LS 40 LS 40/A - 0,1 to LS 40/A - 3,0 normal edition LS 40/B - 0,25 to LS 40/B - 6,0 with protection pipe from carbon (St) or stainless steel (N) LS 40/C - 0,25 to LS 40/C - 1,0 LS 40/C - 0,4 - 0,14 installation at inclined wall ratedlength ratedlength F 4.32
  • 33. Hopper Locks horizontal gate vertical gate horizontal rotary slide-valve double rotary slide-valve ball valve rotary disk valve discharge chute with claw lever lock lock with swivel chute F 4.33
  • 34. Size in mm h1 h2 l1 l2 l3 Mass P in kg in kW 250 120 136 1245 905 180 200 315 1450 1045 217 230 400 140 1735 1235 265 260 500 119 2050 1445 317 325 630 2405 1685 380 410 800 2915 2025 465 535 1000 180 101 3530 2435 570 785 Hopper gates with drive 118 111160 0.75 1.1 b1 see table above 0.55 Size in mm b1 d1 h1 h2 l1 l2 l3 Mass in kg 250 250 120 86 1097 982 180 70 315 315 1230 1115 218 92 400 410 315 140 100 1420 1305 265 123 500 515 1630 1515 318 147 630 630 1925 1810 380 221 800 800 400 160 114 2652 2362 465 393 1000 1000 180 132 3100 2810 570 570 Hopper gates F 4.34