SlideShare uma empresa Scribd logo
1 de 77
Baixar para ler offline
The
                           University of
                           Lethbridge




     BIOLOGY 3400
Principles of Microbiology
    LABORATORY MANUAL
               Spring, 2012
     Written by: L. A. Pacarynuk and H.C. Danyk
              Revised: December, 2011
TABLE	
  OF	
  CONTENTS	
  
	
  
Exercise:	
                 	
            	
            	
             	
            	
            	
            	
             	
            	
            Page	
  	
  
Biology	
  3400	
  Laboratory	
  Schedule.............................................................................................................2	
  

Grade	
  Distribution.....................................................................................................................................3	
  

Occupational	
  Health	
  and	
  Safety	
  Guidelines...............................................................................................5	
  

Guidelines	
  for	
  Safety	
  Procedures...............................................................................................................6	
  

Exercise	
  1	
  –	
  Introduction	
  to	
  Microscopy....................................................................................................9	
  

Exercise	
  2	
  –	
  General	
  Laboratory	
  Principles	
  and	
  Biosafety.......................................................................13	
  

Exercise	
  3	
  –	
  Free-­‐Living	
  Nitrogen	
  Fixation...............................................................................................14	
  

Exercise	
  4	
  –	
  Winogradsky	
  Column	
  ..........................................................................................................21	
  

Exercise	
  5	
  -­‐	
  Bacterial	
  and	
  Yeast	
  Morphology...........................................................................................23	
  

Exercise	
  6	
  –	
  Bacterial	
  Reproduction.........................................................................................................28	
  

Exercise	
  7	
  –	
  Ames	
  Test.............................................................................................................................31	
  

Exercise	
  8	
  –	
  Biochemical	
  Tests.................................................................................................................34	
  

Exercise	
  9	
  –	
  Yeast	
  Fermentation..............................................................................................................39	
  

Exercise	
  10	
  -­‐	
  Virology...............................................................................................................................43	
  

Appendix	
  1	
  –	
  The	
  Compound	
  Light	
  Microscope......................................................................................49	
  

Appendix	
  2	
  –	
  Preparation	
  of	
  Scientific	
  Drawings.....................................................................................52	
  

Appendix	
  3	
  –	
  Aseptic	
  Technique..............................................................................................................54	
  

Appendix	
  4	
  –	
  The	
  Cultivation	
  of	
  Bacteria.................................................................................................59	
  

Appendix	
  5	
  –	
  Bacterial	
  Observation.........................................................................................................64	
  

Appendix	
  6	
  –	
  Laboratory	
  Reports...........................................................................................................	
  65	
  

Appendix	
  7	
  –	
  Use	
  of	
  the	
  Spectrophotometer..........................................................................................67	
  

Appendix	
  8	
  –	
  Media,	
  Reagents,	
  pH	
  Indicators.........................................................................................69	
  

Appendix	
  9	
  –	
  Care	
  and	
  Feeding	
  of	
  the	
  Microscopes................................................................................76	
  


	
  




                                                                                    1	
  
BIOLOGY	
  3400	
  LAB	
  SCHEDULE	
  
                                                       SPRING,	
  2012	
  

Jan.	
  10	
   	
         No	
  lab	
  
Jan.	
  12	
   	
         No	
  lab	
  
	
  
Jan.	
  17	
   	
         Introduction,	
  Microscopy	
  
Jan.	
  19	
  	
   	
     General	
  Lab	
  Procedures,	
  Biosafety	
  
	
  
Jan.	
  24	
   	
         General	
  Lab	
  Procedures,	
  Biosafety	
  –	
  Complete;	
  N-­‐Fixation	
  	
  
Jan.	
  26	
   	
         Winogradsky	
  Column	
  	
  
	
  
Jan.	
  31	
   	
         Bacterial	
  Morphology;	
  N-­‐fixation	
  
Feb.	
  2	
               Bacterial	
  Morphology	
  
	
  
Feb.	
  7	
               Bacterial	
  Morphology;	
  N-­‐fixation	
   	
  	
  
Feb.	
  9	
   	
          Bacterial	
  Morphology	
  	
  
	
  
Feb.	
  14	
              Bacterial	
  Growth	
  	
  
Feb.	
  16	
   	
         Bacterial	
  Morphology	
  –	
  Complete;	
  N-­‐fixation:	
  Polymerase	
  Chain	
  Reaction	
  
	
  
Feb.	
  21	
              Reading	
  Week	
  	
  
Feb.	
  23	
   	
         Reading	
  Week	
  
	
  
Feb.	
  28	
   	
         Ames	
  Test	
  
Mar.	
  1	
               Ames	
  Test	
  –	
  Complete;	
  N-­‐fixation:	
  Agarose	
  Gel	
  Electrophoresis	
  
	
  
Mar.	
  6	
   	
          Biochemical	
  Tests	
  -­‐	
  Selective	
  and	
  Differential	
  Media,	
  IMViC	
  Tests	
  
Mar.	
  8	
   	
          Selective	
  and	
  Differential	
  Media,	
  IMViC	
  tests	
  –	
  Complete	
  
	
  
Mar.	
  13	
   	
         Yeast	
  Fermentation	
  
Mar.	
  15	
   	
         Winogradsky	
  Column	
  
	
                 	
  
Mar.	
  20	
              Virology	
  (phage	
  isolation)	
  	
  
Mar.	
  22	
   	
         Virology	
  (phage	
  elution)	
  
	
  
Mar.	
  27	
   	
         Virology	
  (amplification)	
  
Mar.	
  29	
              Virology	
  (titre/host	
  range)	
  
	
  
Apr.	
  3	
   	
          Virology	
  -­‐	
  Complete	
  
Apr.	
  5	
   	
          no	
  lab	
  
	
  
Apr.	
  10	
   	
         Lab	
  report	
  due	
  
	
  




                                                                            2	
  
Laboratory	
  Grade	
  Distribution:	
  
The	
  laboratory	
  component	
  of	
  Biology	
  3400	
  is	
  worth	
  50%	
  of	
  your	
  course	
  mark.	
  	
  It	
  is	
  distributed	
  as	
  follows:	
  
	
  
•              Skills	
  Tests	
   	
           	
              	
               	
              	
              10%	
  
•              Assignments	
   	
               	
              	
               	
              	
              20%	
  
•              Lab	
  Books	
         	
        	
              	
               	
              	
              10%	
  (to	
  be	
  handed	
  in	
  three	
  times)	
  	
  
•              Lab	
  Report	
   	
             	
              	
               	
              	
              10%	
  
                                                                                           th
	
  	
  	
  	
  	
  	
  	
  	
  On	
  Yeast	
  Fermentation;	
  due	
  Tuesday	
  April	
  10 	
  at	
  the	
  beginning	
  of	
  lab	
  


Performance:	
  	
  	
  
Up	
  to	
  10%	
  of	
  laboratory	
  grade	
  (5	
  marks	
  out	
  of	
  50)	
  will	
  be	
  subtracted	
  for	
  poor	
  laboratory	
  performance.	
  	
  
This	
  includes	
  (but	
  is	
  not	
  limited	
  to)	
  failure	
  to	
  be	
  prepared	
  for	
  the	
  laboratory,	
  missing	
  lab	
  notebook	
  or	
  lab	
  
manual,	
  poor	
  time	
  management	
  skills,	
  improper	
  handling	
  and	
  care	
  of	
  equipment	
  such	
  as	
  microscopes	
  and	
  
micropipettors,	
  and	
  unsafe	
  practices	
  such	
  as	
  not	
  tying	
  hair	
  back,	
  chewing	
  gum,	
  applying	
  lipstick,	
  eating,	
  
drinking,	
  or	
  chewing	
  on	
  pencils,	
  and	
  sloppy	
  technique	
  leading	
  to	
  poor	
  results.	
  	
  As	
  we	
  are	
  working	
  with	
  
potential	
  pathogens,	
  students	
  displaying	
  improper	
  or	
  careless	
  techniques	
  will	
  be	
  asked	
  to	
  leave	
  the	
  lab	
  
and	
  will	
  have	
  at	
  least	
  5%	
  of	
  their	
  laboratory	
  grade	
  deducted	
  immediately.	
  
	
  
Missing	
  a	
  lab	
  for	
  which	
  there	
  is	
  a	
  skills	
  test	
  or	
  assignment	
  requires	
  documentation.	
  	
  Upon	
  presentation	
  of	
  
this	
  documentation,	
  you	
  will	
  either	
  have	
  to	
  complete	
  the	
  assignment	
  or	
  skills	
  test	
  as	
  soon	
  as	
  possible	
  or,	
  if	
  
this	
  is	
  not	
  possible,	
  your	
  lab	
  grade	
  will	
  be	
  recalculated.	
  	
  	
  
	
  
The	
  lab	
  books	
  will	
  be	
  collected	
  and	
  graded	
  three	
  times	
  during	
  the	
  semester.	
  	
  Although	
  most	
  exercises	
  are	
  
completed	
  as	
  groups,	
  the	
  lab	
  books	
  are	
  to	
  be	
  completed	
  individually,	
  and	
  must	
  represent	
  individual	
  
effort.	
  	
  	
  The	
  following	
  page	
  provides	
  you	
  with	
  tips	
  on	
  how	
  to	
  construct	
  your	
  books.	
  
	
  
Unannounced	
  skills	
  tests	
  will	
  be	
  given	
  during	
  the	
  semester.	
  	
  Students	
  are	
  expected	
  to	
  work	
  independently	
  
on	
  some	
  technical	
  aspect	
  of	
  microbiology	
  and	
  will	
  be	
  graded	
  based	
  on	
  their	
  techniques	
  and	
  their	
  results.	
  
	
  
As	
  proficiency	
  in	
  microbiological	
  techniques	
  is	
  considered	
  an	
  essential	
  component	
  of	
  the	
  course,	
  students	
  
are	
  only	
  permitted	
  three	
  lab	
  period	
  absences	
  (you	
  do	
  not	
  require	
  any	
  documentation).	
  	
  	
  Missing	
  more	
  
than	
  three	
  labs	
  will	
  result	
  in	
  a	
  grade	
  of	
  0	
  being	
  assigned	
  for	
  the	
  lab	
  (at	
  this	
  point,	
  it	
  is	
  recommended	
  that	
  
students	
  consult	
  with	
  Arts	
  and	
  Science	
  Advising	
  for	
  the	
  option	
  of	
  completing	
  the	
  laboratory	
  the	
  following	
  
year).	
  	
  Students	
  are	
  still	
  responsible	
  for	
  the	
  material	
  missed	
  (and	
  their	
  assignments,	
  lab	
  reports	
  etc.	
  will	
  be	
  
graded	
  as	
  such).	
  	
  There	
  are	
  no	
  make-­‐up	
  laboratories.	
  	
  
	
  
Late	
  Assignments	
  will	
  be	
  penalized	
  as	
  follows:	
  	
  For	
  Assignments	
  and	
  the	
  Lab	
  Report:	
  	
  after	
  the	
  start	
  of	
  lab,	
  
but	
  by	
  4:30	
  pm	
  on	
  the	
  due	
  date	
  –25%;	
  by	
  9:00	
  am	
  the	
  next	
  morning	
  -­‐50%,	
  and	
  after	
  9:00	
  am	
  the	
  following	
  
day,	
  no	
  marks	
  will	
  be	
  given.	
  
	
  	
  	
  
Extensions	
  for	
  the	
  lab	
  report	
  and	
  Assignments	
  will	
  only	
  be	
  granted	
  for	
  situations	
  involving	
  prolonged	
  
illness	
  (documentation	
  is	
  required).	
  
	
  
	
  
	
  
                                                                                                3	
  
Preparation	
  of	
  a	
  Lab	
  Book:	
  

Your	
  lab	
  book	
  provides	
  you	
  with	
  a	
  detailed	
  record	
  of	
  your	
  experiments	
  performed.	
  	
  This	
  record	
  proves	
  
invaluable	
  when	
  preparing	
  manuscripts	
  for	
  publication,	
  or,	
  more	
  immediately,	
  when	
  preparing	
  lab	
  
reports.	
  	
  This	
  lab	
  book,	
  as	
  with	
  all	
  of	
  the	
  reports	
  and	
  assignments	
  is	
  an	
  individual	
  effort.	
  
	
  
Choice	
  of	
  Lab	
  Book	
  
Standard	
  black	
  lab	
  books	
  can	
  be	
  purchased	
  from	
  the	
  book	
  store	
  but	
  these	
  are	
  not	
  required	
  for	
  this	
  course.	
  
The	
  only	
  required	
  features	
  are:	
  
       •      Pages	
  are	
  non-­‐removable	
  (no	
  spiral	
  bindings)	
  
       •      All	
  pages	
  must	
  be	
  numbered	
  in	
  the	
  top	
  outer	
  corner	
  
              •      page	
  numbers	
  may	
  be	
  hand-­‐written	
  on	
  EVERY	
  page	
  in	
  INK	
  
In	
  General	
  
       •      all	
  entries	
  must	
  be	
  made	
  in	
  blue	
  or	
  black	
  ink	
  (except	
  drawings)	
  
       •      date	
  EVERY	
  entry	
  
       •      never	
  remove	
  a	
  page	
  or	
  use	
  white-­‐out	
  
                     •       if	
  an	
  entry	
  needs	
  to	
  be	
  deleted,	
  strike	
  out	
  the	
  entry	
  with	
  a	
  single	
  straight	
  line	
  (the	
  
                             deleted	
  entry	
  must	
  be	
  readable)	
  
       •      keep	
  up	
  to	
  date,	
  a	
  lab	
  book	
  is	
  meant	
  to	
  be	
  filled	
  out	
  as	
  the	
  experiments	
  are	
  carried	
  out	
  and	
  NOT	
  
              after	
  the	
  fact	
  
       •      record	
  anything	
  that	
  may	
  be	
  useful	
  to	
  you	
  when	
  preparing	
  your	
  lab	
  reports	
  
       •      leave	
  plenty	
  of	
  space	
  throughout	
  the	
  lab	
  book	
  to	
  add	
  comments	
  after	
  the	
  fact	
  
Table	
  of	
  Contents	
  
Designate	
  the	
  first	
  2	
  pages	
  as	
  the	
  Table	
  of	
  Contents	
  
              •      record	
  information	
  and	
  pages	
  numbers	
  as	
  you	
  go	
  
Lab	
  Entries	
  
For	
  each	
  lab	
  be	
  sure	
  to	
  include	
  the	
  following;	
  
       1.     Objective	
  
       2.     Method	
  Summary	
  
              •      do	
  not	
  rewrite	
  the	
  protocol	
  from	
  the	
  lab	
  manual	
  
              •      highlight	
  any	
  specific	
  changes	
  to	
  the	
  lab	
  protocol	
  
              •      include	
  times	
  and	
  dates	
  for	
  when	
  work	
  was	
  performed	
  
              •      record	
  product	
  names	
  and	
  manufacturers	
  used	
  
	
            	
             -­‐	
  enzymes,	
  chemicals,	
  equipment	
  (micropipettors,	
  baths)	
  
              •      include	
  incubation	
  conditions	
  for	
  cultures	
  and	
  reaction	
  
       3.     Observations	
  &	
  Results	
  
              •      record	
  any	
  &	
  all	
  observations,	
  this	
  goes	
  beyond	
  number	
  results	
  
              •      include	
  diagrams	
  and	
  any	
  other	
  form	
  of	
  raw	
  data	
  
              •      include	
  calculations	
  as	
  appropriate	
  
       4.     Conclusions	
  
              •      did	
  you	
  achieve	
  your	
  objective?	
  Why	
  or	
  why	
  not?	
  
              •      use	
  your	
  results	
  to	
  support	
  your	
  conclusions	
  
       5.     Answer	
  the	
  thought	
  questions	
  at	
  the	
  end	
  of	
  the	
  lab	
  (as	
  applicable)	
  
              •      use	
  reference	
  citations	
  as	
  needed	
  
              •      these	
  may	
  be	
  graded	
  

                                                                                       4	
  
 
                    THE	
  UNIVERSITY	
  OF	
  LETHBRIDGE	
  
                    Policies	
  and	
  Procedures	
  
                    Occupational	
  Health	
  and	
  Safety	
  Manual	
  
                    	
  
                    	
  
SUBJECT:	
               CHEMICAL	
  SPILLS	
  PROCEDURE	
  
	
  

Precaution	
  should	
  be	
  taken	
  when	
  approaching	
  any	
  chemical	
  spill.	
  
	
  
     1.         UNKNOWN	
  SPILL	
  
                a. Clear	
  the	
  area	
  
                b. Call	
  Security	
  at	
  329-­‐2345	
  
                c. Secure	
  the	
  area	
  and	
  do	
  not	
  let	
  anyone	
  enter	
  
                d. Call	
  Utilities	
  at	
  329-­‐2600	
  and	
  request	
  air	
  be	
  turned	
  on	
  at	
  the	
  spill	
  site	
  
                e. Security	
  will	
  respond	
  and	
  determine	
  the	
  severity	
  of	
  the	
  spill	
  
                f. Security	
  will	
  immediately	
  notify	
  the	
  spill	
  team	
  as	
  follows:	
  
                    • Chemical	
  Release	
  Officer:	
  331-­‐5201	
  	
  
                    • Risk	
   and	
   Safety	
   Services	
   (OHS	
   Officers):	
   329-­‐2350/329-­‐2190	
   (office)	
   or	
   394-­‐
                              8716/330-­‐4495	
  (cellular)	
  
                    • Risk	
  and	
  Safety	
  Services	
  (Manager):	
  382-­‐7176	
  (office)	
  
                    • DBS	
  Environmental	
  only	
  if	
  above	
  not	
  available	
  328-­‐4483	
  (24	
  hrs)	
  
	
  
	
  
     2.         KNOWN	
  SPILL	
  
                a. Clear	
  the	
  area	
  
                b. Call	
  Security	
  at	
  329-­‐2345	
  
                c. Secure	
  the	
  area	
  
                d. Call	
  Utilities	
  at	
  329-­‐2600	
  and	
  request	
  air	
  be	
  turned	
  on	
  at	
  the	
  spill	
  site	
  
                e. Security	
  will	
  respond	
  and	
  determine	
  the	
  severity	
  of	
  the	
  spill	
  
                f. Security	
  will	
  immediately	
  notify	
  the	
  spill	
  team	
  as	
  follows:	
  
                    • Chemical	
  Release	
  Officer:	
  331-­‐5201	
  	
  
                    • Risk	
   and	
   Safety	
   Services	
   (OHS	
   Officers):	
   329-­‐2350/329-­‐2190	
   (office)	
   or	
   332-­‐
                              2350/394-­‐8716	
  (cellular)	
  
                    • Risk	
  and	
  Safety	
  Services	
  (Manager):	
  382-­‐7176	
  (office)	
  
                    • DBS	
  Environmental	
  only	
  if	
  above	
  not	
  available	
  328-­‐4483	
  (24	
  hrs)	
  
	
  
	
  
     3.         NOTIFICATION	
  
                a. Risk	
  and	
  Safety	
  Services	
  will	
  notify	
  the	
  appropriate	
  departments,	
  including	
  notification	
  
                    of	
  appropriate	
  government	
  agency.	
  




                                                                     5	
  
GUIDELINES	
  FOR	
  SAFETY	
  PROCEDURES	
  

Students	
  enrolled	
  in	
  laboratories	
  in	
  the	
  Biological	
  Sciences	
  should	
  be	
  aware	
  that	
  there	
  are	
  risks	
  of	
  
personal	
  injury	
  through	
  accidents	
  (fire,	
  explosion,	
  exposure	
  to	
  biohazardous	
  materials,	
  corrosive	
  
chemicals,	
  fumes,	
  cuts,	
  etc).	
  	
  The	
  guidelines	
  outlined	
  below	
  are	
  designed	
  to:	
  
	
  	
   a)	
  minimize	
  the	
  risk	
  of	
  injury	
  by	
  emphasizing	
  safety	
  precautions	
  and	
  	
   	
           	
              	
  
	
       b)	
  clarify	
  emergency	
  procedures	
  should	
  an	
  	
  accident	
  occur.	
  

EMERGENCY	
  NUMBERS:	
  
City	
  Emergency	
   	
                   	
            911	
  
Campus	
  Emergency	
                      	
            2345	
  
Campus	
  Security	
   	
                  	
            2603	
  
Student	
  Health	
  Centre	
              	
            2484	
  (Emergency	
  -­‐	
  2483)	
  

                                                 	
  
              THE	
  LABORATORY	
  INSTRUCTOR	
  MUST	
  BE	
  NOTIFIED	
  AS	
  SOON	
  AS	
  
                          POSSIBLE	
  AFTER	
  THE	
  INCIDENT	
  OCCURS.	
  
	
  
	
  
EMERGENCY	
  EQUIPMENT:	
  
Your	
  lab	
  instructor	
  will	
  indicate	
  the	
  location	
  of	
  the	
  following	
  items	
  to	
  you	
  at	
  the	
  beginning	
  of	
  the	
  first	
  lab	
  
period.	
  
	
  
     • Closest	
  emergency	
  exit	
  
     • Closest	
  emergency	
  telephone	
  and	
  emergency	
  phone	
  numbers	
  
     • Closest	
  fire	
  alarm	
  
     • Fire	
  extinguisher	
  and	
  explanation	
  of	
  use	
  
     • Safety	
  showers	
  and	
  explanation	
  of	
  operation	
  
     • Eyewash	
  facilities	
  and	
  explanation	
  of	
  operation	
  
     • First	
  aid	
  kit	
  


GENERAL	
  SAFETY	
  REGULATIONS:	
  
          •       Eating	
  and	
  drinking	
  is	
  prohibited	
  in	
  the	
  laboratory.	
  	
  Keep	
  pencils,	
  fingers	
  and	
  other	
  objects	
  
                  away	
  from	
  your	
  mouth.	
  	
  These	
  measures	
  are	
  to	
  ensure	
  your	
  safety	
  and	
  prevent	
  accidental	
  
                  ingestion	
  of	
  chemicals	
  or	
  microorganisms.	
  
          •       Personal	
  protective	
  wear	
  is	
  mandatory.	
  	
  Lab	
  coats,	
  safety	
  glasses	
  and	
  closed-­‐toed	
  shoes	
  must	
  
                  be	
  worn	
  at	
  all	
  times	
  during	
  lab	
  exercises	
  which	
  involve	
  potential	
  for	
  chemical	
  or	
  biological	
  
                  spills.	
  	
  	
  	
  
          •       Coats,	
  knapsacks,	
  briefcases,	
  etc.	
  are	
  to	
  be	
  hung	
  on	
  the	
  hooks	
  provided,	
  stowed	
  in	
  the	
  
                  cupboards	
  beneath	
  the	
  countertops,	
  or	
  placed	
  along	
  a	
  side	
  designated	
  by	
  your	
  instructor.	
  	
