CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                       PROFESSOR SÉRGIO CARVALHO                         ...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                       PROFESSOR SÉRGIO CARVALHO        Desta forma, ao f...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                       PROFESSOR SÉRGIO CARVALHO       Conhecemos, pois, ...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                       PROFESSOR SÉRGIO CARVALHO                    5    ...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                        PROFESSOR SÉRGIO CARVALHO       1º) Os pontos, un...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                         PROFESSOR SÉRGIO CARVALHO       Um resumo desta ...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                       PROFESSOR SÉRGIO CARVALHO       Ou seja: mudando o...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                        PROFESSOR SÉRGIO CARVALHO      d) 0,32      e) 0,...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                        PROFESSOR SÉRGIO CARVALHO         r(z,x) = r(0,2-...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                         PROFESSOR SÉRGIO CARVALHO       Assim, convém qu...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                               PROFESSOR SÉRGIO CARVALHO                 ...
CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR                                  PROFESSOR SÉRGIO CARVALHO              ...
Próximos SlideShares
Carregando em…5
×

Estatistica regular 10

1.030 visualizações

Publicada em

0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
1.030
No SlideShare
0
A partir de incorporações
0
Número de incorporações
2
Ações
Compartilhamentos
0
Downloads
66
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Estatistica regular 10

  1. 1. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO AULA 10 – CORRELAÇÃO LINEAR Olá, amigos! Antes de mais nada, espero que todos tenham tido um Natal muito feliz! Com muitapaz e alegria no coração! Agora sim, passemos às explicações, pois estou lhes devendo uma tonelada delas. Ocaso é que vários fatos se somaram, e acabaram por me deixar realmente impossibilitado deescrever as últimas aulas no prazo previsto! Certamente que vocês já estudaram (ou estãoestudando) o Direito Tributário. Não é verdade? Então é muito provável que já tenham ouvidofalar em decadência. Sim? Pois é. Não raro, quando chega o fim do ano, os fiscais quetrabalham nas seções de fiscalização (o que é o meu caso) têm que se desdobrar em dois (ouem dez!) para concluir certas operações e evitar que transcorra o tal prazo decadencial. Por conta disso, nas últimas quatro semanas, tenho cumprido uma jornada aproximadade doze horas de trabalho por dia, só na Receita. É isso mesmo: doze horas por dia. O estressede ter que concluir muitas tarefas em pouquíssimo tempo simplesmente consumiu as energiascom as quais sempre contei para escrever as aulas à noite, em casa. Vejam que não estou dizendo que o pneu furou, tampouco que o despertador deixou detocar. Estou sendo sincero com vocês. Estou contando somente a verdade. Minha esposa, Sílvia,é testemunha de o quanto estou abatido e desgostoso, por não ter conseguido entregar as aulasnas datas certas. Este é, pelos meus cálculos, o nono (ou será o décimo?) Curso online queministro no Site, e esta situação nunca havia acontecido. Peço-lhes a todos, muitosinceramente, que me perdoem por este atraso. Sei o quanto levam a sério a sua