SlideShare a Scribd company logo
1 of 13
Download to read offline
Alan	
  Turing	
  
                                                    Fibonacci	
  Numbers	
  in	
  Nature	
  
Melissa	
  Davis:	
  
	
  
	
  	
  	
  	
  	
  Alan	
  Turing	
  was	
  a	
  mathematical	
  genius.	
  He	
  speculated	
  that	
  there	
  was	
  a	
  relationship	
  
between	
  math	
  and	
  nature	
  by	
  the	
  presence	
  of	
  Fibonacci	
  numbers	
  that	
  naturally	
  occur	
  in	
  
plants.	
  	
  Fibonacci	
  numbers	
  are	
  a	
  sequence	
  of	
  numbers,	
  where	
  you	
  can	
  add	
  one	
  of	
  the	
  
numbers	
  with	
  the	
  number	
  to	
  the	
  right	
  of	
  it,	
  to	
  get	
  the	
  next	
  number.	
  	
  For	
  example,	
  the	
  first	
  
few	
  numbers	
  of	
  the	
  sequence	
  begin	
  as	
  follows:	
  0,	
  1,	
  1,	
  2,	
  3,	
  5,	
  8,	
  13,	
  21,	
  etc.	
  	
  To	
  get	
  the	
  
number	
  after	
  21,	
  simply	
  add	
  13	
  to	
  21,	
  which	
  gives	
  you	
  34.	
  	
  These	
  numbers	
  may	
  correlate	
  to	
  
the	
  number	
  of	
  petals,	
  leaves,	
  or	
  spirals	
  of	
  
seeds	
  a	
  plant	
  has.	
  	
  This	
  is	
  also	
  the	
  reason	
  why	
  
four-­‐leaf	
  clovers	
  are	
  so	
  rare,	
  since	
  four	
  is	
  not	
  
a	
  number	
  k	
  appears	
  in	
  the	
  Fibonacci	
  
sequence.	
  	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  Turing	
  specifically	
  looked	
  at	
  sunflowers	
  to	
  
study	
  this	
  phenomenon.	
  Turing	
  examined	
  
how	
  the	
  number	
  of	
  spirals	
  in	
  the	
  seed	
  
patterns	
  of	
  sunflowers	
  typically	
  resulted	
  in	
  a	
  
Fibonacci	
  sequence.	
  	
  This	
  finding	
  was	
  
significant,	
  as	
  it	
  provided	
  much	
  information	
  
for	
  phyllotaxis,	
  the	
  study	
  of	
  the	
  way	
  plants	
  
grow.	
  
	
  
	
  
	
  




                                                                                       “The	
  appearance	
  of	
  patterns	
  in	
  the	
  
                                                                                       phyllotaxis	
  -­‐	
  the	
  arrangement	
  of	
  leaves,	
  
                                                                                       stems,	
  seeds	
  or	
  similar	
  -­‐	
  has	
  been	
  
                                                                                       studied	
  by	
  many	
  well-­‐known	
  scientists,	
  
                                                                                       including	
  Leonardo	
  Da	
  Vinci.”	
  –	
  BBC	
  
                                                                                       News	
  

                                                                                       	
  


                                                                              	
  
	
  
 
                                                                                 	
  Here	
  is	
  a	
  demonstration	
  of	
  one	
  way	
  to	
  
                                                                                 count	
  the	
  spirals	
  of	
  seeds.	
  The	
  total	
  
                                                                                 number	
  of	
  rows	
  is	
  34,	
  which	
  is	
  a	
  
                                                                                 Fibonacci	
  number.	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
                                                                                 	
  
	
  
	
  	
  	
  	
  	
  Because	
  of	
  Alan	
  Turing’s	
  abbreviated	
  life	
  due	
  to	
  his	
  mistreatment	
  in	
  society,	
  Turing	
  was	
  
never	
  able	
  to	
  confirm	
  his	
  findings.	
  	
  However,	
  the	
  Manchester	
  Science	
  Festival,	
  the	
  Museum	
  
of	
  Science	
  and	
  Industry,	
  and	
  the	
  University	
  of	
  Manchester	
  are	
  asking	
  for	
  help	
  from	
  the	
  
public	
  to	
  confirm	
  Turing’s	
  work	
  on	
  Fibonacci	
  numbers	
  in	
  sunflowers.	
  	
  The	
  project	
  entails	
  
people	
  planting	
  and	
  growing	
  their	
  own	
  sunflowers,	
  and	
  then	
  counting	
  the	
  rows	
  of	
  seeds	
  as	
  
Turing	
  did.	
  	
  This	
  project	
  also	
  aims	
  to	
  honor	
  Turing	
  during	
  the	
  one-­‐hundred-­‐year	
  
anniversary	
  of	
  his	
  death.	
  	
  	
  
	
  
In	
  addition	
  to	
  sunflowers,	
  the	
  
Fibonacci	
  sequence	
  is	
  found	
  
in	
  the	
  number	
  of	
  petals	
  in	
  
many	
  flowers.	
  	
  For	
  example,	
  
buttercups,	
  wild	
  roses,	
  and	
  
larkspurs	
  have	
  five	
  petals;	
  
delphiniums	
  and	
  coreopsis	
  
have	
  eight	
  petals;	
  ragworts	
  
and	
  marigolds	
  have	
  thirteen	
  
petals;	
  and	
  daisies	
  can	
  have	
  
eighty-­‐nine	
  petals.	
  	
  	
  
 
                                                           	
  
                                                           	
  
                                                           	
  
                                                           	
  
                                                           	
  
                                                           	
  




	
  
	
  

	
  

References:	
  

Couder,	
  Yves.	
  "Sunflower."	
  Photo.	
  Flower	
  Patterns	
  and	
  Fibonacci	
  Numbers.	
  2002.	
  22	
  May	
  
2012.	
  <http://www.popmath.org.uk/rpamaths/rpampages/sunflower.html>.	
  

"The	
  Fibonacci	
  Series."	
  ThinkQuest.	
  Oracle	
  Foundation.	
  Web.	
  22	
  May	
  2012.	
  
<http://library.thinkquest.org/27890/applications5.html>.	
  

"Greater	
  Manchester	
  Sunflowers	
  to	
  Test	
  Alan	
  Turing	
  Theory."	
  BBC	
  News.	
  BBC,	
  22	
  Mar.	
  
2012.	
  Web.	
  06	
  June	
  2012.	
  <http://www.bbc.co.uk/news/uk-­‐england-­‐manchester-­‐
17469241>.	
  

GrrlScientist.	
  "Sunflowers	
  and	
  Fibonacci."	
  The	
  Guardian.	
  Guardian	
  News	
  and	
  Media,	
  29	
  Mar.	
  
0016.	
  Web.	
  22	
  May	
  2012.	
  
<http://www.guardian.co.uk/science/grrlscientist/2012/apr/16/1>.	
  

"How	
  To	
  Count	
  the	
  Spirals."	
  Photo.	
  Museum	
  of	
  Mathematics.	
  22	
  May	
  2012.	
  
<http://momath.org/home/fibonacci-­‐numbers-­‐of-­‐sunflower-­‐seed-­‐spirals>.	
  

McKay,	
  Dennis.	
  "Larkspur."	
  Photo.	
  Drug	
  Discovery.	
  2009.	
  22	
  May	
  2012.	
  
<http://digitalunion.osu.edu/r2/summer09/jaeger/MLA.html>.	
  

“Sunflowers	
  and	
  Fibonacci	
  –	
  Numberphile.”	
  Video.	
  (2012).	
  Retrieved	
  May	
  22,	
  2012	
  from	
  
http://www.youtube.com/watchfeature=player_embedded&v=DRjFV_DETKQ.	
  	
  

Wainwright,	
  Martin.	
  "Grow	
  a	
  Sunflower	
  to	
  Solve	
  Unfinished	
  Alan	
  Turing	
  Experiment."	
  The	
  
Guardian.	
  Guardian	
  News	
  and	
  Media,	
  24	
  Nov.	
  0048.	
  Web.	
  22	
  May	
  2012.	
  
<http://www.guardian.co.uk/uk/the-­‐northerner/2012/mar/26/alan-­‐turing-­‐sunf....>	
  

Jing	
  (Sophie)	
  Xia:	
  

	
  	
  	
  	
  	
  However,	
  flowers	
  are	
  not	
  the	
  only	
  organisms	
  in	
  which	
  Fibonacci	
  numbers	
  are	
  present;	
  
Fibonacci	
  numbers	
  are	
  also	
  found	
  in	
  pine	
  cones	
  and	
  plant	
  leaves.	
  Pine	
  cones	
  display	
  the	
  
Fibonacci	
  Spirals	
  clearly.	
  The	
  best	
  way	
  to	
  examine	
  these	
  patterns	
  is	
  to	
  observe	
  pine	
  cones	
  
from	
  the	
  base	
  where	
  the	
  stalk	
  connects	
  it	
  to	
  the	
  tree.	
  For	
  instance,	
  one	
  set	
  of	
  spirals	
  goes	
  in	
  
one	
  uniform	
  direction	
  whereas	
  another	
  set	
  of	
  spirals	
  goes	
  in	
  the	
  opposite	
  direction	
  (see	
  
images	
  below).	
  For	
  example,	
  in	
  one	
  direction,	
  there	
  are	
  8	
  whirls	
  whereas	
  in	
  the	
  other	
  
direction,	
  there	
  are	
  13	
  whirls.	
  It	
  is	
  not	
  coincidence	
  that	
  both	
  8	
  and	
  13	
  are	
  Fibonacci	
  
numbers.	
  