  
                  Take	
  only	
  the	
  absolute	
  essentials	
  needed	
  to	
  complete	
  the	
  exercise*	
  with	
  you	
  to	
  your	
  
                  laboratory	
  bench.	
  	
  (*	
  e.g.	
  manual,	
  pen	
  or	
  pencil)	
  
          •       Mouth	
  pipetting	
  is	
  NOT	
  permitted;	
  pipet	
  pumps	
  are	
  provided	
  and	
  must	
  be	
  used.	
  
          •       Always	
  wash	
  your	
  hands	
  prior	
  to	
  leaving	
  the	
  laboratory.	
  
          •       Students	
  are	
  not	
  allowed	
  access	
  to	
  the	
  central	
  Biology	
  Stores	
  area	
  for	
  any	
  reason.	
  	
  Consult	
  your	
  
                  instructor	
  if	
  you	
  require	
  additional	
  supplies.	
  
          •       Report	
  any	
  equipment	
  problems	
  to	
  instructor	
  immediately.	
  	
  Do	
  NOT	
  attempt	
  to	
  fix	
  any	
  of	
  the	
  
                  equipment	
  that	
  malfunctions	
  during	
  the	
  course	
  of	
  the	
  lab.	
  
          •       Use	
  caution	
  when	
  handling	
  chemical	
  solutions.	
  	
  Consult	
  the	
  lab	
  instructor	
  for	
  instruction	
  
                  regarding	
  the	
  clean-­‐up	
  of	
  corrosive	
  or	
  toxic	
  chemicals.	
  



                                                                                     6	
  
•         Contain	
  and	
  wipe	
  up	
  any	
  spills	
  immediately	
  and	
  notify	
  your	
  lab	
  instructor	
  (see	
  SPILLS	
  below).	
  	
  
                         Heed	
  any	
  special	
  instructions	
  outlined	
  in	
  the	
  lab	
  manual,	
  those	
  given	
  by	
  the	
  instructor	
  or	
  those	
  
                         written	
  on	
  reagent	
  bottles.	
  
               •         Long	
  hair	
  must	
  be	
  restrained	
  to	
  prevent	
  it	
  from	
  being	
  caught	
  in	
  equipment,	
  Bunsen	
  burners,	
  
                         chemicals,	
  etc.	
  
               •         Dispose	
  of	
  broken	
  glass,	
  microscope	
  slides,	
  coverslips	
  and	
  pipets	
  in	
  the	
  specially	
  marked	
  white	
  
                         and	
  blue	
  boxes.	
  	
  There	
  will	
  be	
  NO	
  disposal	
  of	
  glassware	
  in	
  the	
  wastepaper	
  baskets.	
  	
  	
  
               •         You	
  are	
  responsible	
  for	
  leaving	
  your	
  lab	
  bench	
  clean	
  and	
  tidy.	
  	
  Glassware	
  must	
  be	
  thoroughly	
  
                         rinsed	
  and	
  placed	
  on	
  paper	
  toweling	
  to	
  dry.	
  
	
  
SPILLS:	
  
               •         Spill	
  of	
  SOLUTION/CHEMICAL:	
  While	
  wearing	
  gloves,	
  wipe	
  up	
  the	
  spill	
  using	
  paper	
  towels	
  and	
  a	
  
                         sponge	
  as	
  indicated	
  by	
  the	
  lab	
  instructor.	
  
               	
  
               •         Spill	
  of	
  ACID/BASE/TOXIN:	
  Contact	
  instructor	
  immediately.	
  	
  DO	
  NOT	
  TOUCH.	
  
               	
  
               •         BACTERIA	
  SPILLS:	
  If	
  necessary,	
  remove	
  any	
  contaminated	
  clothing.	
  	
  Prevent	
  anyone	
  from	
  going	
  
                         near	
  the	
  spill.	
  	
  Cover	
  the	
  spill	
  with	
  10%	
  bleach	
  and	
  leave	
  for	
  10	
  minutes	
  before	
  wiping	
  up.	
  	
  
                         Discard	
  paper	
  towels	
  in	
  biohazard	
  bag.	
  	
  Discard	
  contaminated	
  broken	
  glass	
  in	
  designated	
  
                         biohazard	
  sharps	
  container.	
  

DISPOSAL:	
  
       •	
            Broken	
  glass,	
  microscope	
  slides,	
  coverslips	
  and	
  Pasteur	
  pipets	
  are	
  placed	
  in	
  the	
  upright	
  white	
  
                      ‘broken	
  glass’	
  cardboard	
  boxes.	
  	
  NO	
  PAPER,	
  CHEMICAL,	
  BIOLOGICAL	
  OR	
  BACTERIAL	
  WASTE	
  
                      MATERIALS	
  should	
  be	
  placed	
  in	
  this	
  container	
  
       	
  
       •	
            Petri	
  plates,	
  microfuge	
  tubes,	
  pipet	
  tips	
  should	
  be	
  placed	
  in	
  the	
  orange	
  biohazard	
  bags.	
  	
  The	
  
                      material	
  in	
  this	
  bag	
  will	
  be	
  autoclaved	
  prior	
  to	
  disposal.	
  
       	
  
       •	
            Bacterial	
  cultures	
  in	
  tubes	
  or	
  flasks	
  should	
  be	
  placed	
  in	
  marked	
  trays	
  for	
  autoclaving.	
  
       	
  
       •	
            Liquid	
  chemicals	
  should	
  be	
  disposed	
  of	
  as	
  indicated	
  by	
  the	
  instructor.	
  	
  DO	
  NOT	
  dispose	
  of	
  
                      residual	
  solution	
  in	
  the	
  regent	
  bottles.	
  	
  In	
  case	
  of	
  any	
  uncertainty	
  in	
  disposal	
  please	
  consult	
  the	
  
                      lab	
  instructor.	
  
       	
  
       •	
            Slides	
  of	
  bacteria	
  should	
  be	
  placed	
  in	
  the	
  trays	
  filled	
  with	
  10%	
  bleach	
  that	
  are	
  located	
  at	
  the	
  ends	
  
                      of	
  the	
  laboratory	
  benches.	
  
       	
  

HEALTH	
  CONCERNS:	
  
Students	
  who	
  have	
  allergies,	
  are	
  pregnant,	
  or	
  who	
  may	
  have	
  other	
  health	
  concerns	
  should	
  inform	
  their	
  
lab	
  instructor	
  so	
  that	
  appropriate	
  precautions	
  may	
  be	
  taken	
  where	
  necessary.	
  	
  




                                                                                            7	
  
This	
  form	
  must	
  be	
  completed,	
  signed,	
  and	
  submitted	
  to	
  the	
  laboratory	
  
                        instructor	
  before	
  any	
  laboratory	
  work	
  is	
  begun.	
  
	
  
	
  
	
  
	
  
                                                                         *	
  *	
  *	
  *	
  *	
  *	
  *	
  *	
  
	
  
	
  
	
  
I	
  have	
  read	
  and	
  I	
  understand	
  the	
  safety	
  rules	
  that	
  appear	
  in	
  this	
  manual.	
  	
  I	
  recognize	
  that	
  it	
  is	
  my	
  
responsibility	
  to	
  observe	
  them,	
  and	
  agree	
  to	
  abide	
  by	
  them	
  throughout	
  this	
  course.	
  
	
  
	
  
	
  
	
  
Name	
  (please	
  print)	
  	
  	
   	
          	
                    	
          	
   	
              	
      	
               	
          	
  
	
  
	
  
	
  
	
  
	
  
Date	
  	
  	
   	
         	
         	
         	
  	
  	
  	
  Signature	
  	
   	
   	
              	
      	
               	
          	
                	
  
	
  
	
  
	
  
	
  
Course:	
                  Biology	
  	
  	
  	
  3400	
  	
  	
  	
  
	
  
Semester:	
                Spring	
  2012	
  
                                                                                            	
  
                           	
  
	
  
	
  
	
  
	
  




                                                                                          8	
  
EXERCISE	
  1	
  
                                              INTRODUCTION	
  TO	
  MICROSCOPY	
  	
  
	
  
MICROSCOPY	
  

To	
  view	
  microscopic	
  organisms,	
  their	
  magnification	
  is	
  essential.	
  	
  The	
  microscope	
  is	
  the	
  instrument	
  
used	
  to	
  magnify	
  microscopic	
  images.	
  	
  Its	
  function	
  and	
  some	
  aspects	
  of	
  design	
  are	
  similar	
  to	
  those	
  of	
  
telescopes	
  although	
  the	
  microscope	
  is	
  designed	
  to	
  visualize	
  very	
  small	
  close	
  objects	
  while	
  telescopes	
  
magnify	
  distant	
  objects.	
  Please	
  review	
  Appendices	
  1	
  and	
  9.	
  
	
  
Magnification	
  is	
  achieved	
  by	
  the	
  refraction	
  of	
  light	
  travelling	
  though	
  lenses,	
  transparent	
  devices	
  with	
  
curved	
  surfaces.	
  	
  In	
  general,	
  the	
  degree	
  of	
  refraction,	
  and	
  hence,	
  magnification,	
  is	
  determined	
  by	
  the	
  
degree	
  of	
  curvature.	
  	
  However,	
  rather	
  than	
  using	
  a	
  single,	
  severely-­‐curved	
  biconvex	
  lens	
  such	
  as	
  that	
  
of	
  Leeuwenhoek's	
  simple	
  microscopes,	
  Hooke	
  determined	
  that	
  image	
  clarity	
  was	
  improved	
  through	
  
the	
  use	
  of	
  a	
  compound	
  microscope,	
  involving	
  two	
  (or	
  more)	
  separate	
  lenses.	
  

Operation	
  of	
  the	
  Compound	
  Microscope	
  
	
  
Students	
  should	
  be	
  familiar	
  with	
  all	
  names	
  and	
  functions	
  of	
  the	
  components	
  of	
  their	
  compound	
  light	
  
microscopes	
  as	
  demonstrated	
  in	
  Appendix	
  1.	
  
	
  
Properties	
  of	
  the	
  Objective	
  Lenses	
  
	
  
1.	
   Magnification	
  
	
  
Magnification	
  is	
  a	
  measure	
  of	
  how	
  big	
  an	
  object	
  looks	
  to	
  your	
  eye.	
  	
  The	
  number	
  of	
  times	
  that	
  an	
  object	
  is	
  
magnified	
  by	
  the	
  microscope	
  is	
  the	
  product	
  of	
  the	
  magnification	
  of	
  both	
  the	
  objective	
  and	
  ocular	
  lenses.	
  	
  
The	
  magnification	
  of	
  the	
  individual	
  lenses	
  is	
  engraved	
  on	
  them.	
  	
  Your	
  microscope	
  is	
  equipped	
  with	
  ocular	
  
lenses	
  that	
  magnify	
  the	
  specimen	
  ten	
  times	
  (10X),	
  and	
  four	
  objectives	
  which	
  magnify	
  the	
  specimen	
  4X,	
  
10X,	
  40X,	
  and	
  100X.	
  Each	
  lens	
  system	
  magnifies	
  the	
  object	
  being	
  viewed	
  the	
  same	
  number	
  of	
  times	
  in	
  
each	
  dimension	
  as	
  the	
  number	
  engraved	
  on	
  the	
  lens.	
  	
  When	
  using	
  a	
  10X	
  objective,	
  for	
  instance,	
  the	
  
specimen	
  is	
  magnified	
  ten	
  times	
  in	
  each	
  dimension	
  to	
  give	
  a	
  primary	
  or	
  "aerial"	
  image	
  inside	
  the	
  body	
  
tube	
  of	
  the	
  microscope.	
  	
  This	
  image	
  is	
  then	
  magnified	
  an	
  additional	
  ten	
  times	
  by	
  the	
  ocular	
  to	
  give	
  a	
  
virtual	
  image	
  that	
  is	
  100	
  times	
  larger	
  than	
  the	
  object	
  being	
  viewed.	
  
	
  
2.	
   Resolution	
  
	
  
Resolution	
  is	
  a	
  measure	
  of	
  how	
  clearly	
  details	
  can	
  be	
  seen	
  and	
  is	
  distinct	
  from	
  magnification.	
  	
  The	
  
resolving	
  power	
  of	
  a	
  lens	
  system	
  is	
  its	
  capacity	
  for	
  separating	
  to	
  the	
  eye	
  two	
  points	
  that	
  are	
  very	
  close	
  
together.	
  	
  It	
  is	
  dependent	
  upon	
  the	
  quality	
  of	
  the	
  lens	
  system	
  and	
  the	
  wavelength	
  of	
  light	
  employed	
  in	
  
illumination.	
  	
  The	
  white	
  light	
  (a	
  combination	
  of	
  different	
  wavelengths	
  of	
  visible	
  light)	
  used	
  as	
  the	
  light	
  
source	
  in	
  the	
  lab	
  limits	
  the	
  resolving	
  power	
  of	
  the	
  100X	
  objective	
  lens	
  to	
  about	
  0.25	
  µm.	
  	
  Objects	
  smaller	
  
than	
  0.25	
  µm	
  cannot	
  be	
  resolved	
  even	
  if	
  magnification	
  is	
  increased.	
  	
  Spherical	
  aberration	
  (distortion	
  


                                                                                     9	
  
caused	
  by	
  differential	
  bending	
  of	
  light	
  passing	
  through	
  different	
  thicknesses	
  of	
  the	
  lens	
  center	
  versus	
  the	
  
margin)	
  results	
  from	
  the	
  air	
  gap	
  between	
  the	
  specimen	
  and	
  the	
  objective	
  lens.	
  This	
  problem	
  can	
  be	
  
eliminated	
  by	
  filling	
  the	
  air	
  gap	
  with	
  immersion	
  oil,	
  formulated	
  to	
  have	
  a	
  refractive	
  index	
  similar	
  to	
  the	
  
glass	
  used	
  for	
  cover	
  slips	
  and	
  the	
  microscope's	
  objective	
  lens.	
  	
  Use	
  of	
  immersion	
  oil	
  with	
  a	
  100X	
  special	
  oil	
  
immersion	
  objective	
  lens	
  can	
  increase	
  resolution	
  to	
  about	
  0.18	
  µm.	
  	
  Resolving	
  power	
  can	
  be	
  increased	
  
further	
  to	
  0.17	
  µm	
  if	
  only	
  the	
  shorter	
  (violet)	
  wavelengths	
  of	
  visible	
  light	
  are	
  used	
  as	
  the	
  light	
  source.	
  	
  This	
  
is	
  the	
  limit	
  of	
  resolution	
  of	
  the	
  light	
  microscope.	
  	
  	
  
	
  
The	
  resolving	
  power	
  of	
  each	
  objective	
  lens	
  is	
  described	
  by	
  a	
  number	
  engraved	
  on	
  the	
  objective	
  called	
  the	
  
numerical	
  aperture.	
  	
  Numerical	
  aperture	
  (NA)	
  is	
  calculated	
  from	
  physical	
  properties	
  of	
  the	
  lens	
  and	
  the	
  
angles	
  from	
  which	
  light	
  enters	
  and	
  leaves.	
  
	
  
Examine	
  the	
  three	
  objective	
  lenses.	
  	
  The	
  NA	
  of	
  the	
  10X	
  objective	
  lens	
  is	
  0.25.	
  	
  Which	
  objective	
  lens	
  is	
  
capable	
  of	
  the	
  greatest	
  resolving	
  power?	
  
	
  
3.	
           Working	
  Distance	
  
	
  
The	
  working	
  distance	
  is	
  measured	
  as	
  the	
  distance	
  between	
  the	
  lowest	
  part	
  of	
  the	
  objective	
  lens	
  and	
  the	
  
top	
  of	
  the	
  coverslip	
  when	
  the	
  microscope	
  is	
  focused	
  on	
  a	
  thin	
  preparation.	
  	
  This	
  distance	
  is	
  related	
  to	
  the	
  
individual	
  properties	
  of	
  each	
  objective.	
  
	
  
4.	
           Parfocal	
  Objectives	
  
	
  
Most	
  microscope	
  objectives	
  when	
  firmly	
  screwed	
  in	
  place	
  are	
  positioned	
  so	
  the	
  microscope	
  requires	
  only	
  
fine	
  adjustments	
  for	
  focusing	
  when	
  the	
  magnification	
  is	
  changed.	
  	
  Objectives	
  installed	
  in	
  this	
  manner	
  are	
  
said	
  to	
  be	
  parfocal.	
  
	
  
5.	
           Depth	
  of	
  Focus	
  
	
  
The	
  vertical	
  distance	
  of	
  a	
  specimen	
  being	
  viewed	
  that	
  remains	
  in	
  focus	
  at	
  any	
  one	
  time	
  is	
  called	
  the	
  depth	
  
of	
  focus	
  or	
  depth	
  of	
  field.	
  	
  It	
  is	
  a	
  different	
  value	
  for	
  each	
  of	
  the	
  objectives.	
  	
  As	
  the	
  microscope	
  is	
  focused	
  
up	
  and	
  down	
  on	
  a	
  specimen,	
  only	
  a	
  thin	
  layer	
  of	
  the	
  specimen	
  is	
  in	
  focus	
  at	
  one	
  time.	
  	
  To	
  see	
  details	
  in	
  a	
  
specimen	
  that	
  is	
  thicker	
  than	
  the	
  depth	
  of	
  focus	
  of	
  a	
  particular	
  objective	
  you	
  must	
  continuously	
  focus	
  up	
  
and	
  down.	
  
	
  
Observing	
  Bacteria	
  
	
  
Three	
  fundamental	
  properties	
  of	
  bacteria	
  are	
  size,	
  shape	
  and	
  association.	
  
	
  
Bacteria	
  generally	
  occur	
  in	
  three	
  shapes:	
  	
  coccus	
  (round),	
  bacillus	
  (rod-­‐shaped),	
  and	
  spirillum	
  (spiral-­‐
shaped).	
  	
  Size	
  of	
  bacterial	
  cells	
  used	
  in	
  these	
  labs	
  varies	
  from	
  0.5	
  µm	
  to	
  1.0	
  µm	
  in	
  width	
  and	
  from	
  1.0	
  
µm	
  to	
  5.0	
  µm	
  in	
  length,	
  although	
  there	
  is	
  a	
  range	
  of	
  sizes	
  which	
  bacteria	
  demonstrate.	
  	
  Association	
  
refers	
  to	
  the	
  organization	
  of	
  the	
  numerous	
  bacterial	
  cells	
  within	
  a	
  culture.	
  	
  Cells	
  may	
  occur	
  singly	
  with	
  


                                                                                          10	
  
cells	
  separating	
  after	
  division;	
  showing	
  random	
  association.	
  	
  Cells	
  may	
  remain	
  together	
  after	
  division	
  
for	
  some	
  interval	
  resulting	
  in	
  the	
  presence	
  of	
  pairs	
  of	
  cells.	
  When	
  cells	
  remain	
  together	
  after	
  more	
  
than	
  a	
  single	
  division,	
  clusters	
  result.	
  	
  Cell	
  divisions	
  in	
  a	
  single	
  plane	
  result	
  in	
  chains	
  of	
  cells.	
  	
  If	
  the	
  
plane	
  of	
  cell	
  division	
  of	
  bacilli	
  is	
  longitudinal,	
  a	
  palisade	
  results,	
  resembling	
  a	
  picket	
  fence.	
  	
  Both	
  
bacterial	
  cell	
  shape	
  and	
  association	
  are	
  usually	
  constant	
  for	
  bacteria	
  and	
  hence,	
  can	
  be	
  used	
  for	
  
taxonomic	
  identification.	
  	
  However,	
  both	
  properties	
  may	
  be	
  influenced	
  by	
  culture	
  condition	
  and	
  age.	
  	
  
Further,	
  some	
  bacteria	
  are	
  quite	
  variable	
  in	
  shape	
  and	
  association	
  and	
  this	
  may	
  also	
  be	
  diagnostic.	
  
	
  
Micrometry	
  
	
  
When	
  studying	
  bacteria	
  or	
  other	
  microorganisms,	
  it	
  is	
  often	
  essential	
  to	
  evaluate	
  the	
  size	
  of	
  the	
  organism.	
  
By	
  tradition,	
  the	
  longest	
  dimension	
  (length)	
  is	
  generally	
  stressed,	
  although	
  width	
  is	
  sometimes	
  useful	
  for	
  
identification	
  or	
  other	
  study.	
  	
  	
  
	
  
Use	
  of	
  an	
  Ocular	
  Micrometer	
  (Figure	
  1)	
  
	
  
An	
  ocular	
  micrometer	
  can	
  be	
  used	
  to	
  measure	
  the	
  size	
  of	
  objects	
  within	
  the	
  field	
  of	
  view.	
  	
  Unfortunately,	
  
the	
  distance	
  between	
  the	
  graduations	
  of	
  the	
  ocular	
  micrometer	
  is	
  an	
  arbitrary	
  measurement	
  that	
  only	
  has	
  
meaning	
  if	
  the	
  ocular	
  micrometer	
  is	
  calibrated	
  for	
  the	
  objective	
  being	
  used.	
  
	
  
1) Place	
  a	
  micrometer	
  slide	
  on	
  the	
  stage	
  and	
  focus	
  the	
  scale	
  using	
  the	
  40x	
  objective.	
  
2) Turn	
  the	
  eyepiece	
  until	
  the	
  graduations	
  on	
  the	
  ocular	
  scale	
  are	
  parallel	
  with	
  those	
  on	
  the	
  micrometer	
  
       slide	
  scale	
  and	
  superimpose	
  the	
  micrometer	
  scale.	
  
3) Move	
  the	
  micrometer	
  slide	
  so	
  that	
  the	
  first	
  graduation	
  on	
  each	
  scale	
  coincides.	
  
4) Look	
  for	
  another	
  graduation	
  on	
  the	
  ocular	
  scale	
  that	
  exactly	
  coincides	
  with	
  a	
  graduation	
  on	
  the	
  
       micrometer	
  scale.	
  
5) Count	
  the	
  number	
  of	
  graduations	
  on	
  the	
  ocular	
  scale	
  and	
  the	
  number	
  of	
  graduations	
  on	
  the	
  
       micrometer	
  slide	
  scale	
  between	
  and	
  including	
  the	
  graduations	
  that	
  coincide.	
  
6) Calibrate	
  the	
  ocular	
  divisions	
  for	
  the	
  40x	
  and	
  the	
  100x	
  objective	
  lenses.	
  	
  Note	
  that	
  immersion	
  oil	
  is	
  
       not	
  necessary	
  for	
  calibration.	
  
	
  




                                                                                                 	
  
	
  
Figure	
  1.	
  	
  Calibration	
  of	
  an	
  ocular	
  micrometer	
  using	
  a	
  stage	
  micrometer.	
  	