preparação, e eu, creiam-me, da mesma forma! Só me resta, pois, contar com a boa-vontade de vocês em me perdoar por este atraso,e em relevar. E não percamos mais tempo! Na seqüência, apresento-lhes um novo assunto: aCorrelação Linear. Adiante! CORRELAÇÃO LINEAR Até agora, todas as medidas estatísticas que estudamos neste Curso diziam respeitosomente a uma variável. Ou seja, estudamos a média das idades, ou a moda dos salários, ou amediana dos pesos, ou o desvio-padrão das estaturas, e assim por diante. No que diz respeito à Correlação, surge aí uma diferença. Estaremos agora estudando,conjuntamente, duas variáveis! A Correlação é uma medida estatística que nos vai responder duas perguntas: 1ª) Existe alguma força unindo estas duas variáveis? 2ª) Caso exista esta força, como se comporta uma variável em relação à outra? Por meio de exemplos, entenderemos bem melhor. Vejamos. Suponhamos que se pretende estudar as duas seguintes variáveis: número de anos queuma pessoa freqüentou os bancos escolares, e número de livros que esta pessoa lê por ano. Ora, o censo comum nos levaria facilmente a crer que alguém que estudou por maistempo lê mais livros por ano; ao passo que quem mal freqüentou a escola pouco lê. Não éverdade? Mas a Estatística não trabalha com o censo comum, e sim com dados de pesquisa. Assim, uma pesquisa seria realizada, e seriam coletados pares de informações, ouseja, cada pessoa pesquisada responderia a estas duas perguntas: Quantos anos estudou? eQuantos livros lê por ano? www.pontodosconcursos.com.br 1
  2. 2. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO Desta forma, ao fim da pesquisa, teremos um grupo de pares de informações, os quaisirão alimentar uma tabela. Teríamos: Variável X Variável Y (Tempo de estudo, (Número de livros em anos) lidos por ano) 2 5 5 8 7 12 4 9 3 1 E será por meio dos dados constantes nesta tabela que trabalharemos a Correlação! Na realidade, a Correlação nada mais é que uma fórmula – veremos daqui a pouco – aqual será preenchida por meio dos dados (os pares de informação) constantes na tabela acima,e cujo resultado nos conduzirá àquelas duas conclusões: 1ª) se há uma força unindo as duasvariáveis; e 2ª) como se comporta uma variável em relação à outra. Ora, é quase certo que o resultado da aplicação da fórmula da Correlação para os dadosacima nos iria indicar duas coisas: 1ª) sim, há uma força unindo estas duas variáveis; e 2ª)estas duas variáveis se comportam de forma, digamos, diretamente proporcional. Ou seja,aumentando-se uma, a outra também aumenta, e diminuindo-se uma, a outra também diminui. Neste ponto convém que sejamos apresentados à fórmula da Correlação, que é aseguinte: n.∑ Xi.Yi − ∑ Xi.∑ Yi r ( x, y ) = [n.∑ Xi 2 ][ − (∑ Xi ) . n.∑ Yi 2 − (∑ Yi ) 2 2 ] O primeiro impulso, ao ver a fórmula acima, é o de abandonar este assunto, e ir buscaralgo mais fácil para estudar... Um engano terrível este pensamento! Eu lhes adianto que há, basicamente, quatro tipos de questão de Correlação caindo emprova, e que destes, três são muito fáceis! Ou seja, há 75% de chance de cair uma questão deresolução quase imediata sobre este tema! Não vamos esquecer disso, OK? Quanto à fórmula acima, daqui a pouco voltaremos a ela, e eu lhes ensinarei umamaneira facílima de memorizá-la. Por hora, vamos com calma. O resultado da aplicação da fórmula da Correlação variará, sempre, entre -1 (menos um)e 1. Ou seja, nunca será menor que menos um, e nunca maior que um. Teremos: -1 0 1 Vamos agora aprender como se interpreta o resultado da Correlação. Se tomarmos os dados da tabela, aplicarmos