SlideShare uma empresa Scribd logo
1 de 38
Sistema de ecuaciones 2010
MÉTODO GRAFICO   ,[object Object],[object Object],[object Object],[object Object],[object Object]
1-   Si ambas rectas se cortan , las coordenadas del punto de corte son los únicos valores de las incógnitas  x  e  y . Sistema compatible determinado. 2-   Si ambas rectas son coincidentes , el sistema tiene infinitas soluciones que son las respectivas coordenadas de todos los puntos de esa recta en la que coinciden ambas.  Sistema compatible indeterminado . MÉTODO GRAFICO   L1 L2 L1 L2 x1 x2
3 -  Si ambas rectas son paralelas , el sistema no tiene solución.  Sistema incompatible . 4 –  si la franja la toman en una zona no en un punto , encontramos un  sistema mal condicionado . MÉTODO GRAFICO   L1 L2 x2 x1 L1 L2 x1 x2
Ejemplo 1: Resolver por método grafico el siguiente sistema de ecuaciones. X+y=5  ;  2x+y=9 Sln. Para la primera ecuación se tiene que: x=5-y tal que  Para la segunda ecuación se tiene que: x=9-y/2 MÉTODO GRAFICO   1 2 3 4 y 4 3 2 1 x 1 3 5 7 y 4 3 2 1 x
MÉTODO GRAFICO   Solución  {4.1}  y x solución X+y=5 2x+y=9
REGLA DE CRAMER ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Si graficamos las dos funciones encontramos que se van a cortar en  los puntos (x,y), como lo muestra la figura. REGLA DE CRAMER f1 f2 xx y
REGLA DE CRAMER Un  sistema de Cramer  tiene  una  sola  solución  que viene dada por las siguientes expresiones:  Ejemplo   x +  y +  z  = 1 x - 2y + 3z = 2 x +  +  z = 5
REGLA DE CRAMER Solución:   1 1 1 1 -2 3 1 0 1 1 1 1 2 -2 3 5 0 1 1 1 1 1 2 3 1 5 1 1 1 1 1 -2 2 1 0 5 Δ   = 2 Δ 1  = 21 Δ 2  = -8 Δ 3  = -11 X= 21 2 X= -11 2 y=  = -4 -8 2
ELIMINACIÓN DE INCÓGNITAS  Eliminar una incógnita de un sistema de ecuaciones es reducir el sistema propuesto a otro que tenga una ecuación y una incógnita menos. Los métodos de eliminación son: 1º.  Por adición o sustracción. 2º.  Por igualación. 3º.  Por sustitución.
ELIMINACIÓN DE INCÓGNITAS  ,[object Object],[object Object],[object Object],[object Object],[object Object]
ELIMINACIÓN DE INCÓGNITAS   Ejemplo   Resolver el sistema  x – 2y =9  2x + 8y = -12  Solución :   multiplíquese ambos miembros de  por 2, se obtiene: 2x – 4y = 18  Réstese  de  , desaparecen los términos “x” 12y = -30 Se obtiene y= -5/2 Remplaza “y” en cualquiera de las ecuaciones dadas, y despéjese “x” x – 2y =9   x – 2(-5/2) = 9 x= 9 - 5 x = 4   1 2 1 3 2 3
ELIMINACIÓN DE INCÓGNITAS  ,[object Object],[object Object],[object Object],[object Object],[object Object]
ELIMINACIÓN DE INCÓGNITAS  Ejemplo   Resolver el sistema  x – 2y =9  2x + 8y = -12  Solución :  despéjese “x” de  y  , se tiene: x = 9 + 2y x = -6 – 4y Iguálense las dos ecuaciones que representan el valor de “x” 9 + 2y = -6 – 4y Resuélvase 9 + 2y = -6 – 4y 2y + 4y = -6 – 4 6y = -15 y = -5/2 Sustituyendo en  el valor de “y” , tenemos que: x = 4  por tanto:  x = 4 ;  y = -5/2 . 1 2 4 3 3 1 2