  The	
  mark	
  on	
  the	
  stage	
  
micrometer	
  corresponding	
  to	
  0.06	
  mm	
  (60	
  µ m)	
  is	
  equal	
  to	
  5	
  ocular	
  divisions	
  (o.d.)	
  on	
  the	
  ocular	
  
micrometer.	
  	
  ∴ 	
  1	
  ocular	
  division	
  equals	
  60	
  µ m/5	
  ocular	
  divisions	
  or	
  12	
  µ m.	
  	
  




                                                                                           11	
  
Once	
  an	
  ocular	
  micrometer	
  has	
  been	
  calibrated,	
  objects	
  may	
  be	
  measured	
  in	
  ocular	
  divisions	
  and	
  this	
  
number	
  converted	
  to	
  µm	
  using	
  the	
  conversion	
  factor	
  determined.	
  
	
  
Bacterial	
  size	
  is	
  generally	
  a	
  highly	
  heritable	
  trait.	
  Consequently,	
  size	
  is	
  a	
  key	
  factor	
  used	
  in	
  the	
  
identification	
  of	
  bacterial	
  taxa.	
  However,	
  for	
  some	
  bacteria,	
  cell	
  size	
  can	
  be	
  modified	
  by	
  nutritional	
  
factors	
  such	
  as	
  culture	
  media	
  composition,	
  environmental	
  factors	
  such	
  as	
  temperature,	
  or	
  other	
  
factors	
  such	
  as	
  age.	
  
	
  
METHODS:	
  
	
  
For	
  each	
  student:	
  
•             Compound	
  light	
  microscope	
  
•             Various	
  prepared	
  slides	
  of	
  bacteria.	
  
•             Stage	
  micrometer	
  
•             Ocular	
  micrometer	
  
•             Immersion	
  oil	
  
	
  
1) Use	
  the	
  diagram	
  in	
  Figure	
  1	
  to	
  calibrate	
  the	
  40x	
  and	
  the	
  100x	
  objectives	
  on	
  your	
  compound	
  
       microscopes.	
  	
  Record	
  these	
  values	
  in	
  your	
  lab	
  book	
  as	
  you	
  will	
  then	
  use	
  these	
  values	
  when	
  
       measuring	
  cells	
  and	
  structures	
  for	
  the	
  rest	
  of	
  the	
  lab.	
  	
  	
  
	
  
Note:	
  	
  Do	
  NOT	
  use	
  immersion	
  oil	
  when	
  calibrating	
  the	
  100x	
  objective.	
  	
  This	
  is	
  the	
  ONLY	
  time	
  during	
  
the	
  term	
  that	
  you	
  will	
  not	
  use	
  immersion	
  oil	
  with	
  this	
  objective.	
  
	
  
2) Use	
  the	
  compound	
  microscope	
  to	
  observe	
  the	
  prepared	
  slides	
  of	
  bacteria	
  using	
  the	
  10x	
  and	
  40x	
  
       objective	
  lenses.	
  	
  Observe	
  the	
  same	
  slides	
  under	
  the	
  100x	
  objective	
  using	
  immersion	
  oil.	
  
3) Diagram	
  two	
  of	
  the	
  organisms	
  viewed	
  following	
  the	
  instructions	
  found	
  in	
  Appendix	
  2.




                                                                                        12	
  
EXERCISE	
  2	
  
                                 GENERAL	
  LABORATORY	
  PROCEDURES	
  AND	
  BIOSAFETY	
  

A	
  primary	
  feature	
  of	
  the	
  microbiology	
  laboratory	
  is	
  that	
  living	
  organisms	
  are	
  employed	
  as	
  part	
  of	
  the	
  experiment.	
  	
  
Most	
  of	
  the	
  microorganisms	
  are	
  harmless;	
  however,	
  whether	
  they	
  are	
  non-­‐pathogenic	
  or	
  pathogenic,	
  the	
  
microorganisms	
  are	
  treated	
  with	
  the	
  same	
  respect	
  to	
  assure	
  that	
  personal	
  safety	
  in	
  the	
  laboratory	
  is	
  maintained.	
  	
  
Careful	
  attention	
  to	
  technique	
  is	
  essential	
  at	
  all	
  times.	
  	
  Care	
  must	
  always	
  be	
  taken	
  to	
  prevent	
  the	
  contamination	
  of	
  the	
  
environment	
  from	
  the	
  cultures	
  used	
  in	
  the	
  exercises	
  and	
  to	
  prevent	
  the	
  possibility	
  of	
  the	
  people	
  working	
  in	
  the	
  
laboratory	
  from	
  becoming	
  contaminated.	
  	
  Ensure	
  that	
  you	
  have	
  read	
  over	
  the	
  guidelines	
  on	
  Safety,	
  and	
  those	
  on	
  
Aseptic	
  technique	
  (Appendix	
  3).	
  	
  As	
  well,	
  you	
  should	
  be	
  familiar	
  with	
  the	
  contents	
  of	
  the	
  University	
  of	
  Lethbridge	
  
Biosafety	
  web	
  site:	
  	
  
www.uleth.ca/artsci/biological-­‐sciences/bio-­‐safety	
  
	
  
METHODS	
  
Part	
  1:	
  General	
  Laboratory	
  Procedures	
  
Work	
  individually	
  to	
  prepare	
  a	
  streak	
  plate	
  and	
  a	
  broth	
  culture	
  using	
  the	
  E.	
  coli	
  cultures	
  provided.	
  	
  Refer	
  to	
  
Appendix	
  3	
  as	
  necessary.	
  
	
  
Part	
  2:	
  Biosafety	
  
You	
  will	
  be	
  provided	
  with	
  the	
  following:	
  
•      Sterile	
  swabs	
  
•      Sterile	
  water	
  
•      Potato	
  Dextrose	
  Agar	
  (PDA)	
  plates	
  and	
  Luria	
  Bertani	
  (LB)	
  plates	
  
	
  
Work	
  in	
  pairs	
  to	
  complete	
  the	
  following	
  exercise:	
  
1) Draw	
  a	
  line	
  on	
  the	
  back	
  of	
  each	
  plate	
  to	
  divide	
  the	
  plates	
  in	
  half.	
  	
  Label	
  one	
  half	
  of	
  the	
  plate	
  with	
  the	
  name	
  of	
  
       the	
  surface	
  to	
  be	
  tested.	
  	
  Label	
  the	
  other	
  half	
  of	
  the	
  plate	
  as	
  “after	
  disinfection”.	
  
2) Moisten	
  the	
  swabs	
  provided	
  with	
  a	
  small	
  amount	
  of	
  sterile	
  water.	
  	
  Brush	
  the	
  surface	
  to	
  be	
  tested	
  with	
  the	
  
       swab,	
  and	
  then	
  use	
  the	
  swab	
  to	
  inoculate	
  one-­‐half	
  of	
  each	
  of	
  your	
  two	
  plates.	
  
3) Disinfect	
  the	
  surface,	
  moisten	
  another	
  swab,	
  and	
  repeat	
  using	
  the	
  other	
  half	
  of	
  both	
  plates.	
  	
  Wrap	
  the	
  plates	
  
       with	
  parafilm.	
  
4) Your	
  plates	
  will	
  be	
  incubated	
  for	
  16-­‐20	
  hours	
  at	
  30oC,	
  and	
  then	
  refrigerated	
  at	
  4oC.	
  	
  During	
  the	
  next	
  
       laboratory	
  period,	
  evaluate	
  your	
  plate	
  results	
  and	
  record	
  the	
  number	
  of	
  colonies	
  present	
  on	
  each	
  half	
  of	
  both	
  
       plates.	
  	
  Make	
  observations	
  of	
  colony	
  morphology.	
  
	
  
Thought	
  Questions:	
  	
  (Use	
  the	
  Biosafety	
  Web	
  Site	
  as	
  a	
  reference)	
  
•      Were	
  differences	
  in	
  colony	
  morphology	
  and	
  number	
  observed	
  on	
  the	
  two	
  types	
  of	
  media?	
  	
  Why?	
  
•      Does	
  disinfection	
  of	
  work	
  surfaces	
  completely	
  eliminate	
  all	
  microbial	
  organisms?	
  	
  What	
  evidence	
  do	
  you	
  
       have?	
  
•      What	
  is	
  an	
  MSDS	
  and	
  where	
  can	
  you	
  find	
  one?	
  
•      In	
  Canada,	
  the	
  Laboratory	
  Centre	
  for	
  Disease	
  Control	
  has	
  classified	
  infectious	
  agents	
  into	
  4	
  Risk	
  Groups	
  using	
  
       pathogenicity,	
  virulence	
  and	
  mode	
  of	
  transmission	
  (among	
  others)	
  as	
  criteria.	
  	
  What	
  do	
  these	
  terms	
  mean?	
  
•      What	
  criteria	
  would	
  characterize	
  an	
  organism	
  classified	
  in	
  Risk	
  Group	
  1,	
  2	
  3	
  or	
  4?	
  	
  	
  
•      There	
  are	
  many	
  “Golden	
  Rules”	
  for	
  Biosafety.	
  	
  Identify	
  4	
  common	
  sense	
  practices	
  that	
  will	
  protect	
  you	
  in	
  your	
  
       microbiology	
  labs.


                                                                                                13	
  
EXERCISE	
  3	
  
                                                        FREE-­LIVING	
  NITROGEN	
  FIXATION	
  

PART	
  A:	
  ISOLATION	
  OF	
  FREE-­‐LIVING	
  NITROGEN	
  FIXING	
  MICROORGANISMS	
  
	
  
Nitrogen	
  is	
  an	
  important	
  component	
  of	
  amino	
  acids,	
  cell	
  walls	
  and	
  other	
  cofactors	
  present	
  in	
  all	
  cells.	
  	
  Nitrogen	
  gas	
  
comprises	
  greater	
  than	
  75%	
  of	
  our	
  atmosphere,	
  but	
  it	
  is	
  one	
  of	
  the	
  most	
  stable	
  bonds	
  in	
  nature,	
  and	
  is	
  unavailable	
  
for	
  use	
  in	
  this	
  form.	
  	
  At	
  one	
  time	
  early	
  in	
  the	
  evolutionary	
  history	
  of	
  life	
  on	
  earth,	
  all	
  cells	
  may	
  have	
  had	
  the	
  ability	
  
to	
  fix	
  N2	
  gas	
  into	
  a	
  more	
  usable	
  form	
  (nitrate,	
  nitrite	
  or	
  ammonia).	
  	
  Today	
  however,	
  only	
  a	
  few	
  species	
  of	
  bacteria	
  
and	
  archaea	
  are	
  capable	
  of	
  converting	
  N2;	
  all	
  other	
  organisms	
  rely	
  on	
  N2-­‐fixing	
  prokaryotes	
  for	
  their	
  fixed	
  nitrogen	
  
requirements.	
  
	
  
M.W.	
  Beijerinck,	
  a	
  Dutch	
  microbiologist,	
  successfully	
  isolated	
  free	
  living	
  nitrogen	
  fixing	
  bacteria	
  in	
  1901.	
  	
  He	
  
inoculated	
  soil	
  samples	
  into	
  enrichment	
  media	
  containing	
  glucose	
  and	
  mineral	
  salts,	
  but	
  lacking	
  any	
  source	
  of	
  
nitrogen	
  other	
  than	
  atmospheric	
  nitrogen.	
  	
  He	
  observed	
  cells	
  that	
  are	
  today	
  identified	
  as	
  members	
  of	
  the	
  genus	
  
Azotobacter.	
  	
  Subsequently,	
  other	
  aerobic,	
  free-­‐living	
  nitrogen	
  fixing	
  genera	
  of	
  bacteria	
  have	
  been	
  isolated	
  and	
  
identified,	
  including	
  Azomonas,	
  Azospirillum	
  and	
  Beijerinckia.	
  	
  	
  
	
  
Nitrogen	
  fixation	
  occurs	
  only	
  when	
  an	
  enzyme	
  called	
  nitrogenase	
  is	
  present.	
  	
  The	
  enzyme	
  consists	
  of	
  two	
  distinct	
  
proteins	
  (i)	
  dinitrogenase,	
  which	
  reacts	
  with	
  N2,	
  and	
  (ii)	
  dinitrogenase	
  reductase,	
  which	
  reduces	
  nitrogen	
  gas	
  to	
  
ammonia.	
  	
  The	
  dinitrogenase	
  reductase	
  component	
  is	
  irreversibly	
  inactivated	
  by	
  the	
  presence	
  of	
  oxygen.	
  Several	
  
strategies	
  have	
  evolved	
  to	
  enable	
  free-­‐living,	
  aerobic	
  organisms	
  like	
  Azotobacter	
  to	
  fix	
  nitrogen.	
  	
  Azotobacter	
  has	
  a	
  
very	
  high	
  respiratory	
  rate,	
  which	
  is	
  thought	
  to	
  prevent	
  any	
  stray	
  oxygen	
  from	
  coming	
  into	
  contact	
  with	
  the	
  
nitrogenase	
  enzyme.	
  	
  Additionally,	
  free-­‐living	
  nitrogen	
  fixers	
  often	
  secrete	
  copious	
  amounts	
  of	
  slime	
  which	
  may	
  
prevent	
  extra	
  oxygen	
  from	
  entering	
  the	
  cells.	
  	
  	
  	
  There	
  is	
  also	
  evidence	
  suggesting	
  that	
  in	
  the	
  presence	
  of	
  oxygen	
  
nitrogenase	
  can	
  combine	
  with	
  a	
  specific	
  protein	
  inside	
  the	
  cell	
  that	
  shields	
  the	
  oxygen	
  sensitive	
  site	
  and	
  prevents	
  it	
  
from	
  interacting	
  from	
  oxygen.	
  	
  When	
  oxygen	
  levels	
  drop,	
  nitrogenase	
  can	
  resume	
  its	
  activity.	
  
	
  
Over	
  the	
  course	
  of	
  the	
  semester	
  we	
  will	
  isolate	
  free	
  living	
  nitrogen	
  fixing	
  bacteria	
  from	
  prairie	
  soil,	
  establish	
  pure	
  
cultures	
  and	
  attempt	
  to	
  identify	
  cultures	
  using	
  modern	
  day	
  molecular	
  techniques.	
  
	
  
METHODS:	
  
	
  
For	
  each	
  lab:	
  
       •       5,	
  250	
  mL	
  flasks	
  containing	
  N-­‐free	
  medium;	
  10	
  plates	
  N-­‐free	
  medium	
  
       •       Balance,	
  weigh	
  boats	
  and	
  spatula	
  
       •       N-­‐free	
  soil	
  sample	
  
	
  
Work	
  in	
  groups	
  of	
  4	
  to	
  inoculate	
  your	
  flasks.	
  
       •       Weigh	
  out	
  1	
  g	
  of	
  the	
  soil	
  sample	
  provided,	
  and	
  add	
  it	
  to	
  an	
  Erlenmeyer	
  flask	
  containing	
  100	
  mL	
  of	
  N-­‐
               free	
  medium.	
  




                                                                                         14	
  
•      Swirl	
  gently	
  to	
  mix.	
  	
  Label	
  the	
  flask	
  with	
  your	
  lab,	
  bench	
  number,	
  and	
  date.	
  	
  Make	
  sure	
  that	
  the	
  cap	
  or	
  
              foil	
  is	
  loosened	
  sufficiently	
  to	
  allow	
  air	
  to	
  enter	
  the	
  culture.	
  
       •      After	
  7	
  days,	
  remove	
  the	
  flask	
  and	
  look	
  for	
  the	
  presence	
  of	
  a	
  thin	
  film	
  of	
  growth	
  on	
  the	
  surface	
  of	
  the	
  
              medium.	
  	
  Use	
  a	
  sterile	
  inoculating	
  loop	
  to	
  remove	
  some	
  of	
  this	
  film	
  and	
  prepare	
  a	
  streak	
  plate.	
  	
  The	
  streak	
  
                                                                                                    o
              plate	
  will	
  be	
  incubated	
  for	
  a	
  further	
  7	
  days	
  at	
  30 C.	
  	
  	
  
       •      Examine	
  wet	
  mounts	
  from	
  your	
  broth	
  culture	
  using	
  the	
  phase	
  contrast	
  microscope.	
  	
  Prepare	
  Gram	
  stains	
  of	
  
              the	
  film	
  and	
  look	
  for	
  large	
  Gram	
  negative	
  cells	
  that	
  may	
  be	
  bacillus	
  or	
  coccoid	
  in	
  shape.	
  	
  They	
  may	
  occur	
  
              singly,	
  or	
  in	
  arrowhead-­‐shaped	
  pairs.	
  	
  Record	
  observations	
  in	
  your	
  lab	
  book.	
  	
  	
  
       •      After	
  the	
  incubation	
  period	
  is	
  complete,	
  examine	
  your	
  streak	
  plate.	
  	
  Look	
  for	
  large,	
  translucent,	
  
              mucoid	
  colonies.	
  	
  Prepare	
  a	
  wet	
  mount	
  from	
  an	
  isolated	
  colony	
  and	
  view	
  it	
  using	
  a	
  phase-­‐contrast	
  
              microscope.	
  	
  Prepare	
  another	
  streak	
  plate	
  using	
  cells	
  from	
  the	
  same	
  colony.	
  	
  This	
  plate	
  will	
  be	
  
              incubated	
  again,	
  and	
  observations	
  will	
  be	
  made	
  later	
  in	
  the	
  term.	
  	
  Additionally,	
  this	
  culture	
  will	
  be	
  
              used	
  in	
  Part	
  B	
  of	
  this	
  exercise.	
  
	
  
Thought	
  Questions:	
  
       •      Define	
  enrichment.	
  	
  What	
  aspect(s)	
  of	
  the	
  medium	
  used	
  in	
  this	
  exercise	
  made	
  it	
  an	
  enrichment	
  medium?	
  	
  
              Why	
  did	
  we	
  use	
  the	
  same	
  medium	
  for	
  plating	
  after	
  free-­‐living	
  nitrogen	
  fixers	
  were	
  isolated?	
  	
  What	
  term	
  
              would	
  we	
  use	
  to	
  describe	
  the	
  medium	
  in	
  this	
  case?	
  
       •      Why	
  did	
  we	
  sample	
  the	
  film	
  on	
  top	
  of	
  the	
  culture,	
  rather	
  than	
  the	
  sediment	
  on	
  the	
  bottom	
  of	
  the	
  flask?	
  
       •      When	
  you	
  viewed	
  your	
  Gram	
  stains,	
  you	
  may	
  have	
  observed	
  cells	
  on	
  your	
  slides	
  that	
  didn’t	
  appear	
  to	
  be	
  
              Azotobacter.	
  	
  Why	
  might	
  these	
  other	
  genera	
  be	
  present?	
  
	
  
	
  
PART	
  B:	
  IDENTIFICATION	
  OF	
  MICROORGANISMS	
  USING	
  PCR	
  OF	
  16s	
  rDNA	
  

The	
  DNA	
  from	
  microbes	
  can	
  be	
  isolated	
  and	
  may	
  be	
  studied	
  via	
  construction	
  of	
  BAC	
  (Bacterial	
  Artificial	
  
Chromosome)	
  libraries	
  (for	
  an	
  example,	
  see	
  Rondon,	
  et	
  al.,	
  2000).	
  	
  More	
  simply,	
  an	
  appreciation	
  of	
  diversity	
  may	
  be	
  
obtained	
  by	
  using	
  universal	
  primers	
  for	
  PCR	
  amplification	
  of	
  rDNA	
  genes	
  from	
  the	
  Bacterial	
  domain	
  on	
  a	
  
preparation	
  of	
  total	
  DNA	
  from	
  an	
  environmental	
  sample.	
  	
  The	
  resulting	
  pool	
  of	
  nucleotide	
  fragments	
  may	
  then	
  be	
  
cloned,	
  unique	
  clones	
  sequenced,	
  and	
  the	
  resulting	
  sequences	
  analyzed	
  in	
  order	
  to	
  characterize	
  and	
  potentially	
  
identify	
  the	
  microbes	
  present.	
  
	
  
In	
  Part	
  B	
  of	
  this	
  exercise	
  you	
  will	
  perform	
  PCR	
  using	
  primers	
  specific	
  for	
  prokaryotic	
  16s	
  rDNA	
  to	
  isolate	
  
ribosomal	
  DNA	
  from	
  putative	
  Azotobacter	
  cultures	
  and	
  then	
  visualise	
  this	
  DNA	
  using	
  Agarose	
  Gel	
  
Electrophoresis.	
  	
  In	
  addition,	
  DNA	
  from	
  successful	
  PCRs	
  will	
  be	
  sent	
  for	
  sequencing	
  and	
  you	
  will	
  then	
  be	
  using	
  
online	
  tools	
  to	
  perform	
  sequence	
  analysis	
  to	
  confirm	
  the	
  identity	
  of	
  your	
  cultures.	
  
	
  
PCR	
  of	
  Soil	
  Bacteria	
  

Two	
  different	
  primer	
  sets	
  will	
  be	
  employed.	
  	
  Each	
  group	
  will	
  only	
  be	
  using	
  one	
  set	
  on	
  their	
  particular	
  culture.	
  	
  Note	
  
that	
  the	
  primer	
  designations	
  refer	
  to	
  location	
  of	
  primer	
  binding	
  site	
  on	
  the	
  16s	
  rDNA	
  molecule.	
  	
  Given	
  this	
  
information,	
  predict	
  the	
  sizes	
  of	
  your	
  PCR	
  products	
  for	
  both	
  primer	
  sets.	
  
