Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia • COPPE
Programa de Pós-Graduação em Engenharia d...
Método de Recolorização Baseado
em Agrupamentos Harmônicos
Atualmente existe uma enormidade de ferramentas para tratamento...
Método de Recolorização Baseado em Agrupamentos
Harmônicos
Michel Alves dos Santos ∗
Junho, 2013
Resumo
Recorte da pintura...
2
sido bem sucedidos na concepção e implementação de sistemas que emulem o aparato visual
responsável pela análise e sínte...
Sumário
Resumo 2
1 Introdução 4
2 Trabalhos Relacionados 5
3 Gabaritos Harmônicos 6
4 Distância Harmônica 7
4.1 Função de ...
1 INTRODUÇÃO 4
(a) original (b) gabarito T, α = 35 ◦ (c) gabarito V, α = 5 ◦
Figura 1: Método de harmonização em ação. A t...
2 TRABALHOS RELACIONADOS 5
são fruto da observação e aproximação, mesmo
assim, ainda não existe um modelo genérico
passíve...
3 GABARITOS HARMÔNICOS 6
ten projetou um círculo de doze cores. Ele
se referia as cores complementares como uma
harmonia d...
4 DISTÂNCIA HARMÔNICA 7
maru et al., 2002], a qual descende das noções
de harmonia de Itten.
i type V type L type I type
T...
4 DISTÂNCIA HARMÔNICA 8
distância entre todos os setores s pertentences
ao conjunto de setores S de um gabarito, será
reto...
4 DISTÂNCIA HARMÔNICA 9
(a) original (b) i, α = 160 ◦ (c) V, α = 5 ◦ (d) L, α = 0 ◦
(e) T, α = 50 ◦ (f) I, α = 10 ◦ (g) L,...
5 HARMONIZAÇÃO 10
Para uma melhor visualização do processo,
fazemos uso de um histograma definido sobre
o círculo de matize...
5 HARMONIZAÇÃO 11
Onde C(p) denota o valor de matiz central
do setor associado ao pixel p, w a largura de
arco do setor e ...
6 RESULTADOS E APLICAÇÕES 12
menor complexidade: a aplicação de um filtro
mediano adaptativo para corrigir pequenas re-
giõ...
7 DISCUSSÃO E CONCLUSÕES 13
(a) original (b) V, α = 0 ◦
, F = 18360 (c) T, α = 0 ◦
, F = 4861 (d) T, α = 270 ◦
, F = 9307 ...
7 DISCUSSÃO E CONCLUSÕES 14
(a) original (b) matiz/hue (c) saturação/saturation (d) valor/value
(e) gabarito i, α = 20 ◦ (...
7 DISCUSSÃO E CONCLUSÕES 15
(a) original (b) luminância (c) matiz (d) saturação (e) brilho
(f) α = 15 ◦ (g) α = 50 ◦ (h) α...
7 DISCUSSÃO E CONCLUSÕES 16
(a) original, α = 0 ◦ (b) α = 30 ◦ (c) α = 60 ◦
(d) α = 90 ◦ (e) α = 120 ◦ (f) α = 150 ◦
(g) α...
7 DISCUSSÃO E CONCLUSÕES 17
(a) original, α = 0 ◦ (b) matiz/hue (c) saturação/saturation (d) brilho/value
(e) i, α = 55 ◦ ...
7 DISCUSSÃO E CONCLUSÕES 18
Figura 19: Color Harmonization Assistent - Visão da Interface. Para reprodução da técnica prop...
REFERÊNCIAS 19
Referências
Bochko, V. & Parkkinen, J. (2006), ‘A spec-
tral color analysis and colorization techni-
que’, ...
REFERÊNCIAS 20
Li, C. & Chen, T. (2009), ‘Aesthetic visual qua-
lity assessment of paintings’, Selected To-
pics in Signal...
REFERÊNCIAS 21
between images’, IEEE Comput. Graph. Appl.
21(5), 34–41. URL http://dx.doi.org/10.
1109/38.946629.
Sato, Y....
Figuras
1 Método de harmonização em ação. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 O Nascimento d...
Tabelas
1 Tabela de distâncias harmônicas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
23
Equações
1c Equação da borda mais próxima ETm(α)(p) : [ Equação 1 ] . . . . . . . . . . . . . . . . . . . . 7
2 Função de ...
A APÊNDICE 25
A Apêndice
A.1 Estado da Arte em Harmonização de Cores
Os estudos sobre a moderna teoria das cores e harmoni...
A APÊNDICE 26
A.2 Recursos na Internet
Abaixo segue uma lista de recursos que poderão auxiliar ao leitor deste relatório, ...
B BIBLIOGRAFIA COMPLEMENTAR 27
B Bibliografia Complementar
As referências bibliográficas complementares empregadas neste rel...
C RESULTADOS E AUTORIA 28
• John C. Russ: The Image Processing Handbook, CRC Press, 1995
• B.D.Ripley: Pattern Recognition...
Próximos SlideShares
Carregando em…5
×

My Report - Color Harmonization

1.577 visualizações

Publicada em

Currently, there is an immense amount of tools for digital imaging. Such tools, whether they be famous or humble, have a myriad of amazing improvement techniques capable of removing the most destructive degradation or expand the most unnoticeable features. However, almost all of these tools sins in one criterion: they do not have a module for automatic matching of colors to allow for a second instance, a certain interaction with the end user. This type of gap occurs due to the complexity of building models that are able to express the harmony between colors as a closed mathematical relationship or even approximate. In the seminar entitled "Color Harmonization: Automatic Method of Search and Application of Harmonics Schema in Pictures", we present a technique developed by Cohen-Or et al. for matching colors in digital images, which has as base the templates or harmonic schemes developed in the works of Masataka Tokumaru (Color Design Support System Considering Color Harmony - 2002) and Yutaka Matsuda (Matsuda's Color Coordination - 1995).

