SlideShare uma empresa Scribd logo
1 de 125
Baixar para ler offline
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
A Universal Image Quality Index
Processamento Digital de Imagens
Michel Alves dos Santos
Centro de Pesquisa em Matemática Computacional
Universidade Federal de Alagoas, Campus A. C. Simões
Tabuleiro do Martins - Maceió - AL, CEP: 57072-970
Docente Responsável: Prof. Dr. Alejandro C. Frery
{michel.mas,michelalvessantos}@gmail.com
26 de Outubro de 2010
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Como Medir a Qualidade de Imagens?
Figura: Avaliação de Imagens. (A) Imagem original “Lena”, 512x512,
8bits/pixel;(B) Imagem contaminada com ruído gaussiano aditivo.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Métricas de Qualidade
Métricas de Qualidade Subjetivas e Objetivas.
Figura: Organograma exibindo alguns tipos de métricas de qualidade.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Aplicações das Métricas de Qualidade
Áreas nas quais essas métricas podem atuar.
Aplicações na Área Geológica;
Aplicações na Área Metereológica;
Aplicações na Área Médica;
Aplicações na Área Militar;
Aplicações na Área de Transmissão de Vídeo, etc.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Aplicações das Métricas de Qualidade
Áreas nas quais essas métricas podem atuar.
Aplicações na Área Geológica;
Aplicações na Área Metereológica;
Aplicações na Área Médica;
Aplicações na Área Militar;
Aplicações na Área de Transmissão de Vídeo, etc.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Aplicações das Métricas de Qualidade
Áreas nas quais essas métricas podem atuar.
Aplicações na Área Geológica;
Aplicações na Área Metereológica;
Aplicações na Área Médica;
Aplicações na Área Militar;
Aplicações na Área de Transmissão de Vídeo, etc.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Aplicações das Métricas de Qualidade
Áreas nas quais essas métricas podem atuar.
Aplicações na Área Geológica;
Aplicações na Área Metereológica;
Aplicações na Área Médica;
Aplicações na Área Militar;
Aplicações na Área de Transmissão de Vídeo, etc.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Aplicações das Métricas de Qualidade
Áreas nas quais essas métricas podem atuar.
Aplicações na Área Geológica;
Aplicações na Área Metereológica;
Aplicações na Área Médica;
Aplicações na Área Militar;
Aplicações na Área de Transmissão de Vídeo, etc.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Aplicações das Métricas de Qualidade
Áreas nas quais essas métricas podem atuar.
Aplicações na Área Geológica;
Aplicações na Área Metereológica;
Aplicações na Área Médica;
Aplicações na Área Militar;
Aplicações na Área de Transmissão de Vídeo, etc.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Aplicações das Métricas de Qualidade
Áreas nas quais essas métricas podem atuar.
Aplicações na Área Geológica;
Aplicações na Área Metereológica;
Aplicações na Área Médica;
Aplicações na Área Militar;
Aplicações na Área de Transmissão de Vídeo, etc.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Aplicações das Métricas de Qualidade
Áreas nas quais essas métricas podem atuar.
Aplicações na Área Geológica;
Aplicações na Área Metereológica;
Aplicações na Área Médica;
Aplicações na Área Militar;
Aplicações na Área de Transmissão de Vídeo, etc.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Previamente...
Antes do “Índice de Qualidade Universal”.
Abordaremos, apenas a título de comparação,
outras métricas que são amplamente utilizadas.
As métricas abordadas serão:
MSE Mean Squared Error;
NRMSE Normalized Root Mean Squared Error;
PSNR Peak Signal-To-Noise Ratio.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Previamente...
Antes do “Índice de Qualidade Universal”.
Abordaremos, apenas a título de comparação,
outras métricas que são amplamente utilizadas.
As métricas abordadas serão:
MSE Mean Squared Error;
NRMSE Normalized Root Mean Squared Error;
PSNR Peak Signal-To-Noise Ratio.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Previamente...
Antes do “Índice de Qualidade Universal”.
Abordaremos, apenas a título de comparação,
outras métricas que são amplamente utilizadas.
As métricas abordadas serão:
MSE Mean Squared Error;
NRMSE Normalized Root Mean Squared Error;
PSNR Peak Signal-To-Noise Ratio.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Previamente...
Antes do “Índice de Qualidade Universal”.
Abordaremos, apenas a título de comparação,
outras métricas que são amplamente utilizadas.
As métricas abordadas serão:
MSE Mean Squared Error;
NRMSE Normalized Root Mean Squared Error;
PSNR Peak Signal-To-Noise Ratio.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Previamente...
Antes do “Índice de Qualidade Universal”.
Abordaremos, apenas a título de comparação,
outras métricas que são amplamente utilizadas.
As métricas abordadas serão:
MSE Mean Squared Error;
NRMSE Normalized Root Mean Squared Error;
PSNR Peak Signal-To-Noise Ratio.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Previamente...
Antes do “Índice de Qualidade Universal”.
Abordaremos, apenas a título de comparação,
outras métricas que são amplamente utilizadas.
As métricas abordadas serão:
MSE Mean Squared Error;
NRMSE Normalized Root Mean Squared Error;
PSNR Peak Signal-To-Noise Ratio.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Previamente...
Antes do “Índice de Qualidade Universal”.
Abordaremos, apenas a título de comparação,
outras métricas que são amplamente utilizadas.
As métricas abordadas serão:
MSE Mean Squared Error;
NRMSE Normalized Root Mean Squared Error;
PSNR Peak Signal-To-Noise Ratio.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Previamente...
Antes do “Índice de Qualidade Universal”.
Abordaremos, apenas a título de comparação,
outras métricas que são amplamente utilizadas.
As métricas abordadas serão:
MSE Mean Squared Error;
NRMSE Normalized Root Mean Squared Error;
PSNR Peak Signal-To-Noise Ratio.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
MSE - Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O MSE entre as imagens x e y será dado por:
MSE(x, y) =
1
N
N
i=1
(xi − yi)2
É largamente usado em tarefas de otimização e
problemas de deconvolução, porém possui limitações
quando usado na predição da percepção humana de
qualidade e fidelidade de imagens.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
MSE - Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O MSE entre as imagens x e y será dado por:
MSE(x, y) =
1
N
N
i=1
(xi − yi)2
É largamente usado em tarefas de otimização e
problemas de deconvolução, porém possui limitações
quando usado na predição da percepção humana de
qualidade e fidelidade de imagens.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
MSE - Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O MSE entre as imagens x e y será dado por:
MSE(x, y) =
1
N
N
i=1
(xi − yi)2
É largamente usado em tarefas de otimização e
problemas de deconvolução, porém possui limitações
quando usado na predição da percepção humana de
qualidade e fidelidade de imagens.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
MSE - Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O MSE entre as imagens x e y será dado por:
MSE(x, y) =
1
N
N
i=1
(xi − yi)2
É largamente usado em tarefas de otimização e
problemas de deconvolução, porém possui limitações
quando usado na predição da percepção humana de
qualidade e fidelidade de imagens.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
MSE - Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O MSE entre as imagens x e y será dado por:
MSE(x, y) =
1
N
N
i=1
(xi − yi)2
É largamente usado em tarefas de otimização e
problemas de deconvolução, porém possui limitações
quando usado na predição da percepção humana de
qualidade e fidelidade de imagens.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
NRMSE - Normalized Root Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O NRMSE entre as imagens x e y será dado por:
NRMSE(x, y) =


N
i=1
(xi − α · yi)2




N
i=1
x2
i


Onde α será dado por:
α =


N
i=1
(xi · yi)




N
i=1
y2
i


Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
NRMSE - Normalized Root Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O NRMSE entre as imagens x e y será dado por:
NRMSE(x, y) =


N
i=1
(xi − α · yi)2




N
i=1
x2
i


Onde α será dado por:
α =


N
i=1
(xi · yi)




N
i=1
y2
i


Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
NRMSE - Normalized Root Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O NRMSE entre as imagens x e y será dado por:
NRMSE(x, y) =


N
i=1
(xi − α · yi)2




N
i=1
x2
i


Onde α será dado por:
α =


N
i=1
(xi · yi)




N
i=1
y2
i


Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
NRMSE - Normalized Root Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O NRMSE entre as imagens x e y será dado por:
NRMSE(x, y) =


N
i=1
(xi − α · yi)2




N
i=1
x2
i


Onde α será dado por:
α =


N
i=1
(xi · yi)




N
i=1
y2
i


Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
NRMSE - Normalized Root Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O NRMSE entre as imagens x e y será dado por:
NRMSE(x, y) =


N
i=1
(xi − α · yi)2




N
i=1
x2
i


Onde α será dado por:
α =


N
i=1
(xi · yi)




N
i=1
y2
i


Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
NRMSE - Normalized Root Mean Squared Error
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais de duas imagens e N é o número de sinais das imagens.
O NRMSE entre as imagens x e y será dado por:
NRMSE(x, y) =


N
i=1
(xi − α · yi)2




N
i=1
x2
i


Onde α será dado por:
α =


N
i=1
(xi · yi)




N
i=1
y2
i


Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
PSNR - Peak Signal-To-Noise Ratio.
O PSNR é uma relação entre o máximo possível de
potência de um sinal, pela potência do ruído, quando
comparamos um sinal antes e depois de um processo de
degradação. Sua unidade é o dB (decibel).
O índice de qualidade é definido como:
PSNR = 10 · log10


MAX2
p
MSE

 = 20 · log10
MAXp
√
MSE
Onde MAXp é o valor máximo possível de um pixel e
MSE é o erro quadrático médio do conjunto avalidado.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
PSNR - Peak Signal-To-Noise Ratio.
O PSNR é uma relação entre o máximo possível de
potência de um sinal, pela potência do ruído, quando
comparamos um sinal antes e depois de um processo de
degradação. Sua unidade é o dB (decibel).
O índice de qualidade é definido como:
PSNR = 10 · log10


MAX2
p
MSE

 = 20 · log10
MAXp
√
MSE
Onde MAXp é o valor máximo possível de um pixel e
MSE é o erro quadrático médio do conjunto avalidado.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
PSNR - Peak Signal-To-Noise Ratio.
O PSNR é uma relação entre o máximo possível de
potência de um sinal, pela potência do ruído, quando
comparamos um sinal antes e depois de um processo de
degradação. Sua unidade é o dB (decibel).
O índice de qualidade é definido como:
PSNR = 10 · log10


MAX2
p
MSE

 = 20 · log10
MAXp
√
MSE
Onde MAXp é o valor máximo possível de um pixel e
MSE é o erro quadrático médio do conjunto avalidado.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
PSNR - Peak Signal-To-Noise Ratio.
O PSNR é uma relação entre o máximo possível de
potência de um sinal, pela potência do ruído, quando
comparamos um sinal antes e depois de um processo de
degradação. Sua unidade é o dB (decibel).
O índice de qualidade é definido como:
PSNR = 10 · log10


MAX2
p
MSE

 = 20 · log10
MAXp
√
MSE
Onde MAXp é o valor máximo possível de um pixel e
MSE é o erro quadrático médio do conjunto avalidado.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
PSNR - Peak Signal-To-Noise Ratio.
O PSNR é uma relação entre o máximo possível de
potência de um sinal, pela potência do ruído, quando
comparamos um sinal antes e depois de um processo de
degradação. Sua unidade é o dB (decibel).
O índice de qualidade é definido como:
PSNR = 10 · log10


