SlideShare una empresa de Scribd logo
1 de 35
RAÍCES DE ECUACIONES 2010
RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico  2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de  x  para los que se cumple:  f ( x ) = 0  Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
RAÍCES DE ECUACIONES Para resolver ecuaciones no lineales existen varios métodos numéricos  que los podemos clasificar así: Método grafico   Cerrado o acotado:   (requiere de dos valores de x que encierren la raíz) ,[object Object],[object Object],Abierto:  ( requiere de uno o dos valores de x, pero no necesariamente encierran la raíz) ,[object Object],[object Object],[object Object]
RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En  y= f(x), establece el valor  de x para el cual f(x)=0. x 1.  Si en un intervalo {a,b} cerrado se cumple que :  no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias.  f(a).f(b)>0 f(x) a b
MÉTODO GRAFICO 2.  Si en un intervalo {a,b} cerrado se cumple que :  Entonces existen dos raíces reales  f(a).f(b)>0 f(x) a b x
MÉTODO GRAFICO 3.  Si en un intervalo {a,b} cerrado se cumple que :  da la certeza de encontrar una sola raíz real en el intervalo.  f(a).f(b)<0 x f(x) a b
MÉTODO GRAFICO 4.  Si en un intervalo {a,b} cerrado se cumple que :  hay más de dos raíces.  f(a).f(b)<0 f(x) a b x
MÉTODO GRAFICO 5.  También puede existir una función  , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico,  pues la ecuación es tangente al eje x .  f(x) a b x
MÉTODO DE BISECCIÓN   Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental  f ( x ) y un intervalo [ x i,  x s], tal que  f ( x i) y  f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
[object Object],[object Object],[object Object],[object Object],xi xs ,[object Object],Donde:  ∆x = longitud del intervalo  n= numero de iteraciones error
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN 0,04304778 -2,7167E-09 2,8218E-09 -0,00037535 7,2379E-06 0,00038986 0,56738281 0,56713867 0,56689453 11 0,08613264 -1,4633E-07 4,5037E-07 -0,00037535 0,00038986 0,0011552 0,56738281 0,56689453 0,56640625 10 0,17211704 7,1518E-07 -4,336E-07 -0,00190536 -0,00037535 0,0011552 0,56835938 0,56738281 0,56640625 9 0,34364261 9,4577E-06 -2,2011E-06 -0,00496376 -0,00190536 0,0011552 0,5703125 0,56835938 0,56640625 8 0,68965517 -5,7341E-06 8,4131E-06 -0,00496376 0,0011552 0,00728282 0,5703125 0,56640625 0,5625 7 1,36986301 8,5257E-05 -3,615E-05 -0,01717584 -0,00496376 0,00728282 0,578125 0,5703125 0,5625 6 2,7027027 0,00071276 -0,00012509 -0,04149755 -0,01717584 0,00728282 0,59375 0,578125 0,5625 5 5,26315789 0,00372393 -0,00030222 -0,08973857 -0,04149755 0,00728282 0,625 0,59375 0,5625 4 11,1111111 -0,00065355 0,00077584 -0,08973857 0,00728282 0,10653066 0,625 0,5625 0,5 3 20 0,02491443 -0,00955991 -0,27763345 -0,08973857 0,10653066 0,75 0,625 0,5 2   0,17549781 -0,02957647 -0,63212056 -0,27763345 0,10653066 1 0,75 0,5 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter Ejemplo: Calcule la raíz de:
FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz  f ( x ) = 0, es decir, dos puntos  x i y  x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación,  x r, se calcula como la intersección con el eje  X  de la recta que une ambos puntos empleando la ecuación  La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla  f ( xi ) f ( x r) < 0 ;  f ( xr ) f ( x s) < 0.
FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
FALSA POSICIÓN 0,00013025 1,6859E-14 -1,5324E-09 -1,172E-06 -1,4385E-08 0,10653066 0,56714404 0,5671433 0,5 4 0,01061207 1,1192E-10 -1,2485E-07 -9,5491E-05 -1,172E-06 0,10653066 0,56720422 0,56714404 0,5 3 0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 2   0,00491732 -0,00082871 -0,63212056 -0,00777908 0,10653066 1 0,57211161 0,5 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter Ejemplo: Calcule la raíz de:
MÉTODO DE   PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
MÉTODO DE   PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que  y solución monotónicamente convergente  (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 2. Que  y  solución oscilatoriamente convergente  (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 3. Que  y  solución monotónicamente divergente  (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 4. Que  y  solución oscilatoriamente divergente  (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE NEWTON – RAPHSON 0,14672871 4,4409E-15 0,56714329 -1,56714336 1,9648E-07 0,56714317 3 11,709291 1,9648E-07 0,56714317 -1,56761551 0,00130451 0,566311 2   0,00130451 0,566311 -1,60653066 0,10653066 0,5 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter Ejemplo: Calcule la raíz de:
MÉTODO DE SECANTE   Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando.  Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
MÉTODO DE SECANTE   El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
MÉTODO DE SECANTE   X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
MÉTODO DE SECANTE   0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