                                                                                                                           	
  

Pine	
  cones	
  contain	
  evidence	
  of	
  Fibonacci	
  spirals	
  since	
  their	
  patterns	
  are	
  arranged	
  in	
  two	
  
different	
  directions	
  of	
  spirals.	
  




                                                                                                           	
  
 

In	
  addition,	
  many	
  plants	
  show	
  Fibonacci	
  numbers	
  in	
  the	
  arrangements	
  of	
  the	
  leaves	
  around	
  
their	
  stems.	
  When	
  looking	
  down	
  on	
  a	
  plant,	
  one	
  
can	
  notice	
  that	
  its	
  leaves	
  are	
  arranged	
  so	
  that	
  
the	
  leaves	
  higher	
  up	
  on	
  the	
  stem	
  do	
  not	
  hide	
  
leaves	
  below.	
  This	
  ensures	
  that	
  no	
  matter	
  
where	
  the	
  leaves	
  are	
  located	
  on	
  a	
  stem,	
  they	
  
are	
  able	
  to	
  receive	
  sunlight.	
  Fibonacci	
  numbers	
  
are	
  evident	
  in	
  two	
  ways	
  in	
  terms	
  of	
  leaves	
  per	
  
turn.	
  First,	
  they	
  occur	
  when	
  counting	
  the	
  
number	
  of	
  times	
  they	
  go	
  around	
  the	
  stem.	
  
Secondly,	
  it	
  occurs	
  when	
  counting	
  leaves	
  until	
  
finding	
  a	
  leaf	
  directly	
  above	
  the	
  leaf	
  in	
  which	
  
one	
  started	
  counting.	
  If	
  one	
  counts	
  in	
  the	
  
opposite	
  direction,	
  there	
  is	
  a	
  different	
  number	
  
of	
  turns	
  with	
  the	
  same	
  number	
  of	
  leaves.	
  The	
  
number	
  of	
  turns	
  in	
  each	
  direction	
  and	
  the	
  
number	
  of	
  leaves	
  met	
  are	
  three	
  consecutive	
  
Fibonacci	
  numbers.	
  For	
  example,	
  one	
  must	
  
rotate	
  three	
  turns	
  clockwise	
  to	
  meet	
  a	
  leaf	
  that	
  
is	
  directly	
  above	
  the	
  first	
  leaf	
  counted.	
  On	
  the	
  
way,	
  one	
  passes	
  by	
  five	
  leaves.	
  But	
  when	
  one	
  
counts	
  counter-­‐clockwise,	
  they	
  only	
  turn	
  two	
  
times.	
  	
  Because	
  2,	
  3,	
  and	
  5	
  are	
  consecutive	
  
Fibonacci	
  numbers,	
  this	
  example	
  demonstrates	
  
the	
  existence	
  of	
  Fibonacci	
  numbers	
  in	
  plant	
  
leaves.	
  	
  

	
  

	
  

References:	
  

"Evolution."	
  How	
  Stuff	
  Works.	
  N.p.,	
  n.	
  d.	
  Web.	
  20	
  May.	
  2012.	
  
<http://science.howstuffworks.com/environmental/life/evolution>.	
  

"Fibonacci	
  Numbers	
  and	
  Nature."	
  Rabbits,	
  Cows	
  and	
  Bees	
  Family	
  Trees	
  .	
  N.p.,	
  n.	
  d.	
  Web.	
  20	
  
May.	
  2012.	
  <http://www.maths.surrey.ac.uk/hosted-­‐sites/R.Knott/Fibonacci/fibnat.html>.	
  

"Fibonacci	
  Numbers	
  and	
  the	
  Golden	
  Section."	
  N.p.,	
  n.	
  d.	
  Web.	
  20	
  May.	
  2012.	
  
<http://britton.disted.camosun.bc.ca/fibslide/jbfibslide.htm>.	
  

"Fibonacci	
  numbers	
  and	
  Golden	
  ratio."	
  Natural	
  occurrence	
  of	
  Fibonacci	
  numbers.	
  N.p.,	
  n.	
  d.	
  
Web.	
  20	
  May.	
  2012.	
  <http://gwydir.demon.co.uk/jo/numbers/interest/golden.htm>.	
  
Parveen,	
  Nikhat.	
  "Fibonacci	
  in	
  Nature."	
  N.p.,	
  n.	
  d.	
  Web.	
  20	
  May.	
  2012.	
  
<http://jwilson.coe.uga.edu/emat6680/parveen/fib_nature.htm>.	
  	
  

Shiwei	
  Huang	
  
	
  
	
  	
  	
  	
  	
  Alan	
  Turing’s	
  interest	
  in	
  Fibonacci	
  series	
  was	
  inspired	
  by	
  zoologist	
  D’arcy	
  Wentworth	
  
Thompson’s	
  book,	
  On	
  Growth	
  and	
  Form.	
  Thompson	
  wanted	
  to	
  explain	
  how	
  physical	
  and	
  
mathematical	
  laws	
  could	
  explain	
  the	
  forms	
  and	
  patterns	
  of	
  living	
  things.	
  After	
  examining	
  
the	
  patterns	
  of	
  fir	
  cones	
  and	
  sunflowers,	
  Thompson	
  observed	
  that	
  the	
  scales	
  of	
  a	
  fir	
  cone	
  
and	
  the	
  florets	
  of	
  a	
  sunflower	
  are	
  grouped	
  in	
  the	
  numbers	
  in	
  Fibonacci	
  series.	
  However,	
  
Thompson	
  claimed	
  that	
  the	
  appearance	
  of	
  Fibonacci	
  series	
  in	
  these	
  plants	
  were	
  purely	
  for	
  
mathematical	
  reasons,	
  and	
  the	
  purpose	
  of	
  introducing	
  of	
  this	
  series	
  into	
  plants	
  throughout	
  
the	
  course	
  of	
  natural	
  selection	
  was	
  not	
  worth	
  studying.	
  	
  
	
  	
  	
  	
  	
  Alan	
  Turing	
  was	
  the	
  first	
  scientist	
  to	
  study	
  the	
  mechanisms	
  behind	
  the	
  development	
  of	
  
pattern	
  in	
  living	
  organisms	
  using	
  computer	
  simulation.	
  When	
  Manchester	
  Electronic	
  
Computer,	
  also	
  called	
  Ferranti	
  Mark	
  I,	
  was	
  installed	
  in	
  Manchester	
  University,	
  Turing	
  wrote	
  
to	
  his	
  colleague,	
  “I	
  am	
  hoping	
  as	
  one	
  of	
  the	
  first	
  jobs	
  to	
  do	
  something	
  about	
  ‘chemical	
  
embryology.’	
  In	
  particular	
  I	
  think	
  one	
  can	
  account	
  for	
  the	
  appearance	
  of	
  Fibonacci	
  numbers	
  
in	
  connection	
  with	
  fir	
  cones.”	
  Turing	
  formulated	
  his	
  reaction-­‐diffusion	
  model	
  from	
  the	
  
observation	
  of	
  fir	
  cones	
  and	
  sunflowers.	
  He	
  believed	
  that	
  diffusing	
  chemicals	
  reacted	
  with	
  
each	
  other	
  and	
  caused	
  the	
  development	
  of	
  forms	
  of	
  living	
  organisms.	
  He	
  postulated	
  that	
  the	
  
reaction-­‐diffusion	
  model	
  could	
  be	
  applied	
  to	
  gastrulation	
  of	
  an	
  embryo,	
  which	
  is	
  the	
  
rearranging	
  of	
  the	
  cells	
  in	
  an	
  embryo,	
  and	
  the	
  formation	
  of	
  leaf	
  pattern.	
  Modern	
  computer	
  
has	
  simulated	
  Turing’s	
  reaction-­‐diffusion	
  mechanism,	
  and	
  it	
  has	
  successfully	
  produced	
  
leopard-­‐like,	
  cheetah-­‐like,	
  and	
  giraffe-­‐like	
  stripes.	
  In	
  his	
  paper	
  “Chemical	
  basis	
  of	
  
morphogenesis,”	
  he	
  called	
  these	
  interacting	
  chemicals	
  “morphogens.”	
  Unfortunately,	
  
Turing’s	
  work	
  on	
  morphogenesis	
  was	
  considered	
  ahead	
  of	
  the	
  time,	
  and	
  he	
  died	
  and	
  left	
  a	
  
large	
  number	
  of	
  research	
  materials	
  and	
  notes	
  that	
  could	
  not	
  be	
  understood	
  today.	
  