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
1.577
No SlideShare
0
A partir de incorporações
0
Número de incorporações
844
Ações
Compartilhamentos
0
Downloads
4
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

My Report - Color Harmonization

  1. 1. Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia • COPPE Programa de Pós-Graduação em Engenharia de Sistemas e Computação Método de Recolorização Baseado em Agrupamentos Harmônicos Michel Alves dos Santos Atualmente existe uma enormidade de ferramentas para tratamento de imagens digitais. Tais fer- ramentas, sejam elas famosas ou modestas, possuem uma miríade de técnicas de melhoramento sur- preendentes, capazes de remover as degradações mais destrutivas ou ampliar as características mais imperceptíveis. Porém, a quase totalidade dessas ferramentas peca em um quesito: não possuem um módulo para harmonização automática de cores que permita em segunda instância uma certa interação com o usuário final. Esse tipo de lacuna ocorre devido a complexidade de construção de modelos que consigam expressar a harmonia entre cores como uma relação matemática fechada ou aproximada. No presente relatório intitulado “Método de Recolorização Baseado em Agrupamentos Harmônicos”, ire- mos apresentar uma técnica desenvolvida por Daniel Cohen-Or (Color Harmonization, Cohen-Or et al., 2006) para harmonização de cores em imagens digitais que possui como base os gabaritos ou agrupa- mentos harmônicos desenvolvidos nos trabalhos de Masataka Tokumaru (Color Design Support System Considering Color Harmony, 2002) e Yutaka Matsuda (Matsuda’s Color Coordination, 1995). Laboratório de Computação Gráfica www.cos.ufrj.br • www.lcg.ufrj.br Junho de 2013
  2. 2. Método de Recolorização Baseado em Agrupamentos Harmônicos Atualmente existe uma enormidade de ferramentas para tratamento de imagens digitais. Tais ferramentas, sejam elas famosas ou modestas, pos- suem uma miríade de técnicas de melhoramento surpreendentes, capazes de remover as degradações mais destrutivas ou ampliar as características mais imperceptíveis. Porém, a quase totalidade dessas ferramentas peca em um quesito: não possuem um módulo para harmonização automática de cores que permita em segunda instância uma certa interação com o usuário final. Esse tipo de lacuna ocorre devido a complexidade de cons- trução de modelos que consigam expressar a harmonia entre cores como uma relação matemática fechada ou aproximada. No presente relatório intitulado ‘Método de Recolorização Baseado em Agrupamentos Harmô- nicos’, iremos apresentar uma técnica desenvolvida por Daniel Cohen-Or (Color Harmonization, Cohen-Or et al., 2006) para harmonização de cores em imagens digitais que possui como base os gabaritos ou agrupamentos harmônicos desenvolvidos nos trabalhos de Masataka Tokumaru (Color Design Support System Considering Color Harmony, 2002) e Yutaka Mat- suda (Matsuda’s Color Coordination, 1995). Rio de Janeiro, 2013 :: Michel Alves dos Santos Docente Ricardo Guerra Marroquim Universidade Federal do Rio de Janeiro/COPPE/PESC/LCG marroquim@cos.ufrj.br Discente Michel Alves dos Santos Universidade Federal do Rio de Janeiro/COPPE/PESC/LCG malves@cos.ufrj.br
  3. 3. Método de Recolorização Baseado em Agrupamentos Harmônicos Michel Alves dos Santos ∗ Junho, 2013 Resumo Recorte da pintura O Nascimento de Venus, de Sandro Botticelli. Da esquerda para direita te- mos: recorte original sem nenhum deslocamento em sua componente de matiz, recorte obtido com deslocamento de 30 ◦ e recorte obtido com deslocamento de 330 ◦ . Devido ao caráter pré-harmonizado do conjunto de cores contido neste exemplo, podemos observar que o mesmo gera derivações de agradável sensação perceptual sem a necessidade do emprego de demasia- das etapas de otimização em seu histograma de matiz. Abaixo dos recortes podemos observar a disposição de seus respectivos histogramas de matiz apresentados em um modelo circu- lar. O deslocamento contínuo dos valores de matiz da imagem é realizado utilizando-se a seguinte relação: Hnew(p) = Hold(p) + α, onde Hnew(p) designa o novo valor da matiz do pixel, Hold(p), denota o velho valor de matiz e α um parâmetro de deslocamento contido no intervalo [0 ◦ , 360 ◦ ). Ao longo deste relatório discutiremos uma técnica que organiza valores de matiz em conjuntos correlatos, fazendo com que os mesmos exibam um certo “equilíbrio”. A esses conjuntos equilibrados daremos o nome de gabaritos ou agrupamentos harmônicos. Visão é um dos mais poderosos e complexos sentidos que permite aos seres vivos, dotados de órgãos adequados, aprimorarem a sua percepção do mundo. A indiscutível complexidade desse modo de percepção é um dos principais motivos pelos quais pesquisadores em visão não têm ∗ Discente do Programa de Pós-Graduação em Engenharia de Sistemas e Computação (COPPE/PESC), Univer- sidade Federal do Rio de Janeiro (UFRJ), Brasil - Rio de Janeiro/RJ, Contatos: (21) 8204-7102, E-mail: mal- ves[AT]cos.ufrj.br, http://www.lcg.ufrj.br/Members/malves 1
  4. 4. 2 sido bem sucedidos na concepção e implementação de sistemas que emulem o aparato visual responsável pela análise e síntese de informação recolhida em termos de forma, cor, textura, relevo, entre outras características, mesmo existindo uma profusão de resultados derivados de pesquisas em áreas como óptica, controle de sistemas, neurofisiologia, psicologia, psicofísica e afins. Um outro ponto a ser analisado diz respeito ao conhecimento acerca da visão biológica, que de certa forma, ainda apresenta-se de maneira muito limitada, desconexa e na maioria das vezes, especulativa. Essas perspectivas limitantes tem motivado pesquisadores em Visão a propor teorias computacionais sobre o que seria o processo de visão. Tais teorias têm evoluído ao longo dos anos e atualmente servem como ferramentas no auxílio à crescente compreensão deste processo. É através dessas ferramentas de auxílio a compreensão do processo de visão que podemos extrair várias características de um cenário ou objeto, tais como, posições, dimensões, métricas e propriedades materiais, além das relações entre os objetos observados e o ambiente que os cerca. Um interessante tópico desse amplo campo de estudo é o da Harmonização de Cores, um assunto que tem desafiado artistas e cientistas ao longo dos séculos, ora seja por sua magnificência ora seja por sua nebulosidade. O enfoque dado a esse campo sobrecai essencialmente na busca por elementos harmônicos ou cores harmônicas. Conceituamos cores harmônicas como conjuntos de cores que são esteticamente agradáveis em termos de percepção visual humana. No presente relatório iremos apresentar um método que realça a harmonia entre cores de uma dada fotografia ou imagem em geral, mantendo-se fiel, tanto quanto possível as cores originais do objeto de entrada. Dada uma imagem colorida, o método em questão também pode encontrar o melhor esquema harmônico para as cores da imagem ou dar ao usuário o poder de escolher o conjunto de cores que produz a melhor saída. O melhor agrupamento harmônico para uma dada imagem será encontrado através da minimização de uma função de custo. Tal função de custo é baseada na “distância” existente entre a disposição do histograma circular de matizes da imagem e os setores que compõem um determinado agrupamento. O agrupamento eleito o melhor será aquele que possuir a menor distância em relação ao histograma circular de matizes da imagem original. O método apresentado ainda oferece uma graciosa mudança de valores de matiz, de modo a ajustar o agrupamento harmônico utilizado considerando coerência espacial. Os resultados demonstram que o método é capaz de realçar a harmonia de uma grande gama de imagens, especialmente aquelas que apresentam um destacamento evidente entre informações do plano de fundo e do plano de frente. No entanto, antes de qualquer análise prévia sobre a corretude do método exposto, devemos alertar sobre as limitações do mesmo. A partir desse ponto deverá haver uma separação entre sintaxe do processo (estrutura e forma) e semântica dos resultados (lógica e significado), pois o método não garante nenhuma coerência à respeito da conservação de estruturas de percepção em uma imagem, apenas faz com que aglomerados de pixels sejam agrupados satisfazendo uma dada relação de vizinhança. Não serão respeitados artefatos como pele, gradações de azul em uma imagem que contenha partes do céu, plumagem, texturas particulares ou ainda qualquer outra expressão de cor para um determinado objeto que o classifique de maneira única. Para que resultados semânticos possam ser alcançados, faz-se necessária a inclusão de uma etapa de reconhecimento e classificação de objetos presentes na cena (esse não será o enfoque do presente relatório). Palavras-chave: Filtragem, Realce de Imagens, Harmonização de Cores, Processamento de Imagens, Estética Computacional.