ELIMINACIÓN DE INCÓGNITAS  ,[object Object],[object Object],[object Object],[object Object],[object Object]
ELIMINACIÓN DE INCÓGNITAS  Ejemplo   Resolver el sistema  x – 2y =9  2x + 8y = -12  Solución :  Se va a eliminar "x". Despéjese el valor de "x" en   : x = 9 + 2y Sustitúyase  en  : 2(9 + 2y) + 8y = -12 18 + 4y + 8y =-12 6y = -15 y = -5/2 Sustitúyase en  el valor hallado para "y". x = 9 + 2(-5/2) x = 4 1 2 1 3 2 3 3
GAUSS SIMPLE GAUSS, CARL FRIEDRICH  Un sistema de ecuaciones se resuelve por el método de Gauss cuando se obtienen sus soluciones mediante la reducción del sistema dado a otro equivalente en el que cada ecuación tiene una incógnita menos que la anterior.
[object Object],[object Object],[object Object],GAUSS SIMPLE
GAUSS SIMPLE Eliminación de las incógnitas hacia delante:  tiene el objetivo de reducir el sistema original a una forma triangular superior.  Para resolver una matriz por el método de gauss simple:
Obteniendo el valor de x3= l/i x2=(k-f*x3)/e x1=(j-c*x3-b*x2)/a GAUSS SIMPLE R1  R2  R3  R3  R3-(h/e)*R2  a b c 0 e f 0 h i j l k R1  R2  R3  R2  R2-(d/a)*R1  R3  R3-(g/a)*R1  a b c d e f g h i j l k R1  R2  R3  a b c 0 e f 0 0 i j l k
GAUSS SIMPLE Ejemplo: Encontrar los valores de x1, x2 y x3 para el siguiente sistema de ecuaciones: 4X1-2X2-X3=9 5X1+X2-X3=7 X1  +2X2-X3=12 Solución: 4  -2  -1   9 A = 5  1  -1  b = 7 1  2  -1   12 R2  R2-(5/4)*R1  R3  R3-(1/4)*R1  R1  R2  R3  4 -2 -1 5 1 -1 1 2 -1 9 12 7
GAUSS SIMPLE R3  R3-(5/2/7/2)*R2  4 -2 -1 0 7/2 1/4 0 5/2 -3/4 9 39/4 -17/4 4 -2 -1 0 7/2 1/4 0 0 -13/14 9 179/14 7 -13,7692308 x3= 2,98351648 x2= 0,29945055 x1=
GAUSS - JORDAN  Como hemos visto, el método de Gauss transforma la matriz de coeficientes en una matriz triangular superior. El método de Gauss-Jordan continúa el proceso de transformación hasta obtener una matriz diagonal unitaria.
GAUSS - JORDAN  Ejemplo: Encontrar los valores de x1, x2 y x3 para el siguiente sistema de ecuaciones: 4X1-2X2-X3=9 5X1+X2-X3=7 X1  +2X2-X3=12 Solución:  Aplicando el método de Gauss habíamos llegado a la siguiente ecuación:  R1  R1-(-1/(-13/14)*R3  R2  R2-((1/4)/(-13/14)*R3  4 -2 -1 0 7/2 1/4 0 0 -13/14 9 179/14 7
GAUSS - JORDAN  R1  R1-(-2)/(7/2)*R2  12,7857143 -0,92857143 0 0 10,4423077 0 3,5 0 -4,76923077 0 -2 4 12,7857143 -0,92857143 0 0 10,4423077 0 3,5 0 1,1978022 0 0 4 -13,7692308 x3= 2,98351648 x2= 0,29945055 x1=
