SlideShare uma empresa Scribd logo
1 de 5
1.5 Metodos Iterativos En matemática computacional, un método iterativo trata de resolver un problema (como una ecuación o un sistema de ecuaciones) mediante aproximaciones sucesivas a la solución, empezando desde una estimación inicial. Esta aproximación contrasta con los métodos directos, que tratan de resolver el problema de una sola vez (como resolver un sistema de ecuaciones Ax=b encontrando la inversa de la matriz A). Los métodos iterativos son útiles para resolver problemas que involucran un número grande de variables (a veces del orden de millones), donde los métodos directos tendrían un coste prohibitivo incluso con la potencia del mejor computador disponible.
Si una ecuación puede ponerse en la forma  f(x) = x y una solución x es un punto fijo atractivo de la función f, entonces puede empezar con un punto x1 en la base de atracción de x, y sea  xn+1= f(xn)  para n ≥ 1  y la secuencia  {xn}n ≥ 1 convergerá a la solución x.
Sistemas Lineales 	En el caso de un sistema lineal de ecuaciones, las dos clases principales de métodos iterativos son los métodos iterativos estacionarios y los más generales métodos del subespacio de Krylov. Método iterativo estacionario: 	Los métodos iterativos estacionarios resuelven un sistema lineal con un operador que se aproxima al original; y basándose en la medida de error (el residuo), desde una ecuación de corrección para la que se repite este proceso. Mientras que estos métodos son sencillos de derivar, implementar y analizar, la convergencia normalmente sólo está garantizada para una clase limitada de matrices.
Métodos del subespacio de Krylov: 	Los métodos del subespacio de Krylov forman una base ortogonal de la secuencia de potencias de la matriz por el residuo inicial (la secuencia de Krylov). Las aproximaciones a la solución se forman minimizando el residuo en el subespacio formado. El método prototípico de esta clase es el método de gradiente conjugado. Otros métodos son el método del residuo mínimo generalizado y el método del gradiente biconjugado. Convergencia: 	Dado que estos métodos forman una base, el método converge en N iteraciones, donde N es el tamaño del sistema. Sin embargo, en la presencia de errores de redondeo esta afirmación no se sostiene; además, en la práctica N puede ser muy grande, y el proceso iterativo alcanza una precisión suficiente mucho antes. El análisis de estos métodos es difícil, dependiendo de lo complicada que sea la función del espectro del operador.
Precondicionantes: 	El operador aproximativo que aparece en los métodos iterativos estacionarios puede incorporarse también en los métodos del subespacio de Krylov, donde se pasan de ser transformaciones del operador original a un operador mejor condicionado. La construcción de precondicionadores es un área de investigación muy extensa.

Mais conteúdo relacionado

Mais procurados

Metodos iterativos
Metodos iterativosMetodos iterativos
Metodos iterativoscyndy
 
Método de newton raphson
Método de newton raphsonMétodo de newton raphson
Método de newton raphsonTensor
 
Metodo de biseccion y regla falsa
Metodo de biseccion y regla falsaMetodo de biseccion y regla falsa
Metodo de biseccion y regla falsaSool Egurrola
 
Metodos de Programacion no lineal
Metodos de Programacion no linealMetodos de Programacion no lineal
Metodos de Programacion no linealluisatero
 
Introduccion Investigacion de Operaciones
Introduccion Investigacion de OperacionesIntroduccion Investigacion de Operaciones
Introduccion Investigacion de OperacionesMaria Renee de Leon
 
Método de gauss jordan
Método de gauss jordanMétodo de gauss jordan
Método de gauss jordandjelektro
 
NÚMEROS PSEUDOALEATORIOS UNIDAD II
 NÚMEROS PSEUDOALEATORIOS UNIDAD II NÚMEROS PSEUDOALEATORIOS UNIDAD II
NÚMEROS PSEUDOALEATORIOS UNIDAD IIMarvey Monjaras
 
Teoria de Optimizacion
Teoria de  OptimizacionTeoria de  Optimizacion
Teoria de Optimizacionrebeca ferrer
 