  5. 5. Sumário Resumo 2 1 Introdução 4 2 Trabalhos Relacionados 5 3 Gabaritos Harmônicos 6 4 Distância Harmônica 7 4.1 Função de Custo ou Distância . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 Minimização da Distância . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Harmonização 10 5.1 Deslocamento de Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 Resultados e Aplicações 12 7 Discussão e Conclusões 13 7.1 Trabalhos Futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7.2 Agradecimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Referências 21 Figuras 22 Tabelas 23 Equações 24 Apêndice 25 A Apêndice 25 A.1 Estado da Arte em Harmonização de Cores . . . . . . . . . . . . . . . . . . . . . . . . . . 25 A.2 Recursos na Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 B Bibliografia Complementar 27 B.1 Bibliografia Complementar Principal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 B.2 Bibliografia Complementar Secundária . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 C Resultados e Autoria 28 D Ferramenta Desenvolvida 28 3
  6. 6. 1 INTRODUÇÃO 4 (a) original (b) gabarito T, α = 35 ◦ (c) gabarito V, α = 5 ◦ Figura 1: Método de harmonização em ação. A técnica empregada executa um deslocamento na componente de matiz (hue) fazendo com que as cores presentes na imagem obedeçam um certo esquema ou agrupamento harmônico previamente definido. Da esquerda para direita temos: imagem original, imagem recolorida utili- zando o agrupamento ou gabarito T com orientação α = 35 ◦ e imagem recolorida utilizando o agrupamento ou gabarito V com orientação α = 5 ◦. Ao longo do texto deste relatório utilizaremos os termos agrupamento e gabarito de maneira intercambiável. 1 Introdução Muito do que percebemos e sentimos sobre uma imagem é experimentado através de suas cores. Embora a nossa percepção das cores dependa do contexto e de fatos relacionados a nossa cultura e conhecimento de mundo, é im- possível olhar para uma imagem sem ser afe- tado pela harmonia de suas cores. Esse tipo de sensação nos leva a indagar qual o fenô- meno que ocorre em tais objetos, que faz com que os mesmos tornem-se prazerosos e confor- táveis no sentido perceptual. Uma forma de perceber tal fenômeno é através da composi- ção visual, combinação e disposição de suas cores. Tais propriedades irão adjetivar o que chamaremos de Cores Harmônicas. Definimos como Cores Harmônicas, con- juntos de cores que possuem alguma relação especial interna que proporciona uma percep- ção visual agradável [Cohen-Or et al., 2006]. A harmonia entre cores não é determinada por cores específicas, mas sim por sua posi- ção relativa no espaço de representação de co- res utilizado. A geração de conjuntos de cores harmônicas tem sido um problema em aberto entre artistas e cientistas [Holtzschue, 2002]. Não foram poucos os gênios que devotaram suas vidas e carreiras, encantando gerações, com o fruto de sua dedicação. Portinari, Da Vinci, Michelangelo, Caravaggio, Rembrandt, Cézanne, Picasso, Kandinsky, Van Gogh, Dalí, Velásquez, Botticelli e Rafael, são alguns par- cos nomes dentre os grandes memoráveis (figu- ras 2 e 16). Todos os anteriormente citados ex- perimentaram uma contenda pessoal em busca das propriedades que estabeleciam a harmonia de uma composição. (a) Nascimento de Venus (b) Composition VII Figura 2: O Nascimento de Vênus (Sandro Bot- ticelli) e Composition VII (Wassily Kandinsky). Obras que encantam pela maestria da combinação de tons e estética apurada. Pouco se sabe sobre o montante de pro- priedades internas que faz com que a combi- nação entre cores gere conjuntos perceptual- mente agradáveis do ponto de vista do obser- vador. A maioria das relacões matemáticas
  7. 7. 2 TRABALHOS RELACIONADOS 5 são fruto da observação e aproximação, mesmo assim, ainda não existe um modelo genérico passível de aplicação universal. Munsell e Go- ethe [Munsell, 1969; Zajonc, 1976; von Goethe, 1971; Cohen-Or et al., 2006] definiram harmo- nia de cores como equilíbrio, em um esforço para transferir o conceito de harmonia de co- res de uma perspectiva subjetiva para uma ob- jectiva. Embora atualmente não exista nenhuma formulação fechada e universal que defina um conjunto harmônico, há um consenso entre artistas, definindo quando um conjunto o é. Além disso existem algumas formas, esquemas e relações nos espaços de cores adotados que descrevem o sentido de harmonia [Matsuda, 1995; Tokumaru et al., 2002]. Artistas profissionais geralmente contam com experiência e intuição para escolher suas cores harmônicas favoritas. Quando não mon- tam seu próprio conjunto harmônico por ten- tativa e erro, escolhem algum em manuais pré- escritos [Krause, 2002] ou utilizam aplicações interativas [Meier, 1988]. Uma vez que o con- junto é definido, o artista precisa colorir ou recolorir sua gravura com este conjunto, uma tarefa que pode ser entediante, quando a ima- gem é por demais complexa e contém várias detalhes com cores distintas. Neste relatório nós iremos apresentar uma técnica que provê ao usuário uma ferramenta de recoloração, muito útil em diferentes con- textos e que foi introduzida no artigo Color Harmonization de Daniel Cohen-Or [Cohen-Or et al., 2006]. Dada uma imagem arbitrária, possivelmente uma fotografia, as cores desta imagem serão modificadas para melhorar/real- çar a relação entre elas e aumentar a harmonia da composição. Conceituaremos esse processo de realce de cor como Harmonização de Co- res ou tão somente, Harmonização (do inglês Color Harmonization) [Cohen-Or et al., 2006]. A técnica apresentada pode lidar com ima- gens arbitrariamente complexas ou paleta de cores com uma rica variedade de tons, libe- rando o designer ou artista profissional do te- dioso trabalho de escolher um conjunto harmô- nico específico. Além disso o método otimiza conjunto de cores contido na imagem de en- trada mantendo-se o mais fiel possível à paleta de cor original. Esta técnica é intrinsecamente bem susce- dida quando lidamos com cenários onde há uma notável distinção entre informações do plano de fundo e do primeiro plano, ou ainda áreas homogêneas (figura 15). Isso permite, por exemplo, harmonizar as cores de uma ima- gem de fundo em relação ao primeiro plano ou adaptar as cores de primeiro plano [Cohen-Or et al., 2006] (figura 1 e 14). 