GAUSS - JORDAN CON PIVOTEO El sistema consiste en tomar de un sistema de ecuaciones dado una ecuación como pivote con el objetivo de darle forma de matriz idéntica al sistema de ecuaciones. Cuando se elimina una incógnita en una ecuación, Gauss –Jordan elimina esa incógnita en el resto de las ecuaciones. El elemento delantero de cada fila diferente de cero, es llamado "pivote" éstos están a la derecha del elemento delantero de la fila anterior (esto supone que todos los elementos debajo de un pivote son cero).
GAUSS - JORDAN CON PIVOTEO Ejemplo: Resolver el siguiente sistema de ecuaciones: 4X1-2X2-X3=9 5X1+X2-X3=7 X1  +2X2-X3=12 Para resolverla de una manera mas sencilla hallamos Gauss-Jordan y dividimos cada ecuación por su pivote.  Pivote 1 Pivote 2 Pivote 3 R1 /4 R2 /3.5 R3 /-0.92857143 12,7857143 -0,92857143 0 0 10,4423077 0 3,5 0 1,1978022 0 0 4
GAUSS - JORDAN CON PIVOTEO Divídase  cada ecuación en su respectivo pivote para obtener  De modo que:  la matriz  de coeficientes se ha transformado en la matriz identidad y la solución se obtiene en el vector del lado derecho. Observe que no se requiere la sustitución hacia atrás para llegar a la solución. -13,7692308 1 0 0 2,98351648 0 1 0 0,29945055 0 0 1 -13,7692308 x3= 2,98351648 x2= 0,29945055 x1=
FACTORIZACION LU Estudiando el proceso que se sigue en la descomposición LU es posible comprender el por qué de este nombre, analizando cómo una matriz original se descompone en dos matrices triangulares, una superior y otra inferior.
FACTORIZACION LU ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
3 x 1  – 0.1 x 2  – 0.2 x 3  =  7.85  (1)  0.1 x 1  +  7 x 2  – 0.3 x 3  = -19.3  (2) 0.3 x 1  – 0.2 x 2  +  10 x 3  =  71.4 (3) FACTORIZACION LU ,[object Object],[object Object],3 -0.1 -0.2 0.1 7 -0.3 0.3 -0.2 10 7.85 71.4 -19.3 A = B =
FACTORIZACION LU 1.  Se halla “U” U = U = 10 -0,2 0,3 -0,3 7 0,1 -0,2 -0,1 3 70,615 10,02 -0,19 0 -19,5616667 -0,29333333 7,00333333 0 7,85 -0,2 -0,1 3 70,0842932 10,0120419 0 0 -19,5616667 -0,29333333 7,00333333 0 7,85 -0,2 -0,1 3
2.  Se halla “L” FACTORIZACION LU L = L = 10 -0,2 0,3 -0,3 7 0,1 -0,2 -0,1 3 10 -0,2 0,3 0 6,994 0,03076923 0 -0,104 3,006 10 -0,2 0,3 0 6,994 0,03076923 0 0 3,00645754
3. Se verifica L*U = A FACTORIZACION LU X 10,0120419 0 0 -0,29333333 7,00333333 0 -0,2 -0,1 3 10 -0,2 0,3 0 6,994 0,03076923 0 0 3,00645754 10 -0,2 0,3 -0,3 7 0,1 -0,2 -0,1 3
FACTORIZACION LU 4.   Se despeja “Y” de L*Y = b Y1 Y2 Y3 10 -0,2 0,3 0 6,994 0,03076923 0 0 3,00645754 71,4 -17,158 9,02286245 70,2304564 Y3= -19,311487 Y2= 2,61104636 Y1=
FACTORIZACION LU 5.  Se despeja “X” de U*X = Y X1 X2 X3 70,0842932 10,0120419 0 0 -19,5616667 -0,29333333 7,00333333 0 7,85 -0,2 -0,1 3 7,14 -2,75950815 2,61104636 9,0459498 X3= -2,76332892 X2= 0,86847937 X1=
http://www.galeon.com/student_star/ecuacio.html http://www.uv.es/diaz/mn/node30.html http://www.unizar.es/aragon_tres/unidad6/Matrices/u6matte20.pdf http://www.cramster.com/reference/wiki.aspx?wiki_name=Band_m atrix BIBLIOGRAFÍA