a fórmula da Correlação, e encontrarmosum resultado igual a zero, diremos que não existe força alguma unindo estas duas variáveis. Ou seja, o resultado zero indica ausência total de Correlação! À medida que o resultado da Correlação vai se afastando do zero, em direção aosextremos (-1 ou +1), vai aumentando a intensidade da força que une aquelas duas variáveis! Quando o resultado da fórmula é igual a -1 ou a 1, então se diz que a correlação émáxima. Ou seja, é máxima a força que une as duas variáveis. Correlação igual a 1 é ditacorrelação perfeita positiva. Igual a -1, correlação perfeita negativa. www.pontodosconcursos.com.br 2
  3. 3. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO Conhecemos, pois, a primeira análise do resultado da Correlação: a existência ouinexistência de força unindo as duas variáveis. E quando esta força é mais intensa ou menosintensa. A segunda análise do resultado diz respeito ao comportamento das variáveis, uma emrelação à outra. E é facílima esta análise: Se o resultado da Correlação der um valor maior que zero (positivo), teremos que asvariáveis se comportam de forma diretamente proporcional, ou seja, aumentando-se o valor deuma, aumenta também a outra, e diminuindo-se uma, diminui também a outra; Se o resultado da Correlação for menor que zero (negativo), as variáveis secomportarão de maneira inversamente proporcional, ou seja, aumentando-se o valor de uma, oda outra diminui; e vice-versa. Compreendido isso? Assim, interpretar o resultado da correlação pode perfeitamente ser uma questão deprova! Pelo que me consta, ainda não foi. Mas pode ser. Isso pode! Agora vamos voltar à tabela que vimos acima: Variável X Variável Y (Tempo de estudo, (Número de livros em anos) lidos por ano) 2 5 5 8 7 12 4 9 3 1 Com os pares de informação que vemos acima, seremos capazes de criar um gráfico,muito simples, chamado Diagrama de Dispersão, em que cada par de informação setransformará em um ponto. Vejamos como é simples: O primeiro par de informação é (2 e 5). Estão vendo? Variável X Variável Y (Tempo de estudo, (Número de livros em anos) lidos por ano) 2 5 5 8 7 12 4 9 3 4 Este par vai virar um ponto no gráfico. Da mesma forma, os demais pares irão formar, cada um, um ponto no diagrama. Os demais pontos serão, portanto, (5 e 8), (7 e 12), (4 e 9) e (3 e 4). Marcando estes pontos no gráfico, teremos: Yi 12 11 10 9 8 7 6 www.pontodosconcursos.com.br 3
  4. 4. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO 5 4 3 2 1 0 1 2 3 4 5 6 7 Xi Observando os pontos marcados acima, facilmente vemos que é impossível uni-los pormeio de uma reta perfeita. Todavia, percebemos também que embora não formem uma retaperfeita, estes pontos estão dispostos em torno do formato aproximado de uma reta.Senão vejamos: Yi 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 Xi Percebam ainda que esta reta é ascendente, ou seja, ela está subindo, da esquerda paraa direita. Quando isso ocorrer, ou seja, quando os pontos do diagrama de dispersão nãoformarem uma reta perfeita, mas estiverem dispostos ao longo de uma reta ascendente, entãodiremos que a correlação é positiva (r>1). Outra situação possível é que os pontos do diagrama, oriundos da tabela (dos pares deinformação) também não formassem uma reta descendente perfeita, mas se aproximassem, ouseja, estivessem dispostos ao longo de uma reta que desce, da esquerda para a direita. Seriaalgo semelhante ao seguinte: Yi 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 Xi Neste caso, diremos que a Correlação não é perfeita, porque os pontos não formaramuma reta perfeita, mas é negativa, porque estão dispostos ao longo de uma reta descendente! E se os pontos do diagrama formarem uma reta perfeita? São dois casos possíveis: www.pontodosconcursos.com.br 4