MAX2
p
MSE

 = 20 · log10
MAXp
√
MSE
Onde MAXp é o valor máximo possível de um pixel e
MSE é o erro quadrático médio do conjunto avalidado.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Peak Signal-To-Noise Ratio.
Aplicando o conceito de PSNR em vídeos e imagens,
podemos observar que o mesmo é a relação entre a
entrada e a saída de um processo de compressão com
perdas, que avalia o quanto o processo introduziu
ruídos na imagem ou frame original.
Quanto maior o valor do PSNR, maior é a relação entre
a potência do sinal pela potência do ruído, o que
significa melhor qualidade.
Valores de PSNR acima de 42dB correspondem à
compressões que introduzem perdas imperceptíveis ao
olho humano, o que significa uma qualidade
excepcional.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Peak Signal-To-Noise Ratio.
Aplicando o conceito de PSNR em vídeos e imagens,
podemos observar que o mesmo é a relação entre a
entrada e a saída de um processo de compressão com
perdas, que avalia o quanto o processo introduziu
ruídos na imagem ou frame original.
Quanto maior o valor do PSNR, maior é a relação entre
a potência do sinal pela potência do ruído, o que
significa melhor qualidade.
Valores de PSNR acima de 42dB correspondem à
compressões que introduzem perdas imperceptíveis ao
olho humano, o que significa uma qualidade
excepcional.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Peak Signal-To-Noise Ratio.
Aplicando o conceito de PSNR em vídeos e imagens,
podemos observar que o mesmo é a relação entre a
entrada e a saída de um processo de compressão com
perdas, que avalia o quanto o processo introduziu
ruídos na imagem ou frame original.
Quanto maior o valor do PSNR, maior é a relação entre
a potência do sinal pela potência do ruído, o que
significa melhor qualidade.
Valores de PSNR acima de 42dB correspondem à
compressões que introduzem perdas imperceptíveis ao
olho humano, o que significa uma qualidade
excepcional.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Peak Signal-To-Noise Ratio.
Aplicando o conceito de PSNR em vídeos e imagens,
podemos observar que o mesmo é a relação entre a
entrada e a saída de um processo de compressão com
perdas, que avalia o quanto o processo introduziu
ruídos na imagem ou frame original.
Quanto maior o valor do PSNR, maior é a relação entre
a potência do sinal pela potência do ruído, o que
significa melhor qualidade.
Valores de PSNR acima de 42dB correspondem à
compressões que introduzem perdas imperceptíveis ao
olho humano, o que significa uma qualidade
excepcional.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Peak Signal-To-Noise Ratio.
Quadro de Qualidade dos Valores PSNR
Qualidade Valores
Qualidade Excepcional Acima de 42dB
Bastante Aceitável Acima de 36dB
Qualidade Mediana Entre 30dB e 36dB
Baixa Qualidade Abaixo de 30dB
Tabela: Quadro com as faixas de qualidade para o índice PSNR.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
A Universal Image Quality Index
Movidos pela necessidade de uma métrica que fosse
fácil de se obter e de ser empregada em várias
aplicações de processamento de imagens, Zhou Wang e
Alan Bovik propuseram um novo índice.
Diferente dos métodos tradicionais de avaliação de
erro, o índice proposto foi concebido para modelagem
de quaisquer distorções em imagens como uma
combinação de 3 fatores:
Perda de Correlação;
Distorções na Luminância;
Distorções no Contraste.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
A Universal Image Quality Index
Movidos pela necessidade de uma métrica que fosse
fácil de se obter e de ser empregada em várias
aplicações de processamento de imagens, Zhou Wang e
Alan Bovik propuseram um novo índice.
Diferente dos métodos tradicionais de avaliação de
erro, o índice proposto foi concebido para modelagem
de quaisquer distorções em imagens como uma
combinação de 3 fatores:
Perda de Correlação;
Distorções na Luminância;
Distorções no Contraste.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
A Universal Image Quality Index
Movidos pela necessidade de uma métrica que fosse
fácil de se obter e de ser empregada em várias
aplicações de processamento de imagens, Zhou Wang e
Alan Bovik propuseram um novo índice.
Diferente dos métodos tradicionais de avaliação de
erro, o índice proposto foi concebido para modelagem
de quaisquer distorções em imagens como uma
combinação de 3 fatores:
Perda de Correlação;
Distorções na Luminância;
Distorções no Contraste.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
A Universal Image Quality Index
Movidos pela necessidade de uma métrica que fosse
fácil de se obter e de ser empregada em várias
aplicações de processamento de imagens, Zhou Wang e
Alan Bovik propuseram um novo índice.
Diferente dos métodos tradicionais de avaliação de
erro, o índice proposto foi concebido para modelagem
de quaisquer distorções em imagens como uma
combinação de 3 fatores:
Perda de Correlação;
Distorções na Luminância;
Distorções no Contraste.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
A Universal Image Quality Index
Movidos pela necessidade de uma métrica que fosse
fácil de se obter e de ser empregada em várias
aplicações de processamento de imagens, Zhou Wang e
Alan Bovik propuseram um novo índice.
Diferente dos métodos tradicionais de avaliação de
erro, o índice proposto foi concebido para modelagem
de quaisquer distorções em imagens como uma
combinação de 3 fatores:
Perda de Correlação;
Distorções na Luminância;
Distorções no Contraste.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
A Universal Image Quality Index
Movidos pela necessidade de uma métrica que fosse
fácil de se obter e de ser empregada em várias
aplicações de processamento de imagens, Zhou Wang e
Alan Bovik propuseram um novo índice.
Diferente dos métodos tradicionais de avaliação de
erro, o índice proposto foi concebido para modelagem
de quaisquer distorções em imagens como uma
combinação de 3 fatores:
Perda de Correlação;
Distorções na Luminância;
Distorções no Contraste.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
A Universal Image Quality Index
Movidos pela necessidade de uma métrica que fosse
fácil de se obter e de ser empregada em várias
aplicações de processamento de imagens, Zhou Wang e
Alan Bovik propuseram um novo índice.
Diferente dos métodos tradicionais de avaliação de
erro, o índice proposto foi concebido para modelagem
de quaisquer distorções em imagens como uma
combinação de 3 fatores:
Perda de Correlação;
Distorções na Luminância;
Distorções no Contraste.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Características da “Nova” Métrica.
Principais Características do Índice de Qualidade
Matematicamente definido;
Baixa complexidade computacional;
Modelado para lidar com diferentes tipos de distorção;
Independente de avaliação humana
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Características da “Nova” Métrica.
Principais Características do Índice de Qualidade
Matematicamente definido;
Baixa complexidade computacional;
Modelado para lidar com diferentes tipos de distorção;
Independente de avaliação humana
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Características da “Nova” Métrica.
Principais Características do Índice de Qualidade
Matematicamente definido;
Baixa complexidade computacional;
Modelado para lidar com diferentes tipos de distorção;
Independente de avaliação humana
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Características da “Nova” Métrica.
Principais Características do Índice de Qualidade
Matematicamente definido;
Baixa complexidade computacional;
Modelado para lidar com diferentes tipos de distorção;
Independente de avaliação humana
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Características da “Nova” Métrica.
Principais Características do Índice de Qualidade
Matematicamente definido;
Baixa complexidade computacional;
Modelado para lidar com diferentes tipos de distorção;
Independente de avaliação humana
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Características da “Nova” Métrica.
Principais Características do Índice de Qualidade
Matematicamente definido;
Baixa complexidade computacional;
Modelado para lidar com diferentes tipos de distorção;
Independente de avaliação humana
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Características da “Nova” Métrica.
Principais Características do Índice de Qualidade
Matematicamente definido;
Baixa complexidade computacional;
Modelado para lidar com diferentes tipos de distorção;
Independente de avaliação humana
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Definição do Novo Índice de Qualidade.
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais das imagens original e de teste, respectivamente.
O novo índice de qualidade proposto será definido
como:
Q =
4 σxy x y
(σ2
x + σ2
y)[(x)2 + (y)2]
Os valores assumidos por Q variam no intervalo [−1, 1]
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Definição do Novo Índice de Qualidade.
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais das imagens original e de teste, respectivamente.
O novo índice de qualidade proposto será definido
como:
Q =
4 σxy x y
(σ2
x + σ2
y)[(x)2 + (y)2]
Os valores assumidos por Q variam no intervalo [−1, 1]
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Definição do Novo Índice de Qualidade.
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais das imagens original e de teste, respectivamente.
O novo índice de qualidade proposto será definido
como:
Q =
4 σxy x y
(σ2
x + σ2
y)[(x)2 + (y)2]
Os valores assumidos por Q variam no intervalo [−1, 1]
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Definição do Novo Índice de Qualidade.
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais das imagens original e de teste, respectivamente.
O novo índice de qualidade proposto será definido
como:
Q =
4 σxy x y
(σ2
x + σ2
y)[(x)2 + (y)2]
Os valores assumidos por Q variam no intervalo [−1, 1]
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Definição do Novo Índice de Qualidade.
Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os
sinais das imagens original e de teste, respectivamente.
O novo índice de qualidade proposto será definido
como:
Q =
4 σxy x y
(σ2
x + σ2
y)[(x)2 + (y)2]
Os valores assumidos por Q variam no intervalo [−1, 1]
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Detalhamento do Novo Índice de Qualidade.
Q =
4 σxy x y
(σ2
x + σ2
y )[(x)2 + (y)2]
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Detalhamento do Novo Índice de Qualidade.
Q =
4 σxy x y
(σ2
x + σ2
y )[(x)2 + (y)2]
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Detalhamento do Novo Índice de Qualidade.
Q =
4 σxy x y
(σ2
x + σ2
y )[(x)2 + (y)2]
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Detalhamento do Novo Índice de Qualidade.
Q =
4 σxy x y
(σ2
x + σ2
y )[(x)2 + (y)2]
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Detalhamento do Novo Índice de Qualidade.
Q =
4 σxy x y
(σ2
x + σ2
y )[(x)2 + (y)2]
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Os Três Fatores que Compõem o Índice.
Q =
4 σxy x y
(σ2
x + σ2
y)[(x)2 + (y)2]
O novo índice de qualidade pode ser reescrito como o
produto de três fatores ou componentes:
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Os Três Fatores que Compõem o Índice.
Q =
4 σxy x y
(σ2
x + σ2
y)[(x)2 + (y)2]
O novo índice de qualidade pode ser reescrito como o
produto de três fatores ou componentes:
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Os Três Fatores que Compõem o Índice.
Q =
4 σxy x y
(σ2
x + σ2
y)[(x)2 + (y)2]
O novo índice de qualidade pode ser reescrito como o
produto de três fatores ou componentes:
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Os Três Fatores que Compõem o Índice.
Q =
4 σxy x y
(σ2
x + σ2
y)[(x)2 + (y)2]
O novo índice de qualidade pode ser reescrito como o
produto de três fatores ou componentes:
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Entendendo Melhor a Composição de Fatores.
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
σxy
σx σy
=⇒ Coeficiente de correlação entre x e y.
2 x y
(x)2 + (y)2
=⇒ Coeficiente de luminância entre x e y.
2 σx σy
σ2
x + σ2
y
=⇒ Coeficiente de constraste entre x e y.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Entendendo Melhor a Composição de Fatores.
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
σxy
σx σy
=⇒ Coeficiente de correlação entre x e y.
2 x y
(x)2 + (y)2
=⇒ Coeficiente de luminância entre x e y.
2 σx σy
σ2
x + σ2
y
=⇒ Coeficiente de constraste entre x e y.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Entendendo Melhor a Composição de Fatores.
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
σxy
σx σy
=⇒ Coeficiente de correlação entre x e y.
2 x y
(x)2 + (y)2
=⇒ Coeficiente de luminância entre x e y.
2 σx σy
σ2
x + σ2
y
=⇒ Coeficiente de constraste entre x e y.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Entendendo Melhor a Composição de Fatores.
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
σxy
σx σy
=⇒ Coeficiente de correlação entre x e y.
2 x y
(x)2 + (y)2
=⇒ Coeficiente de luminância entre x e y.
2 σx σy
σ2
x + σ2
y
=⇒ Coeficiente de constraste entre x e y.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Entendendo Melhor a Composição de Fatores.
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
σxy
σx σy
=⇒ Coeficiente de correlação entre x e y.
2 x y
(x)2 + (y)2
=⇒ Coeficiente de luminância entre x e y.
2 σx σy
σ2
x + σ2
y
=⇒ Coeficiente de constraste entre x e y.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Quadro de Avaliação dos Fatores.
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
Fator Intervalo Melhor Caso
Coeficiente de Correlação [−1, 1] yi = axi + b, ∀ i = 1, 2, . . . , N
Coeficiente de Luminância [0, 1] x = y
Coeficiente de Contraste [0, 1] σx = σy
Tabela: Quadro comparativo entre os fatores que compõem o índice.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Quadro de Avaliação dos Fatores.
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
Fator Intervalo Melhor Caso
Coeficiente de Correlação [−1, 1] yi = axi + b, ∀ i = 1, 2, . . . , N
Coeficiente de Luminância [0, 1] x = y
Coeficiente de Contraste [0, 1] σx = σy
Tabela: Quadro comparativo entre os fatores que compõem o índice.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Quadro de Avaliação dos Fatores.
Q =
σxy
σxσy
·
2 x y
(x)2 + (y)2
·
2 σxσy
σ2
x + σ2
y
Fator Intervalo Melhor Caso
Coeficiente de Correlação [−1, 1] yi = axi + b, ∀ i = 1, 2, . . . , N
Coeficiente de Luminância [0, 1] x = y
Coeficiente de Contraste [0, 1] σx = σy