	
  
	
  
	
  


                                                                                           15	
  
For	
  preparation	
  of	
  your	
  reaction	
  mixtures:	
  
Benches	
  1,	
  3,	
  and	
  5:	
  
Working	
  with	
  the	
  people	
  at	
  your	
  bench,	
  each	
  group	
  will	
  be	
  setting	
  up	
  3x	
  reactions	
  as	
  outlined	
  below:	
  
	
  
Primer	
                               Template	
  Source	
  
FP1/1492R	
                            Unknown	
  Culture	
  
FP1/1492R	
                            E.	
  coli	
  
FP1/1492R	
                            No	
  template	
  
	
  
Benches	
  2/4:	
  
Working	
  with	
  the	
  people	
  at	
  your	
  bench,	
  each	
  group	
  will	
  be	
  setting	
  up	
  3x	
  reactions	
  as	
  outlined	
  below:	
  
	
  
Primer	
  Set	
                        Template	
  Source	
  
27F/805R	
                             Unknown	
  Culture	
  
27F/805R	
                             E.	
  coli	
  
27F/805R	
                             No	
  template	
  

	
  
METHODS:	
  
	
  
Reagents:	
  
    • Taq	
  (Invitrogen)	
  
    • 10x	
  PCR	
  buffer	
  
    • 50	
  mM	
  MgCl2	
  
Primers	
  (*Y	
  =	
  C	
  or	
  T)	
  
                    • FP1	
  (AGAGTTYGATYCTGGCT)*1	
  (10	
  pmol/µL)	
  
                    • RP1492	
  (TACGGYTACCTTGTTACGACT)*1	
  (10	
  pmol/µL)	
  
                    • 27F	
  (AGAGTTTGATCCTGGCTCAG)2	
  (10	
  pmol/µL)	
  
                    • 805R	
  (GACTACCAGGGTATCTAATCC)2	
  (10	
  pmol/µL)	
  
    • dNTP	
  mix	
  (8	
  mM)	
  
    • Optima	
  Water	
  (Fisher	
  Scientific)	
  
Cultures:	
  
    • Pure	
  culture	
  of	
  organism	
  isolated	
  from	
  soil	
  
    • Plate	
  culture	
  of	
  E.	
  coli	
  	
  
Equipment:	
  	
  
    • Thermocyclers	
  (BioRad)	
  
    • Micropipettors	
  and	
  sterile	
  tips	
  	
  
    • Parafilm	
  
    • Ice	
  buckets	
  and	
  ice	
  
    • Sterile	
  0.5	
  mL	
  tubes	
  
    • Sterile	
  0.2	
  mL	
  PCR	
  tubes	
  
    • Biohazard	
  bags	
  
    • Permanent	
  markers	
  

Note:	
  	
  Use	
  aseptic	
  technique	
  throughout.	
  	
  Keep	
  your	
  tubes	
  on	
  ice	
  at	
  all	
  times!	
  

       •       Obtain	
  three	
  0.2	
  mL	
  PCR	
  tubes	
  from	
  the	
  sterile	
  container	
  at	
  the	
  side	
  of	
  the	
  lab.	
  	
  Decide	
  on	
  appropriate	
  

                                                                                   16	
  
codes	
  for	
  labeling	
  the	
  tubes	
  (keeping	
  in	
  mind	
  that	
  other	
  groups	
  are	
  carrying	
  out	
  the	
  same	
  reactions).	
  	
  Label	
  
                    the	
  tubes	
  on	
  the	
  tops	
  and	
  on	
  the	
  sides	
  using	
  permanent	
  marker.	
  	
  Place	
  the	
  tubes	
  on	
  ice.	
  

            •       Obtain	
  a	
  0.5	
  mL	
  tube	
  for	
  your	
  Master	
  Mix.	
  	
  Keep	
  this	
  tube	
  on	
  ice.	
  	
  Use	
  the	
  information	
  outlined	
  in	
  Table	
  1	
  
                    to	
  set	
  up	
  your	
  Master	
  Mix.	
  	
  This	
  mix	
  contains	
  everything	
  required	
  in	
  order	
  for	
  DNA	
  replication	
  to	
  occur.	
  	
  
                    Generally,	
  Master	
  Mixes	
  contain	
  enough	
  volume	
  to	
  set	
  up	
  the	
  number	
  of	
  reactions	
  +	
  1.	
  	
  In	
  your	
  case,	
  you	
  
                 will	
  be	
  preparing	
  enough	
  mix	
  for	
  4	
  reactions.	
  	
  Work	
  carefully.	
  	
  	
  
	
  
Table	
  1.	
  	
  Components,	
  starting	
  concentrations	
  and	
  volumes	
  for	
  set-­‐up	
  of	
  PCRs.	
  
       Component	
  and	
  Starting	
                                      Final	
                        Amount	
  to	
  add	
      Master	
  Mix	
  vol.	
  (for	
  
       Concentration	
                                                     Concentration	
  	
            for	
  ONE	
  reaction	
   total	
  #	
  Reactions	
  +	
  
                                                                                                          (µL)	
                     1)	
  (µL)	
  
                                                                                                                                     	
  
                                                                                                                                     	
  
       Optima-­‐Water	
                                                    	
                             32	
                       128	
  
       10x	
  PCR	
  buffer	
                                              1x	
                           5	
                        20	
  
       50	
  mM	
  MgCl2	
                                                 1.5	
  mM	
                    2	
                        8	
  
       dNTP	
  mix	
  (8	
  mM	
  of	
  all	
  4)	
                        40	
  nmoles	
  (0.8	
  mM	
   5	
                        20	
  
                                                                           of	
  all	
  4)	
  
       Primer	
  1	
                                                       0.4	
  µ M	
                   2	
                        8	
  
       Primer	
  2	
                                                       0.4	
  µ M	
                   2	
                        8	
  
       Taq	
  DNA	
  polymerase	
  (5	
  U/µL)	
                           5	
  U	
  	
  (units)	
        1	
                        4	
                               	
  
       Template	
  DNA	
                                                   	
                             1	
  	
                    Leave	
  Template	
  out	
  
                                                                                                                                     of	
  Master	
  Mix!	
  
     Final	
  Volume	
                                                     50	
  µ L	
                    50	
  µ L	
                	
  
	
  
Note:	
  	
  One	
  primer	
  set	
  per	
  reaction	
  mixture!	
  	
  
	
  
            •       While	
  the	
  Master	
  Mix	
  is	
  being	
  set	
  up,	
  other	
  group	
  members	
  should	
  be	
  setting	
  up	
  template	
  preparations.	
  	
  
                    Obtain	
  a	
  small	
  square	
  of	
  parafilm.	
  	
  For	
  each	
  bacterial	
  culture	
  (soil	
  bacteria	
  and	
  E.	
  coli	
  –	
  what	
  is	
  the	
  role	
  of	
  E.	
  
                    coli?),	
  use	
  a	
  micropipettor	
  with	
  a	
  sterile	
  tip	
  to	
  pipette	
  20	
  µ L	
  of	
  sterile	
  Optima-­‐water	
  (Fisher	
  Scientific)	
  onto	
  
                    the	
  parafilm.	
  	
  	
  
            •       Take	
  a	
  10	
  –	
  100	
  µL	
  micropipettor	
  and	
  put	
  on	
  a	
  sterile	
  tip.	
  	
  Touch	
  the	
  tip	
  to	
  a	
  single	
  colony	
  from	
  your	
  soil	
  
                    bacterial	
  culture	
  plate.	
  	
  Pipette	
  up	
  and	
  down	
  into	
  the	
  Optima	
  water	
  on	
  the	
  parafilm.	
  	
  This	
  mixture	
  will	
  be	
  
                    used	
  as	
  your	
  template	
  source.	
  
            •       Mix	
  E.	
  coli	
  in	
  the	
  same	
  fashion	
  with	
  your	
  second	
  drop	
  of	
  Optima	
  water	
  on	
  the	
  parafilm.	
  	
  Again,	
  1	
  µL	
  of	
  this	
  
                    mixture	
  will	
  be	
  used	
  as	
  template	
  in	
  your	
  second	
  reaction.	
  
            •       For	
  your	
  third	
  reaction,	
  you	
  will	
  be	
  leaving	
  out	
  template	
  and	
  replacing	
  it	
  with	
  an	
  equal	
  volume	
  of	
  sterile	
  
                    Optima	
  water.	
  	
  What	
  is	
  the	
  purpose	
  of	
  this	
  reaction?	
  	
  
            •       After	
  preparation	
  of	
  Master	
  Mix,	
  add	
  the	
  appropriate	
  volume	
  of	
  template	
  (1	
  µL)	
  to	
  each	
  tube,	
  then	
  check	
  
                    with	
  the	
  Instructor	
  to	
  see	
  where	
  everyone	
  else	
  is	
  at.	
  	
  When	
  all	
  of	
  the	
  groups	
  are	
  at	
  the	
  same	
  stage,	
  add	
  the	
  
                    appropriate	
  volume	
  of	
  Master	
  Mix	
  (49	
  µL	
  )	
  to	
  each	
  tube.	
  	
  Keep	
  your	
  tubes	
  on	
  ice	
  until	
  in	
  the	
  PCR	
  machine.	
  	
  
	
  
GENTLY	
  tap	
  tubes	
  to	
  mix.	
  	
  When	
  everyone	
  is	
  ready,	
  the	
  instructor	
  will	
  then	
  show	
  you	
  how	
  to	
  operate	
  the	
  
thermocycler.	
  	
  	
  
	
  
	
  
The	
  parameters	
  you	
  are	
  using	
  for	
  the	
  PCR	
  are:	
  


                                                                                              17	
  
o
       12	
  minutes	
  at	
  95	
   C	
  (used	
  not	
  only	
  in	
  initial	
  DNA	
  denaturation,	
  but	
  also	
  to	
  lyse	
  the	
  bacterial	
  cells)	
  
       30	
  cycles	
  of:	
  
                                          o
       •       1	
  minute	
  at	
  94	
   C	
  
                                              o
       •       45	
  seconds	
  at	
  55	
   C	
  
                                              o
       •       90	
  seconds	
  at	
  72	
   C	
  
       A	
  final	
  elongation	
  of:	
  
                                               o
       •       20	
  minutes	
  at	
  72	
   C	
  
               	
  
                                                        o
The	
  samples	
  will	
  be	
  stored	
  at	
  -­‐20	
   C	
  upon	
  completion.	
  
	
  
Thought	
  Questions:	
  
	
  
•      What	
  are	
  the	
  purposes	
  of	
  the	
  primers	
  in	
  PCR?	
  
•      What	
  happens	
  at	
  each	
  temperature?	
  
•      How	
  is	
  annealing	
  temperature	
  determined?	
  
•      What	
  is	
  meant	
  by	
  stringency?	
  	
  How	
  can	
  you	
  ensure	
  high	
  stringency?	
  
•      If	
  you	
  left	
  out	
  the	
  forward	
  primer,	
  would	
  you	
  expect	
  to	
  see	
  a	
  band	
  resulting	
  on	
  the	
  gel?	
  	
  If	
  you	
  did,	
  explain	
  what	
  
       this	
  would	
  mean.	
  
•      Is	
  it	
  possible	
  to	
  design	
  PCRs	
  given	
  only	
  an	
  isolatable	
  protein?	
  	
  Why	
  or	
  why	
  not?	
  	
  What	
  are	
  some	
  of	
  the	
  problems	
  
       associated	
  with	
  such	
  an	
  experiment?	
  	
  How	
  might	
  you	
  adapt	
  the	
  reaction	
  conditions	
  to	
  optimise	
  yield	
  of	
  desired	
  
     product?	
  
	
  
Suggested	
  Background	
  Reading:	
  

Amann	
  et.	
  al.,	
  1995.	
  	
  Phylogenetic	
  identification	
  and	
  in	
  situ	
  detection	
  of	
  individual	
  microbial	
  cells	
  without	
  
cultivation.	
  Microbiol.	
  Rev.	
  59	
  (1):	
  143-­‐169.	
  
	
  
Aas,	
  J.	
  A.,	
  Paster,	
  B.	
  J.,	
  Stokes,	
  L.	
  N.,	
  Olsen,	
  I.,	
  and	
  Dewhirst,	
  F.	
  E.	
  2005.	
  Defining	
  the	
  Normal	
  Bacterial	
  Flora	
  of	
  the	
  
Oral	
  Cavity.	
  J.	
  Clin.	
  Microbiol.	
  43:	
  5721-­‐5732.	
  

Cole,	
  J.	
  R.,	
  Chai,	
  B.,	
  Farris,	
  R.	
  J.,	
  Wang,	
  Q.,	
  Kulam,	
  S.	
  A.,	
  McGarrell,	
  D.	
  M.,	
  Bandela,	
  A.	
  M.,	
  Cardenas,	
  E.,	
  Garrity,	
  G.	
  M.,	
  
and	
  Tiedje,	
  J.	
  M.	
  2007.	
  The	
  ribosomal	
  database	
  project	
  (RDPII):	
  introducing	
  myRDP	
  space	
  and	
  quality	
  controlled	
  
public	
  data.	
  Nuc.	
  A.	
  Res.	
  35:	
  D169-­‐D172.	
  

DeLong	
  and	
  Pace,	
  2001.	
  Environmental	
  diversity	
  of	
  bacteria	
  and	
  archaea.	
  Syst.	
  Biol.	
  50(4):	
  470-­‐478.	
  

Gabor,	
  E.	
  M.,	
  deVries,	
  E.	
  J.,	
  and	
  Janssen,	
  D.	
  B.	
  2003.	
  	
  Efficient	
  recovery	
  of	
  environmental	
  DNA	
  for	
  expression	
  cloning	
  
by	
  indirect	
  extraction	
  methods.	
  	
  FEMS.	
  	
  44(2):	
  153-­‐163.	
  
	
  
Kelley,	
  S.T.,	
  Theisen	
  U.,	
  Angenent,	
  L.T.,	
  Amand,	
  A.S.,	
  and	
  Pace,	
  N.R.	
  	
  Molecular	
  Analysis	
  of	
  Shower	
  Curtain	
  Biofilm	
  
Microbes.	
  	
  Appl.	
  Environ.	
  Microbiol.	
  	
  70:	
  4187-­‐4192.	
  


Pace,	
  1997.	
  A	
  molecular	
  view	
  of	
  microbial	
  diversity	
  and	
  the	
  biosphere.	
  Science.	
  276:	
  734-­‐740.	
  
	
  
	
  
Whitford,	
  M.	
  F.,	
  Forster,	
  R.	
  J.,	
  Beard,	
  C.	
  E.,	
  Gong,	
  J.,	
  and	
  Teather,	
  R.	
  M.	
  1998.	
  Phylogenetic	
  analysis	
  of	
  rumen	
  
bacteria	
  by	
  comparative	
  sequence	
  analysis	
  of	
  cloned	
  16S	
  rRNA	
  genes.	
  	
  Anaerobe.	
  4:	
  153-­‐163.	
  




                                                                                        18	
  
Woese,	
  C.	
  R.,	
  Kandler,	
  O.,	
  and	
  Wheelis,	
  M.	
  L.,	
  1990.	
  Towards	
  a	
  natural	
  system	
  of	
  organisms:	
  Proposal	
  for	
  the	
  
domains	
  Archaea,	
  Bacteria,	
  and	
  Eucarya.	
  Proc.	
  Natl.	
  Acad.	
  Sci.	
  USA.	
  87:	
  4576-­‐4579.	
  
	
  
Agarose	
  Gel	
  Electrophoresis	
  
	
  
METHODS	
  
Reagents:	
  
• 1x	
  TBE	
  buffer	
  
• 0.8%	
  agarose	
  gels	
  (1	
  per	
  2	
  benches)	
  
• 10x	
  loading	
  dye	
  
• 2-­‐log	
  NEB	
  ladder	
  premixed	
  with	
  loading	
  dye	
  
• Ethidium	
  bromide	
  bath	
  
• PCR	
  samples	
  from	
  last	
  lab	
  
	
  
Equipment	
  
• Power	
  supplies	
  (1	
  per	
  2	
  benches)	
  
• Micropipettors	
  
• Sterile	
  tips	
  
• Parafilm	
  
• Transilluminator/camera	
  
• Biohazard	
  bags	
  	
  
• Gloves	
  
	
  
Note:	
  	
  Two	
  groups	
  will	
  load	
  their	
  samples	
  (6	
  tubes	
  total)	
  onto	
  one	
  gel.	
  	
  	
  
	
  
We	
  will	
  be	
  using	
  0.8%	
  agarose	
  prepared	
  in	
  1x	
  TBE.	
  
	
  
       •       Obtain	
  and	
  completely	
  thaw	
  your	
  PCR	
  samples.	
  	
  	
  
       •       Using	
  a	
  micropipettor,	
  'dot'	
  out	
  1	
  µL	
  aliquots	
  of	
  10x	
  loading	
  dye	
  in	
  a	
  line	
  on	
  a	
  thin	
  strip	
  of	
  parafilm.	
  Remove	
  
               a	
  7.5	
  µL	
  aliquot	
  of	
  your	
  first	
  sample,	
  mix	
  gently	
  with	
  the	
  loading	
  dye	
  on	
  the	
  parafilm,	
  and	
  proceed	
  with	
  
               loading.	
  	
  Aim	
  for	
  approximately	
  1-­‐2x	
  final	
  concentration	
  of	
  loading	
  dye	
  per	
  sample	
  loaded	
  (and	
  recognise	
  
               that	
  this	
  is	
  NOT	
  exact).	
  
	
  
               Loading	
  Dye	
  –	
  1)	
  increases	
  the	
  density	
  of	
  the	
  sample	
  ensuring	
  that	
  it	
  drops	
  evenly	
  into	
  the	
  well;	
  2)	
  adds	
  
               colour	
  to	
  the	
  sample	
  to	
  simplify	
  loading;	
  and	
  3)	
  contains	
  dyes	
  that	
  in	
  an	
  electric	
  field	
  move	
  toward	
  the	
  
               anode	
  at	
  predictable	
  rates.	
  In	
  this	
  laboratory,	
  we	
  are	
  making	
  use	
  of	
  mixtures	
  containing	
  xylene	
  cyanol	
  FF.	
  	
  
               This	
  dye	
  migrates	
  in	
  0.5x	
  TBE	
  	
  at	
  approximately	
  the	
  same	
  rate	
  as	
  linear	
  DNA	
  of	
  4000	
  bp	
  in	
  size.	
  	
  Often,	
  
               bromophenol	
  blue	
  is	
  used	
  in	
  conjunction	
  with	
  xylene	
  cyanol,	
  or	
  separately.	
  	
  Bromophenol	
  blue	
  migrates	
  at	
  
               approximately	
  the	
  same	
  rate	
  as	
  linear	
  DNA	
  of	
  300	
  bp	
  in	
  size	
  in	
  0.5x	
  TBE	
  (2.2	
  fold	
  faster	
  than	
  xylene	
  cyanol	
  
               FF,	
  independent	
  of	
  agarose	
  concentration).	
  	
  
              	
  	
  
       •       Load	
  the	
  remainder	
  of	
  the	
  samples	
  in	
  the	
  same	
  manner,	
  leaving	
  at	
  least	
  one	
  well	
  empty	
  (to	
  be	
  used	
  for	
  a	
  
               DNA	
  ladder).	
  	
  Be	
  sure	
  to	
  RECORD	
  the	
  order	
  in	
  which	
  the	
  samples	
  were	
  loaded.	
  	
  	
  
       •       Load	
  10	
  µL	
  of	
  the	
  ladder.	
  
	
  
               One	
  type	
  of	
  size	
  standard	
  is	
  produced	
  by	
  ligating	
  a	
  monomer	
  DNA	
  fragment	
  of	
  known	
  size	
  into	
  a	
  ladder	
  of	
  
               polymeric	
  forms.	
  	
  The	
  2-­‐log	
  DNA	
  ladder	
  from	
  New	
  England	
  Biolabs	
  consists	
  of	
  a	
  mixture	
  of	
  a	
  number	
  of	
  
               proprietary	
  plasmids	
  digested	
  to	
  completion	
  with	
  different	
  restriction	
  enzymes.	
  	
  Ladders	
  tend	
  to	
  be	
  


                                                                                      19	
  
purchased	
  as	
  commercial	
  preparations.	
  	
  	
  For	
  an	
  example	
  please	
  see:	
  
           http://www.neb.com/nebecomm/products/productn3200.asp	
  
	
  
       •   Turn	
  on	
  the	
  power	
  supply	
  and	
  set	
  the	
  voltage	
  to	
  100	
  V.	
  	
  Place	
  the	
  lid	
  on	
  the	
  gel	
  and	
  start	
  the	
  run.	
  	
  The	
  gel	
  
           will	
  run	
  for	
  30	
  minutes,	
  then	
  shut	
  off	
  automatically.	
  	
  
       •   After	
  the	
  run	
  is	
  complete,	
  turn	
  off	
  the	
  power.	
  	
  Designate	
  one	
  group	
  member	
  to	
  put	
  on	
  gloves,	
  scoop	
  up	
  the	
  
           gel,	
  and	
  gently	
  slide	
  the	
  gel	
  into	
  the	
  ethidium	
  bromide	
  bath.	
  
	
  
           Caution:	
  	
  Ethidium	
  bromide	
  is	
  a	
  mutagen	
  and	
  a	
  suspected	
  carcinogen.	
  	
  At	
  very	
  dilute	
  concentrations	
  and	
  
           with	
  responsible	
  handling,	
  this	
  risk	
  is	
  minimised.	
  
	
  
       •   Stain	
  the	
  gel	
  with	
  gentle	
  shaking	
  for	
  approximately	
  10	
  minutes.	
  	
  One	
  group	
  member	
  again	
  should	
  put	
  on	
  
           gloves,	
  and	
  transfer	
  the	
  gel	
  to	
  the	
  gel	
  documentation	
  system.	
  	
  	
  View	
  using	
  the	
  UV	
  transilluminator.	
  	
  
           Photographs	
  will	
  be	
  taken.	
  	
  Please	
  ensure	
  that	
  you	
  bring	
  a	
  USB	
  memory	
  stick	
  so	
  that	
  you	
  can	
  obtain	
  the	
  
           photograph	
  of	
  your	
  gel	
  (these	
  will	
  NOT	
  be	
  emailed	
  out).	
  
	
  
           Caution:	
  	
  Ultraviolet	
  light	
  is	
  damaging	
  to	
  naked	
  eyes	
  and	
  exposed	
  skin.	
  	
  Always	
  view	
  through	
  filter	
  or	
  
           safety	
  glasses	
  that	
  absorb	
  harmful	
  wavelengths.	
  
           	
  
       •   Based	
  on	
  gel	
  results	
  and	
  quantification	
  of	
  your	
  DNA,	
  a	
  selection	
  of	
  samples	
  will	
  be	
  sent	
  off	
  for	
  sequencing.	
  	
  
           In	
  order	
  to	
  facilitate	
  this,	
  use	
  a	
  piece	
  of	
  tape	
  to	
  completely	
  label	
  your	
  PCR	
  products	
  ensuring	
  that	
  the	
  label	
  
           corresponds	
  with	
  that	
  from	
  the	
  gel.	
  	
  	
  
	
  
Thought	
  Questions	
  
       •   What	
  factors	
  influence	
  DNA	
  migration	
  through	
  agarose?	
  	
  Explain.	
  
       •   Why	
  are	
  we	
  using	
  0.8%	
  agarose	
  for	
  resolution	
  of	
  our	
  PCR	
  products?	
  
       •   Evaluate	
  your	
  gel	
  results	
  with	
  respect	
  to:	
  	
  expected	
  fragment	
  sizes	
  and	
  reasoning,	
  and	
  control	
  results.	
  	
  Do	
  
           we	
  have	
  evidence	
  to	
  suggest	
  that	
  we	
  were	
  successful	
  in	
  amplifying	
  16s	
  rDNA?	
  	
  Explain	
  your	
  reasoning.	
  	