  5. 5. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO 1º) Os pontos, unidos, formaram uma reta ascendente perfeita: Yi Xi Neste caso, temos a situação de uma correlação perfeita positiva, ou seja, r=1. 2º) Os pontos, unidos, formaram uma reta descendente perfeita: Yi Xi Neste caso, temos a situação de uma correlação perfeita negativa, ou seja, r=-1. Por fim, se estivermos estudando a existência da correlação entre as duas seguintesvariáveis: 1ª) número de anos que a pessoa freqüentou a escola; e 2ª) número do sapato que apessoa calça. Ora, é muitíssimo provável que ao fazermos a pesquisa, e ao preenchermos uma tabelacom os pares de informações coletados, e depois ao marcarmos os pontos no diagrama dedispersão, cheguemos ao seguinte gráfico: Yi Xi Percebemos que, neste caso, não é possível sequer aproximar os pontos do diagramapara o formato de uma reta, quer ascendente, quer descendente. Quando isso ocorrer, diremos que estamos diante da ausência da correlação, ou seja,r=0. Com o que vimos até aqui, já estamos aptos a resolver um estilo de questão deCorrelação: aquele que pergunta pela interpretação do diagrama de dispersão. www.pontodosconcursos.com.br 5
  6. 6. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO Um resumo desta teoria que acabamos de ver é o que se segue, nos cinco quadrosseguintes: r>1 r<1 r=1 r=-1 r=0 Acreditem-me: estes pequenos gráficos já foram objeto de prova. Era olhar para odesenho e acertar a questão. Mas se trata de uma questão muito rara. A chance de cair não é das maiores. Pelo sim,pelo não, melhor é conhecermos tudo! O terceiro tipo de questão, que aprenderemos agora, diz respeito às propriedades daCorrelação. Uma questão facílima, para quem conhece essas tais propriedades. E o bom de tudoé que podemos reuni-las em uma única frase: A correlação não é influenciada nem por operações de soma, nem de subtração,nem de produto, e nem de divisão, exceto pelo sinal. Como é isso? Vamos ver, por meio de vários exemplos: Uma questão de prova pode dizer que a correlação entre duas variáveis quaisquer x e y éigual a 0,8. Ou seja, r(x,y)=0,8. E perguntar qual a correlação entre (2x-3 e 3y+5). Ou seja,perguntar: r(2x-3, 3y+5)=? Como resolveremos essa questão? Analisando as operações que ocorreram com asvariáveis x e y. Vejamos. Temos: r(x,y)=0,8 e r(2x-3, 3y+5)=? A variável x virou o quê? Virou 2x-3. Quais as operações que ocorreram com o x? Ele foi multiplicado por 2, e depois,subtraído de 3. Produto ou subtração afetam a correlação? Não! Por último: o x mudou de sinal?Não! Quais as operações que ocorreram com o y? Ele foi multiplicado por 3, e depois, somadoa cinco. Produto e soma não influenciam a correlação! Por fim, o y não mudou de sinal. Assim, desconsiderando as operações que não influenciam na Correlação, teremos que: r(2x-3, 3y+5) = r(x,y) = 0,8 Viram? O que temos a fazer é apenas desconsiderar aquelas operações que nãoinfluenciam na correlação, e depois ver o que sobrou! Apenas fiquemos atentos, e muito, paraverificar se o sinal das variáveis x e y vai mudar ou não! Mais um exemplo.Exemplo 2) Sabendo que r(x,y)=0,8, quanto será r(2x-3, -3y+5)? Novamente, teremos que desconsiderar aquelas operações que não alteram o valor dacorrelação. Fazendo isso, teremos: r(2x-3, -3y+5) Estão todos vendo que ao cortar o 3 que está multiplicando com o y, restou um sinal demenos antes dele? Assim, teremos que: r(2x-3, -3y+5) = r(x,-y) = -0,8 www.pontodosconcursos.com.br 6