	
  
                     Turing’s	
  reaction-­‐diffusion	
  system	
  (the	
  simplified	
  version):	
  
                                                                           ∂c/∂t=f(c)+D∇2c	
  
                     f(c)	
  represents	
  the	
  local	
  chemical	
  reaction	
  that	
  different	
  chemicals	
  are	
  reacted	
  and	
  
formed.	
  D	
  is	
  the	
  diffusion	
  constant,	
  which	
  describes	
  the	
  flow	
  of	
  a	
  chemical	
  due	
  to	
  its	
  
concentration	
  gradient	
  and	
  its	
  diffusion.	
  Simply	
  put,	
  the	
  equation	
  states	
  that	
  the	
  
distribution	
  of	
  a	
  chemical	
  is	
  determined	
  by	
  the	
  chemical	
  reaction	
  that	
  generates	
  this	
  
chemical	
  and	
  the	
  diffusion	
  of	
  this	
  chemical.	
  Under	
  certain	
  conditions,	
  two	
  or	
  more	
  
chemicals	
  will	
  diffuse	
  and	
  react	
  with	
  each	
  other	
  in	
  the	
  embryo,	
  and	
  they	
  will	
  reach	
  a	
  stable	
  
pattern	
  of	
  concentration.	
  For	
  instance,	
  if	
  there	
  was	
  a	
  ring	
  of	
  cells,	
  reaction-­‐diffusion	
  model	
  
could	
  give	
  us	
  a	
  pattern	
  of	
  chemical	
  gradient	
  surrounding	
  the	
  ring	
  of	
  cells.	
  The	
  same	
  
concentrations	
  would	
  occur	
  at	
  places	
  with	
  the	
  same	
  distances	
  to	
  each	
  other,	
  and	
  Turing	
  
called	
  this	
  chemical	
  wave	
  if	
  it	
  was	
  stationary.	
  Conversely,	
  if	
  the	
  gradient	
  was	
  changing,	
  it	
  
would	
  be	
  called	
  traveling	
  waves.	
  Turing	
  pointed	
  out	
  the	
  structure	
  of	
  the	
  embryo	
  could	
  
break	
  this	
  pattern	
  and	
  cause	
  asymmetrical	
  chemical	
  waves.	
  Turing	
  believed	
  that	
  genes	
  
catalyzed	
  the	
  production	
  of	
  morphogens	
  and	
  might	
  influence	
  the	
  rate	
  of	
  the	
  reaction	
  to	
  
determine	
  the	
  pattern	
  in	
  animals.	
  
	
  
 
                                                              	
  
                                                              Program	
  sheet	
  written	
  by	
  Alan	
  Turing	
  during	
  his	
  
                                                              study	
  of	
  fir	
  cone	
  patterning	
  
                                                              	
  
                                                              	
  
                                                              	
  
                                                              	
  
                                                              	
  
                                                              	
  
                                                              	
  
                                                              	
  
                                                              	
  
                                                              	
  

	
  
	
  
	
  
	
  
’	
  	
  
Computer	
  output.	
  Turing	
  wrote	
  “How	
  did	
  
this	
  happen?”	
  on	
  the	
  sheet.	
  
	
  
	
  
	
  
	
  
	
  
	
  


                                                             	
  
                                                             	
  
                                                             	
  
                                                             	
  
                                                             	
  
                                                             	
  
                                                             	
  
                                                             	
  
                                                             Turing’s	
  numbering	
  on	
  the	
  sunflower	
  
                                                             	
  
                                                             	
  
                                                             	
  
References:	
  
	
  
Charvoin,	
  J.	
  and	
  Sadoc,	
  J-­‐F.	
  (2011)	
  “A	
  Phyllotactic	
  Approach	
  to	
  The	
  Structure	
  of	
  Collagen	
  
Fibrils.”	
  <http://arxiv.org/pdf/1102.2359v2.pdf>	
  
	
  
Copeland,	
  B.J.(2004)	
  “The	
  Essential	
  Turing,	
  Seminal	
  Writings	
  in	
  Computing,	
  Logic,	
  
Philosophy,	
  Artificial	
  Intelligence,	
  and	
  Artificial	
  Life	
  plus	
  The	
  Secrets	
  of	
  Enigma.”	
  Oxford:	
  
Clarendon	
  Press.	
  
	
  
Engelhardt,	
  R.	
  (1994)	
  “Modeling	
  Pattern	
  Formation	
  in	
  Reaction-­‐Diffusion	
  System.”	
  
<http://www.robinengelhardt.info/speciale/main.pdf>	
  
	
  
Maini,	
  P.	
  K.	
  (2007)	
  “The	
  impact	
  of	
  Turing's	
  work	
  on	
  pattern	
  formation	
  in	
  biology.”	
  
<people.maths.ox.ac.uk/maini/PKM%20publications/172.pdf>	
  
	
  
Swinton,	
  J.	
  (2003)	
  “Watching	
  the	
  Daisies	
  Grow:	
  Turing	
  and	
  Fibonacci	
  Phyllotaxis.”	
  
<user29459.vs.easily.co.uk/wp-­‐content/uploads/2011/05/swinton.pdf>	
  
	
  
Thompson,	
  D.	
  W.	
  (1966)	
  “On	
  Growth	
  and	
  Form.”	
  Cambridge:	
  University	
  Press.	
  
	
  
Turing,	
  A.	
  M.	
  (1952)	
  “The	
  Chemical	
  Basis	
  of	
  Morphogensis.”	
  
<http://links.jstor.org/sici?sici=0080-­‐
4622%2819520814%29237%3A641%3C37%3ATCBOM%3E2.0.CO%3B2-­‐I	
  
	
  
Jen-­‐Ling	
  Nieh:	
  
	
  
	
  Morphology,	
  at	
  the	
  most	
  basic	
  sense,	
  consists	
  of	
  two	
  aspects	
  –	
  shape	
  and	
  pattern.	
  	
  The	
  
changes	
  of	
  morphology	
  that	
  occur	
  during	
  biological	
  development	
  of	
  an	
  organism	
  are	
  called	
  
“morphogenesis.”	
  	
  Turing	
  proposed	
  that	
  both	
  shape	
  and	
  pattern	
  seem	
  to	
  be	
  set	
  up	
  in	
  
embryos	
  by	
  the	
  same	
  mechanism,	
  a	
  pre-­‐pattern	
  of	
  chemical	
  changes	
  that	
  waits	
  for	
  the	
  
appropriate	
  stage	
  of	
  development,	
  and	
  then	
  triggers	
  either	
  pigments,	
  to	
  create	
  pattern,	
  or	
  
cellular	
  changes,	
  to	
  create	
  shape.	
  	
  He	
  showed	
  that	
  this	
  kind	
  of	
  system	
  may	
  have	
  a	
  
homogeneous	
  stationary	
  state	
  which	
  is	
  unstable	
  against	
  perturbations,	
  such	
  that	
  any	
  
random	
  deviation	
  from	
  the	
  stationary	
  state	
  leads	
  through	
  diffusion	
  to	
  a	
  symmetry	
  break.	
  	
  
This	
  process	
  is	
  called	
  diffusion-­‐driven	
  instability.	
  	
  Since	
  complex	
  spatial	
  patterns	
  are	
  
commonly	
  found	
  in	
  nature,	
  for	
  example,	
  in	
  animal	
  skins	
  and	
  also	
  in	
  some	
  polymer	
  systems,	
  
it	
  is	
  quite	
  natural	
  to	
  think	
  that	
  such	
  pattern	
  formations	
  could	
  be	
  caused	
  by	
  some	
  general	
  
physicochemical	
  process.	
  
	
  
	
  




                                                                                                                                	
  
	
  
	
  
Many	
  animals	
  develop	
  their	
  coat	
  patterns	
  in	
  stages.	
  Typically,	
  a	
  secondary	
  pattern	
  will	
  
emerge	
  as	
  the	
  animal	
  transitions	
  to	
  adulthood.	
  The	
  following	
  examples	
  all	
  use	
  multiple	
  
stages:	
  
	
  	
  
	
  
                                      	
  
                                      	
  
                                      	
  
                                      	
  
                                      	
  
                                      	
  
                                                                                                	
  
                                                                                                	
  
                                                                                                	
  
                                                                                                	
  


	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  
	
  
	
  	
  	
  	
  	
  Turing's	
  mathematical	
  model	
  of	
  chemical	
  morphogenesis	
  helps	
  us	
  understand	
  why	
  
tigers	
  and	
  zebras	
  have	
  stripes.	
  Turing's	
  Reaction-­‐Diffusion	
  model	
  from	
  1952	
  consists	
  on	
  a	
  
set	
  of	
  equations	
  that	
  iteratively	
  simulate	
  the	
  distribution	
  of	
  a	
  chemical	
  agent	
  (activator)	
  
modulated	
  by	
  the	
  presence	
  of	
  another	
  agent	
  called	
  inhibitor.	
  In	
  his	
  seminal	
  1952	
  paper,	
  
Alan	
  Turing	
  predicted	
  that	
  diffusion	
  could	
  spontaneously	
  drive	
  an	
  initially	
  uniform	
  solution	
  
of	
  reacting	
  chemicals	
  to	
  develop	
  stable	
  spatially	
  periodic	
  concentration	
  patterns.	
  It	
  is	
  
believed	
  that	
  such	
  interactions	
  take	
  place	
  in	
  nature	
  to	
  form	
  patterns	
  that	
  can	
  be	
  found	
  in	
  
mammals	
  and	
  fish,	
  and	
  the	
  first	
  model,	
  generating	
  spots.	
  