Mais conteúdo relacionado

Mais procurados

Métodos de solución de un sistema de ecuaciones lineales
Métodos de solución  de un sistema de ecuaciones linealesMétodos de solución  de un sistema de ecuaciones lineales
Métodos de solución de un sistema de ecuaciones lineales
Alberto Carranza Garcia
 
SISTEMA DE ECUACIONES CUADRATICAS
SISTEMA DE ECUACIONES CUADRATICAS SISTEMA DE ECUACIONES CUADRATICAS
SISTEMA DE ECUACIONES CUADRATICAS
jacqueline llamuca
 
Ecuaciones y Sistemas de Ecuaciones Lineales
Ecuaciones y Sistemas de Ecuaciones LinealesEcuaciones y Sistemas de Ecuaciones Lineales
Ecuaciones y Sistemas de Ecuaciones Lineales
matbasuts1
 
Inecuaciones cuadrã -ticas
Inecuaciones cuadrã -ticasInecuaciones cuadrã -ticas
Inecuaciones cuadrã -ticas
Luis Ramires
 
Método de Gauss Jordan
Método de Gauss JordanMétodo de Gauss Jordan
Método de Gauss Jordan
Kike Prieto
 
Factorizacion lu
Factorizacion luFactorizacion lu
Factorizacion lu
jonathann89
 

Mais procurados (20)

SISTEMAS DE ECUACIONES
SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES
SISTEMAS DE ECUACIONES
 
Edo fin
Edo finEdo fin
Edo fin
 
Resolución de sistema de ecuación 2x2
Resolución de sistema de ecuación 2x2Resolución de sistema de ecuación 2x2
Resolución de sistema de ecuación 2x2
 
Métodos de solución de un sistema de ecuaciones lineales
Métodos de solución  de un sistema de ecuaciones linealesMétodos de solución  de un sistema de ecuaciones lineales
Métodos de solución de un sistema de ecuaciones lineales
 
METODO GRAFICO Sistema de ecuaciones lineales
METODO GRAFICO Sistema de ecuaciones linealesMETODO GRAFICO Sistema de ecuaciones lineales
METODO GRAFICO Sistema de ecuaciones lineales
 
Resolución de sistema de ecuaciones cuadráticas
Resolución de sistema de ecuaciones cuadráticasResolución de sistema de ecuaciones cuadráticas
Resolución de sistema de ecuaciones cuadráticas
 
SISTEMA DE ECUACIONES CUADRATICAS
SISTEMA DE ECUACIONES CUADRATICAS SISTEMA DE ECUACIONES CUADRATICAS
SISTEMA DE ECUACIONES CUADRATICAS
 
Ajuste de datos e interpolacion
Ajuste de datos e interpolacionAjuste de datos e interpolacion
Ajuste de datos e interpolacion
 
Métodos de solución de ecuaciones lineales (cuadro comparativo)
Métodos de solución de ecuaciones lineales (cuadro comparativo)Métodos de solución de ecuaciones lineales (cuadro comparativo)
Métodos de solución de ecuaciones lineales (cuadro comparativo)
 
Sistema de ecuaciones lineales (suma o resta)
Sistema de ecuaciones lineales (suma o resta)Sistema de ecuaciones lineales (suma o resta)
Sistema de ecuaciones lineales (suma o resta)
 
Ecuaciones y Sistemas de Ecuaciones Lineales
Ecuaciones y Sistemas de Ecuaciones LinealesEcuaciones y Sistemas de Ecuaciones Lineales
Ecuaciones y Sistemas de Ecuaciones Lineales
 
Inecuaciones cuadrã -ticas
Inecuaciones cuadrã -ticasInecuaciones cuadrã -ticas
Inecuaciones cuadrã -ticas
 
Inecuaciones lineales y cuadraticas COMIL - enrique0975
Inecuaciones lineales y cuadraticas COMIL - enrique0975Inecuaciones lineales y cuadraticas COMIL - enrique0975
Inecuaciones lineales y cuadraticas COMIL - enrique0975
 
Método de Gauss Jordan
Método de Gauss JordanMétodo de Gauss Jordan
Método de Gauss Jordan
 
NÚMEROS REALES II
NÚMEROS REALES IINÚMEROS REALES II
NÚMEROS REALES II
 
Cap7
Cap7Cap7
Cap7
 
Sistema de ecuaciones exponenciales
Sistema de ecuaciones exponencialesSistema de ecuaciones exponenciales
Sistema de ecuaciones exponenciales
 
Métodos de resolución de ecuaciones
Métodos de resolución de ecuacionesMétodos de resolución de ecuaciones
Métodos de resolución de ecuaciones
 
Factorizacion lu
Factorizacion luFactorizacion lu
Factorizacion lu
 
Sistema de ecuaciones lineales (solución)
Sistema de ecuaciones lineales (solución)Sistema de ecuaciones lineales (solución)
Sistema de ecuaciones lineales (solución)
 

Destaque

Metodos numericos basicos_para_ingen
Metodos numericos basicos_para_ingenMetodos numericos basicos_para_ingen
Metodos numericos basicos_para_ingen
edamcar
 