2 Trabalhos Relacionados O estudo de harmonia de cores é historica- mente entrelaçado com o estudo da natureza física da luz e cor. Descobertas iniciais na teo- ria da harmonia de cores foram feitas por mes- tres como Newton, Goethe, Young e Maxwell. A Teoria da Cor moderna, desenvolvida no início do século XX, lida principalmente com representações de cores, mas também discute a harmonia de cores [Munsell, 1969; Ostwald & Birren, 1969; Itten, 1960; Cohen-Or et al., 2006]. Moon e Spencer [Moon & Spencer, 1944] introduziram uma representação quantitativa de harmonia com base no sistema de cores de Munsell [Munsell, 1969] (figura 3). Ao mesmo tempo Granville e Jacobson [Granville & Ja- cobson, 1944] formularam uma representação quantitativa de harmonia com base no sistema de cores de Ostwald [Ostwald & Birren, 1969]. Em 1960, Johannes Itten [Itten, 1960], in- troduziu um novo tipo de círculo de cores no qual descreveu a harmonia, com ênfase na to- nalidade. A Teoria Harmônica de Itten é base- ada em posições relativas das matizes no cír- culo de cores. Dessa forma, a partir das três cores primárias: ciano, magenta e amarelo, It-
  8. 8. 3 GABARITOS HARMÔNICOS 6 ten projetou um círculo de doze cores. Ele se referia as cores complementares como uma harmonia de duas cores. (a) Representação tridimensional (b) Círculo de cores (c) Sistema de cores Figura 3: O Sistema de Cores de Munsell. Em (a), re- presentação tridimensional, em (b), tons do sistema de cor de Munsell, com valores variados, e em (c), a re- presentação formal do sistema de cor de Munsell, mos- trando um círculo de tonalidades com valor de matiz 5 e croma 6, sendo os valores neutros variantes de 0 a 10. (a) Círculo de cores (Farbkreis) - 1961 Figura 4: Em suas pesquisas, Itten desenvolveu o círculo de cores, que permite descobrir combinações harmoniosas (os sete contrastes de cor). Itten também reconheceu a harmonia de três cores de matizes que formam um triân- gulo equilátero, a harmonia de quatro cores de tons formando um quadrado, a harmonia de seis cores de um hexágono, e assim por diante (figura 4). Seus sistemas foram amplamente adotados por artistas e designers. Com base nos esquemas de Itten e extensa pesquisa psi- cofísica, Yutaka Matsuda [Matsuda, 1995] in- troduziu um conjunto de 80 esquemas de cores harmônicas, definidos pela combinação de vá- rios tipos de distribuições de matizes e tons. Estes esquemas foram utilizados por Masataka Tokumaru [Tokumaru et al., 2002] para ava- liação da harmonia e emprego de cores. O método exposto neste relatório é baseado nos esquemas de Tokumaru. Atualmente, existem várias ferramentas in- terativas que fornecem a designers conjuntos harmônicos. Meier [Meier, 1988] foi um dos pioneiros na formulação da ferramentas inte- rativas de harmonização de paletas, apresen- tando em 1988 um sistema para projeção de cores com base em várias regras, aplicando- as a uma interface gráfica do usuário (GUI) [Cohen-Or et al., 2006]. A técnica exposta neste relatório também contou com a elaboração de uma interface grá- fica do usuário afim de facilitar a entrada de parâmetros de harmonização e recoloração da imagem alvo. Tais técnicas são relacionadas com métodos de recoloração expostos em tra- balhos por Levin, Reinhard, Welsh, Rasche, Gooch e Ironi [Reinhard et al., 2001; Welsh et al., 2002; Levin et al., 2004; Gooch et al., 2005; Irony et al., 2005; Rasche et al., 2005] Um dos maiores desafios dessas técnicas é a recoloração da imagem de maneira coerente. 3 Gabaritos Harmônicos A noção de harmonia presente neste rela- tório baseia-se nos sistemas desenvolvidos por Matsuda e Tokumaru [Matsuda, 1995; Toku-
  9. 9. 4 DISTÂNCIA HARMÔNICA 7 maru et al., 2002], a qual descende das noções de harmonia de Itten. i type V type L type I type T type Y type X type N type (a) Gabaritos Harmônicos Figura 5: Gabaritos Harmônicos no círculo de matizes. Uma coleção de cores que se enquadram nas áreas cin- zentas é considerada harmônica. Os modelos podem ser rotacionados por um ângulo arbitrário o qual definimos com o nome de argumento ou orientação e denotamos pela letra α. As dimensões exatas dos setores que com- põem os agrupamentos são as seguintes: os grandes se- tores do tipo V, Y e X englobam 26% do disco (93, 6 ◦ ); os setores menores dos tipos i, L, I e Y englobam 5% do disco (18 ◦ ), o grande setor do tipo L engloba 22% (79, 2 ◦ ), o setor do tipo T engloba 50% (180 ◦ ). O ângulo de separação entre os centros dos setores pertencentes aos tipos I, X e Y é de 180 ◦ , e para o tipo L é de 90 ◦ . A figura 5 ilustra os oito tipos de gabaritos ou agrupamentos harmônicos definidos sobre o canal de matiz do círculo de cores do sis- tema HSV (Hue/Saturation/Value). Cada tipo é uma distribuição de tonalidade de cores que definem um modelo harmônico: cores com to- nalidades que se enquadram nos setores cin- zentos do molde são definidas como harmôni- cas, de acordo com este modelo [Cohen-Or et al., 2006]. Neste relatório iremos nos referir a estas distribuições como modelos, gabaritos ou agrupamentos, uma vez que definem as rela- ções radiais no círculo de cores ao invés de co- res específicas. Os agrupamentos harmônicos podem consistir em tons da mesma cor (tipos I, V e T), possivelmente com cores complemen- tares (modelos I, Y, X) ou combinações mais complexas (tipo L). Os setores desses agrupa- mentos são os domínios sobre os quais fun- ções de associação são definidas. A Harmonia de cores é afetada principalmente pelo canal de matiz, no entanto, Tokumaru [Tokumaru et al., 2002] também abordou funções de distri- buição de tons para os valores dos canais de saturação (Saturation) e brilho (Value). O gabarito N corresponde a imagens em es- cala de tons de cinza e, portanto, não será tra- tado neste relatório. Note que cada um dos agrupamentos restantes consiste em um gaba- rito que possui um ou dois setores circulares. 