 
	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  According	
  to	
  the	
  Reaction-­‐Diffusion	
  
Model,	
  the	
  diffusion	
  of	
  an	
  activator	
  and	
  
inhibitor	
  through	
  an	
  evolving	
  cellular	
  
system	
  over	
  a	
  period	
  of	
  time,	
  the	
  
concentration	
  gradients	
  dictating	
  cell	
  
differentiation,	
  i.e.	
  a	
  zebra	
  skin	
  cell	
  can	
  be	
  
black	
  or	
  white	
  according	
  to	
  the	
  
concentration	
  of	
  a	
  white-­‐cell	
  activator	
  at	
  
the	
  point	
  when	
  it	
  forms.	
  Biologists	
  would	
  
call	
  these	
  activators	
  morphogens,	
  as	
  these	
  
are	
  the	
  proteins	
  that	
  regulate	
  gene	
  
expression.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 	
  	
  	
  	
  Currently,	
  pigmentation	
  patterns	
  in	
  
animal	
  skins,	
  feathers	
  of	
  birds,	
  and	
  
shells	
  of	
  snails	
  are	
  the	
  only	
  examples	
  
in	
  which	
  we	
  can	
  detect	
  the	
  dynamic	
  
nature	
  of	
  Turing	
  waves	
  as	
  a	
  time	
  
course	
  of	
  the	
  pattern	
  change.	
  
Especially,	
  the	
  two-­‐dimensional	
  (2-­‐D)	
  
skin	
  pattern	
  of	
  fish	
  is	
  quite	
  convenient	
  
to	
  study	
  because	
  their	
  waves	
  are	
  
sometimes	
  alive	
  even	
  when	
  the	
  fish	
  
has	
  grown	
  up	
  into	
  an	
  adult	
  (Shigeru	
  
Kondo).	
  
	
  
	
  	
  	
  	
  	
  For	
  example,	
  when	
  a	
  striped	
  
angelfish	
  (Pomacanthus	
  imperator)	
  
grows,	
  the	
  branching	
  points	
  of	
  the	
  
stripes	
  slide	
  horizontally	
  as	
  the	
  zip	
  
opens	
  and	
  add	
  a	
  number	
  of	
  stripes;	
  
eventually	
  the	
  spacing	
  between	
  the	
  
stripes	
  remains	
  stable.	
  In	
  the	
  case	
  of	
  the	
  spotted	
  catfish	
  (Plecostoms),	
  both	
  division	
  of	
  the	
  
spots	
  and	
  insertion	
  of	
  the	
  new	
  spots	
  occur	
  to	
  retain	
  the	
  density	
  and	
  size	
  of	
  the	
  spots.	
  Both	
  
stripes	
  and	
  the	
  spots	
  are	
  the	
  most	
  typical	
  2-­‐D	
  patterns	
  generated	
  by	
  the	
  RD	
  mechanism,	
  
and	
  the	
  time	
  course	
  of	
  the	
  pattern	
  change	
  possesses	
  the	
  characteristics	
  of	
  the	
  dynamics	
  of	
  
RD	
  waves,	
  strongly	
  suggesting	
  that	
  the	
  RD	
  mechanism	
  underlies	
  the	
  process	
  of	
  pigment	
  
pattern	
  formation	
  of	
  fish.	
  
	
  
References:	
  
	
  
www.scholarpedia.org/w/images/8/8d/TROPH.jpg">http://www.scholarpedia.org/w/im
ages/8/8d/TROPH.jpg	
  
	
  
http://cgjennings.ca/toybox/turingmorph/texture1.png	
  
	
  
http://cgjennings.ca/toybox/turingmorph/texture2.png	
  
	
  
http://cgjennings.ca/toybox/turingmorph/texture3.jpg	
  
	
  
www.urbagram.net/images/turing.jpg">http://www.urbagram.net/images/turing.jpg	
  
	
  
www.urbagram.net/v1/revision/Morphogenesis?rev=1">http://www.urbagram.net/v1/r
evision/Morphogenesis?rev=1	
  
	
  
http://27.media.tumblr.com/tumblr_lzeh1qUhRe1r3lyy3o1_500.jpg	
  

	
  
Alexandra	
  Pourzia:	
  

Alan	
  Turing	
  proposed,	
  based	
  purely	
  on	
  logical	
  reasoning,	
  that	
  pattern	
  formation	
  in	
  nature	
  
involved	
  an	
  ‘activating’	
  substance	
  and	
  an	
  ‘inhibiting’	
  substance.	
  The	
  repetition	
  of	
  activator	
  
and	
  inhibitor	
  could	
  create	
  patterns	
  such	
  as	
  stripes.1	
  Previously,	
  developmental	
  biologists	
  
were	
  puzzled	
  by	
  pattern	
  formation	
  because	
  they	
  could	
  not	
  explain	
  it	
  using	
  the	
  linear	
  
models	
  that	
  were	
  the	
  extent	
  of	
  their	
  knowledge	
  at	
  the	
  time.	
  Turing	
  proposed	
  a	
  nonlinear	
  
model	
  by	
  introducing	
  diffusion	
  as	
  the	
  generator	
  of	
  instability	
  in	
  the	
  model,	
  instead	
  of	
  being	
  
a	
  byproduct	
  of	
  the	
  model.	
  2	
  The	
  implications	
  of	
  Turing’s	
  mechanism	
  were	
  astounding:	
  he	
  
predicted	
  the	
  mode	
  of	
  action	
  of	
  the	
  Hox	
  genes	
  in	
  Drosophila,	
  which	
  result	
  in	
  the	
  patterning	
  
of	
  the	
  embryo’s	
  body	
  segments.	
  3	
  

Hox	
  gene	
  patterning	
  by	
  body	
  segment	
  in	
  Drosophila	
  




                                                                                          	
  

The	
  Hox	
  genes	
  induce	
  patterning	
  by	
  activating	
  transcription	
  of	
  their	
  unique	
  set	
  of	
  genes	
  
while	
  repressing	
  others	
  not	
  related	
  to	
  their	
  segment.	
  They	
  in	
  turn	
  are	
  regulated	
  by	
  
patterning	
  genes	
  (gap,	
  pair-­‐rule,	
  or	
  segment	
  polarity	
  genes),	
  which	
  follow	
  Turing’s	
  
proposed	
  model	
  very	
  closely.	
  These	
  patterning	
  genes	
  are	
  induced	
  by	
  high	
  or	
  low	
  
concentrations	
  of	
  maternal	
  proteins	
  in	
  the	
  embryo,	
  which	
  was	
  formed	
  from	
  the	
  maternal	
  
egg	
  and	
  paternal	
  sperm.	
  For	
  example,	
  high	
  concentrations	
  of	
  maternal	
  protein	
  induce	
  the	
  
expression	
  of	
  Bicoid	
  and	
  Hunchback,	
  while	
  inhibiting	
  Giant	
  and	
  Kruppel.	
  The	
  concentration	
  
of	
  these	
  “morphogens”,	
  as	
  Turing	
  first	
  called	
  them,	
  lead	
  to	
  the	
  formation	
  of	
  a	
  pattern	
  –	
  
segment	
  two	
  of	
  the	
  fly	
  embryo.3	
  

                                               	
  

                                                          Pair-­‐rule	
  genes:	
  expressed	
  between	
  certain	
  segments	
  

                                               	
  

                                               	
  

                                               	
  
References:	
  

       1. Hughes,	
   Virginia.	
   “Alan	
   Turing’s	
   60-­‐Year-­‐Old	
   Prediction	
   About	
   Patterns	
   in	
   Nature	
  
          Proved	
  True.“	
  Smithsonian.com.	
  The	
  Smithsonian	
  Institution,	
  21	
  Feb	
  2012.	
  Web.	
  20	
  
          May	
   2012.	
   <http://blogs.smithsonianmag.com/science/2012/02/alan-­‐turing-­‐
          predicted-­‐natures-­‐stripes-­‐and-­‐patterns/>	
  
       2. Reinitz,	
  John.	
  “Pattern	
  formation.”	
  Nature.	
  Feb	
  2012.	
  
       3. “Hox	
   gene.”	
   Wikipedia.	
   Wikimedia	
   Foundation,	
   Inc,	
   n.d.	
   20	
   May	
   2012.	
  
          <http://en.wikipedia.org/wiki/Hox_gene>	
  

	
  
	
  
	
  
	
  

	
  

	
  

More Related Content

What's hot

Outcomes based teaching learning plan (obtlp) history of mathematics!
Outcomes based teaching learning plan (obtlp) history of mathematics!Outcomes based teaching learning plan (obtlp) history of mathematics!
Outcomes based teaching learning plan (obtlp) history of mathematics!Elton John Embodo
 
Historical background of curriculum in the philippines
Historical background of curriculum in the philippinesHistorical background of curriculum in the philippines
Historical background of curriculum in the philippinesKimberly Marcellones
 
K to 12 CURRICULUM FOR BASIC EDUCATION
K to 12 CURRICULUM FOR BASIC EDUCATIONK to 12 CURRICULUM FOR BASIC EDUCATION
K to 12 CURRICULUM FOR BASIC EDUCATIONNie99
 
Curriculum Development-SEDP
Curriculum Development-SEDPCurriculum Development-SEDP
Curriculum Development-SEDPJeric Gutierrez
 
English cg spideylab.com 2017
English cg spideylab.com 2017English cg spideylab.com 2017
English cg spideylab.com 2017cristineyabes1
 
Lesson 15 Project-Based Learning and Multimedia
Lesson 15 Project-Based Learning and MultimediaLesson 15 Project-Based Learning and Multimedia
Lesson 15 Project-Based Learning and MultimediaDiana Lynn Cristobal
 