  
       •   What	
  are	
  some	
  of	
  the	
  advantages	
  and	
  disadvantages	
  of	
  molecular	
  techniques	
  for	
  identification	
  of	
  bacteria?	
  	
  
           Compare	
  and	
  contrast	
  with	
  conventional	
  culturing	
  techniques.	
  
	
  




                                                                                       20	
  
EXERCISE	
  4	
  
                                                              WINOGRADSKY	
  COLUMNS	
  

All	
  life	
  on	
  earth	
  can	
  be	
  categorized	
  based	
  on	
  what	
  carbon	
  and	
  energy	
  sources	
  they	
  utilize.	
  	
  Phototrophs	
  obtain	
  
energy	
  from	
  light	
  reactions,	
  while	
  chemotrophs	
  obtain	
  energy	
  from	
  chemical	
  oxidations	
  of	
  organic	
  or	
  inorganic	
  
substances.	
  	
  The	
  carbon	
  used	
  for	
  synthesis	
  can	
  be	
  obtained	
  directly	
  from	
  CO2	
  (autotrophs),	
  or	
  from	
  previously	
  
existing	
  organic	
  compounds	
  (heterotrophs).	
  	
  	
  Combinations	
  of	
  these	
  categories	
  give	
  rise	
  to	
  the	
  four	
  basic	
  
strategies	
  of	
  life:	
  photoautotrophs	
  (plants),	
  chemoheterotrophs	
  (animals	
  and	
  fungi),	
  photoheterotrophs	
  and	
  
chemoautotrophs.	
  	
  The	
  prokaryotic	
  bacteria	
  and	
  archaea	
  are	
  the	
  only	
  forms	
  of	
  life	
  where	
  all	
  four	
  life	
  strategies	
  
can	
  be	
  observed.	
  	
  	
  
	
  
Winogradsky	
  columns,	
  named	
  for	
  the	
  Russian	
  microbiologist	
  Sergei	
  Winogradsky	
  (1856-­‐1953)	
  are	
  model	
  
ecosystems	
  that	
  can	
  be	
  used	
  to	
  study	
  the	
  diversity	
  of	
  life	
  strategies	
  employed	
  by	
  bacteria	
  and	
  archaea.	
  	
  
Columns	
  are	
  prepared	
  by	
  filling	
  glass	
  tubes	
  mostly	
  full	
  of	
  mud	
  supplemented	
  with	
  cellulose	
  (shredded	
  
newspaper),	
  calcium	
  carbonate	
  and	
  calcium	
  sulphate.	
  	
  Initially	
  there	
  are	
  low	
  numbers	
  of	
  organisms	
  present	
  in	
  
the	
  column,	
  but	
  after	
  two	
  to	
  three	
  months	
  of	
  incubation,	
  many	
  different	
  types	
  of	
  organisms	
  proliferate	
  and	
  
occupy	
  distinct	
  zones	
  within	
  the	
  column	
  where	
  environmental	
  conditions	
  favour	
  their	
  growth.	
  	
  	
  

After	
  the	
  column	
  is	
  constructed,	
  it	
  is	
  sealed	
  and	
  left	
  in	
  the	
  dark	
  for	
  several	
  days	
  to	
  promote	
  the	
  growth	
  of	
  
aerobic	
  heterotrophs,	
  which	
  will	
  utilize	
  the	
  cellulose	
  in	
  the	
  column	
  and	
  deplete	
  the	
  oxygen.	
  	
  This	
  is	
  the	
  first	
  of	
  a	
  
succession	
  of	
  organisms	
  that	
  will	
  inhabit	
  the	
  column.	
  	
  The	
  column	
  is	
  then	
  placed	
  in	
  indirect	
  light.	
  	
  Cyanobacteria	
  
and	
  algae	
  may	
  appear	
  in	
  the	
  water	
  at	
  the	
  top	
  of	
  the	
  column,	
  providing	
  aerobic	
  conditions	
  resulting	
  from	
  the	
  
production	
  of	
  oxygen	
  from	
  photosynthesis.	
  	
  Large	
  populations	
  of	
  chemoautotrophic	
  bacteria	
  may	
  also	
  appear	
  
in	
  this	
  region	
  (Thiobacillus,	
  Beggiatoa).	
  	
  These	
  organisms	
  fix	
  carbon	
  dioxide	
  and	
  obtain	
  energy	
  by	
  oxidizing	
  H2S.	
  	
  
Conversely,	
  if	
  the	
  water	
  at	
  the	
  top	
  of	
  the	
  column	
  contains	
  only	
  small	
  amounts	
  of	
  oxygen,	
  it	
  may	
  appear	
  to	
  be	
  
red	
  due	
  to	
  the	
  presence	
  of	
  purple	
  non-­‐sulphur	
  bacteria	
  (Rhodobacter,	
  Rhodospirillum).	
  	
  	
  
	
  
The	
  anaerobic	
  mud	
  at	
  the	
  bottom	
  of	
  the	
  column	
  may	
  be	
  home	
  to	
  species	
  like	
  Cellulomonas,	
  which	
  degrades	
  
cellulose	
  to	
  component	
  monosaccharides,	
  and	
  Clostridium	
  and	
  other	
  species	
  which	
  degrade	
  the	
  
monosaccharides	
  to	
  organic	
  acids	
  such	
  as	
  lactacte	
  and	
  acetate.	
  	
  Lactate,	
  along	
  with	
  the	
  sulphate	
  in	
  the	
  
column,	
  is	
  utilized	
  by	
  sulphate-­‐reducing	
  bacteria	
  (Desulfovibrio),	
  producing	
  H2S.	
  	
  The	
  H2S	
  may	
  react	
  with	
  
metals	
  in	
  the	
  mud	
  to	
  produce	
  a	
  black	
  precipitate.	
  	
  H2S	
  also	
  diffuses	
  up	
  through	
  the	
  column,	
  and	
  may	
  be	
  used	
  
by	
  other	
  bacterial	
  populations,	
  including	
  the	
  phototrophic	
  purple	
  sulphur	
  bacteria	
  (Chromatium)	
  and	
  green	
  
sulphur	
  bacteria	
  (Chlorobium).	
  	
  	
  	
  


METHODS:	
  
For	
  each	
  lab:	
  
•       100	
  mL	
  graduated	
  cylinders	
  
•       Mud	
  samples	
  
•       Source	
  of	
  cellulose	
  
•       CaCO3,	
  CaSO4,	
  K2HPO4	
  
•       Balance,	
  weigh	
  boats	
  and	
  spatulas	
  
•       Stirring	
  rods
•       Aluminium	
  foil
•       250	
  mL	
  beakers

                                                                                    21	
  
 
Work	
  in	
  groups	
  of	
  four	
  to	
  set	
  up	
  your	
  Winogradsky	
  columns.	
  
	
  
     • Prepare	
  a	
  thick	
  slurry	
  in	
  the	
  beaker	
  using	
  your	
  source	
  of	
  cellulose.	
  	
  If	
  using	
  cellulose	
  powder,	
  weigh	
  
              out	
  1-­‐2	
  g	
  of	
  powder	
  and	
  add	
  to	
  a	
  small	
  amount	
  of	
  water.	
  	
  Add	
  more	
  water	
  as	
  necessary	
  to	
  make	
  a	
  
              thick	
  slurry	
  (still	
  needs	
  to	
  be	
  runny;	
  a	
  slurry	
  is	
  not	
  a	
  paste).	
  	
  If	
  using	
  newspaper,	
  tear	
  it	
  in	
  small	
  pieces,	
  
              and	
  macerate	
  it	
  in	
  a	
  small	
  volume	
  of	
  water.	
  
       •      Fill	
  the	
  graduated	
  cylinder	
  to	
  about	
  the	
  30	
  mL	
  mark	
  with	
  your	
  cellulose	
  slurry.	
  
       •      Add	
  1.64	
  g	
  CaSO4	
  and	
  1.3	
  g	
  each	
  of	
  CaCO3	
  and	
  K2HPO4	
  to	
  200	
  g	
  of	
  mud	
  sample.	
  	
  
       •      Add	
  some	
  of	
  the	
  water	
  collected	
  with	
  your	
  mud	
  (“self”	
  water)	
  to	
  your	
  mud-­‐chemical	
  mixture,	
  and	
  mix	
  
              well.	
  	
  	
  
       •      Slowly	
  pour	
  some	
  mud	
  into	
  the	
  column,	
  mixing	
  it	
  with	
  the	
  cellulose	
  slurry.	
  	
  Your	
  column	
  will	
  begin	
  to	
  
              pack.	
  	
  As	
  you	
  pack	
  the	
  column,	
  you	
  may	
  need	
  to	
  add	
  more	
  “self”	
  water	
  to	
  the	
  mixture.	
  	
  The	
  slurry-­‐
              mud-­‐water	
  mixture	
  should	
  occupy	
  about	
  2/3	
  of	
  the	
  graduated	
  cylinder	
  when	
  you	
  are	
  finished.	
  	
  	
  
       •      Top	
  off	
  the	
  column	
  with	
  more	
  “self”	
  water	
  until	
  it	
  is	
  about	
  90%	
  full.	
  	
  Note	
  the	
  appearance	
  of	
  the	
  
              column	
  in	
  your	
  lab	
  books.	
  	
  Cover	
  the	
  top	
  with	
  aluminium	
  foil,	
  and	
  label	
  with	
  your	
  source	
  of	
  mud,	
  
              group	
  and	
  lab	
  number.	
  	
  Wrap	
  the	
  sides	
  of	
  the	
  column	
  with	
  aluminium	
  foil,	
  and	
  apply	
  another	
  label	
  to	
  
              the	
  outside.	
  
       •      Columns	
  will	
  be	
  incubated	
  at	
  room	
  temperature	
  for	
  2	
  weeks.	
  	
  Remove	
  the	
  aluminium	
  foil	
  from	
  the	
  
              sides	
  of	
  the	
  column	
  and	
  make	
  observations	
  in	
  your	
  lab	
  books.	
  	
  Place	
  your	
  column	
  near	
  the	
  window,	
  
              and	
  continue	
  to	
  make	
  observations	
  at	
  regular	
  intervals	
  during	
  the	
  remainder	
  of	
  the	
  semester.	
  	
  Look	
  
              for	
  development	
  of	
  red,	
  brown,	
  purple,	
  black	
  or	
  green	
  regions	
  in	
  the	
  mud	
  or	
  water.	
  
       •      We	
  will	
  occasionally	
  sample	
  regions	
  of	
  the	
  Winogradsky	
  column	
  and	
  examine	
  them	
  by	
  phase	
  contrast	
  
              microscopy	
  to	
  observe	
  microorganisms	
  that	
  are	
  proliferating.	
  
	
  
Thought	
  Questions:	
  
       •      What	
  is	
  the	
  function	
  of	
  each	
  chemical	
  (including	
  the	
  cellulose)	
  added	
  to	
  the	
  Winogradsky	
  column?	
  
       •      What	
  may	
  have	
  happened	
  if	
  the	
  column	
  was	
  not	
  wrapped	
  in	
  aluminium	
  foil	
  for	
  the	
  first	
  two	
  weeks?	
  
       •      Prepare	
  a	
  composite	
  sketch	
  of	
  your	
  column,	
  and	
  name	
  the	
  groups	
  of	
  bacteria	
  appearing	
  in	
  each	
  
              region.	
  	
  Provide	
  an	
  explanation	
  as	
  to	
  why	
  each	
  group	
  appears	
  where	
  it	
  does	
  in	
  the	
  column.	
  
       •      Describe	
  how	
  Winogradsky	
  columns	
  may	
  be	
  used	
  to	
  enrich	
  various	
  prokaryotes.	
  
       •      How	
  is	
  a	
  Winogradsky	
  column	
  similar	
  to	
  a	
  real	
  ecosystem?	
  	
  How	
  does	
  it	
  differ?	
  
       	
  




                                                                                        22	
  
EXERCISE	
  5	
  
                                                      BACTERIAL	
  and	
  YEAST	
  MORPHOLOGY	
  

Bacteria	
  cells	
  are	
  very	
  difficult	
  to	
  observe	
  using	
  compound	
  light	
  microscopes	
  because	
  the	
  cells	
  appear	
  
transparent	
  in	
  the	
  aqueous	
  medium	
  in	
  which	
  they	
  are	
  suspended.	
  	
  	
  	
  Staining	
  the	
  cells	
  prior	
  to	
  observation	
  
increases	
  the	
  contrast	
  between	
  the	
  cell	
  and	
  the	
  medium,	
  which	
  allows	
  for	
  the	
  visualization	
  of	
  cell	
  structures.	
  	
  
However,	
  the	
  application	
  of	
  stains	
  usually	
  leads	
  to	
  cell	
  death.	
  	
  Phase	
  contrast	
  microscopes	
  enhance	
  the	
  contrast	
  
between	
  cells	
  and	
  their	
  environment	
  without	
  the	
  use	
  of	
  stains,	
  meaning	
  that	
  living	
  cells	
  and	
  their	
  activities	
  can	
  
be	
  observed.	
  	
  We	
  will	
  use	
  both	
  approaches	
  to	
  study	
  the	
  morphology	
  of	
  microorganisms	
  in	
  this	
  exercise.	
  	
  	
  
	
  
Staining	
  
	
  
In	
  general,	
  prior	
  to	
  any	
  staining	
  procedure,	
  fixation	
  occurs.	
  	
  Fixation	
  performs	
  two	
  functions:	
  (i)	
  immobilizes	
  
(kills)	
  the	
  bacteria;	
  and	
  (ii)	
  affixes	
  them	
  to	
  the	
  slide.	
  	
  	
  
	
  
Any	
  procedure	
  that	
  results	
  in	
  the	
  staining	
  of	
  whole	
  cells	
  or	
  cell	
  parts	
  is	
  referred	
  to	
  as	
  positive	
  staining.	
  	
  Most	
  
positive	
  stains	
  used	
  involve	
  basic	
  dyes	
  where	
  basic	
  means	
  that	
  they	
  owe	
  their	
  coloured	
  properties	
  to	
  a	
  cation	
  
(positively	
  charged	
  molecule).	
  	
  When	
  all	
  that	
  is	
  required	
  is	
  a	
  general	
  bacterial	
  stain	
  to	
  show	
  morphology,	
  basic	
  
stains	
  such	
  as	
  methylene	
  blue	
  or	
  carbol	
  fuchsin	
  result	
  in	
  the	
  staining	
  of	
  the	
  entire	
  bacterial	
  cell.	
  
	
  
Differential	
  stains	
  are	
  used	
  to	
  distinguish	
  bacteria	
  based	
  on	
  certain	
  properties	
  such	
  as	
  cell	
  wall	
  structure.	
  	
  
Differential	
  stains	
  are	
  useful	
  for	
  bacterial	
  identification,	
  contributing	
  to	
  information	
  based	
  on	
  bacterial	
  size,	
  
shape,	
  and	
  association.	
  	
  Differential	
  staining	
  relies	
  on	
  biochemical	
  or	
  structural	
  differences	
  between	
  the	
  groups	
  
that	
  result	
  in	
  different	
  affinities	
  by	
  various	
  chromophores.	
  
	
  
Gram	
  staining	
  behaviour	
  relies	
  on	
  differences	
  in	
  cell	
  wall	
  structure	
  and	
  biochemical	
  composition.	
  	
  Some	
  
bacteria	
  when	
  treated	
  with	
  para-­‐rosaniline	
  dyes	
  and	
  iodine	
  retain	
  the	
  stain	
  when	
  subsequently	
  treated	
  with	
  a	
  
decolourising	
  agent	
  such	
  as	
  alcohol	
  or	
  acetone.	
  	
  Other	
  bacteria	
  lose	
  the	
  stain.	
  	
  Based	
  on	
  this	
  property,	
  a	
  
contemporary	
  of	
  Pasteur,	
  Hans	
  Christian	
  Gram,	
  developed	
  a	
  rapid	
  and	
  extremely	
  useful	
  differential	
  stain,	
  which	
  
subsequently	
  bears	
  his	
  name	
  -­‐	
  the	
  Gram	
  stain	
  used	
  to	
  distinguish	
  two	
  types	
  of	
  bacteria,	
  Gram	
  positive	
  and	
  
Gram	
  negative.	
  	
  Gram	
  negative	
  forms,	
  which	
  are	
  those	
  that	
  lose	
  the	
  stain	
  on	
  decolourization,	
  can	
  be	
  made	
  
visible	
  by	
  using	
  a	
  suitable	
  counterstain.	
  	
  The	
  strength	
  of	
  the	
  Gram	
  stain	
  rests	
  on	
  its	
  relatively	
  unambiguous	
  
separation	
  of	
  bacterial	
  types	
  into	
  two	
  groups.	
  	
  However,	
  variables	
  such	
  as	
  culture	
  condition,	
  age	
  or	
  
environmental	
  condition,	
  can	
  influence	
  Gram	
  staining	
  of	
  some	
  bacteria.	
  
	
  
The	
  bacterial	
  cell	
  wall	
  is	
  very	
  important	
  for	
  many	
  aspects	
  of	
  bacterial	
  function	
  and	
  hence,	
  the	
  Gram	
  stain	
  also	
  
provides	
  valuable	
  information	
  about	
  the	
  physiological,	
  medicinal	
  and	
  even	
  ecological	
  aspects	
  of	
  the	
  bacteria.	
  
	
  
Negative	
  staining	
  is	
  used	
  to	
  characterize	
  external	
  structures,	
  like	
  capsules,	
  that	
  are	
  associated	
  with	
  living	
  
bacterial	
  cells.	
  	
  Negative	
  stains	
  make	
  use	
  of	
  acidic	
  dyes	
  where	
  acidic	
  means	
  that	
  they	
  owe	
  their	
  coloured	
  
properties	
  to	
  an	
  anion	
  (negatively	
  charged	
  molecule),	
  so	
  they	
  are	
  repelled	
  by	
  the	
  negatively	
  charged	
  cell	
  wall.	
  	
  
Hence,	
  the	
  cell	
  is	
  transparent	
  and	
  its	
  surroundings	
  are	
  coloured.	
  	
  	
  Negative	
  staining	
  is	
  useful	
  for	
  determining	
  
cell	
  dimensions	
  and	
  visualizing	
  capsules,	
  as	
  heat	
  fixation	
  shrinks	
  both	
  cells	
  and	
  capsules.	
  
	
  


                                                                                              23	
  
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual
Biol3400 labmanual

Mais conteúdo relacionado

Destaque

Winogradsky column
Winogradsky columnWinogradsky column
Winogradsky columnSalman Ali
 
The Winogradsky Column
The Winogradsky ColumnThe Winogradsky Column
The Winogradsky ColumnRicha Banthia
 
La columna de winogradsky
La columna de winogradskyLa columna de winogradsky
La columna de winogradskyIbis de la Hoz
 
Columna de Winogradsky
Columna de WinogradskyColumna de Winogradsky
Columna de WinogradskyEMAgnetic
 
Columna de winogradsky
Columna de winogradskyColumna de winogradsky
Columna de winogradskyKaren Alex
 
Science fair 2014
Science fair 2014Science fair 2014
Science fair 2014iamdz2
 
Principles and application of chromatography
Principles and application of chromatographyPrinciples and application of chromatography
Principles and application of chromatographysuniu
 
HPLC Principle,Instrumentation and Application
HPLC Principle,Instrumentation and ApplicationHPLC Principle,Instrumentation and Application
HPLC Principle,Instrumentation and ApplicationAlakesh Pradhan
 

Destaque (9)

Growth b
Growth bGrowth b
Growth b
 
Winogradsky column
Winogradsky columnWinogradsky column
Winogradsky column
 
The Winogradsky Column
The Winogradsky ColumnThe Winogradsky Column
The Winogradsky Column
 
La columna de winogradsky
La columna de winogradskyLa columna de winogradsky
La columna de winogradsky
 
Columna de Winogradsky
Columna de WinogradskyColumna de Winogradsky
Columna de Winogradsky
 
Columna de winogradsky
Columna de winogradskyColumna de winogradsky
Columna de winogradsky
 
Science fair 2014
Science fair 2014Science fair 2014
Science fair 2014
 
Principles and application of chromatography
Principles and application of chromatographyPrinciples and application of chromatography
Principles and application of chromatography
 
HPLC Principle,Instrumentation and Application
HPLC Principle,Instrumentation and ApplicationHPLC Principle,Instrumentation and Application
HPLC Principle,Instrumentation and Application
 

Semelhante a Biol3400 labmanual

Bio syllabus2013forblog
Bio syllabus2013forblogBio syllabus2013forblog
Bio syllabus2013forblogwja10255
 
Microbiology 2021-22_2021019090216.pdf
Microbiology 2021-22_2021019090216.pdfMicrobiology 2021-22_2021019090216.pdf
Microbiology 2021-22_2021019090216.pdfPawanT1
 
333 L Syllabus Fall 2009
333 L Syllabus Fall 2009333 L Syllabus Fall 2009
333 L Syllabus Fall 2009guest1f23a19
 
chapter-00-01.ppt analytical chemistry for college
chapter-00-01.ppt analytical chemistry for collegechapter-00-01.ppt analytical chemistry for college
chapter-00-01.ppt analytical chemistry for collegejoygalero
 
Module descriptor (microbiology) rebwar muhammad hamasalih
Module descriptor (microbiology) rebwar muhammad hamasalihModule descriptor (microbiology) rebwar muhammad hamasalih
Module descriptor (microbiology) rebwar muhammad hamasalihgasha technical institute
 
Lab summaries complete
Lab summaries completeLab summaries complete
Lab summaries completeanaelishockey
 
39_Medical Parasitology & Entomology.pdf
39_Medical Parasitology & Entomology.pdf39_Medical Parasitology & Entomology.pdf
39_Medical Parasitology & Entomology.pdfVamsi kumar
 
Dr. A. Sumathi - Question Bank_Third Semester - Pharmaceutical Microbiology
Dr. A. Sumathi - Question Bank_Third Semester - Pharmaceutical Microbiology Dr. A. Sumathi - Question Bank_Third Semester - Pharmaceutical Microbiology
Dr. A. Sumathi - Question Bank_Third Semester - Pharmaceutical Microbiology Sumathi Arumugam
 
Veterinary parasitology Laboratory Guide Manual.pdf
Veterinary  parasitology  Laboratory  Guide Manual.pdfVeterinary  parasitology  Laboratory  Guide Manual.pdf
Veterinary parasitology Laboratory Guide Manual.pdfFiraolBogala
 
Example of syllabus
Example of syllabusExample of syllabus
Example of syllabusMkrd BD
 
Biophysics 2016_Kayla Washenberger
Biophysics 2016_Kayla WashenbergerBiophysics 2016_Kayla Washenberger
Biophysics 2016_Kayla WashenbergerKayla Washenberger
 
Are You Ready for Harmful Algal Bloom Season? | Preparing for HAB Monitoring
Are You Ready for Harmful Algal Bloom Season? | Preparing for HAB MonitoringAre You Ready for Harmful Algal Bloom Season? | Preparing for HAB Monitoring
Are You Ready for Harmful Algal Bloom Season? | Preparing for HAB MonitoringXylem Inc.
 