Métodos numéricos método de la secante
Métodos numéricos   método de la secanteMétodos numéricos   método de la secante
Métodos numéricos método de la secanteHELIMARIANO1
 
Método Newton Raphson
Método Newton RaphsonMétodo Newton Raphson
Método Newton RaphsonAzal Flores
 
Métodos de Punto Fijo y Regla Falsa
Métodos de Punto Fijo y Regla FalsaMétodos de Punto Fijo y Regla Falsa
Métodos de Punto Fijo y Regla FalsaVictor Reyes
 
“método de euler y runge kutta”
“método de euler y runge kutta”“método de euler y runge kutta”
“método de euler y runge kutta”Astorgo
 
Ventajas y Desventajas de Métodos de Bisección, Secante y Newton Raphson
Ventajas y Desventajas de Métodos de Bisección, Secante y Newton RaphsonVentajas y Desventajas de Métodos de Bisección, Secante y Newton Raphson
Ventajas y Desventajas de Métodos de Bisección, Secante y Newton RaphsonDiana Laura Ochoa Gallegos
 

Mais procurados (20)

Metodos iterativos
Metodos iterativosMetodos iterativos
Metodos iterativos
 
Método de newton raphson
Método de newton raphsonMétodo de newton raphson
Método de newton raphson
 
Euler y runge kutta
Euler y runge kuttaEuler y runge kutta
Euler y runge kutta
 
Metodo de biseccion y regla falsa
Metodo de biseccion y regla falsaMetodo de biseccion y regla falsa
Metodo de biseccion y regla falsa
 
Metodos de Programacion no lineal
Metodos de Programacion no linealMetodos de Programacion no lineal
Metodos de Programacion no lineal
 
Introduccion Investigacion de Operaciones
Introduccion Investigacion de OperacionesIntroduccion Investigacion de Operaciones
Introduccion Investigacion de Operaciones
 
Método de gauss jordan
Método de gauss jordanMétodo de gauss jordan
Método de gauss jordan
 
Numeros Pseudoaleatorios
Numeros PseudoaleatoriosNumeros Pseudoaleatorios
Numeros Pseudoaleatorios
 
Método gauss seidel
Método gauss seidelMétodo gauss seidel
Método gauss seidel
 
Newton raphson
Newton raphsonNewton raphson
Newton raphson
 
NÚMEROS PSEUDOALEATORIOS UNIDAD II
 NÚMEROS PSEUDOALEATORIOS UNIDAD II NÚMEROS PSEUDOALEATORIOS UNIDAD II
NÚMEROS PSEUDOALEATORIOS UNIDAD II
 
Sistemas de ecuaciones
Sistemas de ecuacionesSistemas de ecuaciones
Sistemas de ecuaciones
 
Teoria de Optimizacion
Teoria de  OptimizacionTeoria de  Optimizacion
Teoria de Optimizacion
 
Métodos numéricos método de la secante
Métodos numéricos   método de la secanteMétodos numéricos   método de la secante
Métodos numéricos método de la secante
 
Método Newton Raphson
Método Newton RaphsonMétodo Newton Raphson
Método Newton Raphson
 
Metodo de gauss jordan
Metodo de gauss jordanMetodo de gauss jordan
Metodo de gauss jordan
 
Métodos de Punto Fijo y Regla Falsa
Métodos de Punto Fijo y Regla FalsaMétodos de Punto Fijo y Regla Falsa
Métodos de Punto Fijo y Regla Falsa
 
“método de euler y runge kutta”
“método de euler y runge kutta”“método de euler y runge kutta”
“método de euler y runge kutta”
 
Ventajas y Desventajas de Métodos de Bisección, Secante y Newton Raphson
Ventajas y Desventajas de Métodos de Bisección, Secante y Newton RaphsonVentajas y Desventajas de Métodos de Bisección, Secante y Newton Raphson
Ventajas y Desventajas de Métodos de Bisección, Secante y Newton Raphson
 