Métodos numéricos
Métodos numéricosMétodos numéricos
Métodos numéricos
adrianaroab
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
monica
 
Metodo de biseccion y regla falsa
Metodo de biseccion y regla falsaMetodo de biseccion y regla falsa
Metodo de biseccion y regla falsa
Sool Egurrola
 
4.metodo de la biseccion
4.metodo de la biseccion4.metodo de la biseccion
4.metodo de la biseccion
rjvillon
 

Destaque (19)

Marketing+research.2
Marketing+research.2Marketing+research.2
Marketing+research.2
 
Metodo de biseccion
Metodo de biseccionMetodo de biseccion
Metodo de biseccion
 
Metodo de biseccion
Metodo de biseccionMetodo de biseccion
Metodo de biseccion
 
metodos numericos
 metodos numericos metodos numericos
metodos numericos
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOS
 
Metodos numericos basicos_para_ingen
Metodos numericos basicos_para_ingenMetodos numericos basicos_para_ingen
Metodos numericos basicos_para_ingen
 
Métodos numéricos
Métodos numéricosMétodos numéricos
Métodos numéricos
 
Metodos numericos tema 3
Metodos numericos tema 3Metodos numericos tema 3
Metodos numericos tema 3
 
Tipos de metodos numericos
Tipos de metodos numericosTipos de metodos numericos
Tipos de metodos numericos
 
Método de newton raphson Metodos Numericos
Método de newton raphson Metodos NumericosMétodo de newton raphson Metodos Numericos
Método de newton raphson Metodos Numericos
 
Introducción a los Métodos Numéricos
Introducción a los Métodos NuméricosIntroducción a los Métodos Numéricos
Introducción a los Métodos Numéricos
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodo de biseccion y regla falsa
Metodo de biseccion y regla falsaMetodo de biseccion y regla falsa
Metodo de biseccion y regla falsa
 
Metodos Numericos
Metodos NumericosMetodos Numericos
Metodos Numericos
 
4.metodo de la biseccion
4.metodo de la biseccion4.metodo de la biseccion
4.metodo de la biseccion
 
Presentación Métodos Numéricos
Presentación Métodos Numéricos Presentación Métodos Numéricos
Presentación Métodos Numéricos
 
Ejercicios resueltos- de metodos
Ejercicios resueltos- de metodosEjercicios resueltos- de metodos
Ejercicios resueltos- de metodos
 
Método de la bisección
Método de la bisecciónMétodo de la bisección
Método de la bisección
 
METODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -ChapraMETODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -Chapra
 

Semelhante a Metodos numericos 4

Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
monica
 
Intersección de funciones
Intersección de funcionesIntersección de funciones
Intersección de funciones
AraceliAM
 
Metodos 2 x2 lady
Metodos 2 x2 ladyMetodos 2 x2 lady
Metodos 2 x2 lady
leidy
 
XSistemas de ecuaciones
XSistemas de ecuacionesXSistemas de ecuaciones
XSistemas de ecuaciones
Jose VS
 
3.2.2 eliminacion gaussiana
3.2.2 eliminacion gaussiana3.2.2 eliminacion gaussiana
3.2.2 eliminacion gaussiana
Roger Burgos
 

Semelhante a Metodos numericos 4 (20)

Metodos numericos 4
Metodos numericos 4Metodos numericos 4
Metodos numericos 4
 
SISTEMA DE ECUACIONES.
SISTEMA DE ECUACIONES.SISTEMA DE ECUACIONES.
SISTEMA DE ECUACIONES.
 
Intersección de funciones
Intersección de funcionesIntersección de funciones
Intersección de funciones
 
Sistemasdeecuaciones 120407172857-phpapp02 (1)
Sistemasdeecuaciones 120407172857-phpapp02 (1)Sistemasdeecuaciones 120407172857-phpapp02 (1)
Sistemasdeecuaciones 120407172857-phpapp02 (1)
 
Unidad 3 sistemas lineales
Unidad 3 sistemas linealesUnidad 3 sistemas lineales
Unidad 3 sistemas lineales
 
ecuaciones.pptx
ecuaciones.pptxecuaciones.pptx
ecuaciones.pptx
 
Metodos 2 x2 lady
Metodos 2 x2 ladyMetodos 2 x2 lady
Metodos 2 x2 lady
 
5 Sistemas de ecuaciones.pptx
5 Sistemas de ecuaciones.pptx5 Sistemas de ecuaciones.pptx
5 Sistemas de ecuaciones.pptx
 
Método de resoluc. sist. de ecuaciones lineales
Método de resoluc. sist. de ecuaciones  linealesMétodo de resoluc. sist. de ecuaciones  lineales
Método de resoluc. sist. de ecuaciones lineales
 