Journal of Microbial & Biochemical Technology
Journal of Microbial & Biochemical TechnologyJournal of Microbial & Biochemical Technology
Journal of Microbial & Biochemical TechnologyOMICS International
 
Course book cell biology for students
Course book cell biology for studentsCourse book cell biology for students
Course book cell biology for studentsKhder Hussein
 

Semelhante a Biol3400 labmanual (20)

Bio syllabus2013forblog
Bio syllabus2013forblogBio syllabus2013forblog
Bio syllabus2013forblog
 
Micro lab book 07
Micro lab book 07Micro lab book 07
Micro lab book 07
 
Microbiology 2021-22_2021019090216.pdf
Microbiology 2021-22_2021019090216.pdfMicrobiology 2021-22_2021019090216.pdf
Microbiology 2021-22_2021019090216.pdf
 
Syllabus
SyllabusSyllabus
Syllabus
 
333 L Syllabus Fall 2009
333 L Syllabus Fall 2009333 L Syllabus Fall 2009
333 L Syllabus Fall 2009
 
chapter-00-01.ppt analytical chemistry for college
chapter-00-01.ppt analytical chemistry for collegechapter-00-01.ppt analytical chemistry for college
chapter-00-01.ppt analytical chemistry for college
 
2003 chemistry laboratory manual 1
2003   chemistry laboratory manual 12003   chemistry laboratory manual 1
2003 chemistry laboratory manual 1
 
Module descriptor (microbiology) rebwar muhammad hamasalih
Module descriptor (microbiology) rebwar muhammad hamasalihModule descriptor (microbiology) rebwar muhammad hamasalih
Module descriptor (microbiology) rebwar muhammad hamasalih
 
Aseptic tech
Aseptic techAseptic tech
Aseptic tech
 
Lab summaries complete
Lab summaries completeLab summaries complete
Lab summaries complete
 
Jamur
JamurJamur
Jamur
 
39_Medical Parasitology & Entomology.pdf
39_Medical Parasitology & Entomology.pdf39_Medical Parasitology & Entomology.pdf
39_Medical Parasitology & Entomology.pdf
 
Dr. A. Sumathi - Question Bank_Third Semester - Pharmaceutical Microbiology
Dr. A. Sumathi - Question Bank_Third Semester - Pharmaceutical Microbiology Dr. A. Sumathi - Question Bank_Third Semester - Pharmaceutical Microbiology
Dr. A. Sumathi - Question Bank_Third Semester - Pharmaceutical Microbiology
 
Veterinary parasitology Laboratory Guide Manual.pdf
Veterinary  parasitology  Laboratory  Guide Manual.pdfVeterinary  parasitology  Laboratory  Guide Manual.pdf
Veterinary parasitology Laboratory Guide Manual.pdf
 
Example of syllabus
Example of syllabusExample of syllabus
Example of syllabus
 
Biophysics 2016_Kayla Washenberger
Biophysics 2016_Kayla WashenbergerBiophysics 2016_Kayla Washenberger
Biophysics 2016_Kayla Washenberger
 
Are You Ready for Harmful Algal Bloom Season? | Preparing for HAB Monitoring
Are You Ready for Harmful Algal Bloom Season? | Preparing for HAB MonitoringAre You Ready for Harmful Algal Bloom Season? | Preparing for HAB Monitoring
Are You Ready for Harmful Algal Bloom Season? | Preparing for HAB Monitoring
 
Journal of Microbial & Biochemical Technology
Journal of Microbial & Biochemical TechnologyJournal of Microbial & Biochemical Technology
Journal of Microbial & Biochemical Technology
 
Course book cell biology for students
Course book cell biology for studentsCourse book cell biology for students
Course book cell biology for students
 
CONVENTIONAL MICROBIOLOGICAL TECHNIQUES
CONVENTIONAL MICROBIOLOGICAL TECHNIQUES CONVENTIONAL MICROBIOLOGICAL TECHNIQUES
CONVENTIONAL MICROBIOLOGICAL TECHNIQUES
 

Mais de nahomyitbarek

Mais de nahomyitbarek (20)

Five themes of geography
Five themes of geographyFive themes of geography
Five themes of geography
 
Digestive
DigestiveDigestive
Digestive
 
Day in-the-life-of-a-cell
Day in-the-life-of-a-cellDay in-the-life-of-a-cell
Day in-the-life-of-a-cell
 
Cvd definitions and statistics jan 2012
Cvd definitions and statistics jan 2012Cvd definitions and statistics jan 2012
Cvd definitions and statistics jan 2012
 
Concept presentation on chemical bonding (iris lo)
Concept presentation on chemical bonding (iris lo)Concept presentation on chemical bonding (iris lo)
Concept presentation on chemical bonding (iris lo)
 
Computer assignment for grade 9
Computer assignment for grade  9Computer assignment for grade  9
Computer assignment for grade 9
 
Chembond
ChembondChembond
Chembond
 
Chapter13
Chapter13Chapter13
Chapter13
 
Cellular respiration teacher
Cellular respiration teacherCellular respiration teacher
Cellular respiration teacher
 
Cellular respiration
Cellular respirationCellular respiration
Cellular respiration
 
Cell respirationc
Cell respirationcCell respirationc
Cell respirationc
 
Cell respiration-apbio-1204285933555932-5
Cell respiration-apbio-1204285933555932-5Cell respiration-apbio-1204285933555932-5
Cell respiration-apbio-1204285933555932-5
 