Tabela: Quadro comparativo entre os fatores que compõem o índice.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Finalmente... Como Funciona o Algoritmo?
Usando a abordagem de janelas deslizantes!
Começamos pelo canto superior esquerdo da imagem
com uma janela deslizante de tamanho B × B.
Movemos a janela pixel a pixel, de maneira horizontal e
vertical através de todas as linhas e colunas da imagem
até alcançar o canto inferior da mesma.
A cada passo computamos o índice de qualidade local
Qj levando em consideração apenas os valores internos
da janela.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Finalmente... Como Funciona o Algoritmo?
Usando a abordagem de janelas deslizantes!
Começamos pelo canto superior esquerdo da imagem
com uma janela deslizante de tamanho B × B.
Movemos a janela pixel a pixel, de maneira horizontal e
vertical através de todas as linhas e colunas da imagem
até alcançar o canto inferior da mesma.
A cada passo computamos o índice de qualidade local
Qj levando em consideração apenas os valores internos
da janela.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Finalmente... Como Funciona o Algoritmo?
Usando a abordagem de janelas deslizantes!
Começamos pelo canto superior esquerdo da imagem
com uma janela deslizante de tamanho B × B.
Movemos a janela pixel a pixel, de maneira horizontal e
vertical através de todas as linhas e colunas da imagem
até alcançar o canto inferior da mesma.
A cada passo computamos o índice de qualidade local
Qj levando em consideração apenas os valores internos
da janela.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Finalmente... Como Funciona o Algoritmo?
Usando a abordagem de janelas deslizantes!
Começamos pelo canto superior esquerdo da imagem
com uma janela deslizante de tamanho B × B.
Movemos a janela pixel a pixel, de maneira horizontal e
vertical através de todas as linhas e colunas da imagem
até alcançar o canto inferior da mesma.
A cada passo computamos o índice de qualidade local
Qj levando em consideração apenas os valores internos
da janela.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Finalmente... Como Funciona o Algoritmo?
Usando a abordagem de janelas deslizantes!
Começamos pelo canto superior esquerdo da imagem
com uma janela deslizante de tamanho B × B.
Movemos a janela pixel a pixel, de maneira horizontal e
vertical através de todas as linhas e colunas da imagem
até alcançar o canto inferior da mesma.
A cada passo computamos o índice de qualidade local
Qj levando em consideração apenas os valores internos
da janela.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ilustrando...
Passo 1
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ilustrando...
Passo 2
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ilustrando...
Passo 3
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ilustrando...
Passo 20
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ilustrando...
Passo 21
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ilustrando...
J-ésimo
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ao Final do Processo...
Ao término do processo:
Teremos executado um total de M passos.
O índice de qualidade global da imagem será dado por:
Q =
1
M
M
j=1
Qj
E além disso teremos acesso ao mapa de índices de
qualidade da imagem.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ao Final do Processo...
Ao término do processo:
Teremos executado um total de M passos.
O índice de qualidade global da imagem será dado por:
Q =
1
M
M
j=1
Qj
E além disso teremos acesso ao mapa de índices de
qualidade da imagem.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ao Final do Processo...
Ao término do processo:
Teremos executado um total de M passos.
O índice de qualidade global da imagem será dado por:
Q =
1
M
M
j=1
Qj
E além disso teremos acesso ao mapa de índices de
qualidade da imagem.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ao Final do Processo...
Ao término do processo:
Teremos executado um total de M passos.
O índice de qualidade global da imagem será dado por:
Q =
1
M
M
j=1
Qj
E além disso teremos acesso ao mapa de índices de
qualidade da imagem.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ao Final do Processo...
Ao término do processo:
Teremos executado um total de M passos.
O índice de qualidade global da imagem será dado por:
Q =
1
M
M
j=1
Qj
E além disso teremos acesso ao mapa de índices de
qualidade da imagem.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Ao Final do Processo...
Ao término do processo:
Teremos executado um total de M passos.
O índice de qualidade global da imagem será dado por:
Q =
1
M
M
j=1
Qj
E além disso teremos acesso ao mapa de índices de
qualidade da imagem.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Mapa de Índices de Qualidade
Admitindo um bloco de avaliação de dimensão B × B:
Map.Width = Image.Width - B + 1
Map.Height = Image.Height - B + 1
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Mapa de Índices de Qualidade
Admitindo um bloco de avaliação de dimensão B × B:
Map.Width = Image.Width - B + 1
Map.Height = Image.Height - B + 1
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Mapa de Índices de Qualidade
Admitindo um bloco de avaliação de dimensão B × B:
Map.Width = Image.Width - B + 1
Map.Height = Image.Height - B + 1
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Mapa de Índices de Qualidade
Admitindo um bloco de avaliação de dimensão B × B:
Map.Width = Image.Width - B + 1
Map.Height = Image.Height - B + 1
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Fluxograma - Obtenção do Índice de Qualidade
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Exemplo - Obtido Através da Plataforma R
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Mapas - Obtidos Através da Plataforma R
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Índices - Obtidos Através da Plataforma R.
Índices Relativos ao Exemplo Anterior.
Índice Valor Encontrado
Universal Image Quality Index (UIQI) 0.60898
Mean Squared Error (MSE) 81.3293
Normalized Root Mean Squared Error (NRMSE) 0.00469
Peak Signal-To-Noise Ratio (PSNR) 29.0283
Tabela: Quadro com os índices encontrados utilizando a plataforma R
para a imagem “Lena”, 512x512, 8bits/pixel. Observe que um simples
desfoque gaussiano levemente aplicado faz com que o PSNR atinja o
limiar de qualidade que é dito como bastante aceitável quando seu valor
se encontra acima de 36dB e mediano entre 30dB e 36dB.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Média em R
Exibindo a função que computa a média dos
blocos original e de teste.
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
Implementada na Plataforma R.
§ ¤
1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix )
2 {
3 return (mean(my . block . or . matrix ) )
4 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Média em R
Exibindo a função que computa a média dos
blocos original e de teste.
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
Implementada na Plataforma R.
§ ¤
1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix )
2 {
3 return (mean(my . block . or . matrix ) )
4 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Média em R
Exibindo a função que computa a média dos
blocos original e de teste.
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
Implementada na Plataforma R.
§ ¤
1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix )
2 {
3 return (mean(my . block . or . matrix ) )
4 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Média em R
Exibindo a função que computa a média dos
blocos original e de teste.
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
Implementada na Plataforma R.
§ ¤
1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix )
2 {
3 return (mean(my . block . or . matrix ) )
4 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Média em R
Exibindo a função que computa a média dos
blocos original e de teste.
x = 1
N
N
i=1
xi y = 1
N
N
i=1
yi
Implementada na Plataforma R.
§ ¤
1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix )
2 {
3 return (mean(my . block . or . matrix ) )
4 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Variância em R
Exibindo a função que computa a variância
dos blocos original e de teste.
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
Implementada na Plataforma R.
§ ¤
1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e )
2 {
3 N <− length (my . block . or . matrix )
4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) )
5 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Variância em R
Exibindo a função que computa a variância
dos blocos original e de teste.
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
Implementada na Plataforma R.
§ ¤
1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e )
2 {
3 N <− length (my . block . or . matrix )
4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) )
5 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Variância em R
Exibindo a função que computa a variância
dos blocos original e de teste.
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
Implementada na Plataforma R.
§ ¤
1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e )
2 {
3 N <− length (my . block . or . matrix )
4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) )
5 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Variância em R
Exibindo a função que computa a variância
dos blocos original e de teste.
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
Implementada na Plataforma R.
§ ¤
1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e )
2 {
3 N <− length (my . block . or . matrix )
4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) )
5 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Variância em R
Exibindo a função que computa a variância
dos blocos original e de teste.
σ2
x = 1
N−1
N
i=1
(xi − x)2
σ2
y = 1
N−1
N
i=1
(yi − y)2
Implementada na Plataforma R.
§ ¤
1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e )
2 {
3 N <− length (my . block . or . matrix )
4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) )
5 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Covariância em R
Exibindo a função que computa a covariância.
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Implementada na Plataforma R.
§ ¤
1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y )
2 {
3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y
4 N <− length ( block . x )
5
6 # Retornando v a l o r
7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) )
8 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Covariância em R
Exibindo a função que computa a covariância.
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Implementada na Plataforma R.
§ ¤
1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y )
2 {
3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y
4 N <− length ( block . x )
5
6 # Retornando v a l o r
7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) )
8 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Covariância em R
Exibindo a função que computa a covariância.
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Implementada na Plataforma R.
§ ¤
1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y )
2 {
3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y
4 N <− length ( block . x )
5
6 # Retornando v a l o r
7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) )
8 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Covariância em R
Exibindo a função que computa a covariância.
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Implementada na Plataforma R.
§ ¤
1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y )
2 {
3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y
4 N <− length ( block . x )
5
6 # Retornando v a l o r
7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) )
8 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação da Função Covariância em R
Exibindo a função que computa a covariância.
σxy = 1
N−1
N
i=1
(xi − x)(yi − y)
Implementada na Plataforma R.
§ ¤
1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y )
2 {
3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y
4 N <− length ( block . x )
5
6 # Retornando v a l o r
7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) )
8 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação do Índice em R
§ ¤
1 MyUniversalImageQualityIndexPerBlock <− f u n c t i o n (my . block . x , my . block . y )
2 {
3 # Mapeando os v a l o r e s dos b l o c o s x e y para i d e n t i f i c a d o r e s menos verbosos
4 x <− my . block . x
5 y <− my . block . y
6
7 # Mean
8 x_bar <− MyMeanFunction ( x )
9 y_bar <− MyMeanFunction ( y )
10
11 # Covariance
12 double_sigma <− MyDoubleSigmaFunction ( x , x_bar , y , y_bar )
13
14 # Variance
15 squared_sigma_x <− MySquaredSigmaFunction ( x , x_bar )
16 squared_sigma_y <− MySquaredSigmaFunction ( y , y_bar )
17
18 # Numerator
19 numerador <− 4*double_sigma*x_bar*y_bar
20
21 # Denominator
22 denominador <− ( squared_sigma_x + squared_sigma_y )*( x_bar ^2 + y_bar ^2)
23
24 # Index block v a l u e r e t u r n
25 return ( numerador/ denominador )
26 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Codificação do Mapa em R
§ ¤
1 MyUniversalImageQualityIndexMap <− f u n c t i o n ( o r i g i n a l , te s t , my . block . s i z e = 8)
2 {
3 bs <− my . block . s i z e # Diminuindo a v e r b o s i d a d e
4
5 # Resgatando as tamanhos
6 my . rows <− dim ( o r i g i n a l ) [ 1 ] ; my . c o l s <− dim ( o r i g i n a l ) [ 2 ]
7
8 # Definindo o tamanho do mapa
9 my . map . h <− my . rows − bs + 1; my . map .w <− my . c o l s − bs + 1
10 my . q u a l i t y . map <− matrix (0 , nrow = my . map . h , ncol = my . map .w)
11
12 # Looping que v a r r e a imagem
13 f o r ( i i n 1 : (my . rows − bs + 1) )
14 {
15 f o r ( j i n 1 : (my . c o l s − bs + 1) )
16 {
17 # Resgatando os b l o c o s
18 tmp_ o r i g i n a l <− o r i g i n a l [ i : ( i + bs − 1) , j : ( j + bs − 1) ]
19 tmp_t e s t <− t e s t [ i : ( i + bs − 1) , j : ( j + bs − 1) ]
20
21 # Armazenando r e s u l t a d o do bloco c o r r e n t e .
22 MyQ <− MyUniversalImageQualityIndexPerBlock (tmp_o r i g i n a l , tmp_t e s t )
23 my . q u a l i t y . map [ i , j ] <− i f ( i s . nan (MyQ) ) 1 e l s e MyQ
24 }
25 }
26 return ( my . q u a l i t y . map )
27 }
¦ ¥
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Alguns Cuidados Devem Ser Tomados!
Devemos prestar atenção ao cálculo das componentes
do Índice de Qualidade!
O que acontece com o índice se o seguinte bloco for
avaliado?