Aplicaciones de la derivada
Aplicaciones de la derivadaAplicaciones de la derivada
Aplicaciones de la derivadaSofia Manriquez
 
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIALAplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIALeleazarbautista35
 
Guía de estudio sistemas numéricos
Guía de estudio sistemas numéricosGuía de estudio sistemas numéricos
Guía de estudio sistemas numéricosSistemadeEstudiosMed
 
6.metodo de newton
6.metodo de newton6.metodo de newton
6.metodo de newtonrjvillon
 
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variableCálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variablePablo García y Colomé
 
Cap 4 relaciones y funciones
Cap 4 relaciones y funcionesCap 4 relaciones y funciones
Cap 4 relaciones y funcionesnivelacion008
 
68806235 metodos-numericos
68806235 metodos-numericos68806235 metodos-numericos
68806235 metodos-numericosgralexander2011
 
Derivadas parciales
Derivadas parcialesDerivadas parciales
Derivadas parcialesvlado1884
 
Máximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variablesMáximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variableslobi7o
 
Tema II: Soluciones de Ecuaciones de Una Variable
Tema II: Soluciones de Ecuaciones de Una VariableTema II: Soluciones de Ecuaciones de Una Variable
Tema II: Soluciones de Ecuaciones de Una VariableSistemadeEstudiosMed
 
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12KALIUM academia
 
La parabola ejercicios y aplicaciones
La parabola ejercicios y aplicacionesLa parabola ejercicios y aplicaciones
La parabola ejercicios y aplicacionesElvis Espinoza
 

La actualidad más candente (18)

APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADAAPLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA
 
Aplicaciones de la derivada
Aplicaciones de la derivadaAplicaciones de la derivada
Aplicaciones de la derivada
 
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIALAplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
 
Guía de estudio sistemas numéricos
Guía de estudio sistemas numéricosGuía de estudio sistemas numéricos
Guía de estudio sistemas numéricos
 
6.metodo de newton
6.metodo de newton6.metodo de newton
6.metodo de newton
 
Tema 4 integración numérica
Tema 4 integración numéricaTema 4 integración numérica
Tema 4 integración numérica
 
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variableCálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
 
Cap 4 relaciones y funciones
Cap 4 relaciones y funcionesCap 4 relaciones y funciones
Cap 4 relaciones y funciones
 
68806235 metodos-numericos
68806235 metodos-numericos68806235 metodos-numericos
68806235 metodos-numericos
 
Derivadas parciales
Derivadas parcialesDerivadas parciales
Derivadas parciales
 
Máximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variablesMáximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variables
 
CAPITULO 7.pdf
CAPITULO 7.pdfCAPITULO 7.pdf
CAPITULO 7.pdf
 
Extremos. Problemas de aplicación
Extremos. Problemas de aplicación Extremos. Problemas de aplicación
Extremos. Problemas de aplicación
 
Tema II: Soluciones de Ecuaciones de Una Variable
Tema II: Soluciones de Ecuaciones de Una VariableTema II: Soluciones de Ecuaciones de Una Variable
Tema II: Soluciones de Ecuaciones de Una Variable
 
Funcion cuadratic a
Funcion cuadratic aFuncion cuadratic a
Funcion cuadratic a
 
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
 
La parabola ejercicios y aplicaciones
La parabola ejercicios y aplicacionesLa parabola ejercicios y aplicaciones
La parabola ejercicios y aplicaciones
 
Interpolacion
InterpolacionInterpolacion
Interpolacion
 

Similar a Metodos numericos2

Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Xavier Davias
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptxCrisbelChvez
 