Cell respirationa
Cell respirationaCell respirationa
Cell respirationa
 
Cell respiration
Cell respirationCell respiration
Cell respiration
 
Bioint9 10
Bioint9 10Bioint9 10
Bioint9 10
 
Bioe506
Bioe506Bioe506
Bioe506
 
11ch16
11ch1611ch16
11ch16
 
04 gr3 gd
04 gr3 gd04 gr3 gd
04 gr3 gd
 
Condspe
CondspeCondspe
Condspe
 
Topic1
Topic1Topic1
Topic1
 

Biol3400 labmanual

  • 1. The University of Lethbridge BIOLOGY 3400 Principles of Microbiology LABORATORY MANUAL Spring, 2012 Written by: L. A. Pacarynuk and H.C. Danyk Revised: December, 2011
  • 2. TABLE  OF  CONTENTS     Exercise:                     Page     Biology  3400  Laboratory  Schedule.............................................................................................................2   Grade  Distribution.....................................................................................................................................3   Occupational  Health  and  Safety  Guidelines...............................................................................................5   Guidelines  for  Safety  Procedures...............................................................................................................6   Exercise  1  –  Introduction  to  Microscopy....................................................................................................9   Exercise  2  –  General  Laboratory  Principles  and  Biosafety.......................................................................13   Exercise  3  –  Free-­‐Living  Nitrogen  Fixation...............................................................................................14   Exercise  4  –  Winogradsky  Column  ..........................................................................................................21   Exercise  5  -­‐  Bacterial  and  Yeast  Morphology...........................................................................................23   Exercise  6  –  Bacterial  Reproduction.........................................................................................................28   Exercise  7  –  Ames  Test.............................................................................................................................31   Exercise  8  –  Biochemical  Tests.................................................................................................................34   Exercise  9  –  Yeast  Fermentation..............................................................................................................39   Exercise  10  -­‐  Virology...............................................................................................................................43   Appendix  1  –  The  Compound  Light  Microscope......................................................................................49   Appendix  2  –  Preparation  of  Scientific  Drawings.....................................................................................52   Appendix  3  –  Aseptic  Technique..............................................................................................................54   Appendix  4  –  The  Cultivation  of  Bacteria.................................................................................................59   Appendix  5  –  Bacterial  Observation.........................................................................................................64   Appendix  6  –  Laboratory  Reports...........................................................................................................  65   Appendix  7  –  Use  of  the  Spectrophotometer..........................................................................................67   Appendix  8  –  Media,  Reagents,  pH  Indicators.........................................................................................69   Appendix  9  –  Care  and  Feeding  of  the  Microscopes................................................................................76     1  
  • 3. BIOLOGY  3400  LAB  SCHEDULE   SPRING,  2012   Jan.  10     No  lab   Jan.  12     No  lab     Jan.  17     Introduction,  Microscopy   Jan.  19       General  Lab  Procedures,  Biosafety     Jan.  24     General  Lab  Procedures,  Biosafety  –  Complete;  N-­‐Fixation     Jan.  26     Winogradsky  Column       Jan.  31     Bacterial  Morphology;  N-­‐fixation   Feb.  2   Bacterial  Morphology     Feb.  7   Bacterial  Morphology;  N-­‐fixation       Feb.  9     Bacterial  Morphology       Feb.  14   Bacterial  Growth     Feb.  16     Bacterial  Morphology  –  Complete;  N-­‐fixation:  Polymerase  Chain  Reaction     Feb.  21   Reading  Week     Feb.  23     Reading  Week     Feb.  28     Ames  Test   Mar.  1   Ames  Test  –  Complete;  N-­‐fixation:  Agarose  Gel  Electrophoresis     Mar.  6     Biochemical  Tests  -­‐  Selective  and  Differential  Media,  IMViC  Tests   Mar.  8     Selective  and  Differential  Media,  IMViC  tests  –  Complete     Mar.  13     Yeast  Fermentation   Mar.  15     Winogradsky  Column       Mar.  20   Virology  (phage  isolation)     Mar.  22     Virology  (phage  elution)     Mar.  27     Virology  (amplification)   Mar.  29   Virology  (titre/host  range)     Apr.  3     Virology  -­‐  Complete   Apr.  5     no  lab     Apr.  10     Lab  report  due     2  
  • 4. Laboratory  Grade  Distribution:   The  laboratory  component  of  Biology  3400  is  worth  50%  of  your  course  mark.    It  is  distributed  as  follows:     • Skills  Tests             10%   • Assignments             20%   • Lab  Books             10%  (to  be  handed  in  three  times)     • Lab  Report             10%   th                On  Yeast  Fermentation;  due  Tuesday  April  10  at  the  beginning  of  lab   Performance:       Up  to  10%  of  laboratory  grade  (5  marks  out  of  50)  will  be  subtracted  for  poor  laboratory  performance.     This  includes  (but  is  not  limited  to)  failure  to  be  prepared  for  the  laboratory,  missing  lab  notebook  or  lab   manual,  poor  time  management  skills,  improper  handling  and  care  of  equipment  such  as  microscopes  and   micropipettors,  and  unsafe  practices  such  as  not  tying  hair  back,  chewing  gum,  applying  lipstick,  eating,   drinking,  or  chewing  on  pencils,  and  sloppy  technique  leading  to  poor  results.    As  we  are  working  with   potential  pathogens,  students  displaying  improper  or  careless  techniques  will  be  asked  to  leave  the  lab   and  will  have  at  least  5%  of  their  laboratory  grade  deducted  immediately.     Missing  a  lab  for  which  there  is  a  skills  test  or  assignment  requires  documentation.    Upon  presentation  of   this  documentation,  you  will  either  have  to  complete  the  assignment  or  skills  test  as  soon  as  possible  or,  if   this  is  not  possible,  your  lab  grade  will  be  recalculated.         The  lab  books  will  be  collected  and  graded  three  times  during  the  semester.    Although  most  exercises  are   completed  as  groups,  the  lab  books  are  to  be  completed  individually,  and  must  represent  individual   effort.      The  following  page  provides  you  with  tips  on  how  to  construct  your  books.     Unannounced  skills  tests  will  be  given  during  the  semester.    Students  are  expected  to  work  independently   on  some  technical  aspect  of  microbiology  and  will  be  graded  based  on  their  techniques  and  their  results.     As  proficiency  in  microbiological  techniques  is  considered  an  essential  component  of  the  course,  students   are  only  permitted  three  lab  period  absences  (you  do  not  require  any  documentation).      Missing  more   than  three  labs  will  result  in  a  grade  of  0  being  assigned  for  the  lab  (at  this  point,  it  is  recommended  that   students  consult  with  Arts  and  Science  Advising  for  the  option  of  completing  the  laboratory  the  following   year).    Students  are  still  responsible  for  the  material  missed  (and  their  assignments,  lab  reports  etc.  will  be   graded  as  such).    There  are  no  make-­‐up  laboratories.       Late  Assignments  will  be  penalized  as  follows:    For  Assignments  and  the  Lab  Report:    after  the  start  of  lab,   but  by  4:30  pm  on  the  due  date  –25%;  by  9:00  am  the  next  morning  -­‐50%,  and  after  9:00  am  the  following   day,  no  marks  will  be  given.         Extensions  for  the  lab  report  and  Assignments  will  only  be  granted  for  situations  involving  prolonged   illness  (documentation  is  required).         3  
  • 5. Preparation  of  a  Lab  Book:   Your  lab  book  provides  you  with  a  detailed  record  of  your  experiments  performed.    This  record  proves   invaluable  when  preparing  manuscripts  for  publication,  or,  more  immediately,  when  preparing  lab   reports.    This  lab  book,  as  with  all  of  the  reports  and  assignments  is  an  individual  effort.     Choice  of  Lab  Book   Standard  black  lab  books  can  be  purchased  from  the  book  store  but  these  are  not  required  for  this  course.   The  only  required  features  are:   • Pages  are  non-­‐removable  (no  spiral  bindings)   • All  pages  must  be  numbered  in  the  top  outer  corner   • page  numbers  may  be  hand-­‐written  on  EVERY  page  in  INK   In  General   • all  entries  must  be  made  in  blue  or  black  ink  (except  drawings)   • date  EVERY  entry   • never  remove  a  page  or  use  white-­‐out   • if  an  entry  needs  to  be  deleted,  strike  out  the  entry  with  a  single  straight  line  (the   deleted  entry  must  be  readable)   • keep  up  to  date,  a  lab  book  is  meant  to  be  filled  out  as  the  experiments  are  carried  out  and  NOT   after  the  fact   • record  anything  that  may  be  useful  to  you  when  preparing  your  lab  reports   • leave  plenty  of  space  throughout  the  lab  book  to  add  comments  after  the  fact   Table  of  Contents   Designate  the  first  2  pages  as  the  Table  of  Contents   • record  information  and  pages  numbers  as  you  go   Lab  Entries   For  each  lab  be  sure  to  include  the  following;   1. Objective   2. Method  Summary   • do  not  rewrite  the  protocol  from  the  lab  manual   • highlight  any  specific  changes  to  the  lab  protocol   • include  times  and  dates  for  when  work  was  performed   • record  product  names  and  manufacturers  used       -­‐  enzymes,  chemicals,  equipment  (micropipettors,  baths)   • include  incubation  conditions  for  cultures  and  reaction   3. Observations  &  Results   • record  any  &  all  observations,  this  goes  beyond  number  results   • include  diagrams  and  any  other  form  of  raw  data   • include  calculations  as  appropriate   4. Conclusions   • did  you  achieve  your  objective?  Why  or  why  not?   • use  your  results  to  support  your  conclusions   5. Answer  the  thought  questions  at  the  end  of  the  lab  (as  applicable)   • use  reference  citations  as  needed   • these  may  be  graded   4  
  • 6.   THE  UNIVERSITY  OF  LETHBRIDGE   Policies  and  Procedures   Occupational  Health  and  Safety  Manual       SUBJECT:   CHEMICAL  SPILLS  PROCEDURE     Precaution  should  be  taken  when  approaching  any  chemical  spill.     1. UNKNOWN  SPILL   a. Clear  the  area   b. Call  Security  at  329-­‐2345   c. Secure  the  area  and  do  not  let  anyone  enter   d. Call  Utilities  at  329-­‐2600  and  request  air  be  turned  on  at  the  spill  site   e. Security  will  respond  and  determine  the  severity  of  the  spill   f. Security  will  immediately  notify  the  spill  team  as  follows:   • Chemical  Release  Officer:  331-­‐5201     • Risk   and   Safety   Services   (OHS   Officers):   329-­‐2350/329-­‐2190   (office)   or   394-­‐ 8716/330-­‐4495  (cellular)   • Risk  and  Safety  Services  (Manager):  382-­‐7176  (office)   • DBS  Environmental  only  if  above  not  available  328-­‐4483  (24  hrs)       2. KNOWN  SPILL   a. Clear  the  area   b. Call  Security  at  329-­‐2345   c. Secure  the  area   d. Call  Utilities  at  329-­‐2600  and  request  air  be  turned  on  at  the  spill  site   e. Security  will  respond  and  determine  the  severity  of  the  spill   f. Security  will  immediately  notify  the  spill  team  as  follows:   • Chemical  Release  Officer:  331-­‐5201     • Risk   and   Safety   Services   (OHS   Officers):   329-­‐2350/329-­‐2190   (office)   or   332-­‐ 2350/394-­‐8716  (cellular)   • Risk  and  Safety  Services  (Manager):  382-­‐7176  (office)   • DBS  Environmental  only  if  above  not  available  328-­‐4483  (24  hrs)       3. NOTIFICATION   a. Risk  and  Safety  Services  will  notify  the  appropriate  departments,  including  notification   of  appropriate  government  agency.   5  
  • 7. GUIDELINES  FOR  SAFETY  PROCEDURES   Students  enrolled  in  laboratories  in  the  Biological  Sciences  should  be  aware  that  there  are  risks  of   personal  injury  through  accidents  (fire,  explosion,  exposure  to  biohazardous  materials,  corrosive   chemicals,  fumes,  cuts,  etc).    The  guidelines  outlined  below  are  designed  to:       a)  minimize  the  risk  of  injury  by  emphasizing  safety  precautions  and             b)  clarify  emergency  procedures  should  an    accident  occur.   EMERGENCY  NUMBERS:   City  Emergency       911   Campus  Emergency     2345   Campus  Security       2603   Student  Health  Centre     2484  (Emergency  -­‐  2483)     THE  LABORATORY  INSTRUCTOR  MUST  BE  NOTIFIED  AS  SOON  AS   POSSIBLE  AFTER  THE  INCIDENT  OCCURS.       EMERGENCY  EQUIPMENT:   Your  lab  instructor  will  indicate  the  location  of  the  following  items  to  you  at  the  beginning  of  the  first  lab   period.     • Closest  emergency  exit   • Closest  emergency  telephone  and  emergency  phone  numbers   • Closest  fire  alarm   • Fire  extinguisher  and  explanation  of  use   • Safety  showers  and  explanation  of  operation   • Eyewash  facilities  and  explanation  of  operation   • First  aid  kit   GENERAL  SAFETY  REGULATIONS:   • Eating  and  drinking  is  prohibited  in  the  laboratory.    Keep  pencils,  fingers  and  other  objects   away  from  your  mouth.    These  measures  are  to  ensure  your  safety  and  prevent  accidental   ingestion  of  chemicals  or  microorganisms.   • Personal  protective  wear  is  mandatory.    Lab  coats,  safety  glasses  and  closed-­‐toed  shoes  must   be  worn  at  all  times  during  lab  exercises  which  involve  potential  for  chemical  or  biological   spills.         • Coats,  knapsacks,  briefcases,  etc.  are  to  be  hung  on  the  hooks  provided,  stowed  in  the   cupboards  beneath  the  countertops,  or  placed  along  a  side  designated  by  your  instructor.     Take  only  the  absolute  essentials  needed  to  complete  the  exercise*  with  you  to  your   laboratory  bench.    (*  e.g.  manual,  pen  or  pencil)   • Mouth  pipetting  is  NOT  permitted;  pipet  pumps  are  provided  and  must  be  used.   • Always  wash  your  hands  prior  to  leaving  the  laboratory.   • Students  are  not  allowed  access  to  the  central  Biology  Stores  area  for  any  reason.    Consult  your   instructor  if  you  require  additional  supplies.   • Report  any  equipment  problems  to  instructor  immediately.    Do  NOT  attempt  to  fix  any  of  the   equipment  that  malfunctions  during  the  course  of  the  lab.   • Use  caution  when  handling  chemical  solutions.    Consult  the  lab  instructor  for  instruction   regarding  the  clean-­‐up  of  corrosive  or  toxic  chemicals.   6  
  • 8. Contain  and  wipe  up  any  spills  immediately  and  notify  your  lab  instructor  (see  SPILLS  below).     Heed  any  special  instructions  outlined  in  the  lab  manual,  those  given  by  the  instructor  or  those   written  on  reagent  bottles.   • Long  hair  must  be  restrained  to  prevent  it  from  being  caught  in  equipment,  Bunsen  burners,   chemicals,  etc.   • Dispose  of  broken  glass,  microscope  slides,  coverslips  and  pipets  in  the  specially  marked  white   and  blue  boxes.    There  will  be  NO  disposal  of  glassware  in  the  wastepaper  baskets.       • You  are  responsible  for  leaving  your  lab  bench  clean  and  tidy.    Glassware  must  be  thoroughly   rinsed  and  placed  on  paper  toweling  to  dry.     SPILLS:   • Spill  of  SOLUTION/CHEMICAL:  While  wearing  gloves,  wipe  up  the  spill  using  paper  towels  and  a   sponge  as  indicated  by  the  lab  instructor.     • Spill  of  ACID/BASE/TOXIN:  Contact  instructor  immediately.    DO  NOT  TOUCH.     • BACTERIA  SPILLS:  If  necessary,  remove  any  contaminated  clothing.    Prevent  anyone  from  going   near  the  spill.    Cover  the  spill  with  10%  bleach  and  leave  for  10  minutes  before  wiping  up.     Discard  paper  towels  in  biohazard  bag.    Discard  contaminated  broken  glass  in  designated   biohazard  sharps  container.   DISPOSAL:   •   Broken  glass,  microscope  slides,  coverslips  and  Pasteur  pipets  are  placed  in  the  upright  white   ‘broken  glass’  cardboard  boxes.    NO  PAPER,  CHEMICAL,  BIOLOGICAL  OR  BACTERIAL  WASTE   MATERIALS  should  be  placed  in  this  container     •   Petri  plates,  microfuge  tubes,  pipet  tips  should  be  placed  in  the  orange  biohazard  bags.    The   material  in  this  bag  will  be  autoclaved  prior  to  disposal.     •   Bacterial  cultures  in  tubes  or  flasks  should  be  placed  in  marked  trays  for  autoclaving.     •   Liquid  chemicals  should  be  disposed  of  as  indicated  by  the  instructor.    DO  NOT  dispose  of   residual  solution  in  the  regent  bottles.    In  case  of  any  uncertainty  in  disposal  please  consult  the   lab  instructor.     •   Slides  of  bacteria  should  be  placed  in  the  trays  filled  with  10%  bleach  that  are  located  at  the  ends   of  the  laboratory  benches.     HEALTH  CONCERNS:   Students  who  have  allergies,  are  pregnant,  or  who  may  have  other  health  concerns  should  inform  their   lab  instructor  so  that  appropriate  precautions  may  be  taken  where  necessary.     7  
  • 9. This  form  must  be  completed,  signed,  and  submitted  to  the  laboratory   instructor  before  any  laboratory  work  is  begun.           *  *  *  *  *  *  *  *         I  have  read  and  I  understand  the  safety  rules  that  appear  in  this  manual.    I  recognize  that  it  is  my   responsibility  to  observe  them,  and  agree  to  abide  by  them  throughout  this  course.           Name  (please  print)                                   Date                    Signature                           Course:   Biology        3400           Semester:   Spring  2012               8  
  • 10. EXERCISE  1   INTRODUCTION  TO  MICROSCOPY       MICROSCOPY   To  view  microscopic  organisms,  their  magnification  is  essential.    The  microscope  is  the  instrument   used  to  magnify  microscopic  images.    Its  function  and  some  aspects  of  design  are  similar  to  those  of   telescopes  although  the  microscope  is  designed  to  visualize  very  small  close  objects  while  telescopes   magnify  distant  objects.  Please  review  Appendices  1  and  9.     Magnification  is  achieved  by  the  refraction  of  light  travelling  though  lenses,  transparent  devices  with   curved  surfaces.    In  general,  the  degree  of  refraction,  and  hence,  magnification,  is  determined  by  the   degree  of  curvature.    However,  rather  than  using  a  single,  severely-­‐curved  biconvex  lens  such  as  that   of  Leeuwenhoek's  simple  microscopes,  Hooke  determined  that  image  clarity  was  improved  through   the  use  of  a  compound  microscope,  involving  two  (or  more)  separate  lenses.   Operation  of  the  Compound  Microscope     Students  should  be  familiar  with  all  names  and  functions  of  the  components  of  their  compound  light   microscopes  as  demonstrated  in  Appendix  1.     Properties  of  the  Objective  Lenses     1.   Magnification     Magnification  is  a  measure  of  how  big  an  object  looks  to  your  eye.    The  number  of  times  that  an  object  is   magnified  by  the  microscope  is  the  product  of  the  magnification  of  both  the  objective  and  ocular  lenses.     The  magnification  of  the  individual  lenses  is  engraved  on  them.    Your  microscope  is  equipped  with  ocular   lenses  that  magnify  the  specimen  ten  times  (10X),  and  four  objectives  which  magnify  the  specimen  4X,   10X,  40X,  and  100X.  Each  lens  system  magnifies  the  object  being  viewed  the  same  number  of  times  in   each  dimension  as  the  number  engraved  on  the  lens.    When  using  a  10X  objective,  for  instance,  the   specimen  is  magnified  ten  times  in  each  dimension  to  give  a  primary  or  "aerial"  image  inside  the  body   tube  of  the  microscope.    This  image  is  then  magnified  an  additional  ten  times  by  the  ocular  to  give  a   virtual  image  that  is  100  times  larger  than  the  object  being  viewed.     2.   Resolution     Resolution  is  a  measure  of  how  clearly  details  can  be  seen  and  is  distinct  from  magnification.    The   resolving  power  of  a  lens  system  is  its  capacity  for  separating  to  the  eye  two  points  that  are  very  close   together.    It  is  dependent  upon  the  quality  of  the  lens  system  and  the  wavelength  of  light  employed  in   illumination.    The  white  light  (a  combination  of  different  wavelengths  of  visible  light)  used  as  the  light   source  in  the  lab  limits  the  resolving  power  of  the  100X  objective  lens  to  about  0.25  µm.    Objects  smaller   than  0.25  µm  cannot  be  resolved  even  if  magnification  is  increased.    Spherical  aberration  (distortion   9  
  • 11. caused  by  differential  bending  of  light  passing  through  different  thicknesses  of  the  lens  center  versus  the   margin)  results  from  the  air  gap  between  the  specimen  and  the  objective  lens.  This  problem  can  be   eliminated  by  filling  the  air  gap  with  immersion  oil,  formulated  to  have  a  refractive  index  similar  to  the   glass  used  for  cover  slips  and  the  microscope's  objective  lens.    Use  of  immersion  oil  with  a  100X  special  oil   immersion  objective  lens  can  increase  resolution  to  about  0.18  µm.    Resolving  power  can  be  increased   further  to  0.17  µm  if  only  the  shorter  (violet)  wavelengths  of  visible  light  are  used  as  the  light  source.    This   is  the  limit  of  resolution  of  the  light  microscope.         The  resolving  power  of  each  objective  lens  is  described  by  a  number  engraved  on  the  objective  called  the   numerical  aperture.    Numerical  aperture  (NA)  is  calculated  from  physical  properties  of  the  lens  and  the   angles  from  which  light  enters  and  leaves.     Examine  the  three  objective  lenses.    The  NA  of  the  10X  objective  lens  is  0.25.    Which  objective  lens  is   capable  of  the  greatest  resolving  power?     3.   Working  Distance     The  working  distance  is  measured  as  the  distance  between  the  lowest  part  of  the  objective  lens  and  the   top  of  the  coverslip  when  the  microscope  is  focused  on  a  thin  preparation.    This  distance  is  related  to  the   individual  properties  of  each  objective.     4.   Parfocal  Objectives     Most  microscope  objectives  when  firmly  screwed  in  place  are  positioned  so  the  microscope  requires  only   fine  adjustments  for  focusing  when  the  magnification  is  changed.    Objectives  installed  in  this  manner  are   said  to  be  parfocal.     5.   Depth  of  Focus     The  vertical  distance  of  a  specimen  being  viewed  that  remains  in  focus  at  any  one  time  is  called  the  depth   of  focus  or  depth  of  field.    It  is  a  different  value  for  each  of  the  objectives.    As  the  microscope  is  focused   up  and  down  on  a  specimen,  only  a  thin  layer  of  the  specimen  is  in  focus  at  one  time.    To  see  details  in  a   specimen  that  is  thicker  than  the  depth  of  focus  of  a  particular  objective  you  must  continuously  focus  up   and  down.     Observing  Bacteria     Three  fundamental  properties  of  bacteria  are  size,  shape  and  association.     Bacteria  generally  occur  in  three  shapes:    coccus  (round),  bacillus  (rod-­‐shaped),  and  spirillum  (spiral-­‐ shaped).    Size  of  bacterial  cells  used  in  these  labs  varies  from  0.5  µm  to  1.0  µm  in  width  and  from  1.0   µm  to  5.0  µm  in  length,  although  there  is  a  range  of  sizes  which  bacteria  demonstrate.    Association   refers  to  the  organization  of  the  numerous  bacterial  cells  within  a  culture.    Cells  may  occur  singly  with   10  
  • 12. cells  separating  after  division;  showing  random  association.    Cells  may  remain  together  after  division   for  some  interval  resulting  in  the  presence  of  pairs  of  cells.  When  cells  remain  together  after  more   than  a  single  division,  clusters  result.    Cell  divisions  in  a  single  plane  result  in  chains  of  cells.    If  the   plane  of  cell  division  of  bacilli  is  longitudinal,  a  palisade  results,  resembling  a  picket  fence.    Both   bacterial  cell  shape  and  association  are  usually  constant  for  bacteria  and  hence,  can  be  used  for   taxonomic  identification.    However,  both  properties  may  be  influenced  by  culture  condition  and  age.     Further,  some  bacteria  are  quite  variable  in  shape  and  association  and  this  may  also  be  diagnostic.     Micrometry     When  studying  bacteria  or  other  microorganisms,  it  is  often  essential  to  evaluate  the  size  of  the  organism.   By  tradition,  the  longest  dimension  (length)  is  generally  stressed,  although  width  is  sometimes  useful  for   identification  or  other  study.         Use  of  an  Ocular  Micrometer  (Figure  1)     An  ocular  micrometer  can  be  used  to  measure  the  size  of  objects  within  the  field  of  view.    Unfortunately,   the  distance  between  the  graduations  of  the  ocular  micrometer  is  an  arbitrary  measurement  that  only  has   meaning  if  the  ocular  micrometer  is  calibrated  for  the  objective  being  used.     1) Place  a  micrometer  slide  on  the  stage  and  focus  the  scale  using  the  40x  objective.   2) Turn  the  eyepiece  until  the  graduations  on  the  ocular  scale  are  parallel  with  those  on  the  micrometer   slide  scale  and  superimpose  the  micrometer  scale.   3) Move  the  micrometer  slide  so  that  the  first  graduation  on  each  scale  coincides.   4) Look  for  another  graduation  on  the  ocular  scale  that  exactly  coincides  with  a  graduation  on  the   micrometer  scale.   5) Count  the  number  of  graduations  on  the  ocular  scale  and  the  number  of  graduations  on  the   micrometer  slide  scale  between  and  including  the  graduations  that  coincide.   6) Calibrate  the  ocular  divisions  for  the  40x  and  the  100x  objective  lenses.    Note  that  immersion  oil  is   not  necessary  for  calibration.         Figure  1.    Calibration  of  an  ocular  micrometer  using  a  stage  micrometer.    The  mark  on  the  stage   micrometer  corresponding  to  0.06  mm  (60  µ m)  is  equal  to  5  ocular  divisions  (o.d.)  on  the  ocular   micrometer.    ∴  1  ocular  division  equals  60  µ m/5  ocular  divisions  or  12  µ m.     11  
  • 13. Once  an  ocular  micrometer  has  been  calibrated,  objects  may  be  measured  in  ocular  divisions  and  this   number  converted  to  µm  using  the  conversion  factor  determined.     Bacterial  size  is  generally  a  highly  heritable  trait.  Consequently,  size  is  a  key  factor  used  in  the   identification  of  bacterial  taxa.  However,  for  some  bacteria,  cell  size  can  be  modified  by  nutritional   factors  such  as  culture  media  composition,  environmental  factors  such  as  temperature,  or  other   factors  such  as  age.     METHODS:     For  each  student:   • Compound  light  microscope   • Various  prepared  slides  of  bacteria.   • Stage  micrometer   • Ocular  micrometer   • Immersion  oil     1) Use  the  diagram  in  Figure  1  to  calibrate  the  40x  and  the  100x  objectives  on  your  compound   microscopes.    Record  these  values  in  your  lab  book  as  you  will  then  use  these  values  when   measuring  cells  and  structures  for  the  rest  of  the  lab.         Note:    Do  NOT  use  immersion  oil  when  calibrating  the  100x  objective.    This  is  the  ONLY  time  during   the  term  that  you  will  not  use  immersion  oil  with  this  objective.     2) Use  the  compound  microscope  to  observe  the  prepared  slides  of  bacteria  using  the  10x  and  40x   objective  lenses.    Observe  the  same  slides  under  the  100x  objective  using  immersion  oil.   3) Diagram  two  of  the  organisms  viewed  following  the  instructions  found  in  Appendix  2. 12  
  • 14. EXERCISE  2   GENERAL  LABORATORY  PROCEDURES  AND  BIOSAFETY   A  primary  feature  of  the  microbiology  laboratory  is  that  living  organisms  are  employed  as  part  of  the  experiment.     Most  of  the  microorganisms  are  harmless;  however,  whether  they  are  non-­‐pathogenic  or  pathogenic,  the   microorganisms  are  treated  with  the  same  respect  to  assure  that  personal  safety  in  the  laboratory  is  maintained.     Careful  attention  to  technique  is  essential  at  all  times.    Care  must  always  be  taken  to  prevent  the  contamination  of  the   environment  from  the  cultures  used  in  the  exercises  and  to  prevent  the  possibility  of  the  people  working  in  the   laboratory  from  becoming  contaminated.    Ensure  that  you  have  read  over  the  guidelines  on  Safety,  and  those  on   Aseptic  technique  (Appendix  3).    As  well,  you  should  be  familiar  with  the  contents  of  the  University  of  Lethbridge   Biosafety  web  site:     www.uleth.ca/artsci/biological-­‐sciences/bio-­‐safety     METHODS   Part  1:  General  Laboratory  Procedures   Work  individually  to  prepare  a  streak  plate  and  a  broth  culture  using  the  E.  coli  cultures  provided.    Refer  to   Appendix  3  as  necessary.     Part  2:  Biosafety   You  will  be  provided  with  the  following:   • Sterile  swabs   • Sterile  water   • Potato  Dextrose  Agar  (PDA)  plates  and  Luria  Bertani  (LB)  plates     Work  in  pairs  to  complete  the  following  exercise:   1) Draw  a  line  on  the  back  of  each  plate  to  divide  the  plates  in  half.    Label  one  half  of  the  plate  with  the  name  of   the  surface  to  be  tested.    Label  the  other  half  of  the  plate  as  “after  disinfection”.   2) Moisten  the  swabs  provided  with  a  small  amount  of  sterile  water.    Brush  the  surface  to  be  tested  with  the   swab,  and  then  use  the  swab  to  inoculate  one-­‐half  of  each  of  your  two  plates.   3) Disinfect  the  surface,  moisten  another  swab,  and  repeat  using  the  other  half  of  both  plates.    Wrap  the  plates   with  parafilm.   4) Your  plates  will  be  incubated  for  16-­‐20  hours  at  30oC,  and  then  refrigerated  at  4oC.    During  the  next   laboratory  period,  evaluate  your  plate  results  and  record  the  number  of  colonies  present  on  each  half  of  both   plates.    Make  observations  of  colony  morphology.     Thought  Questions:    (Use  the  Biosafety  Web  Site  as  a  reference)   • Were  differences  in  colony  morphology  and  number  observed  on  the  two  types  of  media?    Why?   • Does  disinfection  of  work  surfaces  completely  eliminate  all  microbial  organisms?    What  evidence  do  you   have?   • What  is  an  MSDS  and  where  can  you  find  one?   • In  Canada,  the  Laboratory  Centre  for  Disease  Control  has  classified  infectious  agents  into  4  Risk  Groups  using   pathogenicity,  virulence  and  mode  of  transmission  (among  others)  as  criteria.    What  do  these  terms  mean?   • What  criteria  would  characterize  an  organism  classified  in  Risk  Group  1,  2  3  or  4?       • There  are  many  “Golden  Rules”  for  Biosafety.    Identify  4  common  sense  practices  that  will  protect  you  in  your   microbiology  labs. 13  