Numeros pseudoaleatorios
Numeros pseudoaleatoriosNumeros pseudoaleatorios
Numeros pseudoaleatorios
 

Semelhante a 1.5 metodos iterativos

Analisis numerico
Analisis numericoAnalisis numerico
Analisis numericocesarjmm1
 
Métodos de eliminación gaussiana
Métodos de eliminación gaussianaMétodos de eliminación gaussiana
Métodos de eliminación gaussianaJorge Rojas
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones linealesyeliadan_16
 
Mapa mental analisis numerico
Mapa mental analisis numericoMapa mental analisis numerico
Mapa mental analisis numericoSergio Alarcón
 
Análisis Numerico
Análisis NumericoAnálisis Numerico
Análisis Numericojulio perez
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesdarwinxvb
 
Sistemas ecuaciones amilcar
Sistemas ecuaciones amilcarSistemas ecuaciones amilcar
Sistemas ecuaciones amilcarASIGNACIONUFT
 
Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)José Monsalve
 
Ecuaciones no lineales jose valor_21362644
Ecuaciones no lineales jose valor_21362644Ecuaciones no lineales jose valor_21362644
Ecuaciones no lineales jose valor_21362644Nheyi Valor
 
Solución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones LinealesSolución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones LinealesJoshua M Noriega
 
Solución de Sistemas de Ecuaciones
Solución de Sistemas de EcuacionesSolución de Sistemas de Ecuaciones
Solución de Sistemas de EcuacionesGabriel Colmenares
 
Métodos de eliminaciónGaussiana
Métodos de eliminaciónGaussianaMétodos de eliminaciónGaussiana
Métodos de eliminaciónGaussianaEstiwer Guevara
 
Laura rodríguez
Laura rodríguezLaura rodríguez
Laura rodríguezLauramrb12
 
Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla jgmc251
 

Semelhante a 1.5 metodos iterativos (20)

Analisis numerico
Analisis numericoAnalisis numerico
Analisis numerico
 
Métodos de eliminación gaussiana
Métodos de eliminación gaussianaMétodos de eliminación gaussiana
Métodos de eliminación gaussiana
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones lineales
 
Mapa mental analisis numerico
Mapa mental analisis numericoMapa mental analisis numerico
Mapa mental analisis numerico
 
Análisis Numerico
Análisis NumericoAnálisis Numerico
Análisis Numerico
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones lineales
 
Sistemas ecuaciones amilcar
Sistemas ecuaciones amilcarSistemas ecuaciones amilcar
Sistemas ecuaciones amilcar
 
Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)
 
Metodos de resolucion
Metodos de resolucionMetodos de resolucion
Metodos de resolucion
 
Metodo de eliminacion gaussiana
Metodo de eliminacion  gaussianaMetodo de eliminacion  gaussiana
Metodo de eliminacion gaussiana
 
Ecuaciones no lineales jose valor_21362644
Ecuaciones no lineales jose valor_21362644Ecuaciones no lineales jose valor_21362644
Ecuaciones no lineales jose valor_21362644
 
Solución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones LinealesSolución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones Lineales
 
Solución de Sistemas de Ecuaciones
Solución de Sistemas de EcuacionesSolución de Sistemas de Ecuaciones
Solución de Sistemas de Ecuaciones
 
Métodos de eliminaciónGaussiana
Métodos de eliminaciónGaussianaMétodos de eliminaciónGaussiana
Métodos de eliminaciónGaussiana
 
Laura rodríguez
Laura rodríguezLaura rodríguez
Laura rodríguez
 
Analismetodos
AnalismetodosAnalismetodos
Analismetodos
 
Analismetodos
AnalismetodosAnalismetodos
Analismetodos
 
Analismetodos
AnalismetodosAnalismetodos
Analismetodos
 
Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla
 
Analisis Numerico
Analisis NumericoAnalisis Numerico
Analisis Numerico
 

Mais de morenito9001 (20)