132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132














Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Alguns Cuidados Devem Ser Tomados!
Devemos prestar atenção ao cálculo das componentes
do Índice de Qualidade!
O que acontece com o índice se o seguinte bloco for
avaliado?














132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132














Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Alguns Cuidados Devem Ser Tomados!
Devemos prestar atenção ao cálculo das componentes
do Índice de Qualidade!
O que acontece com o índice se o seguinte bloco for
avaliado?














132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132














Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Alguns Cuidados Devem Ser Tomados!
Devemos prestar atenção ao cálculo das componentes
do Índice de Qualidade!
O que acontece com o índice se o seguinte bloco for
avaliado?














132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132
132 132 132 132 132 132 132 132














Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Quadro Comparativo.
Estimativas Fornecidas e Encontradas.
Distorção Artigo Encontrado MSEA MSEE
Mean Shift 0.9894 0.98939 225 225.032
Contrast Stretching 0.9372 0.93389 225 225.244
Impulsive Salt-Pepper Noise 0.6494 0.64889 225 225.472
Multiplicative Speckle Noise 0.4408 0.44048 225 225.769
Additive Gaussian Noise 0.3891 0.38898 225 226.283
Blurring 0.3461 0.34302 225 224.741
Jpeg Compression 0.2876 0.28725 215 215.603
Tabela: Quadro comparativo entre os índices fornecidos pelo artigo e
encontrados através de implementação do algoritmo utilizando a
plataforma R para a imagem “Lena”, 512x512, 8bits/pixel. MSEA -
fornecido no artigo. MSEE - encontrado através de implementação.
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Isso é tudo pessoal !!!
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões
Agradecimentos
Grato Pela Atenção!
Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens

Mais conteúdo relacionado

Semelhante a Qualidade de Imagens

Reconhecimento facial
Reconhecimento facialReconhecimento facial
Reconhecimento facialHelton Ritter
 
Aplicações dos conteúdos matemáticos
Aplicações dos conteúdos matemáticosAplicações dos conteúdos matemáticos
Aplicações dos conteúdos matemáticosLuciana1005
 
Aplicações dos conteúdos matemáticos
Aplicações dos conteúdos matemáticosAplicações dos conteúdos matemáticos
Aplicações dos conteúdos matemáticosLuciana1005
 
Detecção de Faces - Redes Neurais *MLP
Detecção de Faces - Redes Neurais *MLPDetecção de Faces - Redes Neurais *MLP
Detecção de Faces - Redes Neurais *MLPAdilmar Dantas
 
Dissertação
DissertaçãoDissertação
DissertaçãoLuana_SJC
 
Gladstone's tentative resume
Gladstone's tentative resumeGladstone's tentative resume
Gladstone's tentative resumeGladstone Alves
 
Five Minute Speech - Academic Interests, Current Works and Experiences.
Five Minute Speech - Academic Interests, Current Works and Experiences.Five Minute Speech - Academic Interests, Current Works and Experiences.
Five Minute Speech - Academic Interests, Current Works and Experiences.Michel Alves
 
163 2009 gustavo_meurer
163 2009 gustavo_meurer163 2009 gustavo_meurer
163 2009 gustavo_meurerpunkqp
 
SisEdu – Sistema Educacional - Módulo Financeiro
SisEdu – Sistema Educacional - Módulo FinanceiroSisEdu – Sistema Educacional - Módulo Financeiro
SisEdu – Sistema Educacional - Módulo FinanceiroUNIEURO
 
Alex menezes - Analista de Suporte Técnico
Alex menezes - Analista de Suporte TécnicoAlex menezes - Analista de Suporte Técnico
Alex menezes - Analista de Suporte TécnicoAlex Menezes
 

Semelhante a Qualidade de Imagens (10)

Reconhecimento facial
Reconhecimento facialReconhecimento facial
Reconhecimento facial
 
Aplicações dos conteúdos matemáticos
Aplicações dos conteúdos matemáticosAplicações dos conteúdos matemáticos
Aplicações dos conteúdos matemáticos
 
Aplicações dos conteúdos matemáticos
Aplicações dos conteúdos matemáticosAplicações dos conteúdos matemáticos
Aplicações dos conteúdos matemáticos
 
Detecção de Faces - Redes Neurais *MLP
Detecção de Faces - Redes Neurais *MLPDetecção de Faces - Redes Neurais *MLP
Detecção de Faces - Redes Neurais *MLP
 
Dissertação
DissertaçãoDissertação
Dissertação
 
Gladstone's tentative resume
Gladstone's tentative resumeGladstone's tentative resume
Gladstone's tentative resume
 
Five Minute Speech - Academic Interests, Current Works and Experiences.
Five Minute Speech - Academic Interests, Current Works and Experiences.Five Minute Speech - Academic Interests, Current Works and Experiences.
Five Minute Speech - Academic Interests, Current Works and Experiences.
 
163 2009 gustavo_meurer
163 2009 gustavo_meurer163 2009 gustavo_meurer
163 2009 gustavo_meurer
 
SisEdu – Sistema Educacional - Módulo Financeiro
SisEdu – Sistema Educacional - Módulo FinanceiroSisEdu – Sistema Educacional - Módulo Financeiro
SisEdu – Sistema Educacional - Módulo Financeiro
 
Alex menezes - Analista de Suporte Técnico
Alex menezes - Analista de Suporte TécnicoAlex menezes - Analista de Suporte Técnico
Alex menezes - Analista de Suporte Técnico
 

Mais de Michel Alves

Texture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU UseTexture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU UseMichel Alves
 
Intelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color PalettesIntelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color PalettesMichel Alves
 
A Framework for Harmonic Color Measures
A Framework for Harmonic Color MeasuresA Framework for Harmonic Color Measures
A Framework for Harmonic Color MeasuresMichel Alves
 
Effectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment IndexesEffectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment IndexesMichel Alves
 
Introduction to Kernel Functions
Introduction to Kernel FunctionsIntroduction to Kernel Functions
Introduction to Kernel FunctionsMichel Alves
 
About Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV SpaceAbout Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV SpaceMichel Alves
 
Color Harmonization - Results
Color Harmonization - ResultsColor Harmonization - Results
Color Harmonization - ResultsMichel Alves
 
Wave Simulation Using Perlin Noise
Wave Simulation Using Perlin NoiseWave Simulation Using Perlin Noise
Wave Simulation Using Perlin NoiseMichel Alves
 
Similarity Maps Using SSIM Index
Similarity Maps Using SSIM IndexSimilarity Maps Using SSIM Index
Similarity Maps Using SSIM IndexMichel Alves
 
Qualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color HarmonizationQualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color HarmonizationMichel Alves
 
TMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and ReportsTMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and ReportsMichel Alves
 
Month Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJMonth Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJMichel Alves
 
Color Palettes in R
Color Palettes in RColor Palettes in R
Color Palettes in RMichel Alves
 
Hue Wheel Prototype
Hue Wheel PrototypeHue Wheel Prototype
Hue Wheel PrototypeMichel Alves
 
Triangle Mesh Plot
Triangle Mesh PlotTriangle Mesh Plot
Triangle Mesh PlotMichel Alves
 
Capacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video SlidesCapacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video SlidesMichel Alves
 
Capacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function CatalogCapacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function CatalogMichel Alves
 

Mais de Michel Alves (20)

Texture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU UseTexture Synthesis: An Approach Based on GPU Use
Texture Synthesis: An Approach Based on GPU Use
 
Intelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color PalettesIntelligent Transfer of Thematic Harmonic Color Palettes
Intelligent Transfer of Thematic Harmonic Color Palettes
 
A Framework for Harmonic Color Measures
A Framework for Harmonic Color MeasuresA Framework for Harmonic Color Measures
A Framework for Harmonic Color Measures
 
Effectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment IndexesEffectiveness of Image Quality Assessment Indexes
Effectiveness of Image Quality Assessment Indexes
 
Introduction to Kernel Functions
Introduction to Kernel FunctionsIntroduction to Kernel Functions
Introduction to Kernel Functions
 
About Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV SpaceAbout Perception and Hue Histograms in HSV Space
About Perception and Hue Histograms in HSV Space
 