Guia de estudio 2 (tema 2 metodos numericos)
Guia de estudio 2 (tema 2 metodos numericos)Guia de estudio 2 (tema 2 metodos numericos)
Guia de estudio 2 (tema 2 metodos numericos)pedroperez683734
 
DERIVACION_INTEGRACION 1.pdf
DERIVACION_INTEGRACION 1.pdfDERIVACION_INTEGRACION 1.pdf
DERIVACION_INTEGRACION 1.pdfLpezPinIsaac
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSAnahi Daza
 
Diferenciacion integracion
Diferenciacion integracionDiferenciacion integracion
Diferenciacion integracionGean Ccama
 
Solución de ecuaciones no lineales
Solución de ecuaciones no linealesSolución de ecuaciones no lineales
Solución de ecuaciones no linealesSistemadeEstudiosMed
 
Oper.2305.m04.lectura.v1
Oper.2305.m04.lectura.v1Oper.2305.m04.lectura.v1
Oper.2305.m04.lectura.v1LUIS COAQUIRA
 
Método de Newton
Método de NewtonMétodo de Newton
Método de NewtonKike Prieto
 
Metodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshonMetodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshonIsmael Campos Alanis
 

Similar a Metodos numericos2 (20)

Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9
 
Metodos cerrados
Metodos cerradosMetodos cerrados
Metodos cerrados
 
Practica4 newton-raph-resuelta
Practica4 newton-raph-resueltaPractica4 newton-raph-resuelta
Practica4 newton-raph-resuelta
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx
 
Guia de estudio 2 (tema 2 metodos numericos)
Guia de estudio 2 (tema 2 metodos numericos)Guia de estudio 2 (tema 2 metodos numericos)
Guia de estudio 2 (tema 2 metodos numericos)
 
Método del Gradiente
Método del GradienteMétodo del Gradiente
Método del Gradiente
 
DERIVACION_INTEGRACION 1.pdf
DERIVACION_INTEGRACION 1.pdfDERIVACION_INTEGRACION 1.pdf
DERIVACION_INTEGRACION 1.pdf
 
Unidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccionUnidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccion
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOS
 
Método de Broyden
Método de BroydenMétodo de Broyden
Método de Broyden
 
Diferenciacion integracion
Diferenciacion integracionDiferenciacion integracion
Diferenciacion integracion
 
Solución de ecuaciones no lineales
Solución de ecuaciones no linealesSolución de ecuaciones no lineales
Solución de ecuaciones no lineales
 
Oper.2305.m04.lectura.v1
Oper.2305.m04.lectura.v1Oper.2305.m04.lectura.v1
Oper.2305.m04.lectura.v1
 
Punto Fijo
Punto FijoPunto Fijo
Punto Fijo
 
Métodos numéricos. Unidad 2.
Métodos numéricos. Unidad 2.Métodos numéricos. Unidad 2.
Métodos numéricos. Unidad 2.
 
Método de Newton
Método de NewtonMétodo de Newton
Método de Newton
 
Metodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshonMetodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshon
 
Biseccion
BiseccionBiseccion
Biseccion
 
Ceros resum
Ceros resumCeros resum
Ceros resum
 

Más de monica

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5monica
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3monica
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1monica
 

Más de monica (13)

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 

Último

Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfNancyLoaa
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
Ecosistemas Natural, Rural y urbano 2021.pptx
Ecosistemas Natural, Rural y urbano  2021.pptxEcosistemas Natural, Rural y urbano  2021.pptx
Ecosistemas Natural, Rural y urbano 2021.pptxolgakaterin
 
Éteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reaccionesÉteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reaccionesLauraColom3
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 

Último (20)

Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
Ecosistemas Natural, Rural y urbano 2021.pptx
Ecosistemas Natural, Rural y urbano  2021.pptxEcosistemas Natural, Rural y urbano  2021.pptx
Ecosistemas Natural, Rural y urbano 2021.pptx
 
Éteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reaccionesÉteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reacciones
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 