XSistemas de ecuaciones
XSistemas de ecuacionesXSistemas de ecuaciones
XSistemas de ecuaciones
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones lineales
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones lineales
 
Sistema de ecuaciones de primer grado con dos varialbes
Sistema de ecuaciones de primer grado con dos varialbesSistema de ecuaciones de primer grado con dos varialbes
Sistema de ecuaciones de primer grado con dos varialbes
 
Sistema de ecuaciones
Sistema de ecuacionesSistema de ecuaciones
Sistema de ecuaciones
 
Álgebra Lineal
Álgebra LinealÁlgebra Lineal
Álgebra Lineal
 
3.2.2 eliminacion gaussiana
3.2.2 eliminacion gaussiana3.2.2 eliminacion gaussiana
3.2.2 eliminacion gaussiana
 
“Año del Fortalecimiento de la Soberanía Nacional” (2).pdf
“Año del Fortalecimiento de la Soberanía Nacional” (2).pdf“Año del Fortalecimiento de la Soberanía Nacional” (2).pdf
“Año del Fortalecimiento de la Soberanía Nacional” (2).pdf
 
Mate
MateMate
Mate
 
Sistemas de ecuaciones blog
Sistemas de ecuaciones blogSistemas de ecuaciones blog
Sistemas de ecuaciones blog
 
Ecuaciones lineales
Ecuaciones linealesEcuaciones lineales
Ecuaciones lineales
 

Mais de monica

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
monica
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
monica
 
Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
monica
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
monica
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
monica
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
monica
 

Mais de monica (12)

Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos1
Metodos numericos1Metodos numericos1
Metodos numericos1
 

Último

🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 

Último (20)

🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADOTIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 