Pqf and aqrf special man com_feb17
Pqf and aqrf special man com_feb17Pqf and aqrf special man com_feb17
Pqf and aqrf special man com_feb17gerardo dadula
 
Finalnafinalthesis 100513074602-phpapp02 (1)
Finalnafinalthesis 100513074602-phpapp02 (1)Finalnafinalthesis 100513074602-phpapp02 (1)
Finalnafinalthesis 100513074602-phpapp02 (1)Vhanny Atanacio
 
Historical Perspective in Philippine Education
Historical Perspective in Philippine EducationHistorical Perspective in Philippine Education
Historical Perspective in Philippine EducationGenesis Felipe
 
Curricularist as a Knower
Curricularist as a KnowerCurricularist as a Knower
Curricularist as a KnowerJM Gamboa
 
Action Research
Action ResearchAction Research
Action ResearchGlory
 
Background example
Background exampleBackground example
Background exampleNovita Dian
 
Indigenous peoples education curriculum of the Philippines
Indigenous peoples education curriculum of the PhilippinesIndigenous peoples education curriculum of the Philippines
Indigenous peoples education curriculum of the PhilippinesBobby Mascarenas
 
Educational technology vis a-vis models of learning
Educational technology vis a-vis models of learningEducational technology vis a-vis models of learning
Educational technology vis a-vis models of learningAngelito Pera
 
Social Studies Exam Review - Answer Key
Social Studies Exam Review - Answer KeySocial Studies Exam Review - Answer Key
Social Studies Exam Review - Answer Keyspgr7ssela
 

What's hot (20)

Outcomes based teaching learning plan (obtlp) history of mathematics!
Outcomes based teaching learning plan (obtlp) history of mathematics!Outcomes based teaching learning plan (obtlp) history of mathematics!
Outcomes based teaching learning plan (obtlp) history of mathematics!
 
Historical background of curriculum in the philippines
Historical background of curriculum in the philippinesHistorical background of curriculum in the philippines
Historical background of curriculum in the philippines
 
K to 12 CURRICULUM FOR BASIC EDUCATION
K to 12 CURRICULUM FOR BASIC EDUCATIONK to 12 CURRICULUM FOR BASIC EDUCATION
K to 12 CURRICULUM FOR BASIC EDUCATION
 
Curriculum Development-SEDP
Curriculum Development-SEDPCurriculum Development-SEDP
Curriculum Development-SEDP
 
English cg spideylab.com 2017
English cg spideylab.com 2017English cg spideylab.com 2017
English cg spideylab.com 2017
 
Lesson 15 Project-Based Learning and Multimedia
Lesson 15 Project-Based Learning and MultimediaLesson 15 Project-Based Learning and Multimedia
Lesson 15 Project-Based Learning and Multimedia
 
Tpack lesson plan
Tpack lesson planTpack lesson plan
Tpack lesson plan
 
Pqf and aqrf special man com_feb17
Pqf and aqrf special man com_feb17Pqf and aqrf special man com_feb17
Pqf and aqrf special man com_feb17
 
Finalnafinalthesis 100513074602-phpapp02 (1)
Finalnafinalthesis 100513074602-phpapp02 (1)Finalnafinalthesis 100513074602-phpapp02 (1)
Finalnafinalthesis 100513074602-phpapp02 (1)
 
EDUC 115 (K-12 Program)
EDUC 115 (K-12 Program)EDUC 115 (K-12 Program)
EDUC 115 (K-12 Program)
 
Historical Perspective in Philippine Education
Historical Perspective in Philippine EducationHistorical Perspective in Philippine Education
Historical Perspective in Philippine Education
 
Curricularist as a Knower
Curricularist as a KnowerCurricularist as a Knower
Curricularist as a Knower
 
English-CG.pdf
English-CG.pdfEnglish-CG.pdf
English-CG.pdf
 
Action Research
Action ResearchAction Research
Action Research
 
BATAS PAMBANSA Blg. 232
BATAS PAMBANSA Blg. 232BATAS PAMBANSA Blg. 232
BATAS PAMBANSA Blg. 232
 
Background example
Background exampleBackground example
Background example
 
Assessment of learning 1
Assessment of learning 1Assessment of learning 1
Assessment of learning 1
 
Indigenous peoples education curriculum of the Philippines
Indigenous peoples education curriculum of the PhilippinesIndigenous peoples education curriculum of the Philippines
Indigenous peoples education curriculum of the Philippines
 
Educational technology vis a-vis models of learning
Educational technology vis a-vis models of learningEducational technology vis a-vis models of learning
Educational technology vis a-vis models of learning
 
Social Studies Exam Review - Answer Key
Social Studies Exam Review - Answer KeySocial Studies Exam Review - Answer Key
Social Studies Exam Review - Answer Key
 

Similar to Turing fibonacci numbers

Section b christianity origins & contemporary expressions overview
Section b christianity origins & contemporary expressions   overviewSection b christianity origins & contemporary expressions   overview
Section b christianity origins & contemporary expressions overviewcecilconway
 
Identifying the rhetorical tools of ethos, logos
Identifying the rhetorical tools of ethos, logosIdentifying the rhetorical tools of ethos, logos
Identifying the rhetorical tools of ethos, logosmonamars
 
Digital Typography: Font Management - ebookcraft 2016 - Charles Nix
Digital Typography: Font Management - ebookcraft 2016 - Charles NixDigital Typography: Font Management - ebookcraft 2016 - Charles Nix
Digital Typography: Font Management - ebookcraft 2016 - Charles NixBookNet Canada
 
Dawn Of The Dead Textual Analysis
Dawn Of The Dead Textual Analysis Dawn Of The Dead Textual Analysis
Dawn Of The Dead Textual Analysis Valvainolivi
 
Rory's Story Cubes® - Concepts for Box Redesign
Rory's Story Cubes® - Concepts for Box RedesignRory's Story Cubes® - Concepts for Box Redesign
Rory's Story Cubes® - Concepts for Box RedesignThe Creativity Hub
 
Kane's fun park story
Kane's fun park storyKane's fun park story
Kane's fun park storytakahe2
 
Kane's fun park story
Kane's fun park storyKane's fun park story
Kane's fun park storytakahe2
 
Social Innovation & New Media: 1. Class Introduction
Social Innovation & New Media: 1. Class IntroductionSocial Innovation & New Media: 1. Class Introduction
Social Innovation & New Media: 1. Class IntroductionNam-ho Park
 
Geoboard workshop
Geoboard workshopGeoboard workshop
Geoboard workshopPractiques2
 
지식의 연금술사 브리꼴뢰르형 인재 유영만
지식의 연금술사 브리꼴뢰르형 인재   유영만지식의 연금술사 브리꼴뢰르형 인재   유영만
지식의 연금술사 브리꼴뢰르형 인재 유영만Jinho Jung
 
SNSとソーシャルアプリケーション/ソーシャルアプリ勉強会(第2回)
SNSとソーシャルアプリケーション/ソーシャルアプリ勉強会(第2回)SNSとソーシャルアプリケーション/ソーシャルアプリ勉強会(第2回)
SNSとソーシャルアプリケーション/ソーシャルアプリ勉強会(第2回)Cytech
 
지식 컨텐츠 서비스의 융합전략 - 민경배 교수
지식 컨텐츠 서비스의 융합전략 - 민경배 교수지식 컨텐츠 서비스의 융합전략 - 민경배 교수
지식 컨텐츠 서비스의 융합전략 - 민경배 교수Jinho Jung
 
Zipcar (HBR Case Study)
Zipcar (HBR Case Study)Zipcar (HBR Case Study)
Zipcar (HBR Case Study)Daniel Zhao
 
Workforce Needs of the California Solar Industry
Workforce Needs of the California Solar IndustryWorkforce Needs of the California Solar Industry
Workforce Needs of the California Solar IndustryJoel West
 

Similar to Turing fibonacci numbers (20)

Section b christianity origins & contemporary expressions overview
Section b christianity origins & contemporary expressions   overviewSection b christianity origins & contemporary expressions   overview
Section b christianity origins & contemporary expressions overview
 
Identifying the rhetorical tools of ethos, logos
Identifying the rhetorical tools of ethos, logosIdentifying the rhetorical tools of ethos, logos
Identifying the rhetorical tools of ethos, logos
 
Digital Typography: Font Management - ebookcraft 2016 - Charles Nix
Digital Typography: Font Management - ebookcraft 2016 - Charles NixDigital Typography: Font Management - ebookcraft 2016 - Charles Nix
Digital Typography: Font Management - ebookcraft 2016 - Charles Nix
 
Dawn Of The Dead Textual Analysis
Dawn Of The Dead Textual Analysis Dawn Of The Dead Textual Analysis
Dawn Of The Dead Textual Analysis
 
Ecology
EcologyEcology
Ecology
 
Rory's Story Cubes® - Concepts for Box Redesign
Rory's Story Cubes® - Concepts for Box RedesignRory's Story Cubes® - Concepts for Box Redesign
Rory's Story Cubes® - Concepts for Box Redesign
 
Kane's fun park story
Kane's fun park storyKane's fun park story
Kane's fun park story
 
Kane's fun park story
Kane's fun park storyKane's fun park story
Kane's fun park story
 