  7. 7. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO Ou seja: mudando o sinal de apenas uma das variáveis, muda também o sinal dacorrelação! Novo exemplo.Exemplo 3) Sabendo que r(x,y)=0,8, quanto será r(-2x-3, 3y+5)? Cortemos o que não altera a correlação, e teremos: r(-2x-3, 3y+5) Prestando bem atenção, veremos que, ao eliminar o que não interessa à correlação, osinal do x ficou negativo. Viram? Assim, teremos que: r(-2x-3, 3y+5) = r(-x,y)=-0,8 Novamente, alterou-se o sinal de apenas uma das variáveis. Já sabemos o efeito disto:muda também o sinal da correlação. (O que era 0,8 virou -0,8). Só isso!Exemplo 4) Sabendo que r(x,y)=0,8, quanto será r(-2x-3, -3y+5)? Fazendo os cortes devidos, de acordo com as propriedades da correlação, teremos: r(-2x-3, -3y+5) Percebemos que, desta vez, modificaram-se os sinais das duas variáveis. Com isso, osinal da correlação permanecerá inalterado! Assim, teremos: r(-2x-3, -3y+5) = r(-x,-y)=0,8 Até aqui, o que temos sobre as propriedades é o seguinte: cortando-se as operações desoma, subtração, produto e divisão, se o que restar forem apenas as duas variáveis... ... com o mesmo sinal original: a correlação não se modifica; ... e modificou-se o sinal de apenas uma delas: a correlação muda de sinal; ... e modificaram-se os sinais das duas variáveis: a correlação não se modifica. Mais algumas informações que precisamos conhecer: 1ª) A correlação entre x e x é igual a 1. Ou seja: r(x,x)=1,0. Assim, fazendo uso das propriedades que já conhecemos: r(-x, x)=-1,0 r(x, -x)=-1,0 r(-x,-x)=1,0 2ª) A correlação entre x e y é igual à correlação entre y e x. Ou seja: r(x,y) = r(y,x) Assim, recolhendo todos estes conhecimentos sobre as propriedades, já somos capazesde resolver algumas questões de prova. Vejamos.(BACEN-98) Duas variáveis aleatórias X e Y têm coeficiente de correlação linear igual a 0,8. Ocoeficiente de correlação linear entre as variáveis 2x e 3x é: a) 0,8 b) 0,53 c) 0,27 www.pontodosconcursos.com.br 7
  8. 8. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO d) 0,32 e) 0,4Sol.: É dito pelo enunciado que r(x,y)=0,8. E a questão pergunta quanto é r(2x,3y). Ora, vimos exemplos bem mais interessantes que isto! Cortando os dois produtos, o queresta é a apenas: r(2x,3y) = r(x,y) = 0,8 Resposta! É o que eu costumo chamar de um ponto de graça! Vejamos mais uma.(BACEN-94) O coeficiente de correlação linear entre x e y é r. Se y=4-2x, então: a) r=1 b) 0<r<1 c) r=0 d) -1<r<0 e) r=-1Sol.: É dito pelo enunciado que r(x,y)=r. Em seguida, é dito ainda que y=4-2x. Assim, substituindo este valor de y, teremos: r(x,y) = r(x, 4-2x) Aplicando agora a propriedade da correlação, teremos: r(x, 4-2x) = r(x, -x) = -1 Assim, concluímos que: r(x,y) = r = r(x,-x) = -1 Ou seja: r=-1 Reposta! Mais uma.(TRF-2006) O coeficiente de correlação entre duas variáveis Y e X é igual a +0,8. Considere,agora, a variável Z definida como: Z = 0,2 - 0,5X. O coeficiente de correlação entre as variáveisZ e X, e o coeficiente de variação entre as variáveis Z e Y serão iguais, respectivamente, a:” a) -1,0 e -0,8 b) +1,0 e +0,8 c) -0,5 e -0,8 d) -0,5 e +0,8 e) -0,2 e -0,4Sol.: A questão informa que r(x,y)=0,8. A seguir, define que z=0,2-0,5x. E pergunta duas coisas: 1º) r(z,x)=? e 2º) r(z,y)=? Do início. Substituindo a definição de z, teremos: r(z,x) = r(0,2-0,5x , x) Aplicando as propriedades, teremos: www.pontodosconcursos.com.br 8