4 Distância Harmônica Cada tonalidade ou matiz h do círculo de cores é associado a um dos setores que com- põe um dado gabarito harmônico. A maneira mais simples de executar essa tarefa é asso- ciar a matiz h a borda mais próxima do setor em termos de comprimento de arco. Para tal, definimos a função ETm(α)(p) como aquela que retorna a borda do setor Tm com orientação α mais próxima ao valor de matiz h do pixel p, sendo m ∈ {i, V, L, I, T, Y, X}. Sua formulação pode ser visualizada logo a seguir: ETm(α)(p) = min {Dfe(s, p), Dse(s, p); ∀s ∈ S} (1a) Dfe(s, p) = ||H(p) − feTm(α)(s)|| (1b) Dse(s, p) = ||H(p) − seTm(α)(s)|| (1c) Figura 6: Nomenclatura para bordas dos setores circulares que compõem os agrupamentos harmô- nicos. Em nossa nomenclatura designamos como primeira borda do setor o segmento feTm(α) e como segunda borda o segmento seTm(α). Em outras palavras, faremos uma busca pela borda de todos os setores componentes de um determinado gabarito, a borda com menor
  10. 10. 4 DISTÂNCIA HARMÔNICA 8 distância entre todos os setores s pertentences ao conjunto de setores S de um gabarito, será retornada. Para facilitar a visualização dessa busca definimos um setor de gabarito como um conjunto que possui os seguintes elementos: primeira borda (first border, feTm(α)), segunda borda (second border, seTm(α)) e um ângulo β que caracteriza a amplitude do setor (figura 6). Este é o primeiro passo para a definição da função de custo que retorna a distância entre uma determinada imagem e um gabarito ou agrupamento harmônico. 4.1 Função de Custo ou Distância Em nosso segundo passo, dada uma ima- gem, iremos em busca de um gabarito harmô- nico Tm que se encaixe com o histograma de to- nalidade ou matiz da imagem de entrada. Para tal, definiremos uma função que mede a dis- tância entre o histograma e um dado agrupa- mento, e determinaremos o modelo que melhor se adapta à nossa imagem através da resolução de um problema de otimização. Um gabarito Tm em conjunto com uma orientação α definirá um esquema harmô- nico, denotado pelo par (m, α). Dado um es- quema harmônico (m, α), define-se uma fun- ção F(P, (m, α)), que mede a harmonia de uma imagem P, com respeito ao esquema (m, α), sendo sua formulação: F(P, (m, α)) = p∈P ||H(p) − ETm(α)(p)|| · S(p) (2) Onde H e S referem-se aos canais de ma- tiz e saturação do pixel p, respectivamente, e a distância || · || refere-se a uma medida em comprimento de arco dada em radianos. Ma- tizes residentes dentro dos setores de Tm serão consideradas como tendo distância zero ao es- quema. Perceba que a fórmula fornecida anterior- mente também considera o canal S, uma vez que as distâncias entre as cores com grandes quantidades de saturação são perceptivelmente menos visíveis do que as distâncias entre as de alta saturação. Note também que através da soma de todos os pixels da imagem, impli- citamente usamos uma média ponderada de- terminada pelo histograma de cores [Cohen- Or et al., 2006]. Uma listagem de distâncias para a figura 7 pode ser visualizada através da tabela 1. Neste exemplo utilizamos os me- lhores resultados ranqueados através da mé- trica MOS (Mean Opinion Score), listando os tipos de esquemas harmônicos utilizados, jun- tamente com suas respectivas orientações α e distâncias F(P, (m, α)). Imagem Gabarito Orientação α F(P, (m, α)) (b) i 160 ◦ 58094.7 (c) V 5 ◦ 42110.4 (d) L 0 ◦ 22727.7 (e) T 50 ◦ 12807.6 (f) I 10 ◦ 14550.0 (g) L 190 ◦ 25167.0 (h) I 145 ◦ 22364.8 (i) Y 30 ◦ 12910.6 (j) X 90 ◦ 8584.5 (k) L 225 ◦ 27629.2 (l) I 345 ◦ 14757.7 Tabela 1: Tabela de distâncias harmônicas. Nesta tabela exibimos uma lista de distâncias harmônicas para os exemplos visualizados na figura 7. 4.2 Minimização da Distância Dada uma imagem P e um gabarito Tm, o valor do ângulo ou orientação α ∈ [0, 2π) que minimiza a expressão anteriormente fornecida, define o melhor esquema harmônico de P em relação ao agrupamento Tm, que formulamos como: M(P, Tm) = (m, α0) s.t. α0 = minα{F(P, (m, α))} (3a) O melhor esquema harmônico B(P) de uma dada imagem P será determinado será deter- minado pela minimização da função F sobre todos os possíveis gabaritos Tm: B(P) = (m0, α0) s.t. m0 = minm{F(P, M(P, Tm))} (4a)
  11. 11. 4 DISTÂNCIA HARMÔNICA 9 (a) original (b) i, α = 160 ◦ (c) V, α = 5 ◦ (d) L, α = 0 ◦ (e) T, α = 50 ◦ (f) I, α = 10 ◦ (g) L, α = 190 ◦ (h) I, α = 145 ◦ (i) Y, α = 30 ◦ (j) X, α = 90 ◦ (k) L, α = 225 ◦ (l) I, α = 345 ◦ Figura 7: Escolha manual de agrupamentos harmônicos. A imagem (a) refere-se a imagem original e as demais são resultado da aplicação manual de seus respectivos agrupamentos harmônicos. Agrupamentos harmônicos com diversos valores de orientação α resultam em diferentes paletas de cores. (a) original (b) deslocada (c) harmonizada (d) histogramas Figura 8: Visão geral do processo de harmonização. Em (a), imagem original, em (b), com deslocamento global de 330 ◦ , em (c), harmonizada com o gabarito T e α = 330 ◦ e em (d), seus respectivos histogramas de cima para baixo. Note que a processo tenta preservar as cores originais, tanto quanto possível.