5.4
5.45.4
5.4
 
5.3
5.35.3
5.3
 
5.2
5.25.2
5.2
 
5.1.2
5.1.25.1.2
5.1.2
 
5.1.0
5.1.05.1.0
5.1.0
 
5.1.1
5.1.15.1.1
5.1.1
 
5 solucion de ecuaciones diferenciales
5 solucion de ecuaciones diferenciales5 solucion de ecuaciones diferenciales
5 solucion de ecuaciones diferenciales
 
4.2 integracion numerica
4.2 integracion numerica4.2 integracion numerica
4.2 integracion numerica
 
4.1.1
4.1.14.1.1
4.1.1
 
4.1 diferenciacion numerica
4.1 diferenciacion numerica4.1 diferenciacion numerica
4.1 diferenciacion numerica
 
4.1.1
4.1.14.1.1
4.1.1
 
4.1 diferenciacion numerica
4.1 diferenciacion numerica4.1 diferenciacion numerica
4.1 diferenciacion numerica
 
4.4
4.44.4
4.4
 
4.3
4.34.3
4.3
 
4.2.4
4.2.44.2.4
4.2.4
 
4.2.3
4.2.34.2.3
4.2.3
 
4.2.2
4.2.24.2.2
4.2.2
 
4.2.1
4.2.14.2.1
4.2.1
 
4.1.3
4.1.34.1.3
4.1.3
 
4.1.2
4.1.24.1.2
4.1.2
 

1.5 metodos iterativos

  • 1. 1.5 Metodos Iterativos En matemática computacional, un método iterativo trata de resolver un problema (como una ecuación o un sistema de ecuaciones) mediante aproximaciones sucesivas a la solución, empezando desde una estimación inicial. Esta aproximación contrasta con los métodos directos, que tratan de resolver el problema de una sola vez (como resolver un sistema de ecuaciones Ax=b encontrando la inversa de la matriz A). Los métodos iterativos son útiles para resolver problemas que involucran un número grande de variables (a veces del orden de millones), donde los métodos directos tendrían un coste prohibitivo incluso con la potencia del mejor computador disponible.
  • 2. Si una ecuación puede ponerse en la forma f(x) = x y una solución x es un punto fijo atractivo de la función f, entonces puede empezar con un punto x1 en la base de atracción de x, y sea xn+1= f(xn) para n ≥ 1 y la secuencia {xn}n ≥ 1 convergerá a la solución x.
  • 3. Sistemas Lineales En el caso de un sistema lineal de ecuaciones, las dos clases principales de métodos iterativos son los métodos iterativos estacionarios y los más generales métodos del subespacio de Krylov. Método iterativo estacionario: Los métodos iterativos estacionarios resuelven un sistema lineal con un operador que se aproxima al original; y basándose en la medida de error (el residuo), desde una ecuación de corrección para la que se repite este proceso. Mientras que estos métodos son sencillos de derivar, implementar y analizar, la convergencia normalmente sólo está garantizada para una clase limitada de matrices.
  • 4. Métodos del subespacio de Krylov: Los métodos del subespacio de Krylov forman una base ortogonal de la secuencia de potencias de la matriz por el residuo inicial (la secuencia de Krylov). Las aproximaciones a la solución se forman minimizando el residuo en el subespacio formado. El método prototípico de esta clase es el método de gradiente conjugado. Otros métodos son el método del residuo mínimo generalizado y el método del gradiente biconjugado. Convergencia: Dado que estos métodos forman una base, el método converge en N iteraciones, donde N es el tamaño del sistema. Sin embargo, en la presencia de errores de redondeo esta afirmación no se sostiene; además, en la práctica N puede ser muy grande, y el proceso iterativo alcanza una precisión suficiente mucho antes. El análisis de estos métodos es difícil, dependiendo de lo complicada que sea la función del espectro del operador.
  • 5. Precondicionantes: El operador aproximativo que aparece en los métodos iterativos estacionarios puede incorporarse también en los métodos del subespacio de Krylov, donde se pasan de ser transformaciones del operador original a un operador mejor condicionado. La construcción de precondicionadores es un área de investigación muy extensa.