Rr reflections
Rr reflectionsRr reflections
Rr reflections
 
Social Innovation & New Media: 1. Class Introduction
Social Innovation & New Media: 1. Class IntroductionSocial Innovation & New Media: 1. Class Introduction
Social Innovation & New Media: 1. Class Introduction
 
Geoboard workshop
Geoboard workshopGeoboard workshop
Geoboard workshop
 
Fire
FireFire
Fire
 
지식의 연금술사 브리꼴뢰르형 인재 유영만
지식의 연금술사 브리꼴뢰르형 인재   유영만지식의 연금술사 브리꼴뢰르형 인재   유영만
지식의 연금술사 브리꼴뢰르형 인재 유영만
 
SNSとソーシャルアプリケーション/ソーシャルアプリ勉強会(第2回)
SNSとソーシャルアプリケーション/ソーシャルアプリ勉強会(第2回)SNSとソーシャルアプリケーション/ソーシャルアプリ勉強会(第2回)
SNSとソーシャルアプリケーション/ソーシャルアプリ勉強会(第2回)
 
지식 컨텐츠 서비스의 융합전략 - 민경배 교수
지식 컨텐츠 서비스의 융합전략 - 민경배 교수지식 컨텐츠 서비스의 융합전략 - 민경배 교수
지식 컨텐츠 서비스의 융합전략 - 민경배 교수
 
Zipcar (HBR Case Study)
Zipcar (HBR Case Study)Zipcar (HBR Case Study)
Zipcar (HBR Case Study)
 
Target audience
Target audienceTarget audience
Target audience
 
Anger.ppt b
Anger.ppt bAnger.ppt b
Anger.ppt b
 
Workforce Needs of the California Solar Industry
Workforce Needs of the California Solar IndustryWorkforce Needs of the California Solar Industry
Workforce Needs of the California Solar Industry
 
Liberty Overview 11 22 09 Dreamquest
Liberty Overview 11 22 09 DreamquestLiberty Overview 11 22 09 Dreamquest
Liberty Overview 11 22 09 Dreamquest
 

More from ArtSci_center

Turing nucleotidecryptology
Turing nucleotidecryptologyTuring nucleotidecryptology
Turing nucleotidecryptologyArtSci_center
 
Jen-Ling Nieh Blog compilation
Jen-Ling Nieh Blog compilationJen-Ling Nieh Blog compilation
Jen-Ling Nieh Blog compilationArtSci_center
 
Eiesenhardt l 177_final
Eiesenhardt l 177_finalEiesenhardt l 177_final
Eiesenhardt l 177_finalArtSci_center
 
Borowski hnrs 177 final blog compilation
Borowski   hnrs 177 final blog compilationBorowski   hnrs 177 final blog compilation
Borowski hnrs 177 final blog compilationArtSci_center
 
Hnrs 177 midterm ppt
Hnrs 177 midterm pptHnrs 177 midterm ppt
Hnrs 177 midterm pptArtSci_center
 
Turing nucleotidecryptology
Turing nucleotidecryptologyTuring nucleotidecryptology
Turing nucleotidecryptologyArtSci_center
 
Tu nancy 177_final_small
Tu nancy 177_final_smallTu nancy 177_final_small
Tu nancy 177_final_smallArtSci_center
 
Microsoft word blogs-rozalin rabieian hrs177
Microsoft word   blogs-rozalin rabieian hrs177Microsoft word   blogs-rozalin rabieian hrs177
Microsoft word blogs-rozalin rabieian hrs177ArtSci_center
 
Madrigal j 177_final
Madrigal j 177_finalMadrigal j 177_final
Madrigal j 177_finalArtSci_center
 
Israel maximillian 177_final
Israel maximillian 177_finalIsrael maximillian 177_final
Israel maximillian 177_finalArtSci_center
 
Goodrich d 177_final
Goodrich d 177_finalGoodrich d 177_final
Goodrich d 177_finalArtSci_center
 
Davis spenser 177_final
Davis spenser 177_finalDavis spenser 177_final
Davis spenser 177_finalArtSci_center
 

More from ArtSci_center (20)

Turing nucleotidecryptology
Turing nucleotidecryptologyTuring nucleotidecryptology
Turing nucleotidecryptology
 
Jen-Ling Nieh Blog compilation
Jen-Ling Nieh Blog compilationJen-Ling Nieh Blog compilation
Jen-Ling Nieh Blog compilation
 
Lee s 177_final
Lee s 177_finalLee s 177_final
Lee s 177_final
 
Jung e 177_final
Jung e 177_finalJung e 177_final
Jung e 177_final
 
Eiesenhardt l 177_final
Eiesenhardt l 177_finalEiesenhardt l 177_final
Eiesenhardt l 177_final
 
Borowski hnrs 177 final blog compilation
Borowski   hnrs 177 final blog compilationBorowski   hnrs 177 final blog compilation
Borowski hnrs 177 final blog compilation
 
Hnrs 177 midterm ppt
Hnrs 177 midterm pptHnrs 177 midterm ppt
Hnrs 177 midterm ppt
 
Xia j 177_final
Xia j 177_finalXia j 177_final
Xia j 177_final
 
Turing ai rosie
Turing ai rosieTuring ai rosie
Turing ai rosie
 
Turing wwii
Turing wwiiTuring wwii
Turing wwii
 
Turing nucleotidecryptology
Turing nucleotidecryptologyTuring nucleotidecryptology
Turing nucleotidecryptology
 
Ward e 177_final
Ward e 177_finalWard e 177_final
Ward e 177_final
 
Tu nancy 177_final_small
Tu nancy 177_final_smallTu nancy 177_final_small
Tu nancy 177_final_small
 
Microsoft word blogs-rozalin rabieian hrs177
Microsoft word   blogs-rozalin rabieian hrs177Microsoft word   blogs-rozalin rabieian hrs177
Microsoft word blogs-rozalin rabieian hrs177
 
Madrigal j 177_final
Madrigal j 177_finalMadrigal j 177_final
Madrigal j 177_final
 
Lai g 177_final
Lai g 177_finalLai g 177_final
Lai g 177_final
 
Israel maximillian 177_final
Israel maximillian 177_finalIsrael maximillian 177_final
Israel maximillian 177_final
 
Huang s 117_final
Huang s 117_finalHuang s 117_final
Huang s 117_final
 
Goodrich d 177_final
Goodrich d 177_finalGoodrich d 177_final
Goodrich d 177_final
 
Davis spenser 177_final
Davis spenser 177_finalDavis spenser 177_final
Davis spenser 177_final
 

Recently uploaded

A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 

Recently uploaded (20)