  9. 9. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO r(z,x) = r(0,2-0,5x , x) = r(-x,x) = -1 Agora a segunda pergunta. Substituindo o z de novo, teremos: r(z,y) = r(0,2-0,5x , y) Aplicando as propriedades, teremos que: r(z,y) = r(0,2-0,5x , y) = r(-x,y) Ora, se foi dito pelo enunciado que r(x,y)=0,8 Então: r(-x,y)=-0,8 Assim, as duas respostas que a questão procura são: -1 e -0,8 Resposta! O quarto tipo de questão que pode cair em prova sobre correlação é a mais difícil delas. Éa questão que exige a aplicação da fórmula! Ou seja, é um enunciado que vai fornecer uma tabela com todos aqueles pares deinformação (das variáveis x e y), e vai pedir que seja calculado o valor do coeficiente decorrelação linear. Em outras: a questão irá querer saber o valor de r(x,y). Antes de mais nada, convém saber do seguinte: a tabela para aplicação da fórmula dacorrelação somente estará completa se contar com as seguintes cinco colunas: Xi Yi Xi2 Yi2 Xi.Yi . . . . . . . . . . . . . . . ΣXi ΣYi ΣXi2 ΣYi2 ΣXi.Yi Precisamos destas cinco colunas, porque a fórmula será preenchida exatamente com oscinco somatórios que estão em azul na tabela acima! Além desses somatórios, a fórmula traz também um tal de n. O que significa este n?Significa número de pares de informações! Assim, conhecendo, por meio da tabela, o número de pares de informação (n), e ossomatórios das cinco colunas acima, pronto!, já estaremos aptos a aplicar a fórmula e a fazer ascontas, e a chegar à resposta da questão! Próximo passo: memorizar a fórmula. Vejamos novamente. n.∑ Xi.Yi − ∑ Xi.∑ Yi r ( x, y ) = [n.∑ Xi 2 ][ − (∑ Xi ) . n.∑ Yi 2 − (∑ Yi ) 2 2 ] Para memorizar esta belezura, basta que você memorize o primeiro colchete dodenominador. É o seguinte: n.ΣXi2-(ΣXi)2 É somente essa parcela que você precisará memorizar! Somente essa! www.pontodosconcursos.com.br 9
  10. 10. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO Assim, convém que você a repita várias e várias vezes no papel. Olhando para ela, semolhar para ela. De todo jeito! Até que fique definitivamente memorizada. Depois disso, lembraremos do seguinte: o denominador está debaixo do sinal da raizquadrada. E dentro desta raiz, há o produto de dois colchetes: o primeiro deles é aquele que agente já decorou. E o segundo é praticamente igual ao primeiro, trocando-se apenas o X por Y. Você há, portanto, de concordar comigo, que o denominador já está todo memorizado.Concorda? Pois bem! Voltemos àquele colchete que decoramos no começo. Agora, vamos desenvolvê-lo. É muito fácil fazer isso. Todos concordam que Xi2=Xi.Xi? Sim? E todos também concordam que: (ΣXi)2=(ΣXi).(ΣXi)? Sim? Assim, podemos dizer que: n.ΣXi2-(ΣXi)2 = n.Xi.Xi-(ΣXi).(ΣXi) Tudo bem até aqui? Pois bem! Observem que o desenvolvimento acima resultou em duas parcelas, nas quaissó aparece a variável X. Mas para chegarmos ao numerador da fórmula, modificaremos ligeiramente o resultadodeste desenvolvimento, de forma que tenhamos as duas variáveis X e Y, e não apenas X. Teremos: n.Xi.Yi-(ΣXi).(ΣYi) Pronto! Chegamos ao numerador da fórmula. Agora, sim, conhecemos a fórmula inteira! Com isso, estamos aptos, finalmente, a resolver mais este tipo de questão de correlação! Vejamos algumas delas.(AFTN-96) Considere a seguinte tabela, que apresenta valores referentes às variáveis x e y,porventura relacionadas: Valores das variáveis x e y relacionadas X Y x2 Y2 xy 1 5 1 25 5 2 7 4 49 14 3 12 9 144 36 4 13 16 169 52 5 18 25 324 90 6 20 36 400 120 21 75 91 1.111 317Marque a opção que representa o coeficiente de correlação linear entre as variáveis x e y. a) 0,903 b) 0,926 c) 0,947 d) 0,962 e) 0,989Sol.: Percebam que o enunciado não precisa descrever exatamente quais são as variáveis X e Y.Ele apenas as chama por estas letras e pronto! Eu pergunto a vocês: esta tabela fornecida nesta questão já está completa para usarmosa fórmula da correlação linear? O que vocês dizem? Sim, já está completa! Resta, portanto, colocar a fórmula no papel efazer as contas. Teremos: n.∑ Xi.Yi − ∑ Xi.∑ Yi r ( x, y ) = [n.∑ Xi 2 ][ − (∑ Xi ) . n.∑ Yi 2 − (∑ Yi ) 2 2 ] www.pontodosconcursos.com.br 10