Color Harmonization - Results
Color Harmonization - ResultsColor Harmonization - Results
Color Harmonization - Results
 
Wave Simulation Using Perlin Noise
Wave Simulation Using Perlin NoiseWave Simulation Using Perlin Noise
Wave Simulation Using Perlin Noise
 
Similarity Maps Using SSIM Index
Similarity Maps Using SSIM IndexSimilarity Maps Using SSIM Index
Similarity Maps Using SSIM Index
 
Qualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color HarmonizationQualifying Exam - Image-Based Reconstruction With Color Harmonization
Qualifying Exam - Image-Based Reconstruction With Color Harmonization
 
TMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and ReportsTMS - Schedule of Presentations and Reports
TMS - Schedule of Presentations and Reports
 
Month Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJMonth Presentations Schedule - March/2015 - LCG/UFRJ
Month Presentations Schedule - March/2015 - LCG/UFRJ
 
Color Palettes in R
Color Palettes in RColor Palettes in R
Color Palettes in R
 
Sigmoid Curve Erf
Sigmoid Curve ErfSigmoid Curve Erf
Sigmoid Curve Erf
 
Hue Wheel Prototype
Hue Wheel PrototypeHue Wheel Prototype
Hue Wheel Prototype
 
Cosine Curve
Cosine CurveCosine Curve
Cosine Curve
 
Triangle Mesh Plot
Triangle Mesh PlotTriangle Mesh Plot
Triangle Mesh Plot
 
Triangle Plot
Triangle PlotTriangle Plot
Triangle Plot
 
Capacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video SlidesCapacity-Constrained Point Distributions :: Video Slides
Capacity-Constrained Point Distributions :: Video Slides
 
Capacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function CatalogCapacity-Constrained Point Distributions :: Density Function Catalog
Capacity-Constrained Point Distributions :: Density Function Catalog
 

Último

Noções de Orçamento Público AFO - CNU - Aula 1 - Alunos.pdf
Noções de Orçamento Público AFO - CNU - Aula 1 - Alunos.pdfNoções de Orçamento Público AFO - CNU - Aula 1 - Alunos.pdf
Noções de Orçamento Público AFO - CNU - Aula 1 - Alunos.pdfdottoor
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxIsabelaRafael2
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxconcelhovdragons
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxLuizHenriquedeAlmeid6
 
As Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAs Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAlexandreFrana33
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdfHABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdfdio7ff
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptxpamelacastro71
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxIsabellaGomes58
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfHenrique Pontes
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasCasa Ciências
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdfProfGleide
 
Cartilha 1º Ano Alfabetização _ 1º Ano Ensino Fundamental
Cartilha 1º Ano Alfabetização _ 1º Ano Ensino FundamentalCartilha 1º Ano Alfabetização _ 1º Ano Ensino Fundamental
Cartilha 1º Ano Alfabetização _ 1º Ano Ensino Fundamentalgeone480617
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISVitor Vieira Vasconcelos
 
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
PRIMEIRO---RCP - DEA - BLS estudos - basico
PRIMEIRO---RCP - DEA - BLS estudos - basicoPRIMEIRO---RCP - DEA - BLS estudos - basico
PRIMEIRO---RCP - DEA - BLS estudos - basicoSilvaDias3
 
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSOVALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSOBiatrizGomes1
 
19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileirosMary Alvarenga
 

Último (20)

Noções de Orçamento Público AFO - CNU - Aula 1 - Alunos.pdf
Noções de Orçamento Público AFO - CNU - Aula 1 - Alunos.pdfNoções de Orçamento Público AFO - CNU - Aula 1 - Alunos.pdf
Noções de Orçamento Público AFO - CNU - Aula 1 - Alunos.pdf
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
 
As Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptxAs Viagens Missionária do Apostolo Paulo.pptx
As Viagens Missionária do Apostolo Paulo.pptx
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
 
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdfHABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdf
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptx
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de Partículas
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
 
Cartilha 1º Ano Alfabetização _ 1º Ano Ensino Fundamental
Cartilha 1º Ano Alfabetização _ 1º Ano Ensino FundamentalCartilha 1º Ano Alfabetização _ 1º Ano Ensino Fundamental
Cartilha 1º Ano Alfabetização _ 1º Ano Ensino Fundamental
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGIS
 
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
 
PRIMEIRO---RCP - DEA - BLS estudos - basico
PRIMEIRO---RCP - DEA - BLS estudos - basicoPRIMEIRO---RCP - DEA - BLS estudos - basico
PRIMEIRO---RCP - DEA - BLS estudos - basico
 
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSOVALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
VALORES HUMANOS NA DISCIPLINA DE ENSINO RELIGIOSO
 
19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros
 
treinamento brigada incendio 2024 no.ppt
treinamento brigada incendio 2024 no.ppttreinamento brigada incendio 2024 no.ppt
treinamento brigada incendio 2024 no.ppt
 