  12. 12. 5 HARMONIZAÇÃO 10 Para uma melhor visualização do processo, fazemos uso de um histograma definido sobre o círculo de matizes do espaço de cor HSV (fi- guras 19 e 20). No artigo original os autores fizeram uso do Algoritmo de Brent para otimi- zação da orientação α. Neste relatório optamos pela paralelização da função de custo o que causou um ganho considerável em nossa im- plementação. De qualquer maneira, a aplica- ção desenvolvida também permite que o usuá- rio escolha um esquema harmônico específico de maneira manual ajustando-o à imagem for- necida (figuras 7, 8, 17 e 18). 5 Harmonização O valor fornecido pelo operador F(P, (m, α)) (equação 2) reflete o grau de harmonia de uma dada imagem P em relação a um esquema harmônico Tm(α). Quanto menor for o valor de F maior será a afinidade ou proximidade entre a imagem e o esquema harmônico Tm(α) [Cohen-Or et al., 2006]. Uma vez que Tm(α) esteja fixado, automática ou manualmente, a harmonia entre as cores poderá ser otimizada com relação a Tm(α) através do deslocamento das matizes de P. A esse processo, constituído das etapas de busca de agrupamento, minimi- zação de orientação e deslocamento de matizes, dá-se o nome de Harmonização de Cores ou tão somente Harmonização. O processo de Harmonização tem como foco a preservação das cores originais da ima- gem, deslocando as demais para o setor mais próximo do modelo ou esquema adotado. No entanto, esta definição primordial do processo não leva em consideração a coerência espacial existente entre os pixels da imagem. Isto pode resultar em artefatos causados por “separação” de regiões contínuas de uma imagem, tal como demonstrado na figura 11. Essa divisão ocorre em regiões singulares no espaço de cores, onde as tonalidades próximas são compatíveis com dois setores diferentes do esquema harmônico utilizado, resultando em uma descontinuidade de cor. Matizes equidistantes de duas bordas do mesmo setor ou de setores diferentes de um dado esquema harmônico serão deslocadas para diferentes setores do modelo adotado, o que pode causar uma recoloração descontínua na imagem. No artigo base deste relatório (Co- lor Harmonization [Cohen-Or et al., 2006]), os autores superam essa dificuldade com o em- prego de mais uma etapa no processo, fazendo uso de uma segmentação binária. Optamos pela utilização de um filtro mediano adapta- tivo. Em trabalhos futuros faremos uso de várias técnicas de classificação e segmentação que ajudem a rotular de maneira efetiva não só uma área, mas um contigente de áreas in- trinsecamente relacionadas. 5.1 Deslocamento de Cores Uma vez que todos os pixels p ∈ P tenham sido associados a borda mais próxima ETm(α)(p) de um setor que compõe o gabarito, poderemos recolorir a imagem através de deslocamentos de seus valores de matiz. Os valores de matiz com distâncias não nulas serão rearranjados para que residam dentro de algum setor do ga- barito harmônico. Assim como os autores do artigo original, ao invés de uma simples con- tração linear fizemos com que o deslocamento seguisse uma ponderação gaussiana, para que a densidade das matizes residentes dentro do gabarito não fosse consideravelmente afetada. Cabe como trabalho futuro a verificação de ou- tros núcleos de ponderação e catalogação de seus efeitos. O método de deslocamento de matizes reproduzido nesse relatório faz com que cada pixel p seja movido em direção a sua respectiva borda ETm(α)(p), usando a seguinte fórmula: Hshift(p) = C(p) + w 2 (1 − Gσ(DHC)) (5a) DHC = ||H(p) − C(p)|| (5b)
  13. 13. 5 HARMONIZAÇÃO 11 Onde C(p) denota o valor de matiz central do setor associado ao pixel p, w a largura de arco do setor e Gσ a função gaussiana norma- lizada, dada por: Gσ(x, µ) = 1 σ √ 2π · exp − (x − µ)2 2σ2 (6) Sendo Gσ(x) ∈ (0, 1], com média µ = 0 e desvio padrão σ = w/2. O termo DHC denota a distância em comprimento de arco existente entre o valor de matiz do pixel p e o valor de matiz central C(p) do setor associado ao pixel p. Apenas como forma de lembrete, se- guem abaixo as fórmulas para cálculo do com- primento de arco e largura de arco para um dado setor s: L(s) = s(angle) 360 · 2 · π · s(radius) (7a) W(s) = 2 · s(radius) · sin (s(angle)/2) (7b) Maiores dúvidas a respeito dessas medidas podem ser sanadas através do diagrama exi- bido através da figura 9. Note que essas medi- das são expressas em radianos. Arc-Length - L(s) Arc-Width - W(s) Radius Arc-Width Arc-Length Radiusangle Figura 9: Medidas de setores circulares - largura e comprimento de arco. Como resultado do mapeamento exibido através de Hshift(p), ocorrerá uma contração de matizes dentro dos setores dos gabaritos. Note que matizes originalmente cobertas pelos setores de um gabarito não sofrerão mudan- ças bruscas. Porém, os demais pixels estarão a mercê de um decaimento dirigido pela fun- ção de controle, em nosso caso, uma função gaussiana normalizada. O comprimento dessa gaussiana é um parâmetro arbitrado pelo usuá- rio, podendo variar no intervalo [0, w). A esco- lha de valores altos para σ pode fazer com que valores de matiz deslocados se alojem próximos dos centros dos setores enquanto que a esco- lha de valores baixos faz com que as bordas de um determinado setor se tornem populosas. Em nossa implementação seguimos utilizando σ = w/2, para manter um melhor balancea- mento das cores. Os efeitos do deslocamento de cores podem ser visualizados através dos histogramas exibidos nas figuras 8, 10 e 18. (a) original (b) L, α = 335 ◦ (c) original (d) L, α = 335 ◦ Figura 10: Deslocamento de cores e histogramas. Através das figuras acima podemos entender como ocorre o deslocamento de cores após a escolha de um determinado gabarito harmônico. O gabarito utilizado para tal demonstração foi o L, com um valor de argumento (ou orientação) α = 335 ◦. Em alguns casos o deslocamento de cores pode produzir artefatos que afetam a qualidade perceptual da imagem (figura 11). Esses arte- fatos, em sua maioria são oriundos da am- biguidade em se julgar a qual setor pertence determinada matiz. Para sanar esse problema alguns autores utilizam-se de técnicas de seg- mentação tais como graph-cut ou mean-shift. Mesmo tendo um resultado otimizado tais téc- nicas introduzem mais uma etapa de comple- xidade. Neste relatório adotamos um viés de
  14. 14. 6 RESULTADOS E APLICAÇÕES 12 menor complexidade: a aplicação de um filtro mediano adaptativo para corrigir pequenas re- giões onde tais artefatos possam ocorrer. 1 2 Figura 11: Ambiguidade no deslocamento de cores. Certos artefatos podem ser produzidos no desloca- mento de cores quando não puder ser decidido para qual setor mover determinado valor de matiz de- vido as distâncias serem idênticas. Figura retirada do artigo Color Harmonization, 2006, Cohen-Or et al. 6 Resultados e Aplicações Como visto no decorrer de todo este relató- rio, o processo de harmonização pode ser apli- cado em uma grande gama de imagens (figu- ras 1, 7, 8, 10, 14, 15, 17 e 18). Imagens com uma certa variedade de cores, em primeira ins- tância, podem parecer mais agradáveis depen- dendo de sua coerência espacial, porém, con- juntos harmônicos evitam cores não relaciona- das, um fato que melhora a acuidade visual do objeto a ser observado [Cohen-Or et al., 2006; Matsuda, 1995; Tokumaru et al., 2002]. Embora a escolha automática dos agrupa- mentos harmônicos se esforce para manter as cores da imagen de entrada tão perto quanto possível das cores originais, o usuário pode, de maneira arbitrária, alterar a paleta de cores da imagem apenas rotacionando manualmente o gabarito (figuras 10, 19 e 20). O método apresentado neste relatório é sen- sivelmente