A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 

Turing fibonacci numbers

  • 1. Alan  Turing   Fibonacci  Numbers  in  Nature   Melissa  Davis:              Alan  Turing  was  a  mathematical  genius.  He  speculated  that  there  was  a  relationship   between  math  and  nature  by  the  presence  of  Fibonacci  numbers  that  naturally  occur  in   plants.    Fibonacci  numbers  are  a  sequence  of  numbers,  where  you  can  add  one  of  the   numbers  with  the  number  to  the  right  of  it,  to  get  the  next  number.    For  example,  the  first   few  numbers  of  the  sequence  begin  as  follows:  0,  1,  1,  2,  3,  5,  8,  13,  21,  etc.    To  get  the   number  after  21,  simply  add  13  to  21,  which  gives  you  34.    These  numbers  may  correlate  to   the  number  of  petals,  leaves,  or  spirals  of   seeds  a  plant  has.    This  is  also  the  reason  why   four-­‐leaf  clovers  are  so  rare,  since  four  is  not   a  number  k  appears  in  the  Fibonacci   sequence.                      Turing  specifically  looked  at  sunflowers  to   study  this  phenomenon.  Turing  examined   how  the  number  of  spirals  in  the  seed   patterns  of  sunflowers  typically  resulted  in  a   Fibonacci  sequence.    This  finding  was   significant,  as  it  provided  much  information   for  phyllotaxis,  the  study  of  the  way  plants   grow.         “The  appearance  of  patterns  in  the   phyllotaxis  -­‐  the  arrangement  of  leaves,   stems,  seeds  or  similar  -­‐  has  been   studied  by  many  well-­‐known  scientists,   including  Leonardo  Da  Vinci.”  –  BBC   News        
  • 2.    Here  is  a  demonstration  of  one  way  to   count  the  spirals  of  seeds.  The  total   number  of  rows  is  34,  which  is  a   Fibonacci  number.                                                        Because  of  Alan  Turing’s  abbreviated  life  due  to  his  mistreatment  in  society,  Turing  was   never  able  to  confirm  his  findings.    However,  the  Manchester  Science  Festival,  the  Museum   of  Science  and  Industry,  and  the  University  of  Manchester  are  asking  for  help  from  the   public  to  confirm  Turing’s  work  on  Fibonacci  numbers  in  sunflowers.    The  project  entails   people  planting  and  growing  their  own  sunflowers,  and  then  counting  the  rows  of  seeds  as   Turing  did.    This  project  also  aims  to  honor  Turing  during  the  one-­‐hundred-­‐year   anniversary  of  his  death.         In  addition  to  sunflowers,  the   Fibonacci  sequence  is  found   in  the  number  of  petals  in   many  flowers.    For  example,   buttercups,  wild  roses,  and   larkspurs  have  five  petals;   delphiniums  and  coreopsis   have  eight  petals;  ragworts   and  marigolds  have  thirteen   petals;  and  daisies  can  have   eighty-­‐nine  petals.      
  • 3.                     References:   Couder,  Yves.  "Sunflower."  Photo.  Flower  Patterns  and  Fibonacci  Numbers.  2002.  22  May   2012.  <http://www.popmath.org.uk/rpamaths/rpampages/sunflower.html>.   "The  Fibonacci  Series."  ThinkQuest.  Oracle  Foundation.  Web.  22  May  2012.   <http://library.thinkquest.org/27890/applications5.html>.   "Greater  Manchester  Sunflowers  to  Test  Alan  Turing  Theory."  BBC  News.  BBC,  22  Mar.   2012.  Web.  06  June  2012.  <http://www.bbc.co.uk/news/uk-­‐england-­‐manchester-­‐ 17469241>.   GrrlScientist.  "Sunflowers  and  Fibonacci."  The  Guardian.  Guardian  News  and  Media,  29  Mar.   0016.  Web.  22  May  2012.   <http://www.guardian.co.uk/science/grrlscientist/2012/apr/16/1>.   "How  To  Count  the  Spirals."  Photo.  Museum  of  Mathematics.  22  May  2012.   <http://momath.org/home/fibonacci-­‐numbers-­‐of-­‐sunflower-­‐seed-­‐spirals>.   McKay,  Dennis.  "Larkspur."  Photo.  Drug  Discovery.  2009.  22  May  2012.   <http://digitalunion.osu.edu/r2/summer09/jaeger/MLA.html>.   “Sunflowers  and  Fibonacci  –  Numberphile.”  Video.  (2012).  Retrieved  May  22,  2012  from  
  • 4. http://www.youtube.com/watchfeature=player_embedded&v=DRjFV_DETKQ.     Wainwright,  Martin.  "Grow  a  Sunflower  to  Solve  Unfinished  Alan  Turing  Experiment."  The   Guardian.  Guardian  News  and  Media,  24  Nov.  0048.  Web.  22  May  2012.   <http://www.guardian.co.uk/uk/the-­‐northerner/2012/mar/26/alan-­‐turing-­‐sunf....>   Jing  (Sophie)  Xia:            However,  flowers  are  not  the  only  organisms  in  which  Fibonacci  numbers  are  present;   Fibonacci  numbers  are  also  found  in  pine  cones  and  plant  leaves.  Pine  cones  display  the   Fibonacci  Spirals  clearly.  The  best  way  to  examine  these  patterns  is  to  observe  pine  cones   from  the  base  where  the  stalk  connects  it  to  the  tree.  For  instance,  one  set  of  spirals  goes  in   one  uniform  direction  whereas  another  set  of  spirals  goes  in  the  opposite  direction  (see   images  below).  For  example,  in  one  direction,  there  are  8  whirls  whereas  in  the  other   direction,  there  are  13  whirls.  It  is  not  coincidence  that  both  8  and  13  are  Fibonacci   numbers.     Pine  cones  contain  evidence  of  Fibonacci  spirals  since  their  patterns  are  arranged  in  two   different  directions  of  spirals.    
  • 5.   In  addition,  many  plants  show  Fibonacci  numbers  in  the  arrangements  of  the  leaves  around   their  stems.  When  looking  down  on  a  plant,  one   can  notice  that  its  leaves  are  arranged  so  that   the  leaves  higher  up  on  the  stem  do  not  hide   leaves  below.  This  ensures  that  no  matter   where  the  leaves  are  located  on  a  stem,  they   are  able  to  receive  sunlight.  Fibonacci  numbers   are  evident  in  two  ways  in  terms  of  leaves  per   turn.  First,  they  occur  when  counting  the   number  of  times  they  go  around  the  stem.   Secondly,  it  occurs  when  counting  leaves  until   finding  a  leaf  directly  above  the  leaf  in  which   one  started  counting.  If  one  counts  in  the   opposite  direction,  there  is  a  different  number   of  turns  with  the  same  number  of  leaves.  The   number  of  turns  in  each  direction  and  the   number  of  leaves  met  are  three  consecutive   Fibonacci  numbers.  For  example,  one  must   rotate  three  turns  clockwise  to  meet  a  leaf  that   is  directly  above  the  first  leaf  counted.  On  the   way,  one  passes  by  five  leaves.  But  when  one   counts  counter-­‐clockwise,  they  only  turn  two   times.    Because  2,  3,  and  5  are  consecutive   Fibonacci  numbers,  this  example  demonstrates   the  existence  of  Fibonacci  numbers  in  plant   leaves.         References:   "Evolution."  How  Stuff  Works.  N.p.,  n.  d.  Web.  20  May.  2012.   <http://science.howstuffworks.com/environmental/life/evolution>.   "Fibonacci  Numbers  and  Nature."  Rabbits,  Cows  and  Bees  Family  Trees  .  N.p.,  n.  d.  Web.  20   May.  2012.  <http://www.maths.surrey.ac.uk/hosted-­‐sites/R.Knott/Fibonacci/fibnat.html>.   "Fibonacci  Numbers  and  the  Golden  Section."  N.p.,  n.  d.  Web.  20  May.  2012.   <http://britton.disted.camosun.bc.ca/fibslide/jbfibslide.htm>.   "Fibonacci  numbers  and  Golden  ratio."  Natural  occurrence  of  Fibonacci  numbers.  N.p.,  n.  d.   Web.  20  May.  2012.  <http://gwydir.demon.co.uk/jo/numbers/interest/golden.htm>.  
  • 6. Parveen,  Nikhat.  "Fibonacci  in  Nature."  N.p.,  n.  d.  Web.  20  May.  2012.   <http://jwilson.coe.uga.edu/emat6680/parveen/fib_nature.htm>.     Shiwei  Huang              Alan  Turing’s  interest  in  Fibonacci  series  was  inspired  by  zoologist  D’arcy  Wentworth   Thompson’s  book,  On  Growth  and  Form.  Thompson  wanted  to  explain  how  physical  and   mathematical  laws  could  explain  the  forms  and  patterns  of  living  things.  After  examining   the  patterns  of  fir  cones  and  sunflowers,  Thompson  observed  that  the  scales  of  a  fir  cone   and  the  florets  of  a  sunflower  are  grouped  in  the  numbers  in  Fibonacci  series.  However,   Thompson  claimed  that  the  appearance  of  Fibonacci  series  in  these  plants  were  purely  for   mathematical  reasons,  and  the  purpose  of  introducing  of  this  series  into  plants  throughout   the  course  of  natural  selection  was  not  worth  studying.              Alan  Turing  was  the  first  scientist  to  study  the  mechanisms  behind  the  development  of   pattern  in  living  organisms  using  computer  simulation.  When  Manchester  Electronic   Computer,  also  called  Ferranti  Mark  I,  was  installed  in  Manchester  University,  Turing  wrote   to  his  colleague,  “I  am  hoping  as  one  of  the  first  jobs  to  do  something  about  ‘chemical   embryology.’  In  particular  I  think  one  can  account  for  the  appearance  of  Fibonacci  numbers   in  connection  with  fir  cones.”  Turing  formulated  his  reaction-­‐diffusion  model  from  the   observation  of  fir  cones  and  sunflowers.  He  believed  that  diffusing  chemicals  reacted  with   each  other  and  caused  the  development  of  forms  of  living  organisms.  He  postulated  that  the   reaction-­‐diffusion  model  could  be  applied  to  gastrulation  of  an  embryo,  which  is  the   rearranging  of  the  cells  in  an  embryo,  and  the  formation  of  leaf  pattern.  Modern  computer   has  simulated  Turing’s  reaction-­‐diffusion  mechanism,  and  it  has  successfully  produced   leopard-­‐like,  cheetah-­‐like,  and  giraffe-­‐like  stripes.  In  his  paper  “Chemical  basis  of   morphogenesis,”  he  called  these  interacting  chemicals  “morphogens.”  Unfortunately,   Turing’s  work  on  morphogenesis  was  considered  ahead  of  the  time,  and  he  died  and  left  a   large  number  of  research  materials  and  notes  that  could  not  be  understood  today.     Turing’s  reaction-­‐diffusion  system  (the  simplified  version):   ∂c/∂t=f(c)+D∇2c   f(c)  represents  the  local  chemical  reaction  that  different  chemicals  are  reacted  and   formed.  D  is  the  diffusion  constant,  which  describes  the  flow  of  a  chemical  due  to  its   concentration  gradient  and  its  diffusion.  Simply  put,  the  equation  states  that  the   distribution  of  a  chemical  is  determined  by  the  chemical  reaction  that  generates  this   chemical  and  the  diffusion  of  this  chemical.  Under  certain  conditions,  two  or  more   chemicals  will  diffuse  and  react  with  each  other  in  the  embryo,  and  they  will  reach  a  stable   pattern  of  concentration.  For  instance,  if  there  was  a  ring  of  cells,  reaction-­‐diffusion  model   could  give  us  a  pattern  of  chemical  gradient  surrounding  the  ring  of  cells.  The  same   concentrations  would  occur  at  places  with  the  same  distances  to  each  other,  and  Turing   called  this  chemical  wave  if  it  was  stationary.  Conversely,  if  the  gradient  was  changing,  it   would  be  called  traveling  waves.  Turing  pointed  out  the  structure  of  the  embryo  could   break  this  pattern  and  cause  asymmetrical  chemical  waves.  Turing  believed  that  genes   catalyzed  the  production  of  morphogens  and  might  influence  the  rate  of  the  reaction  to   determine  the  pattern  in  animals.    