Metodos numericos2

  • 2. RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico 2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
  • 3. RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de x para los que se cumple: f ( x ) = 0 Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
  • 4.
  • 5. RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
  • 6. MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En y= f(x), establece el valor de x para el cual f(x)=0. x 1. Si en un intervalo {a,b} cerrado se cumple que : no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias. f(a).f(b)>0 f(x) a b
  • 7. MÉTODO GRAFICO 2. Si en un intervalo {a,b} cerrado se cumple que : Entonces existen dos raíces reales f(a).f(b)>0 f(x) a b x
  • 8. MÉTODO GRAFICO 3. Si en un intervalo {a,b} cerrado se cumple que : da la certeza de encontrar una sola raíz real en el intervalo. f(a).f(b)<0 x f(x) a b
  • 9. MÉTODO GRAFICO 4. Si en un intervalo {a,b} cerrado se cumple que : hay más de dos raíces. f(a).f(b)<0 f(x) a b x
  • 10. MÉTODO GRAFICO 5. También puede existir una función , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico, pues la ecuación es tangente al eje x . f(x) a b x
  • 11. MÉTODO DE BISECCIÓN Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental f ( x ) y un intervalo [ x i, x s], tal que f ( x i) y f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
  • 12.
  • 13. MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
  • 14.
  • 15.
  • 16.
  • 17. MÉTODO DE BISECCIÓN 0,04304778 -2,7167E-09 2,8218E-09 -0,00037535 7,2379E-06 0,00038986 0,56738281 0,56713867 0,56689453 11 0,08613264 -1,4633E-07 4,5037E-07 -0,00037535 0,00038986 0,0011552 0,56738281 0,56689453 0,56640625 10 0,17211704 7,1518E-07 -4,336E-07 -0,00190536 -0,00037535 0,0011552 0,56835938 0,56738281 0,56640625 9 0,34364261 9,4577E-06 -2,2011E-06 -0,00496376 -0,00190536 0,0011552 0,5703125 0,56835938 0,56640625 8 0,68965517 -5,7341E-06 8,4131E-06 -0,00496376 0,0011552 0,00728282 0,5703125 0,56640625 0,5625 7 1,36986301 8,5257E-05 -3,615E-05 -0,01717584 -0,00496376 0,00728282 0,578125 0,5703125 0,5625 6 2,7027027 0,00071276 -0,00012509 -0,04149755 -0,01717584 0,00728282 0,59375 0,578125 0,5625 5 5,26315789 0,00372393 -0,00030222 -0,08973857 -0,04149755 0,00728282 0,625 0,59375 0,5625 4 11,1111111 -0,00065355 0,00077584 -0,08973857 0,00728282 0,10653066 0,625 0,5625 0,5 3 20 0,02491443 -0,00955991 -0,27763345 -0,08973857 0,10653066 0,75 0,625 0,5 2   0,17549781 -0,02957647 -0,63212056 -0,27763345 0,10653066 1 0,75 0,5 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter Ejemplo: Calcule la raíz de:
  • 18. FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz f ( x ) = 0, es decir, dos puntos x i y x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación, x r, se calcula como la intersección con el eje X de la recta que une ambos puntos empleando la ecuación La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla f ( xi ) f ( x r) < 0 ; f ( xr ) f ( x s) < 0.
  • 19. FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
  • 20. FALSA POSICIÓN 0,00013025 1,6859E-14 -1,5324E-09 -1,172E-06 -1,4385E-08 0,10653066 0,56714404 0,5671433 0,5 4 0,01061207 1,1192E-10 -1,2485E-07 -9,5491E-05 -1,172E-06 0,10653066 0,56720422 0,56714404 0,5 3 0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 2   0,00491732 -0,00082871 -0,63212056 -0,00777908 0,10653066 1 0,57211161 0,5 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter Ejemplo: Calcule la raíz de:
  • 21. MÉTODO DE PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
  • 22. MÉTODO DE PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que y solución monotónicamente convergente (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 23. MÉTODO DE PUNTO FIJO 2. Que y solución oscilatoriamente convergente (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 24. MÉTODO DE PUNTO FIJO 3. Que y solución monotónicamente divergente (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 25. MÉTODO DE PUNTO FIJO 4. Que y solución oscilatoriamente divergente (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 26. MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
  • 27. MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
  • 28. MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
  • 29.
  • 30. MÉTODO DE NEWTON – RAPHSON 0,14672871 4,4409E-15 0,56714329 -1,56714336 1,9648E-07 0,56714317 3 11,709291 1,9648E-07 0,56714317 -1,56761551 0,00130451 0,566311 2   0,00130451 0,566311 -1,60653066 0,10653066 0,5 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter Ejemplo: Calcule la raíz de:
  • 31. MÉTODO DE SECANTE Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando. Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
  • 32. MÉTODO DE SECANTE El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
  • 33. MÉTODO DE SECANTE X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
  • 34. MÉTODO DE SECANTE 0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
  • 35.