Qualidade de Imagens

  • 1. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões A Universal Image Quality Index Processamento Digital de Imagens Michel Alves dos Santos Centro de Pesquisa em Matemática Computacional Universidade Federal de Alagoas, Campus A. C. Simões Tabuleiro do Martins - Maceió - AL, CEP: 57072-970 Docente Responsável: Prof. Dr. Alejandro C. Frery {michel.mas,michelalvessantos}@gmail.com 26 de Outubro de 2010 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 2. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Como Medir a Qualidade de Imagens? Figura: Avaliação de Imagens. (A) Imagem original “Lena”, 512x512, 8bits/pixel;(B) Imagem contaminada com ruído gaussiano aditivo. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 3. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Métricas de Qualidade Métricas de Qualidade Subjetivas e Objetivas. Figura: Organograma exibindo alguns tipos de métricas de qualidade. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 4. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Aplicações das Métricas de Qualidade Áreas nas quais essas métricas podem atuar. Aplicações na Área Geológica; Aplicações na Área Metereológica; Aplicações na Área Médica; Aplicações na Área Militar; Aplicações na Área de Transmissão de Vídeo, etc. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 5. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Aplicações das Métricas de Qualidade Áreas nas quais essas métricas podem atuar. Aplicações na Área Geológica; Aplicações na Área Metereológica; Aplicações na Área Médica; Aplicações na Área Militar; Aplicações na Área de Transmissão de Vídeo, etc. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 6. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Aplicações das Métricas de Qualidade Áreas nas quais essas métricas podem atuar. Aplicações na Área Geológica; Aplicações na Área Metereológica; Aplicações na Área Médica; Aplicações na Área Militar; Aplicações na Área de Transmissão de Vídeo, etc. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 7. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Aplicações das Métricas de Qualidade Áreas nas quais essas métricas podem atuar. Aplicações na Área Geológica; Aplicações na Área Metereológica; Aplicações na Área Médica; Aplicações na Área Militar; Aplicações na Área de Transmissão de Vídeo, etc. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 8. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Aplicações das Métricas de Qualidade Áreas nas quais essas métricas podem atuar. Aplicações na Área Geológica; Aplicações na Área Metereológica; Aplicações na Área Médica; Aplicações na Área Militar; Aplicações na Área de Transmissão de Vídeo, etc. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 9. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Aplicações das Métricas de Qualidade Áreas nas quais essas métricas podem atuar. Aplicações na Área Geológica; Aplicações na Área Metereológica; Aplicações na Área Médica; Aplicações na Área Militar; Aplicações na Área de Transmissão de Vídeo, etc. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 10. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Aplicações das Métricas de Qualidade Áreas nas quais essas métricas podem atuar. Aplicações na Área Geológica; Aplicações na Área Metereológica; Aplicações na Área Médica; Aplicações na Área Militar; Aplicações na Área de Transmissão de Vídeo, etc. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 11. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Aplicações das Métricas de Qualidade Áreas nas quais essas métricas podem atuar. Aplicações na Área Geológica; Aplicações na Área Metereológica; Aplicações na Área Médica; Aplicações na Área Militar; Aplicações na Área de Transmissão de Vídeo, etc. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 12. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Previamente... Antes do “Índice de Qualidade Universal”. Abordaremos, apenas a título de comparação, outras métricas que são amplamente utilizadas. As métricas abordadas serão: MSE Mean Squared Error; NRMSE Normalized Root Mean Squared Error; PSNR Peak Signal-To-Noise Ratio. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 13. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Previamente... Antes do “Índice de Qualidade Universal”. Abordaremos, apenas a título de comparação, outras métricas que são amplamente utilizadas. As métricas abordadas serão: MSE Mean Squared Error; NRMSE Normalized Root Mean Squared Error; PSNR Peak Signal-To-Noise Ratio. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 14. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Previamente... Antes do “Índice de Qualidade Universal”. Abordaremos, apenas a título de comparação, outras métricas que são amplamente utilizadas. As métricas abordadas serão: MSE Mean Squared Error; NRMSE Normalized Root Mean Squared Error; PSNR Peak Signal-To-Noise Ratio. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 15. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Previamente... Antes do “Índice de Qualidade Universal”. Abordaremos, apenas a título de comparação, outras métricas que são amplamente utilizadas. As métricas abordadas serão: MSE Mean Squared Error; NRMSE Normalized Root Mean Squared Error; PSNR Peak Signal-To-Noise Ratio. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 16. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Previamente... Antes do “Índice de Qualidade Universal”. Abordaremos, apenas a título de comparação, outras métricas que são amplamente utilizadas. As métricas abordadas serão: MSE Mean Squared Error; NRMSE Normalized Root Mean Squared Error; PSNR Peak Signal-To-Noise Ratio. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 17. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Previamente... Antes do “Índice de Qualidade Universal”. Abordaremos, apenas a título de comparação, outras métricas que são amplamente utilizadas. As métricas abordadas serão: MSE Mean Squared Error; NRMSE Normalized Root Mean Squared Error; PSNR Peak Signal-To-Noise Ratio. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 18. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Previamente... Antes do “Índice de Qualidade Universal”. Abordaremos, apenas a título de comparação, outras métricas que são amplamente utilizadas. As métricas abordadas serão: MSE Mean Squared Error; NRMSE Normalized Root Mean Squared Error; PSNR Peak Signal-To-Noise Ratio. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 19. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Previamente... Antes do “Índice de Qualidade Universal”. Abordaremos, apenas a título de comparação, outras métricas que são amplamente utilizadas. As métricas abordadas serão: MSE Mean Squared Error; NRMSE Normalized Root Mean Squared Error; PSNR Peak Signal-To-Noise Ratio. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 20. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões MSE - Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O MSE entre as imagens x e y será dado por: MSE(x, y) = 1 N N i=1 (xi − yi)2 É largamente usado em tarefas de otimização e problemas de deconvolução, porém possui limitações quando usado na predição da percepção humana de qualidade e fidelidade de imagens. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 21. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões MSE - Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O MSE entre as imagens x e y será dado por: MSE(x, y) = 1 N N i=1 (xi − yi)2 É largamente usado em tarefas de otimização e problemas de deconvolução, porém possui limitações quando usado na predição da percepção humana de qualidade e fidelidade de imagens. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 22. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões MSE - Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O MSE entre as imagens x e y será dado por: MSE(x, y) = 1 N N i=1 (xi − yi)2 É largamente usado em tarefas de otimização e problemas de deconvolução, porém possui limitações quando usado na predição da percepção humana de qualidade e fidelidade de imagens. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 23. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões MSE - Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O MSE entre as imagens x e y será dado por: MSE(x, y) = 1 N N i=1 (xi − yi)2 É largamente usado em tarefas de otimização e problemas de deconvolução, porém possui limitações quando usado na predição da percepção humana de qualidade e fidelidade de imagens. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 24. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões MSE - Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O MSE entre as imagens x e y será dado por: MSE(x, y) = 1 N N i=1 (xi − yi)2 É largamente usado em tarefas de otimização e problemas de deconvolução, porém possui limitações quando usado na predição da percepção humana de qualidade e fidelidade de imagens. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 25. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões NRMSE - Normalized Root Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O NRMSE entre as imagens x e y será dado por: NRMSE(x, y) =   N i=1 (xi − α · yi)2     N i=1 x2 i   Onde α será dado por: α =   N i=1 (xi · yi)     N i=1 y2 i   Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 26. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões NRMSE - Normalized Root Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O NRMSE entre as imagens x e y será dado por: NRMSE(x, y) =   N i=1 (xi − α · yi)2     N i=1 x2 i   Onde α será dado por: α =   N i=1 (xi · yi)     N i=1 y2 i   Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 27. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões NRMSE - Normalized Root Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O NRMSE entre as imagens x e y será dado por: NRMSE(x, y) =   N i=1 (xi − α · yi)2     N i=1 x2 i   Onde α será dado por: α =   N i=1 (xi · yi)     N i=1 y2 i   Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 28. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões NRMSE - Normalized Root Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O NRMSE entre as imagens x e y será dado por: NRMSE(x, y) =   N i=1 (xi − α · yi)2     N i=1 x2 i   Onde α será dado por: α =   N i=1 (xi · yi)     N i=1 y2 i   Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 29. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões NRMSE - Normalized Root Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O NRMSE entre as imagens x e y será dado por: NRMSE(x, y) =   N i=1 (xi − α · yi)2     N i=1 x2 i   Onde α será dado por: α =   N i=1 (xi · yi)     N i=1 y2 i   Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 30. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões NRMSE - Normalized Root Mean Squared Error Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais de duas imagens e N é o número de sinais das imagens. O NRMSE entre as imagens x e y será dado por: NRMSE(x, y) =   N i=1 (xi − α · yi)2     N i=1 x2 i   Onde α será dado por: α =   N i=1 (xi · yi)     N i=1 y2 i   Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 31. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões PSNR - Peak Signal-To-Noise Ratio. O PSNR é uma relação entre o máximo possível de potência de um sinal, pela potência do ruído, quando comparamos um sinal antes e depois de um processo de degradação. Sua unidade é o dB (decibel). O índice de qualidade é definido como: PSNR = 10 · log10   MAX2 p MSE   = 20 · log10 MAXp √ MSE Onde MAXp é o valor máximo possível de um pixel e MSE é o erro quadrático médio do conjunto avalidado. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 32. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões PSNR - Peak Signal-To-Noise Ratio. O PSNR é uma relação entre o máximo possível de potência de um sinal, pela potência do ruído, quando comparamos um sinal antes e depois de um processo de degradação. Sua unidade é o dB (decibel). O índice de qualidade é definido como: PSNR = 10 · log10   MAX2 p MSE   = 20 · log10 MAXp √ MSE Onde MAXp é o valor máximo possível de um pixel e MSE é o erro quadrático médio do conjunto avalidado. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 33. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões PSNR - Peak Signal-To-Noise Ratio. O PSNR é uma relação entre o máximo possível de potência de um sinal, pela potência do ruído, quando comparamos um sinal antes e depois de um processo de degradação. Sua unidade é o dB (decibel). O índice de qualidade é definido como: PSNR = 10 · log10   MAX2 p MSE   = 20 · log10 MAXp √ MSE Onde MAXp é o valor máximo possível de um pixel e MSE é o erro quadrático médio do conjunto avalidado. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 34. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões PSNR - Peak Signal-To-Noise Ratio. O PSNR é uma relação entre o máximo possível de potência de um sinal, pela potência do ruído, quando comparamos um sinal antes e depois de um processo de degradação. Sua unidade é o dB (decibel). O índice de qualidade é definido como: PSNR = 10 · log10   MAX2 p MSE   = 20 · log10 MAXp √ MSE Onde MAXp é o valor máximo possível de um pixel e MSE é o erro quadrático médio do conjunto avalidado. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 35. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões PSNR - Peak Signal-To-Noise Ratio. O PSNR é uma relação entre o máximo possível de potência de um sinal, pela potência do ruído, quando comparamos um sinal antes e depois de um processo de degradação. Sua unidade é o dB (decibel). O índice de qualidade é definido como: PSNR = 10 · log10   MAX2 p MSE   = 20 · log10 MAXp √ MSE Onde MAXp é o valor máximo possível de um pixel e MSE é o erro quadrático médio do conjunto avalidado. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 36. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Peak Signal-To-Noise Ratio. Aplicando o conceito de PSNR em vídeos e imagens, podemos observar que o mesmo é a relação entre a entrada e a saída de um processo de compressão com perdas, que avalia o quanto o processo introduziu ruídos na imagem ou frame original. Quanto maior o valor do PSNR, maior é a relação entre a potência do sinal pela potência do ruído, o que significa melhor qualidade. Valores de PSNR acima de 42dB correspondem à compressões que introduzem perdas imperceptíveis ao olho humano, o que significa uma qualidade excepcional. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 37. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Peak Signal-To-Noise Ratio. Aplicando o conceito de PSNR em vídeos e imagens, podemos observar que o mesmo é a relação entre a entrada e a saída de um processo de compressão com perdas, que avalia o quanto o processo introduziu ruídos na imagem ou frame original. Quanto maior o valor do PSNR, maior é a relação entre a potência do sinal pela potência do ruído, o que significa melhor qualidade. Valores de PSNR acima de 42dB correspondem à compressões que introduzem perdas imperceptíveis ao olho humano, o que significa uma qualidade excepcional. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 38. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Peak Signal-To-Noise Ratio. Aplicando o conceito de PSNR em vídeos e imagens, podemos observar que o mesmo é a relação entre a entrada e a saída de um processo de compressão com perdas, que avalia o quanto o processo introduziu ruídos na imagem ou frame original. Quanto maior o valor do PSNR, maior é a relação entre a potência do sinal pela potência do ruído, o que significa melhor qualidade. Valores de PSNR acima de 42dB correspondem à compressões que introduzem perdas imperceptíveis ao olho humano, o que significa uma qualidade excepcional. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 39. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Peak Signal-To-Noise Ratio. Aplicando o conceito de PSNR em vídeos e imagens, podemos observar que o mesmo é a relação entre a entrada e a saída de um processo de compressão com perdas, que avalia o quanto o processo introduziu ruídos na imagem ou frame original. Quanto maior o valor do PSNR, maior é a relação entre a potência do sinal pela potência do ruído, o que significa melhor qualidade. Valores de PSNR acima de 42dB correspondem à compressões que introduzem perdas imperceptíveis ao olho humano, o que significa uma qualidade excepcional. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 40. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Peak Signal-To-Noise Ratio. Quadro de Qualidade dos Valores PSNR Qualidade Valores Qualidade Excepcional Acima de 42dB Bastante Aceitável Acima de 36dB Qualidade Mediana Entre 30dB e 36dB Baixa Qualidade Abaixo de 30dB Tabela: Quadro com as faixas de qualidade para o índice PSNR. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 41. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões A Universal Image Quality Index Movidos pela necessidade de uma métrica que fosse fácil de se obter e de ser empregada em várias aplicações de processamento de imagens, Zhou Wang e Alan Bovik propuseram um novo índice. Diferente dos métodos tradicionais de avaliação de erro, o índice proposto foi concebido para modelagem de quaisquer distorções em imagens como uma combinação de 3 fatores: Perda de Correlação; Distorções na Luminância; Distorções no Contraste. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 42. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões A Universal Image Quality Index Movidos pela necessidade de uma métrica que fosse fácil de se obter e de ser empregada em várias aplicações de processamento de imagens, Zhou Wang e Alan Bovik propuseram um novo índice. Diferente dos métodos tradicionais de avaliação de erro, o índice proposto foi concebido para modelagem de quaisquer distorções em imagens como uma combinação de 3 fatores: Perda de Correlação; Distorções na Luminância; Distorções no Contraste. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 43. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões A Universal Image Quality Index Movidos pela necessidade de uma métrica que fosse fácil de se obter e de ser empregada em várias aplicações de processamento de imagens, Zhou Wang e Alan Bovik propuseram um novo índice. Diferente dos métodos tradicionais de avaliação de erro, o índice proposto foi concebido para modelagem de quaisquer distorções em imagens como uma combinação de 3 fatores: Perda de Correlação; Distorções na Luminância; Distorções no Contraste. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 44. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões A Universal Image Quality Index Movidos pela necessidade de uma métrica que fosse fácil de se obter e de ser empregada em várias aplicações de processamento de imagens, Zhou Wang e Alan Bovik propuseram um novo índice. Diferente dos métodos tradicionais de avaliação de erro, o índice proposto foi concebido para modelagem de quaisquer distorções em imagens como uma combinação de 3 fatores: Perda de Correlação; Distorções na Luminância; Distorções no Contraste. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 45. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões A Universal Image Quality Index Movidos pela necessidade de uma métrica que fosse fácil de se obter e de ser empregada em várias aplicações de processamento de imagens, Zhou Wang e Alan Bovik propuseram um novo índice. Diferente dos métodos tradicionais de avaliação de erro, o índice proposto foi concebido para modelagem de quaisquer distorções em imagens como uma combinação de 3 fatores: Perda de Correlação; Distorções na Luminância; Distorções no Contraste. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 46. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões A Universal Image Quality Index Movidos pela necessidade de uma métrica que fosse fácil de se obter e de ser empregada em várias aplicações de processamento de imagens, Zhou Wang e Alan Bovik propuseram um novo índice. Diferente dos métodos tradicionais de avaliação de erro, o índice proposto foi concebido para modelagem de quaisquer distorções em imagens como uma combinação de 3 fatores: Perda de Correlação; Distorções na Luminância; Distorções no Contraste. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 47. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões A Universal Image Quality Index Movidos pela necessidade de uma métrica que fosse fácil de se obter e de ser empregada em várias aplicações de processamento de imagens, Zhou Wang e Alan Bovik propuseram um novo índice. Diferente dos métodos tradicionais de avaliação de erro, o índice proposto foi concebido para modelagem de quaisquer distorções em imagens como uma combinação de 3 fatores: Perda de Correlação; Distorções na Luminância; Distorções no Contraste. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 48. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Características da “Nova” Métrica. Principais Características do Índice de Qualidade Matematicamente definido; Baixa complexidade computacional; Modelado para lidar com diferentes tipos de distorção; Independente de avaliação humana Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 49. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Características da “Nova” Métrica. Principais Características do Índice de Qualidade Matematicamente definido; Baixa complexidade computacional; Modelado para lidar com diferentes tipos de distorção; Independente de avaliação humana Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 50. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Características da “Nova” Métrica. Principais Características do Índice de Qualidade Matematicamente definido; Baixa complexidade computacional; Modelado para lidar com diferentes tipos de distorção; Independente de avaliação humana Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 51. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Características da “Nova” Métrica. Principais Características do Índice de Qualidade Matematicamente definido; Baixa complexidade computacional; Modelado para lidar com diferentes tipos de distorção; Independente de avaliação humana Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 52. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Características da “Nova” Métrica. Principais Características do Índice de Qualidade Matematicamente definido; Baixa complexidade computacional; Modelado para lidar com diferentes tipos de distorção; Independente de avaliação humana Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 53. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Características da “Nova” Métrica. Principais Características do Índice de Qualidade Matematicamente definido; Baixa complexidade computacional; Modelado para lidar com diferentes tipos de distorção; Independente de avaliação humana Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 54. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Características da “Nova” Métrica. Principais Características do Índice de Qualidade Matematicamente definido; Baixa complexidade computacional; Modelado para lidar com diferentes tipos de distorção; Independente de avaliação humana Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 55. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Definição do Novo Índice de Qualidade. Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais das imagens original e de teste, respectivamente. O novo índice de qualidade proposto será definido como: Q = 4 σxy x y (σ2 x + σ2 y)[(x)2 + (y)2] Os valores assumidos por Q variam no intervalo [−1, 1] Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 56. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Definição do Novo Índice de Qualidade. Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais das imagens original e de teste, respectivamente. O novo índice de qualidade proposto será definido como: Q = 4 σxy x y (σ2 x + σ2 y)[(x)2 + (y)2] Os valores assumidos por Q variam no intervalo [−1, 1] Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 57. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Definição do Novo Índice de Qualidade. Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais das imagens original e de teste, respectivamente. O novo índice de qualidade proposto será definido como: Q = 4 σxy x y (σ2 x + σ2 y)[(x)2 + (y)2] Os valores assumidos por Q variam no intervalo [−1, 1] Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 58. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Definição do Novo Índice de Qualidade. Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais das imagens original e de teste, respectivamente. O novo índice de qualidade proposto será definido como: Q = 4 σxy x y (σ2 x + σ2 y)[(x)2 + (y)2] Os valores assumidos por Q variam no intervalo [−1, 1] Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 59. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Definição do Novo Índice de Qualidade. Sejam x = {xi |i = 1, 2, . . . , N} e y = {yi |i = 1, 2, . . . , N} os sinais das imagens original e de teste, respectivamente. O novo índice de qualidade proposto será definido como: Q = 4 σxy x y (σ2 x + σ2 y)[(x)2 + (y)2] Os valores assumidos por Q variam no intervalo [−1, 1] Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 60. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Detalhamento do Novo Índice de Qualidade. Q = 4 σxy x y (σ2 x + σ2 y )[(x)2 + (y)2] x = 1 N N i=1 xi y = 1 N N i=1 yi σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 σxy = 1 N−1 N i=1 (xi − x)(yi − y) Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 61. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Detalhamento do Novo Índice de Qualidade. Q = 4 σxy x y (σ2 x + σ2 y )[(x)2 + (y)2] x = 1 N N i=1 xi y = 1 N N i=1 yi σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 σxy = 1 N−1 N i=1 (xi − x)(yi − y) Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 62. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Detalhamento do Novo Índice de Qualidade. Q = 4 σxy x y (σ2 x + σ2 y )[(x)2 + (y)2] x = 1 N N i=1 xi y = 1 N N i=1 yi σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 σxy = 1 N−1 N i=1 (xi − x)(yi − y) Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 63. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Detalhamento do Novo Índice de Qualidade. Q = 4 σxy x y (σ2 x + σ2 y )[(x)2 + (y)2] x = 1 N N i=1 xi y = 1 N N i=1 yi σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 σxy = 1 N−1 N i=1 (xi − x)(yi − y) Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 64. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Detalhamento do Novo Índice de Qualidade. Q = 4 σxy x y (σ2 x + σ2 y )[(x)2 + (y)2] x = 1 N N i=1 xi y = 1 N N i=1 yi σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 σxy = 1 N−1 N i=1 (xi − x)(yi − y) Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 65. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Os Três Fatores que Compõem o Índice. Q = 4 σxy x y (σ2 x + σ2 y)[(x)2 + (y)2] O novo índice de qualidade pode ser reescrito como o produto de três fatores ou componentes: Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 66. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Os Três Fatores que Compõem o Índice. Q = 4 σxy x y (σ2 x + σ2 y)[(x)2 + (y)2] O novo índice de qualidade pode ser reescrito como o produto de três fatores ou componentes: Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 67. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Os Três Fatores que Compõem o Índice. Q = 4 σxy x y (σ2 x + σ2 y)[(x)2 + (y)2] O novo índice de qualidade pode ser reescrito como o produto de três fatores ou componentes: Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 68. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Os Três Fatores que Compõem o Índice. Q = 4 σxy x y (σ2 x + σ2 y)[(x)2 + (y)2] O novo índice de qualidade pode ser reescrito como o produto de três fatores ou componentes: Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 69. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Entendendo Melhor a Composição de Fatores. Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y σxy σx σy =⇒ Coeficiente de correlação entre x e y. 2 x y (x)2 + (y)2 =⇒ Coeficiente de luminância entre x e y. 2 σx σy σ2 x + σ2 y =⇒ Coeficiente de constraste entre x e y. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 70. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Entendendo Melhor a Composição de Fatores. Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y σxy σx σy =⇒ Coeficiente de correlação entre x e y. 2 x y (x)2 + (y)2 =⇒ Coeficiente de luminância entre x e y. 2 σx σy σ2 x + σ2 y =⇒ Coeficiente de constraste entre x e y. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 71. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Entendendo Melhor a Composição de Fatores. Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y σxy σx σy =⇒ Coeficiente de correlação entre x e y. 2 x y (x)2 + (y)2 =⇒ Coeficiente de luminância entre x e y. 2 σx σy σ2 x + σ2 y =⇒ Coeficiente de constraste entre x e y. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 72. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Entendendo Melhor a Composição de Fatores. Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y σxy σx σy =⇒ Coeficiente de correlação entre x e y. 2 x y (x)2 + (y)2 =⇒ Coeficiente de luminância entre x e y. 2 σx σy σ2 x + σ2 y =⇒ Coeficiente de constraste entre x e y. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 73. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Entendendo Melhor a Composição de Fatores. Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y σxy σx σy =⇒ Coeficiente de correlação entre x e y. 2 x y (x)2 + (y)2 =⇒ Coeficiente de luminância entre x e y. 2 σx σy σ2 x + σ2 y =⇒ Coeficiente de constraste entre x e y. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 74. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Quadro de Avaliação dos Fatores. Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y Fator Intervalo Melhor Caso Coeficiente de Correlação [−1, 1] yi = axi + b, ∀ i = 1, 2, . . . , N Coeficiente de Luminância [0, 1] x = y Coeficiente de Contraste [0, 1] σx = σy Tabela: Quadro comparativo entre os fatores que compõem o índice. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 75. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Quadro de Avaliação dos Fatores. Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y Fator Intervalo Melhor Caso Coeficiente de Correlação [−1, 1] yi = axi + b, ∀ i = 1, 2, . . . , N Coeficiente de Luminância [0, 1] x = y Coeficiente de Contraste [0, 1] σx = σy Tabela: Quadro comparativo entre os fatores que compõem o índice. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 76. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Quadro de Avaliação dos Fatores. Q = σxy σxσy · 2 x y (x)2 + (y)2 · 2 σxσy σ2 x + σ2 y Fator Intervalo Melhor Caso Coeficiente de Correlação [−1, 1] yi = axi + b, ∀ i = 1, 2, . . . , N Coeficiente de Luminância [0, 1] x = y Coeficiente de Contraste [0, 1] σx = σy Tabela: Quadro comparativo entre os fatores que compõem o índice. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 77. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Finalmente... Como Funciona o Algoritmo? Usando a abordagem de janelas deslizantes! Começamos pelo canto superior esquerdo da imagem com uma janela deslizante de tamanho B × B. Movemos a janela pixel a pixel, de maneira horizontal e vertical através de todas as linhas e colunas da imagem até alcançar o canto inferior da mesma. A cada passo computamos o índice de qualidade local Qj levando em consideração apenas os valores internos da janela. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 78. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Finalmente... Como Funciona o Algoritmo? Usando a abordagem de janelas deslizantes! Começamos pelo canto superior esquerdo da imagem com uma janela deslizante de tamanho B × B. Movemos a janela pixel a pixel, de maneira horizontal e vertical através de todas as linhas e colunas da imagem até alcançar o canto inferior da mesma. A cada passo computamos o índice de qualidade local Qj levando em consideração apenas os valores internos da janela. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 79. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Finalmente... Como Funciona o Algoritmo? Usando a abordagem de janelas deslizantes! Começamos pelo canto superior esquerdo da imagem com uma janela deslizante de tamanho B × B. Movemos a janela pixel a pixel, de maneira horizontal e vertical através de todas as linhas e colunas da imagem até alcançar o canto inferior da mesma. A cada passo computamos o índice de qualidade local Qj levando em consideração apenas os valores internos da janela. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 80. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Finalmente... Como Funciona o Algoritmo? Usando a abordagem de janelas deslizantes! Começamos pelo canto superior esquerdo da imagem com uma janela deslizante de tamanho B × B. Movemos a janela pixel a pixel, de maneira horizontal e vertical através de todas as linhas e colunas da imagem até alcançar o canto inferior da mesma. A cada passo computamos o índice de qualidade local Qj levando em consideração apenas os valores internos da janela. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 81. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Finalmente... Como Funciona o Algoritmo? Usando a abordagem de janelas deslizantes! Começamos pelo canto superior esquerdo da imagem com uma janela deslizante de tamanho B × B. Movemos a janela pixel a pixel, de maneira horizontal e vertical através de todas as linhas e colunas da imagem até alcançar o canto inferior da mesma. A cada passo computamos o índice de qualidade local Qj levando em consideração apenas os valores internos da janela. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 82. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ilustrando... Passo 1 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 83. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ilustrando... Passo 2 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 84. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ilustrando... Passo 3 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 85. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ilustrando... Passo 20 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 86. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ilustrando... Passo 21 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 87. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ilustrando... J-ésimo Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 88. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ao Final do Processo... Ao término do processo: Teremos executado um total de M passos. O índice de qualidade global da imagem será dado por: Q = 1 M M j=1 Qj E além disso teremos acesso ao mapa de índices de qualidade da imagem. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 89. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ao Final do Processo... Ao término do processo: Teremos executado um total de M passos. O índice de qualidade global da imagem será dado por: Q = 1 M M j=1 Qj E além disso teremos acesso ao mapa de índices de qualidade da imagem. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 90. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ao Final do Processo... Ao término do processo: Teremos executado um total de M passos. O índice de qualidade global da imagem será dado por: Q = 1 M M j=1 Qj E além disso teremos acesso ao mapa de índices de qualidade da imagem. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 91. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ao Final do Processo... Ao término do processo: Teremos executado um total de M passos. O índice de qualidade global da imagem será dado por: Q = 1 M M j=1 Qj E além disso teremos acesso ao mapa de índices de qualidade da imagem. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 92. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ao Final do Processo... Ao término do processo: Teremos executado um total de M passos. O índice de qualidade global da imagem será dado por: Q = 1 M M j=1 Qj E além disso teremos acesso ao mapa de índices de qualidade da imagem. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 93. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Ao Final do Processo... Ao término do processo: Teremos executado um total de M passos. O índice de qualidade global da imagem será dado por: Q = 1 M M j=1 Qj E além disso teremos acesso ao mapa de índices de qualidade da imagem. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 94. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Mapa de Índices de Qualidade Admitindo um bloco de avaliação de dimensão B × B: Map.Width = Image.Width - B + 1 Map.Height = Image.Height - B + 1 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 95. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Mapa de Índices de Qualidade Admitindo um bloco de avaliação de dimensão B × B: Map.Width = Image.Width - B + 1 Map.Height = Image.Height - B + 1 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 96. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Mapa de Índices de Qualidade Admitindo um bloco de avaliação de dimensão B × B: Map.Width = Image.Width - B + 1 Map.Height = Image.Height - B + 1 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 97. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Mapa de Índices de Qualidade Admitindo um bloco de avaliação de dimensão B × B: Map.Width = Image.Width - B + 1 Map.Height = Image.Height - B + 1 Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 98. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Fluxograma - Obtenção do Índice de Qualidade Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 99. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Exemplo - Obtido Através da Plataforma R Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 100. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Mapas - Obtidos Através da Plataforma R Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 101. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Índices - Obtidos Através da Plataforma R. Índices Relativos ao Exemplo Anterior. Índice Valor Encontrado Universal Image Quality Index (UIQI) 0.60898 Mean Squared Error (MSE) 81.3293 Normalized Root Mean Squared Error (NRMSE) 0.00469 Peak Signal-To-Noise Ratio (PSNR) 29.0283 Tabela: Quadro com os índices encontrados utilizando a plataforma R para a imagem “Lena”, 512x512, 8bits/pixel. Observe que um simples desfoque gaussiano levemente aplicado faz com que o PSNR atinja o limiar de qualidade que é dito como bastante aceitável quando seu valor se encontra acima de 36dB e mediano entre 30dB e 36dB. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 102. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Média em R Exibindo a função que computa a média dos blocos original e de teste. x = 1 N N i=1 xi y = 1 N N i=1 yi Implementada na Plataforma R. § ¤ 1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix ) 2 { 3 return (mean(my . block . or . matrix ) ) 4 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 103. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Média em R Exibindo a função que computa a média dos blocos original e de teste. x = 1 N N i=1 xi y = 1 N N i=1 yi Implementada na Plataforma R. § ¤ 1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix ) 2 { 3 return (mean(my . block . or . matrix ) ) 4 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 104. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Média em R Exibindo a função que computa a média dos blocos original e de teste. x = 1 N N i=1 xi y = 1 N N i=1 yi Implementada na Plataforma R. § ¤ 1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix ) 2 { 3 return (mean(my . block . or . matrix ) ) 4 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 105. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Média em R Exibindo a função que computa a média dos blocos original e de teste. x = 1 N N i=1 xi y = 1 N N i=1 yi Implementada na Plataforma R. § ¤ 1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix ) 2 { 3 return (mean(my . block . or . matrix ) ) 4 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 106. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Média em R Exibindo a função que computa a média dos blocos original e de teste. x = 1 N N i=1 xi y = 1 N N i=1 yi Implementada na Plataforma R. § ¤ 1 MyMeanFunction <− f u n c t i o n (my . block . or . matrix ) 2 { 3 return (mean(my . block . or . matrix ) ) 4 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 107. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Variância em R Exibindo a função que computa a variância dos blocos original e de teste. σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 Implementada na Plataforma R. § ¤ 1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e ) 2 { 3 N <− length (my . block . or . matrix ) 4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) ) 5 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 108. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Variância em R Exibindo a função que computa a variância dos blocos original e de teste. σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 Implementada na Plataforma R. § ¤ 1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e ) 2 { 3 N <− length (my . block . or . matrix ) 4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) ) 5 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 109. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Variância em R Exibindo a função que computa a variância dos blocos original e de teste. σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 Implementada na Plataforma R. § ¤ 1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e ) 2 { 3 N <− length (my . block . or . matrix ) 4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) ) 5 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 110. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Variância em R Exibindo a função que computa a variância dos blocos original e de teste. σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 Implementada na Plataforma R. § ¤ 1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e ) 2 { 3 N <− length (my . block . or . matrix ) 4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) ) 5 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 111. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Variância em R Exibindo a função que computa a variância dos blocos original e de teste. σ2 x = 1 N−1 N i=1 (xi − x)2 σ2 y = 1 N−1 N i=1 (yi − y)2 Implementada na Plataforma R. § ¤ 1 MySquaredSigmaFunction <− f u n c t i o n (my . block . or . matrix , my . mean . v a l u e ) 2 { 3 N <− length (my . block . or . matrix ) 4 return ( sum ((my . block . or . matrix − my . mean . v a l u e ) ^2)/ (N − 1) ) 5 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 112. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Covariância em R Exibindo a função que computa a covariância. σxy = 1 N−1 N i=1 (xi − x)(yi − y) Implementada na Plataforma R. § ¤ 1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y ) 2 { 3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y 4 N <− length ( block . x ) 5 6 # Retornando v a l o r 7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) ) 8 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 113. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Covariância em R Exibindo a função que computa a covariância. σxy = 1 N−1 N i=1 (xi − x)(yi − y) Implementada na Plataforma R. § ¤ 1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y ) 2 { 3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y 4 N <− length ( block . x ) 5 6 # Retornando v a l o r 7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) ) 8 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 114. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Covariância em R Exibindo a função que computa a covariância. σxy = 1 N−1 N i=1 (xi − x)(yi − y) Implementada na Plataforma R. § ¤ 1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y ) 2 { 3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y 4 N <− length ( block . x ) 5 6 # Retornando v a l o r 7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) ) 8 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 115. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Covariância em R Exibindo a função que computa a covariância. σxy = 1 N−1 N i=1 (xi − x)(yi − y) Implementada na Plataforma R. § ¤ 1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y ) 2 { 3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y 4 N <− length ( block . x ) 5 6 # Retornando v a l o r 7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) ) 8 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 116. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação da Função Covariância em R Exibindo a função que computa a covariância. σxy = 1 N−1 N i=1 (xi − x)(yi − y) Implementada na Plataforma R. § ¤ 1 MyDoubleSigmaFunction <− f u n c t i o n ( block . x , mean . x , block . y , mean . y ) 2 { 3 # Resgatando o tamanho do bloco , podemos usar o v a l o r de x ou y 4 N <− length ( block . x ) 5 6 # Retornando v a l o r 7 return (sum (( block . x − mean . x )*( block . y − mean . y ) ) / (N − 1) ) 8 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 117. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação do Índice em R § ¤ 1 MyUniversalImageQualityIndexPerBlock <− f u n c t i o n (my . block . x , my . block . y ) 2 { 3 # Mapeando os v a l o r e s dos b l o c o s x e y para i d e n t i f i c a d o r e s menos verbosos 4 x <− my . block . x 5 y <− my . block . y 6 7 # Mean 8 x_bar <− MyMeanFunction ( x ) 9 y_bar <− MyMeanFunction ( y ) 10 11 # Covariance 12 double_sigma <− MyDoubleSigmaFunction ( x , x_bar , y , y_bar ) 13 14 # Variance 15 squared_sigma_x <− MySquaredSigmaFunction ( x , x_bar ) 16 squared_sigma_y <− MySquaredSigmaFunction ( y , y_bar ) 17 18 # Numerator 19 numerador <− 4*double_sigma*x_bar*y_bar 20 21 # Denominator 22 denominador <− ( squared_sigma_x + squared_sigma_y )*( x_bar ^2 + y_bar ^2) 23 24 # Index block v a l u e r e t u r n 25 return ( numerador/ denominador ) 26 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 118. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Codificação do Mapa em R § ¤ 1 MyUniversalImageQualityIndexMap <− f u n c t i o n ( o r i g i n a l , te s t , my . block . s i z e = 8) 2 { 3 bs <− my . block . s i z e # Diminuindo a v e r b o s i d a d e 4 5 # Resgatando as tamanhos 6 my . rows <− dim ( o r i g i n a l ) [ 1 ] ; my . c o l s <− dim ( o r i g i n a l ) [ 2 ] 7 8 # Definindo o tamanho do mapa 9 my . map . h <− my . rows − bs + 1; my . map .w <− my . c o l s − bs + 1 10 my . q u a l i t y . map <− matrix (0 , nrow = my . map . h , ncol = my . map .w) 11 12 # Looping que v a r r e a imagem 13 f o r ( i i n 1 : (my . rows − bs + 1) ) 14 { 15 f o r ( j i n 1 : (my . c o l s − bs + 1) ) 16 { 17 # Resgatando os b l o c o s 18 tmp_ o r i g i n a l <− o r i g i n a l [ i : ( i + bs − 1) , j : ( j + bs − 1) ] 19 tmp_t e s t <− t e s t [ i : ( i + bs − 1) , j : ( j + bs − 1) ] 20 21 # Armazenando r e s u l t a d o do bloco c o r r e n t e . 22 MyQ <− MyUniversalImageQualityIndexPerBlock (tmp_o r i g i n a l , tmp_t e s t ) 23 my . q u a l i t y . map [ i , j ] <− i f ( i s . nan (MyQ) ) 1 e l s e MyQ 24 } 25 } 26 return ( my . q u a l i t y . map ) 27 } ¦ ¥ Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 119. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Alguns Cuidados Devem Ser Tomados! Devemos prestar atenção ao cálculo das componentes do Índice de Qualidade! O que acontece com o índice se o seguinte bloco for avaliado?               132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132               Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 120. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Alguns Cuidados Devem Ser Tomados! Devemos prestar atenção ao cálculo das componentes do Índice de Qualidade! O que acontece com o índice se o seguinte bloco for avaliado?               132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132               Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 121. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Alguns Cuidados Devem Ser Tomados! Devemos prestar atenção ao cálculo das componentes do Índice de Qualidade! O que acontece com o índice se o seguinte bloco for avaliado?               132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132               Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 122. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Alguns Cuidados Devem Ser Tomados! Devemos prestar atenção ao cálculo das componentes do Índice de Qualidade! O que acontece com o índice se o seguinte bloco for avaliado?               132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132               Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 123. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Quadro Comparativo. Estimativas Fornecidas e Encontradas. Distorção Artigo Encontrado MSEA MSEE Mean Shift 0.9894 0.98939 225 225.032 Contrast Stretching 0.9372 0.93389 225 225.244 Impulsive Salt-Pepper Noise 0.6494 0.64889 225 225.472 Multiplicative Speckle Noise 0.4408 0.44048 225 225.769 Additive Gaussian Noise 0.3891 0.38898 225 226.283 Blurring 0.3461 0.34302 225 224.741 Jpeg Compression 0.2876 0.28725 215 215.603 Tabela: Quadro comparativo entre os índices fornecidos pelo artigo e encontrados através de implementação do algoritmo utilizando a plataforma R para a imagem “Lena”, 512x512, 8bits/pixel. MSEA - fornecido no artigo. MSEE - encontrado através de implementação. Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 124. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Isso é tudo pessoal !!! Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens
  • 125. Universidade Federal do Estado de Alagoas Instituto de Computação - Campus A. C. Simões Agradecimentos Grato Pela Atenção! Michel Alves dos Santos - Ciência da Computação Processamento Digital de Imagens