Metodos numericos 4

  • 2.
  • 3. 1- Si ambas rectas se cortan , las coordenadas del punto de corte son los únicos valores de las incógnitas x e y . Sistema compatible determinado. 2- Si ambas rectas son coincidentes , el sistema tiene infinitas soluciones que son las respectivas coordenadas de todos los puntos de esa recta en la que coinciden ambas. Sistema compatible indeterminado . MÉTODO GRAFICO L1 L2 L1 L2 x1 x2
  • 4. 3 - Si ambas rectas son paralelas , el sistema no tiene solución. Sistema incompatible . 4 – si la franja la toman en una zona no en un punto , encontramos un sistema mal condicionado . MÉTODO GRAFICO L1 L2 x2 x1 L1 L2 x1 x2
  • 5. Ejemplo 1: Resolver por método grafico el siguiente sistema de ecuaciones. X+y=5 ; 2x+y=9 Sln. Para la primera ecuación se tiene que: x=5-y tal que Para la segunda ecuación se tiene que: x=9-y/2 MÉTODO GRAFICO 1 2 3 4 y 4 3 2 1 x 1 3 5 7 y 4 3 2 1 x
  • 6. MÉTODO GRAFICO Solución {4.1} y x solución X+y=5 2x+y=9
  • 7.
  • 8. Si graficamos las dos funciones encontramos que se van a cortar en los puntos (x,y), como lo muestra la figura. REGLA DE CRAMER f1 f2 xx y
  • 9. REGLA DE CRAMER Un sistema de Cramer tiene una sola solución que viene dada por las siguientes expresiones: Ejemplo x + y + z = 1 x - 2y + 3z = 2 x + + z = 5
  • 10. REGLA DE CRAMER Solución: 1 1 1 1 -2 3 1 0 1 1 1 1 2 -2 3 5 0 1 1 1 1 1 2 3 1 5 1 1 1 1 1 -2 2 1 0 5 Δ = 2 Δ 1 = 21 Δ 2 = -8 Δ 3 = -11 X= 21 2 X= -11 2 y= = -4 -8 2
  • 11. ELIMINACIÓN DE INCÓGNITAS Eliminar una incógnita de un sistema de ecuaciones es reducir el sistema propuesto a otro que tenga una ecuación y una incógnita menos. Los métodos de eliminación son: 1º. Por adición o sustracción. 2º. Por igualación. 3º. Por sustitución.
  • 12.
  • 13. ELIMINACIÓN DE INCÓGNITAS Ejemplo Resolver el sistema x – 2y =9 2x + 8y = -12 Solución : multiplíquese ambos miembros de por 2, se obtiene: 2x – 4y = 18 Réstese de , desaparecen los términos “x” 12y = -30 Se obtiene y= -5/2 Remplaza “y” en cualquiera de las ecuaciones dadas, y despéjese “x” x – 2y =9 x – 2(-5/2) = 9 x= 9 - 5 x = 4 1 2 1 3 2 3
  • 14.
  • 15. ELIMINACIÓN DE INCÓGNITAS Ejemplo Resolver el sistema x – 2y =9 2x + 8y = -12 Solución : despéjese “x” de y , se tiene: x = 9 + 2y x = -6 – 4y Iguálense las dos ecuaciones que representan el valor de “x” 9 + 2y = -6 – 4y Resuélvase 9 + 2y = -6 – 4y 2y + 4y = -6 – 4 6y = -15 y = -5/2 Sustituyendo en el valor de “y” , tenemos que: x = 4 por tanto: x = 4 ; y = -5/2 . 1 2 4 3 3 1 2
  • 16.
  • 17. ELIMINACIÓN DE INCÓGNITAS Ejemplo Resolver el sistema x – 2y =9 2x + 8y = -12 Solución : Se va a eliminar "x". Despéjese el valor de "x" en : x = 9 + 2y Sustitúyase en : 2(9 + 2y) + 8y = -12 18 + 4y + 8y =-12 6y = -15 y = -5/2 Sustitúyase en el valor hallado para "y". x = 9 + 2(-5/2) x = 4 1 2 1 3 2 3 3
  • 18. GAUSS SIMPLE GAUSS, CARL FRIEDRICH Un sistema de ecuaciones se resuelve por el método de Gauss cuando se obtienen sus soluciones mediante la reducción del sistema dado a otro equivalente en el que cada ecuación tiene una incógnita menos que la anterior.
  • 19.
  • 20. GAUSS SIMPLE Eliminación de las incógnitas hacia delante: tiene el objetivo de reducir el sistema original a una forma triangular superior. Para resolver una matriz por el método de gauss simple:
  • 21. Obteniendo el valor de x3= l/i x2=(k-f*x3)/e x1=(j-c*x3-b*x2)/a GAUSS SIMPLE R1 R2 R3 R3 R3-(h/e)*R2 a b c 0 e f 0 h i j l k R1 R2 R3 R2 R2-(d/a)*R1 R3 R3-(g/a)*R1 a b c d e f g h i j l k R1 R2 R3 a b c 0 e f 0 0 i j l k