útil quando se trata de combina- ção de imagens, onde as partes constituintes são provenientes de diferentes fontes. O al- goritmo é capaz de harmonizar as cores de toda a imagem, ou se desejado, as cores do plano de frente em relação as cores do plano de fundo. Isso fornece uma ferramenta útil para a concepção de cartazes, logotipos, apresenta- ções, embalagens, identidades visuais, sites ou quaisquer materiais de divulgação, comunica- ção ou expressão que possuam como cerne o apelo visual (figura 18). O processo de harmonização tem seu de- sempenho aumentado quando cores, inseridas de maneira manual, estão presentes na ima- gem. Tons suaves levam a resultados menos marcantes. Um exemplo deste fato recai so- bre imagens naturais, as quais possuem uma harmonia inerente fazendo com que o método tenha em si, pouca efetividade, pelo menos em escolhas automáticas, pois a maioria das cores geralmente caem ou são sobrepostas em algum esquema harmônico quase que perfeitamente (figura 12). (a) original (b) histograma Figura 12: Inerência de harmonia em imagens na- turais. Através do histograma apresentado pode- mos visualizar a inerênca de harmonia em imagens naturais. Para esta imagem o melhor agrupamento encontrado foi o X, com α = 174 ◦ e F = 47.59. Ou- tros resultados podem ser visualizados através da figura 13. Escolher manualmente agrupamentos com baixa pontuação pode levar a resultados pouco naturais, como demonstrado na figura 13. Além disso, uma vez que a harmonização reduz o conjunto de cores, os objetos com diferentes tonalidades podem acabar com coloração idên- tica, o que dificulta a separação semântica dos mesmos em uma imagem. A separação semân- tica de objetos em uma cena não é o foco desta técnica, cabendo tal lacuna a trabalhos futuros
  15. 15. 7 DISCUSSÃO E CONCLUSÕES 13 (a) original (b) V, α = 0 ◦ , F = 18360 (c) T, α = 0 ◦ , F = 4861 (d) T, α = 270 ◦ , F = 9307 (e) L, α = 310 ◦ , F = 15462 Figura 13: Cores em imagens naturais. As cores em imagens naturais costumam seguir algum esquema harmônico e sua harmonização com relação a esse esquema leva a pouca ou nenhuma mudança. A harmo- nização com respeito a um agrupamento de má correspondência tende a nos fornecer resultados anormais, a maioria desses resultados, anormais de maneira semântica. que envolvam, entre outras coisas, classifica- ção e aprendizado de máquina. 7 Discussão e Conclusões Neste relatório apresentamos um método de recolorização de imagens baseado em agru- pamentos harmônicos que tem como cerne o artigo Color Harmonization [Cohen-Or et al., 2006; Matsuda, 1995; Tokumaru et al., 2002]. Tal método quantifica a harmonia existente en- tre as cores que compõem uma imagem e as modifica levando em consideração uma confi- guração harmônica. Além disso o método per- mite que o usuário para consiga harmonizar imagens manualmente e ajustar facilmente os resultados automáticos obtidos através de sim- ples rotações em agrupamentos harmônicos. A harmonização de cores é particularmente útil quando as imagens tratadas são compostas por partes provenientes de diferentes fontes, ou quando informações de plano de fundo e pri- meiro plano possuem uma sensível diferença. Deve-se notar também que a técnica não altera cores de baixa saturação, uma vez que atua apenas no canal de tonalidade. Portanto, regiões escuras ou cinzentas permanecem inal- teradas. Porém, quando se muda uma matiz, o contraste da cor aparente pode ser alterada uma vez que a percepção humana pode reagir de maneiras diferentes a combinações de co- res variadas. Em trabalhos futuros, a incorpo- ração de restrições e transformações adequa- das aos canais de saturação e brilho seriam de grande valia a preservação dos contrastes de cores. 7.1 Trabalhos Futuros Em trabalhos futuros exploraremos com maior profundidade núcleos de ponderação para deslocamento de cores, algoritmos de seg- mentação e restrições de baixo nível para sepa- ração de cores que não devam ser modificadas. Isto permitirá que o usuário desabilite a alte- ração de cores, cuja manipulação pode levar a resultados não naturais (como por exemplo, a cor do céu - figura 13). 7.2 Agradecimentos A Alexandre Gaio Chimeton pelas explana- ções geométricas e apoio no decorrer do de- senvolvimento de trechos abordados da natu- reza algoritmo-intervalar do problema, a Re- nata Nascimento, por testar as idéias por trás do cerne do problema e servir de avaliadora dos resultados finais gerados e por último, ao docente responsável, Prof. DSc. Ricardo Guerra Marroquim, pelo espaço cedido para o debate e evolução de idéias sem as quais o de- senvolvimento desse estudo não seria possível. Meu muito obrigado a todos.
  16. 16. 7 DISCUSSÃO E CONCLUSÕES 14 (a) original (b) matiz/hue (c) saturação/saturation (d) valor/value (e) gabarito i, α = 20 ◦ (f) gabarito i, α = 170 ◦ (g) gabarito i, α = 200 ◦ (h) gabarito i, α = 300 ◦ (i) gabarito L, α = 20 ◦ (j) gabarito L, α = 40 ◦ (k) gabarito X, α = 72 ◦ (l) gabarito Y, α = 320 ◦ (m) gabarito T, α = 50 ◦ (n) gabarito T, α = 85 ◦ (o) gabarito L, α = 160 ◦ (p) gabarito T, α = 215 ◦ Figura 14: Separação de planos de fundo e amplitude de resgate de características originais. A técnica empregada, na maioria dos casos, consegue separar informação relativa a cores presentes no plano de fundo e no plano de frente da cena, para tal, a informação de matiz relativa ao plano de fundo deve ser sobreposta por algum dos agrupamentos harmônicos. As cores não recobertas pela área de atuação do agrupamento serão deslocadas para o setor mais próximo, em comprimento de arco, pertencente ao agrupamento. As imagens (a), (b), (c) e (d) referem-se respectivamente a: imagem original, informação de matiz (hue), informação de saturação (saturation) e informação de brilho (value). Nas imagens (e), (f), (g) e (h), podemos notar que a parca amplitude de resgate de informação do agrupamento utilizado faz com que a maioria das informações presentes na cena sejam deslocadas para um espectro diminuto. Nas imagens (i), (j), (k), (l), (m) e (n), podemos notar que os resultados exibidos são os mais interessantes do ponto de vista semântico da paisagem pois as matizes condizentes com o plano de fundo não sofreram alteração, sendo essa sofrida apenas pelos objetos focados na cena. Já as imagens (o) e (p), apresentam uma alteração perceptível na informação condizente ao plano de fundo mesmo utilizando agrupamentos de considerável amplitude de resgate de informação. Essas alterações são o resultado da combinação da geometria do agrupamento somado a forma como as matizes da figura original se distribuem no histograma de matiz: quanto mais espaçada for essa distribuição mais oneroso será encontrar um agrupamento que satifaça de maneira plena as condições de sobreposição entre agrupamento (ou gabarito) e histograma da imagem.
  17. 17. 7 DISCUSSÃO E CONCLUSÕES 15 (a) original (b) luminância (c) matiz (d) saturação (e) brilho (f) α = 15 ◦ (g) α = 50 ◦ (h) α = 80 ◦ (i) α = 115 ◦ (j) α = 170 ◦ (k) α = 215 ◦ (l) α = 270 ◦ (m) α = 290 ◦ (n) α = 310 ◦ (o) α = 345 ◦ Figura 15: Conservação de áreas homogêneas. Podemos observar que agrupamentos harmônicos com apenas um setor tendem a concentrar a informação de matiz. Para imagens com uma grande quantidade de áreas homogêneas, esses agrupamentos são os mais recomendados. As imagens (a), (b), (c), (c) e (d) referem-se respectivamente a: imagem original, informação de luminância, matiz, saturação e brilho. As demais imagens foram obtidas utilizando-se o agrupamento ou gabarito i juntamente com os respectivos deslocamentos de 15, 50, 80, 115, 170, 215, 270, 290, 310 e 345 ◦.