  • 7.     Program  sheet  written  by  Alan  Turing  during  his   study  of  fir  cone  patterning                               ’     Computer  output.  Turing  wrote  “How  did   this  happen?”  on  the  sheet.                               Turing’s  numbering  on  the  sunflower         References:     Charvoin,  J.  and  Sadoc,  J-­‐F.  (2011)  “A  Phyllotactic  Approach  to  The  Structure  of  Collagen   Fibrils.”  <http://arxiv.org/pdf/1102.2359v2.pdf>    
  • 8. Copeland,  B.J.(2004)  “The  Essential  Turing,  Seminal  Writings  in  Computing,  Logic,   Philosophy,  Artificial  Intelligence,  and  Artificial  Life  plus  The  Secrets  of  Enigma.”  Oxford:   Clarendon  Press.     Engelhardt,  R.  (1994)  “Modeling  Pattern  Formation  in  Reaction-­‐Diffusion  System.”   <http://www.robinengelhardt.info/speciale/main.pdf>     Maini,  P.  K.  (2007)  “The  impact  of  Turing's  work  on  pattern  formation  in  biology.”   <people.maths.ox.ac.uk/maini/PKM%20publications/172.pdf>     Swinton,  J.  (2003)  “Watching  the  Daisies  Grow:  Turing  and  Fibonacci  Phyllotaxis.”   <user29459.vs.easily.co.uk/wp-­‐content/uploads/2011/05/swinton.pdf>     Thompson,  D.  W.  (1966)  “On  Growth  and  Form.”  Cambridge:  University  Press.     Turing,  A.  M.  (1952)  “The  Chemical  Basis  of  Morphogensis.”   <http://links.jstor.org/sici?sici=0080-­‐ 4622%2819520814%29237%3A641%3C37%3ATCBOM%3E2.0.CO%3B2-­‐I     Jen-­‐Ling  Nieh:      Morphology,  at  the  most  basic  sense,  consists  of  two  aspects  –  shape  and  pattern.    The   changes  of  morphology  that  occur  during  biological  development  of  an  organism  are  called   “morphogenesis.”    Turing  proposed  that  both  shape  and  pattern  seem  to  be  set  up  in   embryos  by  the  same  mechanism,  a  pre-­‐pattern  of  chemical  changes  that  waits  for  the   appropriate  stage  of  development,  and  then  triggers  either  pigments,  to  create  pattern,  or   cellular  changes,  to  create  shape.    He  showed  that  this  kind  of  system  may  have  a   homogeneous  stationary  state  which  is  unstable  against  perturbations,  such  that  any   random  deviation  from  the  stationary  state  leads  through  diffusion  to  a  symmetry  break.     This  process  is  called  diffusion-­‐driven  instability.    Since  complex  spatial  patterns  are   commonly  found  in  nature,  for  example,  in  animal  skins  and  also  in  some  polymer  systems,   it  is  quite  natural  to  think  that  such  pattern  formations  could  be  caused  by  some  general   physicochemical  process.            
  • 9. Many  animals  develop  their  coat  patterns  in  stages.  Typically,  a  secondary  pattern  will   emerge  as  the  animal  transitions  to  adulthood.  The  following  examples  all  use  multiple   stages:                                                                    Turing's  mathematical  model  of  chemical  morphogenesis  helps  us  understand  why   tigers  and  zebras  have  stripes.  Turing's  Reaction-­‐Diffusion  model  from  1952  consists  on  a   set  of  equations  that  iteratively  simulate  the  distribution  of  a  chemical  agent  (activator)   modulated  by  the  presence  of  another  agent  called  inhibitor.  In  his  seminal  1952  paper,   Alan  Turing  predicted  that  diffusion  could  spontaneously  drive  an  initially  uniform  solution   of  reacting  chemicals  to  develop  stable  spatially  periodic  concentration  patterns.  It  is   believed  that  such  interactions  take  place  in  nature  to  form  patterns  that  can  be  found  in   mammals  and  fish,  and  the  first  model,  generating  spots.  
  • 10.                                                                          According  to  the  Reaction-­‐Diffusion   Model,  the  diffusion  of  an  activator  and   inhibitor  through  an  evolving  cellular   system  over  a  period  of  time,  the   concentration  gradients  dictating  cell   differentiation,  i.e.  a  zebra  skin  cell  can  be   black  or  white  according  to  the   concentration  of  a  white-­‐cell  activator  at   the  point  when  it  forms.  Biologists  would   call  these  activators  morphogens,  as  these   are  the  proteins  that  regulate  gene   expression.                
  • 11.          Currently,  pigmentation  patterns  in   animal  skins,  feathers  of  birds,  and   shells  of  snails  are  the  only  examples   in  which  we  can  detect  the  dynamic   nature  of  Turing  waves  as  a  time   course  of  the  pattern  change.   Especially,  the  two-­‐dimensional  (2-­‐D)   skin  pattern  of  fish  is  quite  convenient   to  study  because  their  waves  are   sometimes  alive  even  when  the  fish   has  grown  up  into  an  adult  (Shigeru   Kondo).              For  example,  when  a  striped   angelfish  (Pomacanthus  imperator)   grows,  the  branching  points  of  the   stripes  slide  horizontally  as  the  zip   opens  and  add  a  number  of  stripes;   eventually  the  spacing  between  the   stripes  remains  stable.  In  the  case  of  the  spotted  catfish  (Plecostoms),  both  division  of  the   spots  and  insertion  of  the  new  spots  occur  to  retain  the  density  and  size  of  the  spots.  Both   stripes  and  the  spots  are  the  most  typical  2-­‐D  patterns  generated  by  the  RD  mechanism,   and  the  time  course  of  the  pattern  change  possesses  the  characteristics  of  the  dynamics  of   RD  waves,  strongly  suggesting  that  the  RD  mechanism  underlies  the  process  of  pigment   pattern  formation  of  fish.     References:     www.scholarpedia.org/w/images/8/8d/TROPH.jpg">http://www.scholarpedia.org/w/im ages/8/8d/TROPH.jpg     http://cgjennings.ca/toybox/turingmorph/texture1.png     http://cgjennings.ca/toybox/turingmorph/texture2.png     http://cgjennings.ca/toybox/turingmorph/texture3.jpg     www.urbagram.net/images/turing.jpg">http://www.urbagram.net/images/turing.jpg     www.urbagram.net/v1/revision/Morphogenesis?rev=1">http://www.urbagram.net/v1/r evision/Morphogenesis?rev=1     http://27.media.tumblr.com/tumblr_lzeh1qUhRe1r3lyy3o1_500.jpg    
  • 12. Alexandra  Pourzia:   Alan  Turing  proposed,  based  purely  on  logical  reasoning,  that  pattern  formation  in  nature   involved  an  ‘activating’  substance  and  an  ‘inhibiting’  substance.  The  repetition  of  activator   and  inhibitor  could  create  patterns  such  as  stripes.1  Previously,  developmental  biologists   were  puzzled  by  pattern  formation  because  they  could  not  explain  it  using  the  linear   models  that  were  the  extent  of  their  knowledge  at  the  time.  Turing  proposed  a  nonlinear   model  by  introducing  diffusion  as  the  generator  of  instability  in  the  model,  instead  of  being   a  byproduct  of  the  model.  2  The  implications  of  Turing’s  mechanism  were  astounding:  he   predicted  the  mode  of  action  of  the  Hox  genes  in  Drosophila,  which  result  in  the  patterning   of  the  embryo’s  body  segments.  3   Hox  gene  patterning  by  body  segment  in  Drosophila     The  Hox  genes  induce  patterning  by  activating  transcription  of  their  unique  set  of  genes   while  repressing  others  not  related  to  their  segment.  They  in  turn  are  regulated  by   patterning  genes  (gap,  pair-­‐rule,  or  segment  polarity  genes),  which  follow  Turing’s   proposed  model  very  closely.  These  patterning  genes  are  induced  by  high  or  low   concentrations  of  maternal  proteins  in  the  embryo,  which  was  formed  from  the  maternal   egg  and  paternal  sperm.  For  example,  high  concentrations  of  maternal  protein  induce  the   expression  of  Bicoid  and  Hunchback,  while  inhibiting  Giant  and  Kruppel.  The  concentration   of  these  “morphogens”,  as  Turing  first  called  them,  lead  to  the  formation  of  a  pattern  –   segment  two  of  the  fly  embryo.3     Pair-­‐rule  genes:  expressed  between  certain  segments        
  • 13. References:   1. Hughes,   Virginia.   “Alan   Turing’s   60-­‐Year-­‐Old   Prediction   About   Patterns   in   Nature   Proved  True.“  Smithsonian.com.  The  Smithsonian  Institution,  21  Feb  2012.  Web.  20   May   2012.   <http://blogs.smithsonianmag.com/science/2012/02/alan-­‐turing-­‐ predicted-­‐natures-­‐stripes-­‐and-­‐patterns/>   2. Reinitz,  John.  “Pattern  formation.”  Nature.  Feb  2012.   3. “Hox   gene.”   Wikipedia.   Wikimedia   Foundation,   Inc,   n.d.   20   May   2012.   <http://en.wikipedia.org/wiki/Hox_gene>