  • 22. GAUSS SIMPLE Ejemplo: Encontrar los valores de x1, x2 y x3 para el siguiente sistema de ecuaciones: 4X1-2X2-X3=9 5X1+X2-X3=7 X1 +2X2-X3=12 Solución: 4 -2 -1 9 A = 5 1 -1 b = 7 1 2 -1 12 R2 R2-(5/4)*R1 R3 R3-(1/4)*R1 R1 R2 R3 4 -2 -1 5 1 -1 1 2 -1 9 12 7
  • 23. GAUSS SIMPLE R3 R3-(5/2/7/2)*R2 4 -2 -1 0 7/2 1/4 0 5/2 -3/4 9 39/4 -17/4 4 -2 -1 0 7/2 1/4 0 0 -13/14 9 179/14 7 -13,7692308 x3= 2,98351648 x2= 0,29945055 x1=
  • 24. GAUSS - JORDAN Como hemos visto, el método de Gauss transforma la matriz de coeficientes en una matriz triangular superior. El método de Gauss-Jordan continúa el proceso de transformación hasta obtener una matriz diagonal unitaria.
  • 25. GAUSS - JORDAN Ejemplo: Encontrar los valores de x1, x2 y x3 para el siguiente sistema de ecuaciones: 4X1-2X2-X3=9 5X1+X2-X3=7 X1 +2X2-X3=12 Solución: Aplicando el método de Gauss habíamos llegado a la siguiente ecuación: R1 R1-(-1/(-13/14)*R3 R2 R2-((1/4)/(-13/14)*R3 4 -2 -1 0 7/2 1/4 0 0 -13/14 9 179/14 7
  • 26. GAUSS - JORDAN R1 R1-(-2)/(7/2)*R2 12,7857143 -0,92857143 0 0 10,4423077 0 3,5 0 -4,76923077 0 -2 4 12,7857143 -0,92857143 0 0 10,4423077 0 3,5 0 1,1978022 0 0 4 -13,7692308 x3= 2,98351648 x2= 0,29945055 x1=
  • 27. GAUSS - JORDAN CON PIVOTEO El sistema consiste en tomar de un sistema de ecuaciones dado una ecuación como pivote con el objetivo de darle forma de matriz idéntica al sistema de ecuaciones. Cuando se elimina una incógnita en una ecuación, Gauss –Jordan elimina esa incógnita en el resto de las ecuaciones. El elemento delantero de cada fila diferente de cero, es llamado "pivote" éstos están a la derecha del elemento delantero de la fila anterior (esto supone que todos los elementos debajo de un pivote son cero).
  • 28. GAUSS - JORDAN CON PIVOTEO Ejemplo: Resolver el siguiente sistema de ecuaciones: 4X1-2X2-X3=9 5X1+X2-X3=7 X1 +2X2-X3=12 Para resolverla de una manera mas sencilla hallamos Gauss-Jordan y dividimos cada ecuación por su pivote. Pivote 1 Pivote 2 Pivote 3 R1 /4 R2 /3.5 R3 /-0.92857143 12,7857143 -0,92857143 0 0 10,4423077 0 3,5 0 1,1978022 0 0 4
  • 29. GAUSS - JORDAN CON PIVOTEO Divídase cada ecuación en su respectivo pivote para obtener De modo que: la matriz de coeficientes se ha transformado en la matriz identidad y la solución se obtiene en el vector del lado derecho. Observe que no se requiere la sustitución hacia atrás para llegar a la solución. -13,7692308 1 0 0 2,98351648 0 1 0 0,29945055 0 0 1 -13,7692308 x3= 2,98351648 x2= 0,29945055 x1=
  • 30. FACTORIZACION LU Estudiando el proceso que se sigue en la descomposición LU es posible comprender el por qué de este nombre, analizando cómo una matriz original se descompone en dos matrices triangulares, una superior y otra inferior.
  • 31.
  • 32.
  • 33. FACTORIZACION LU 1. Se halla “U” U = U = 10 -0,2 0,3 -0,3 7 0,1 -0,2 -0,1 3 70,615 10,02 -0,19 0 -19,5616667 -0,29333333 7,00333333 0 7,85 -0,2 -0,1 3 70,0842932 10,0120419 0 0 -19,5616667 -0,29333333 7,00333333 0 7,85 -0,2 -0,1 3
  • 34. 2. Se halla “L” FACTORIZACION LU L = L = 10 -0,2 0,3 -0,3 7 0,1 -0,2 -0,1 3 10 -0,2 0,3 0 6,994 0,03076923 0 -0,104 3,006 10 -0,2 0,3 0 6,994 0,03076923 0 0 3,00645754
  • 35. 3. Se verifica L*U = A FACTORIZACION LU X 10,0120419 0 0 -0,29333333 7,00333333 0 -0,2 -0,1 3 10 -0,2 0,3 0 6,994 0,03076923 0 0 3,00645754 10 -0,2 0,3 -0,3 7 0,1 -0,2 -0,1 3
  • 36. FACTORIZACION LU 4. Se despeja “Y” de L*Y = b Y1 Y2 Y3 10 -0,2 0,3 0 6,994 0,03076923 0 0 3,00645754 71,4 -17,158 9,02286245 70,2304564 Y3= -19,311487 Y2= 2,61104636 Y1=
  • 37. FACTORIZACION LU 5. Se despeja “X” de U*X = Y X1 X2 X3 70,0842932 10,0120419 0 0 -19,5616667 -0,29333333 7,00333333 0 7,85 -0,2 -0,1 3 7,14 -2,75950815 2,61104636 9,0459498 X3= -2,76332892 X2= 0,86847937 X1=