  11. 11. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO 6 x317 − 21x75 r ( x, y ) = [ ][ 6 x91 − (21) 2 . 6 x1111 − (91) 2 ] São apenas estas as rápidas continhas que teremos que fazer! Moral da história? Não faremos esta questão! O quê, professor? É isso mesmo! Trata-sede uma questão asterisco. Já falei disso aqui? Questão asterisco é aquela que você vê e sabe, namesma hora, que será uma resolução muitíssimo demorada, e que, conseqüentemente, vairoubar o tempo de várias outras questões de resolução mais rápida! Assim, ao identificar uma questão asterisco, você vai colocar um imenso (adivinha oquê?) asterisco ao seu lado, para identificá-la, e para que você possa voltar a ela, no final daprova, depois de haver resolvido todo o resto, e, obviamente, se houver tempo para isso! Não poderia deixar de dar esse conselho a vocês. Pulem esta questão! Ponham umasterisco e deixem para o final. Mas, cuidado! Nem sempre o que parece é! Vejamos a questão abaixo.(TRF-2006) Para 5 pares de observações das variáveis X e Y, obteve-se os seguintesresultados: ΣX = ΣY = 15 ΣX2 = ΣY2 = 55 ΣXY = 39 Sabendo-se que esses 5 pares de observações constituem a totalidade da distribuiçãoconjunta populacional dessas duas variáveis, o valor do coeficiente de correlação entre X e Y éigual a: a) +1,000 b) +0,709 c) +0,390 d) -0,975 e) -0,600Sol.: É mais um enunciado que pede a aplicação da fórmula da correlação linear! Observem que não foi fornecida aqui tabela alguma. Todavia, foram fornecidos cincosomatórios. Estão vendo? Exatamente aqueles cinco somatórios que precisamos para aplicar afórmula da correlação! Assim, antes de colocarmos o tal do asterisco nesta questão, convém observarmosmelhor! Vejam que há somatórios iguais. Estão vendo? Que tal tentarmos substituir estesvalores na fórmula? Teremos: n.∑ Xi.Yi − ∑ Xi.∑ Yi r ( x, y ) = [n.∑ Xi 2 ][ − (∑ Xi ) . n.∑ Yi 2 − (∑ Yi ) 2 2 ] 5 x39 − 15 x15 r ( x, y ) = [5x55 − (15) ][5x55 − (15) ] . 2 2 Ora, os colchetes do denominador são iguais! Como estão sendo multiplicados, é mesmoque um só colchete elevado ao quadrado! Assim, como é do conhecimento de todos nós, setemos a raiz quadrada de um valor qualquer elevado à segunda potência, desaparece o sinal daraiz. Assim, teremos: www.pontodosconcursos.com.br 11
  12. 12. CURSO ONLINE - ESTATÍSTICA BÁSICA – CURSO REGULAR PROFESSOR SÉRGIO CARVALHO 5 x39 − 15 x15 r ( x, y ) = 5 x55 − (15) 2 Viram? O que me dizem? Dá para fazer estas contas, ou não? Claro que sim! Teremos: r(x,y)=(195-225)/(275-225) r(x,y)=-30/50 = -3/5 = -0,600 Resposta! É isso, meus queridos! Quero, mais uma vez, pedir sinceramente que me perdoem pelo atraso desta aula!Jamais permitiria que acontecesse se estivesse em condições físicas de escrevê-la antes. Esperoque acreditem em mim, pois estou sendo honesto com vocês. Não tem dever de casa hoje, porque eu já resolvi todas as questões. Então fica assim: odever de casa é estudar essa aula com muita calma, e refazer todos os exemplos que eu resolvineste texto. Ok? Um forte abraço a todos! A próxima aula eu postarei ainda ao longo desta semana! Fiquem todos com Deus! www.pontodosconcursos.com.br 12

×