  • 15. EXERCISE  3   FREE-­LIVING  NITROGEN  FIXATION   PART  A:  ISOLATION  OF  FREE-­‐LIVING  NITROGEN  FIXING  MICROORGANISMS     Nitrogen  is  an  important  component  of  amino  acids,  cell  walls  and  other  cofactors  present  in  all  cells.    Nitrogen  gas   comprises  greater  than  75%  of  our  atmosphere,  but  it  is  one  of  the  most  stable  bonds  in  nature,  and  is  unavailable   for  use  in  this  form.    At  one  time  early  in  the  evolutionary  history  of  life  on  earth,  all  cells  may  have  had  the  ability   to  fix  N2  gas  into  a  more  usable  form  (nitrate,  nitrite  or  ammonia).    Today  however,  only  a  few  species  of  bacteria   and  archaea  are  capable  of  converting  N2;  all  other  organisms  rely  on  N2-­‐fixing  prokaryotes  for  their  fixed  nitrogen   requirements.     M.W.  Beijerinck,  a  Dutch  microbiologist,  successfully  isolated  free  living  nitrogen  fixing  bacteria  in  1901.    He   inoculated  soil  samples  into  enrichment  media  containing  glucose  and  mineral  salts,  but  lacking  any  source  of   nitrogen  other  than  atmospheric  nitrogen.    He  observed  cells  that  are  today  identified  as  members  of  the  genus   Azotobacter.    Subsequently,  other  aerobic,  free-­‐living  nitrogen  fixing  genera  of  bacteria  have  been  isolated  and   identified,  including  Azomonas,  Azospirillum  and  Beijerinckia.         Nitrogen  fixation  occurs  only  when  an  enzyme  called  nitrogenase  is  present.    The  enzyme  consists  of  two  distinct   proteins  (i)  dinitrogenase,  which  reacts  with  N2,  and  (ii)  dinitrogenase  reductase,  which  reduces  nitrogen  gas  to   ammonia.    The  dinitrogenase  reductase  component  is  irreversibly  inactivated  by  the  presence  of  oxygen.  Several   strategies  have  evolved  to  enable  free-­‐living,  aerobic  organisms  like  Azotobacter  to  fix  nitrogen.    Azotobacter  has  a   very  high  respiratory  rate,  which  is  thought  to  prevent  any  stray  oxygen  from  coming  into  contact  with  the   nitrogenase  enzyme.    Additionally,  free-­‐living  nitrogen  fixers  often  secrete  copious  amounts  of  slime  which  may   prevent  extra  oxygen  from  entering  the  cells.        There  is  also  evidence  suggesting  that  in  the  presence  of  oxygen   nitrogenase  can  combine  with  a  specific  protein  inside  the  cell  that  shields  the  oxygen  sensitive  site  and  prevents  it   from  interacting  from  oxygen.    When  oxygen  levels  drop,  nitrogenase  can  resume  its  activity.     Over  the  course  of  the  semester  we  will  isolate  free  living  nitrogen  fixing  bacteria  from  prairie  soil,  establish  pure   cultures  and  attempt  to  identify  cultures  using  modern  day  molecular  techniques.     METHODS:     For  each  lab:   • 5,  250  mL  flasks  containing  N-­‐free  medium;  10  plates  N-­‐free  medium   • Balance,  weigh  boats  and  spatula   • N-­‐free  soil  sample     Work  in  groups  of  4  to  inoculate  your  flasks.   • Weigh  out  1  g  of  the  soil  sample  provided,  and  add  it  to  an  Erlenmeyer  flask  containing  100  mL  of  N-­‐ free  medium.   14  
  • 16. Swirl  gently  to  mix.    Label  the  flask  with  your  lab,  bench  number,  and  date.    Make  sure  that  the  cap  or   foil  is  loosened  sufficiently  to  allow  air  to  enter  the  culture.   • After  7  days,  remove  the  flask  and  look  for  the  presence  of  a  thin  film  of  growth  on  the  surface  of  the   medium.    Use  a  sterile  inoculating  loop  to  remove  some  of  this  film  and  prepare  a  streak  plate.    The  streak   o plate  will  be  incubated  for  a  further  7  days  at  30 C.       • Examine  wet  mounts  from  your  broth  culture  using  the  phase  contrast  microscope.    Prepare  Gram  stains  of   the  film  and  look  for  large  Gram  negative  cells  that  may  be  bacillus  or  coccoid  in  shape.    They  may  occur   singly,  or  in  arrowhead-­‐shaped  pairs.    Record  observations  in  your  lab  book.       • After  the  incubation  period  is  complete,  examine  your  streak  plate.    Look  for  large,  translucent,   mucoid  colonies.    Prepare  a  wet  mount  from  an  isolated  colony  and  view  it  using  a  phase-­‐contrast   microscope.    Prepare  another  streak  plate  using  cells  from  the  same  colony.    This  plate  will  be   incubated  again,  and  observations  will  be  made  later  in  the  term.    Additionally,  this  culture  will  be   used  in  Part  B  of  this  exercise.     Thought  Questions:   • Define  enrichment.    What  aspect(s)  of  the  medium  used  in  this  exercise  made  it  an  enrichment  medium?     Why  did  we  use  the  same  medium  for  plating  after  free-­‐living  nitrogen  fixers  were  isolated?    What  term   would  we  use  to  describe  the  medium  in  this  case?   • Why  did  we  sample  the  film  on  top  of  the  culture,  rather  than  the  sediment  on  the  bottom  of  the  flask?   • When  you  viewed  your  Gram  stains,  you  may  have  observed  cells  on  your  slides  that  didn’t  appear  to  be   Azotobacter.    Why  might  these  other  genera  be  present?       PART  B:  IDENTIFICATION  OF  MICROORGANISMS  USING  PCR  OF  16s  rDNA   The  DNA  from  microbes  can  be  isolated  and  may  be  studied  via  construction  of  BAC  (Bacterial  Artificial   Chromosome)  libraries  (for  an  example,  see  Rondon,  et  al.,  2000).    More  simply,  an  appreciation  of  diversity  may  be   obtained  by  using  universal  primers  for  PCR  amplification  of  rDNA  genes  from  the  Bacterial  domain  on  a   preparation  of  total  DNA  from  an  environmental  sample.    The  resulting  pool  of  nucleotide  fragments  may  then  be   cloned,  unique  clones  sequenced,  and  the  resulting  sequences  analyzed  in  order  to  characterize  and  potentially   identify  the  microbes  present.     In  Part  B  of  this  exercise  you  will  perform  PCR  using  primers  specific  for  prokaryotic  16s  rDNA  to  isolate   ribosomal  DNA  from  putative  Azotobacter  cultures  and  then  visualise  this  DNA  using  Agarose  Gel   Electrophoresis.    In  addition,  DNA  from  successful  PCRs  will  be  sent  for  sequencing  and  you  will  then  be  using   online  tools  to  perform  sequence  analysis  to  confirm  the  identity  of  your  cultures.     PCR  of  Soil  Bacteria   Two  different  primer  sets  will  be  employed.    Each  group  will  only  be  using  one  set  on  their  particular  culture.    Note   that  the  primer  designations  refer  to  location  of  primer  binding  site  on  the  16s  rDNA  molecule.    Given  this   information,  predict  the  sizes  of  your  PCR  products  for  both  primer  sets.         15  
  • 17. For  preparation  of  your  reaction  mixtures:   Benches  1,  3,  and  5:   Working  with  the  people  at  your  bench,  each  group  will  be  setting  up  3x  reactions  as  outlined  below:     Primer   Template  Source   FP1/1492R   Unknown  Culture   FP1/1492R   E.  coli   FP1/1492R   No  template     Benches  2/4:   Working  with  the  people  at  your  bench,  each  group  will  be  setting  up  3x  reactions  as  outlined  below:     Primer  Set   Template  Source   27F/805R   Unknown  Culture   27F/805R   E.  coli   27F/805R   No  template     METHODS:     Reagents:   • Taq  (Invitrogen)   • 10x  PCR  buffer   • 50  mM  MgCl2   Primers  (*Y  =  C  or  T)   • FP1  (AGAGTTYGATYCTGGCT)*1  (10  pmol/µL)   • RP1492  (TACGGYTACCTTGTTACGACT)*1  (10  pmol/µL)   • 27F  (AGAGTTTGATCCTGGCTCAG)2  (10  pmol/µL)   • 805R  (GACTACCAGGGTATCTAATCC)2  (10  pmol/µL)   • dNTP  mix  (8  mM)   • Optima  Water  (Fisher  Scientific)   Cultures:   • Pure  culture  of  organism  isolated  from  soil   • Plate  culture  of  E.  coli     Equipment:     • Thermocyclers  (BioRad)   • Micropipettors  and  sterile  tips     • Parafilm   • Ice  buckets  and  ice   • Sterile  0.5  mL  tubes   • Sterile  0.2  mL  PCR  tubes   • Biohazard  bags   • Permanent  markers   Note:    Use  aseptic  technique  throughout.    Keep  your  tubes  on  ice  at  all  times!   • Obtain  three  0.2  mL  PCR  tubes  from  the  sterile  container  at  the  side  of  the  lab.    Decide  on  appropriate   16  
  • 18. codes  for  labeling  the  tubes  (keeping  in  mind  that  other  groups  are  carrying  out  the  same  reactions).    Label   the  tubes  on  the  tops  and  on  the  sides  using  permanent  marker.    Place  the  tubes  on  ice.   • Obtain  a  0.5  mL  tube  for  your  Master  Mix.    Keep  this  tube  on  ice.    Use  the  information  outlined  in  Table  1   to  set  up  your  Master  Mix.    This  mix  contains  everything  required  in  order  for  DNA  replication  to  occur.     Generally,  Master  Mixes  contain  enough  volume  to  set  up  the  number  of  reactions  +  1.    In  your  case,  you   will  be  preparing  enough  mix  for  4  reactions.    Work  carefully.         Table  1.    Components,  starting  concentrations  and  volumes  for  set-­‐up  of  PCRs.   Component  and  Starting   Final   Amount  to  add   Master  Mix  vol.  (for   Concentration   Concentration     for  ONE  reaction   total  #  Reactions  +   (µL)   1)  (µL)       Optima-­‐Water     32   128   10x  PCR  buffer   1x   5   20   50  mM  MgCl2   1.5  mM   2   8   dNTP  mix  (8  mM  of  all  4)   40  nmoles  (0.8  mM   5   20   of  all  4)   Primer  1   0.4  µ M   2   8   Primer  2   0.4  µ M   2   8   Taq  DNA  polymerase  (5  U/µL)   5  U    (units)   1   4     Template  DNA     1     Leave  Template  out   of  Master  Mix!   Final  Volume   50  µ L   50  µ L       Note:    One  primer  set  per  reaction  mixture!       • While  the  Master  Mix  is  being  set  up,  other  group  members  should  be  setting  up  template  preparations.     Obtain  a  small  square  of  parafilm.    For  each  bacterial  culture  (soil  bacteria  and  E.  coli  –  what  is  the  role  of  E.   coli?),  use  a  micropipettor  with  a  sterile  tip  to  pipette  20  µ L  of  sterile  Optima-­‐water  (Fisher  Scientific)  onto   the  parafilm.       • Take  a  10  –  100  µL  micropipettor  and  put  on  a  sterile  tip.    Touch  the  tip  to  a  single  colony  from  your  soil   bacterial  culture  plate.    Pipette  up  and  down  into  the  Optima  water  on  the  parafilm.    This  mixture  will  be   used  as  your  template  source.   • Mix  E.  coli  in  the  same  fashion  with  your  second  drop  of  Optima  water  on  the  parafilm.    Again,  1  µL  of  this   mixture  will  be  used  as  template  in  your  second  reaction.   • For  your  third  reaction,  you  will  be  leaving  out  template  and  replacing  it  with  an  equal  volume  of  sterile   Optima  water.    What  is  the  purpose  of  this  reaction?     • After  preparation  of  Master  Mix,  add  the  appropriate  volume  of  template  (1  µL)  to  each  tube,  then  check   with  the  Instructor  to  see  where  everyone  else  is  at.    When  all  of  the  groups  are  at  the  same  stage,  add  the   appropriate  volume  of  Master  Mix  (49  µL  )  to  each  tube.    Keep  your  tubes  on  ice  until  in  the  PCR  machine.       GENTLY  tap  tubes  to  mix.    When  everyone  is  ready,  the  instructor  will  then  show  you  how  to  operate  the   thermocycler.           The  parameters  you  are  using  for  the  PCR  are:   17  
  • 19. o 12  minutes  at  95   C  (used  not  only  in  initial  DNA  denaturation,  but  also  to  lyse  the  bacterial  cells)   30  cycles  of:   o • 1  minute  at  94   C   o • 45  seconds  at  55   C   o • 90  seconds  at  72   C   A  final  elongation  of:   o • 20  minutes  at  72   C     o The  samples  will  be  stored  at  -­‐20   C  upon  completion.     Thought  Questions:     • What  are  the  purposes  of  the  primers  in  PCR?   • What  happens  at  each  temperature?   • How  is  annealing  temperature  determined?   • What  is  meant  by  stringency?    How  can  you  ensure  high  stringency?   • If  you  left  out  the  forward  primer,  would  you  expect  to  see  a  band  resulting  on  the  gel?    If  you  did,  explain  what   this  would  mean.   • Is  it  possible  to  design  PCRs  given  only  an  isolatable  protein?    Why  or  why  not?    What  are  some  of  the  problems   associated  with  such  an  experiment?    How  might  you  adapt  the  reaction  conditions  to  optimise  yield  of  desired   product?     Suggested  Background  Reading:   Amann  et.  al.,  1995.    Phylogenetic  identification  and  in  situ  detection  of  individual  microbial  cells  without   cultivation.  Microbiol.  Rev.  59  (1):  143-­‐169.     Aas,  J.  A.,  Paster,  B.  J.,  Stokes,  L.  N.,  Olsen,  I.,  and  Dewhirst,  F.  E.  2005.  Defining  the  Normal  Bacterial  Flora  of  the   Oral  Cavity.  J.  Clin.  Microbiol.  43:  5721-­‐5732.   Cole,  J.  R.,  Chai,  B.,  Farris,  R.  J.,  Wang,  Q.,  Kulam,  S.  A.,  McGarrell,  D.  M.,  Bandela,  A.  M.,  Cardenas,  E.,  Garrity,  G.  M.,   and  Tiedje,  J.  M.  2007.  The  ribosomal  database  project  (RDPII):  introducing  myRDP  space  and  quality  controlled   public  data.  Nuc.  A.  Res.  35:  D169-­‐D172.   DeLong  and  Pace,  2001.  Environmental  diversity  of  bacteria  and  archaea.  Syst.  Biol.  50(4):  470-­‐478.   Gabor,  E.  M.,  deVries,  E.  J.,  and  Janssen,  D.  B.  2003.    Efficient  recovery  of  environmental  DNA  for  expression  cloning   by  indirect  extraction  methods.    FEMS.    44(2):  153-­‐163.     Kelley,  S.T.,  Theisen  U.,  Angenent,  L.T.,  Amand,  A.S.,  and  Pace,  N.R.    Molecular  Analysis  of  Shower  Curtain  Biofilm   Microbes.    Appl.  Environ.  Microbiol.    70:  4187-­‐4192.   Pace,  1997.  A  molecular  view  of  microbial  diversity  and  the  biosphere.  Science.  276:  734-­‐740.       Whitford,  M.  F.,  Forster,  R.  J.,  Beard,  C.  E.,  Gong,  J.,  and  Teather,  R.  M.  1998.  Phylogenetic  analysis  of  rumen   bacteria  by  comparative  sequence  analysis  of  cloned  16S  rRNA  genes.    Anaerobe.  4:  153-­‐163.   18  
  • 20. Woese,  C.  R.,  Kandler,  O.,  and  Wheelis,  M.  L.,  1990.  Towards  a  natural  system  of  organisms:  Proposal  for  the   domains  Archaea,  Bacteria,  and  Eucarya.  Proc.  Natl.  Acad.  Sci.  USA.  87:  4576-­‐4579.     Agarose  Gel  Electrophoresis     METHODS   Reagents:   • 1x  TBE  buffer   • 0.8%  agarose  gels  (1  per  2  benches)   • 10x  loading  dye   • 2-­‐log  NEB  ladder  premixed  with  loading  dye   • Ethidium  bromide  bath   • PCR  samples  from  last  lab     Equipment   • Power  supplies  (1  per  2  benches)   • Micropipettors   • Sterile  tips   • Parafilm   • Transilluminator/camera   • Biohazard  bags     • Gloves     Note:    Two  groups  will  load  their  samples  (6  tubes  total)  onto  one  gel.         We  will  be  using  0.8%  agarose  prepared  in  1x  TBE.     • Obtain  and  completely  thaw  your  PCR  samples.       • Using  a  micropipettor,  'dot'  out  1  µL  aliquots  of  10x  loading  dye  in  a  line  on  a  thin  strip  of  parafilm.  Remove   a  7.5  µL  aliquot  of  your  first  sample,  mix  gently  with  the  loading  dye  on  the  parafilm,  and  proceed  with   loading.    Aim  for  approximately  1-­‐2x  final  concentration  of  loading  dye  per  sample  loaded  (and  recognise   that  this  is  NOT  exact).     Loading  Dye  –  1)  increases  the  density  of  the  sample  ensuring  that  it  drops  evenly  into  the  well;  2)  adds   colour  to  the  sample  to  simplify  loading;  and  3)  contains  dyes  that  in  an  electric  field  move  toward  the   anode  at  predictable  rates.  In  this  laboratory,  we  are  making  use  of  mixtures  containing  xylene  cyanol  FF.     This  dye  migrates  in  0.5x  TBE    at  approximately  the  same  rate  as  linear  DNA  of  4000  bp  in  size.    Often,   bromophenol  blue  is  used  in  conjunction  with  xylene  cyanol,  or  separately.    Bromophenol  blue  migrates  at   approximately  the  same  rate  as  linear  DNA  of  300  bp  in  size  in  0.5x  TBE  (2.2  fold  faster  than  xylene  cyanol   FF,  independent  of  agarose  concentration).         • Load  the  remainder  of  the  samples  in  the  same  manner,  leaving  at  least  one  well  empty  (to  be  used  for  a   DNA  ladder).    Be  sure  to  RECORD  the  order  in  which  the  samples  were  loaded.       • Load  10  µL  of  the  ladder.     One  type  of  size  standard  is  produced  by  ligating  a  monomer  DNA  fragment  of  known  size  into  a  ladder  of   polymeric  forms.    The  2-­‐log  DNA  ladder  from  New  England  Biolabs  consists  of  a  mixture  of  a  number  of   proprietary  plasmids  digested  to  completion  with  different  restriction  enzymes.    Ladders  tend  to  be   19  
  • 21. purchased  as  commercial  preparations.      For  an  example  please  see:   http://www.neb.com/nebecomm/products/productn3200.asp     • Turn  on  the  power  supply  and  set  the  voltage  to  100  V.    Place  the  lid  on  the  gel  and  start  the  run.    The  gel   will  run  for  30  minutes,  then  shut  off  automatically.     • After  the  run  is  complete,  turn  off  the  power.    Designate  one  group  member  to  put  on  gloves,  scoop  up  the   gel,  and  gently  slide  the  gel  into  the  ethidium  bromide  bath.     Caution:    Ethidium  bromide  is  a  mutagen  and  a  suspected  carcinogen.    At  very  dilute  concentrations  and   with  responsible  handling,  this  risk  is  minimised.     • Stain  the  gel  with  gentle  shaking  for  approximately  10  minutes.    One  group  member  again  should  put  on   gloves,  and  transfer  the  gel  to  the  gel  documentation  system.      View  using  the  UV  transilluminator.     Photographs  will  be  taken.    Please  ensure  that  you  bring  a  USB  memory  stick  so  that  you  can  obtain  the   photograph  of  your  gel  (these  will  NOT  be  emailed  out).     Caution:    Ultraviolet  light  is  damaging  to  naked  eyes  and  exposed  skin.    Always  view  through  filter  or   safety  glasses  that  absorb  harmful  wavelengths.     • Based  on  gel  results  and  quantification  of  your  DNA,  a  selection  of  samples  will  be  sent  off  for  sequencing.     In  order  to  facilitate  this,  use  a  piece  of  tape  to  completely  label  your  PCR  products  ensuring  that  the  label   corresponds  with  that  from  the  gel.         Thought  Questions   • What  factors  influence  DNA  migration  through  agarose?    Explain.   • Why  are  we  using  0.8%  agarose  for  resolution  of  our  PCR  products?   • Evaluate  your  gel  results  with  respect  to:    expected  fragment  sizes  and  reasoning,  and  control  results.    Do   we  have  evidence  to  suggest  that  we  were  successful  in  amplifying  16s  rDNA?    Explain  your  reasoning.     • What  are  some  of  the  advantages  and  disadvantages  of  molecular  techniques  for  identification  of  bacteria?     Compare  and  contrast  with  conventional  culturing  techniques.     20  
  • 22. EXERCISE  4   WINOGRADSKY  COLUMNS   All  life  on  earth  can  be  categorized  based  on  what  carbon  and  energy  sources  they  utilize.    Phototrophs  obtain   energy  from  light  reactions,  while  chemotrophs  obtain  energy  from  chemical  oxidations  of  organic  or  inorganic   substances.    The  carbon  used  for  synthesis  can  be  obtained  directly  from  CO2  (autotrophs),  or  from  previously   existing  organic  compounds  (heterotrophs).      Combinations  of  these  categories  give  rise  to  the  four  basic   strategies  of  life:  photoautotrophs  (plants),  chemoheterotrophs  (animals  and  fungi),  photoheterotrophs  and   chemoautotrophs.    The  prokaryotic  bacteria  and  archaea  are  the  only  forms  of  life  where  all  four  life  strategies   can  be  observed.         Winogradsky  columns,  named  for  the  Russian  microbiologist  Sergei  Winogradsky  (1856-­‐1953)  are  model   ecosystems  that  can  be  used  to  study  the  diversity  of  life  strategies  employed  by  bacteria  and  archaea.     Columns  are  prepared  by  filling  glass  tubes  mostly  full  of  mud  supplemented  with  cellulose  (shredded   newspaper),  calcium  carbonate  and  calcium  sulphate.    Initially  there  are  low  numbers  of  organisms  present  in   the  column,  but  after  two  to  three  months  of  incubation,  many  different  types  of  organisms  proliferate  and   occupy  distinct  zones  within  the  column  where  environmental  conditions  favour  their  growth.       After  the  column  is  constructed,  it  is  sealed  and  left  in  the  dark  for  several  days  to  promote  the  growth  of   aerobic  heterotrophs,  which  will  utilize  the  cellulose  in  the  column  and  deplete  the  oxygen.    This  is  the  first  of  a   succession  of  organisms  that  will  inhabit  the  column.    The  column  is  then  placed  in  indirect  light.    Cyanobacteria   and  algae  may  appear  in  the  water  at  the  top  of  the  column,  providing  aerobic  conditions  resulting  from  the   production  of  oxygen  from  photosynthesis.    Large  populations  of  chemoautotrophic  bacteria  may  also  appear   in  this  region  (Thiobacillus,  Beggiatoa).    These  organisms  fix  carbon  dioxide  and  obtain  energy  by  oxidizing  H2S.     Conversely,  if  the  water  at  the  top  of  the  column  contains  only  small  amounts  of  oxygen,  it  may  appear  to  be   red  due  to  the  presence  of  purple  non-­‐sulphur  bacteria  (Rhodobacter,  Rhodospirillum).         The  anaerobic  mud  at  the  bottom  of  the  column  may  be  home  to  species  like  Cellulomonas,  which  degrades   cellulose  to  component  monosaccharides,  and  Clostridium  and  other  species  which  degrade  the   monosaccharides  to  organic  acids  such  as  lactacte  and  acetate.    Lactate,  along  with  the  sulphate  in  the   column,  is  utilized  by  sulphate-­‐reducing  bacteria  (Desulfovibrio),  producing  H2S.    The  H2S  may  react  with   metals  in  the  mud  to  produce  a  black  precipitate.    H2S  also  diffuses  up  through  the  column,  and  may  be  used   by  other  bacterial  populations,  including  the  phototrophic  purple  sulphur  bacteria  (Chromatium)  and  green   sulphur  bacteria  (Chlorobium).         METHODS:   For  each  lab:   • 100  mL  graduated  cylinders   • Mud  samples   • Source  of  cellulose   • CaCO3,  CaSO4,  K2HPO4   • Balance,  weigh  boats  and  spatulas   • Stirring  rods • Aluminium  foil • 250  mL  beakers 21  
  • 23.   Work  in  groups  of  four  to  set  up  your  Winogradsky  columns.     • Prepare  a  thick  slurry  in  the  beaker  using  your  source  of  cellulose.    If  using  cellulose  powder,  weigh   out  1-­‐2  g  of  powder  and  add  to  a  small  amount  of  water.    Add  more  water  as  necessary  to  make  a   thick  slurry  (still  needs  to  be  runny;  a  slurry  is  not  a  paste).    If  using  newspaper,  tear  it  in  small  pieces,   and  macerate  it  in  a  small  volume  of  water.   • Fill  the  graduated  cylinder  to  about  the  30  mL  mark  with  your  cellulose  slurry.   • Add  1.64  g  CaSO4  and  1.3  g  each  of  CaCO3  and  K2HPO4  to  200  g  of  mud  sample.     • Add  some  of  the  water  collected  with  your  mud  (“self”  water)  to  your  mud-­‐chemical  mixture,  and  mix   well.       • Slowly  pour  some  mud  into  the  column,  mixing  it  with  the  cellulose  slurry.    Your  column  will  begin  to   pack.    As  you  pack  the  column,  you  may  need  to  add  more  “self”  water  to  the  mixture.    The  slurry-­‐ mud-­‐water  mixture  should  occupy  about  2/3  of  the  graduated  cylinder  when  you  are  finished.       • Top  off  the  column  with  more  “self”  water  until  it  is  about  90%  full.    Note  the  appearance  of  the   column  in  your  lab  books.    Cover  the  top  with  aluminium  foil,  and  label  with  your  source  of  mud,   group  and  lab  number.    Wrap  the  sides  of  the  column  with  aluminium  foil,  and  apply  another  label  to   the  outside.   • Columns  will  be  incubated  at  room  temperature  for  2  weeks.    Remove  the  aluminium  foil  from  the   sides  of  the  column  and  make  observations  in  your  lab  books.    Place  your  column  near  the  window,   and  continue  to  make  observations  at  regular  intervals  during  the  remainder  of  the  semester.    Look   for  development  of  red,  brown,  purple,  black  or  green  regions  in  the  mud  or  water.   • We  will  occasionally  sample  regions  of  the  Winogradsky  column  and  examine  them  by  phase  contrast   microscopy  to  observe  microorganisms  that  are  proliferating.     Thought  Questions:   • What  is  the  function  of  each  chemical  (including  the  cellulose)  added  to  the  Winogradsky  column?   • What  may  have  happened  if  the  column  was  not  wrapped  in  aluminium  foil  for  the  first  two  weeks?   • Prepare  a  composite  sketch  of  your  column,  and  name  the  groups  of  bacteria  appearing  in  each   region.    Provide  an  explanation  as  to  why  each  group  appears  where  it  does  in  the  column.   • Describe  how  Winogradsky  columns  may  be  used  to  enrich  various  prokaryotes.   • How  is  a  Winogradsky  column  similar  to  a  real  ecosystem?    How  does  it  differ?     22  
  • 24. EXERCISE  5   BACTERIAL  and  YEAST  MORPHOLOGY   Bacteria  cells  are  very  difficult  to  observe  using  compound  light  microscopes  because  the  cells  appear   transparent  in  the  aqueous  medium  in  which  they  are  suspended.        Staining  the  cells  prior  to  observation   increases  the  contrast  between  the  cell  and  the  medium,  which  allows  for  the  visualization  of  cell  structures.     However,  the  application  of  stains  usually  leads  to  cell  death.    Phase  contrast  microscopes  enhance  the  contrast   between  cells  and  their  environment  without  the  use  of  stains,  meaning  that  living  cells  and  their  activities  can   be  observed.    We  will  use  both  approaches  to  study  the  morphology  of  microorganisms  in  this  exercise.         Staining     In  general,  prior  to  any  staining  procedure,  fixation  occurs.    Fixation  performs  two  functions:  (i)  immobilizes   (kills)  the  bacteria;  and  (ii)  affixes  them  to  the  slide.         Any  procedure  that  results  in  the  staining  of  whole  cells  or  cell  parts  is  referred  to  as  positive  staining.    Most   positive  stains  used  involve  basic  dyes  where  basic  means  that  they  owe  their  coloured  properties  to  a  cation   (positively  charged  molecule).    When  all  that  is  required  is  a  general  bacterial  stain  to  show  morphology,  basic   stains  such  as  methylene  blue  or  carbol  fuchsin  result  in  the  staining  of  the  entire  bacterial  cell.     Differential  stains  are  used  to  distinguish  bacteria  based  on  certain  properties  such  as  cell  wall  structure.     Differential  stains  are  useful  for  bacterial  identification,  contributing  to  information  based  on  bacterial  size,   shape,  and  association.    Differential  staining  relies  on  biochemical  or  structural  differences  between  the  groups   that  result  in  different  affinities  by  various  chromophores.     Gram  staining  behaviour  relies  on  differences  in  cell  wall  structure  and  biochemical  composition.    Some   bacteria  when  treated  with  para-­‐rosaniline  dyes  and  iodine  retain  the  stain  when  subsequently  treated  with  a   decolourising  agent  such  as  alcohol  or  acetone.    Other  bacteria  lose  the  stain.    Based  on  this  property,  a   contemporary  of  Pasteur,  Hans  Christian  Gram,  developed  a  rapid  and  extremely  useful  differential  stain,  which   subsequently  bears  his  name  -­‐  the  Gram  stain  used  to  distinguish  two  types  of  bacteria,  Gram  positive  and   Gram  negative.    Gram  negative  forms,  which  are  those  that  lose  the  stain  on  decolourization,  can  be  made   visible  by  using  a  suitable  counterstain.    The  strength  of  the  Gram  stain  rests  on  its  relatively  unambiguous   separation  of  bacterial  types  into  two  groups.    However,  variables  such  as  culture  condition,  age  or   environmental  condition,  can  influence  Gram  staining  of  some  bacteria.     The  bacterial  cell  wall  is  very  important  for  many  aspects  of  bacterial  function  and  hence,  the  Gram  stain  also   provides  valuable  information  about  the  physiological,  medicinal  and  even  ecological  aspects  of  the  bacteria.     Negative  staining  is  used  to  characterize  external  structures,  like  capsules,  that  are  associated  with  living   bacterial  cells.    Negative  stains  make  use  of  acidic  dyes  where  acidic  means  that  they  owe  their  coloured   properties  to  an  anion  (negatively  charged  molecule),  so  they  are  repelled  by  the  negatively  charged  cell  wall.     Hence,  the  cell  is  transparent  and  its  surroundings  are  coloured.      Negative  staining  is  useful  for  determining   cell  dimensions  and  visualizing  capsules,  as  heat  fixation  shrinks  both  cells  and  capsules.     23