  18. 18. 7 DISCUSSÃO E CONCLUSÕES 16 (a) original, α = 0 ◦ (b) α = 30 ◦ (c) α = 60 ◦ (d) α = 90 ◦ (e) α = 120 ◦ (f) α = 150 ◦ (g) α = 180 ◦ (h) α = 210 ◦ (i) α = 240 ◦ (j) α = 270 ◦ (k) α = 300 ◦ (l) α = 330 ◦ Figura 16: Um exemplo de pré-harmonização: O rosto de Vênus. Estamos rodeados de exemplos harmoniosos ou semi-harmonizados que vão desde manifestações naturais de cores, e.g., pelagem de animais, flores, etc., até manifestações artísticas produzidas pelo homem. Um dos vários exemplos existentes de objetos pré- harmonizados produzidos pelo homem foi exibido no início deste relatório, trata-se do recorte O Nascimento de Vênus, onde temos como foco o rosto e os cabelos da Deusa. Nesse exemplo não utilizamos nenhum gabarito harmônico, apenas aplicamos um deslocamento direto de todos os valores de matiz presentes na imagem seguindo a fórmula Hnew(p) = Hold(p) + α. Os melhores resultados visuais julgados através da métrica Mean Opinion Score (MOS) são observados através das imagens (b) e (l).
  19. 19. 7 DISCUSSÃO E CONCLUSÕES 17 (a) original, α = 0 ◦ (b) matiz/hue (c) saturação/saturation (d) brilho/value (e) i, α = 55 ◦ (f) V, α = 0 ◦ (g) L, α = 230 ◦ (h) I, α = 22 ◦ (i) T, α = 0 ◦ (j) T, α = 300 ◦ (k) Y, α = 30 ◦ (l) X, α = 220 ◦ Figura 17: Aplicação de diferentes gabaritos. Através destes exemplo podemos visualizar o comportamento do método mediante a apliacação de vários gabaritos e sua versatilidade em cenas complexas. Em alguns casos o mesmo gabarito pode produzir resultados sensivelmente diferentes apenas com a mudança de sua orientação (imagens (i) e (j)). Imagem original retirada do artigo Color Harmonization [Cohen-Or et al., 2006], as demais, foram produzidas pela ferramenta desenvolvida neste relatório. (a) original (b) T, α = 250 ◦, F = 6298.49 (c) V, α = 335 ◦, F = 10630.00 Figura 18: Uma ferramenta de auxílio a organização e estética de ambientes. Neste exemplo podemos perceber que o restante da sala foi harmonizado levando em consideração o assoalho, o qual permaneceu inalterado. A técnica exposta neste relatório é uma das muitas que pode atuar como ferramenta de auxílio a organização e estética de ambientes, poupando tempo e esforço de profissionais de arquitetura e design de interiores.
  20. 20. 7 DISCUSSÃO E CONCLUSÕES 18 Figura 19: Color Harmonization Assistent - Visão da Interface. Para reprodução da técnica proposta por Cohen-Or et al., fez-se necessária a construção de um assistente que pudesse prover ao usuário uma sofisticada interface de manipilação de parâmetros voltados a harmonização de imagens. A aplicação conta com: um módulo de leitura e exibição, um módulo de escrita, um módulo de exibição por canal (luminância, canal vermelho, canal verde, canal azul, canal de matiz, canal de saturação, canal de brilho), um módulo de exibição de propriedades e histogramas, um módulo de configuração de harmonia por gabarito e por fim um módulo de otimização o qual executa uma busca pelo agrupamento mais adequado para uma dada imagem. Figura 20: Barra de Harmonização - Visão da Interface. Através desse conjunto de controles o usuário tem a possibilidade de personalização do gabrito, juntamente com o grau de orientação que deve ser fornecido para um melhor resultado visual.
  21. 21. REFERÊNCIAS 19 Referências Bochko, V. & Parkkinen, J. (2006), ‘A spec- tral color analysis and colorization techni- que’, Computer Graphics and Applications, IEEE 26(5), 74–82. Chang, Y., Saito, S., Uchikawa, K. & Naka- jima, M. (2006), ‘Example-based color styli- zation of images’, ACM Transactions on Ap- plied Perception 2(3), 322–345. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T. & Xu, Y.-Q. (2006), ‘Color harmonization’, ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) 25(3), 624–630. Datta, R., Joshi, D., Li, J. & Wang, J. Z. (2006), Studying aesthetics in photographic images using a computational approach, in ‘Compu- ter Vision–ECCV 2006’, Springer, pp. 288– 301. Gooch, A. A., Olsen, S. C., Tumblin, J. & Gooch, B. (2005), ‘Color2gray: salience- preserving color removal’, ACM Trans. Graph. 24(3), 634–639. URL http://doi. acm.org/10.1145/1073204.1073241. Granville, W. C. (1987), ‘Color harmony: What is it?’, Color Research & Application 12(4), 196–201. URL http://dx.doi.org/ 10.1002/col.5080120407. Granville, W. C. & Jacobson, E. (1944), ‘Co- lorimetric specification of the color har- mony manual from spectrophotometric me- asurements’, J. Opt. Soc. Am. 34(7), 382– 393. URL http://www.opticsinfobase. org/abstract.cfm?URI=josa-34-7-382. Gruber, L., Kalkofen, D. & Schmalstieg, D. (2010), Color harmonization for augmented reality, in ‘Mixed and Augmented Reality (ISMAR), 2010 9th IEEE International Sym- posium on’, pp. 227–228. Hascoet, M. (2012), Visual color design, in ‘In- formation Visualisation (IV), 2012 16th In- ternational Conference on’, IEEE, pp. 62–67. Holtzschue, L. (2002), Understanding Color, John Wiley & Sons. Inc., New York. Huang, H., Zang, Y. & Li, C.-F. (2010), ‘Example-based painting guided by color fe- atures’, The Visual Computer 26(6-8), 933– 942. Huo, X. & Tan, J. (2009), An improved method for color harmonization, in ‘Image and Sig- nal Processing, 2009. CISP ’09. 2nd Interna- tional Congress on’, pp. 1–4. Irony, R., Cohen-Or, D. & Lischinski, D. (2005), Colorization by example, in ‘Proce- edings of the Sixteenth Eurographics con- ference on Rendering Techniques’, Euro- graphics Association, pp. 201–210. Itten, J. (1960), The Art of Color, New York: Van Nostrand Reinhold Company. Kelly, K. L. & Judd, D. B. (1976), Color: uni- versal language and dictionary of names, Vol. 440, US Department of Commerce, National Bureau of Standards. Krause, J. (2002), Color Index: Over 1,000 Co- lor Combinations, CMYK and RGB Formu- las, for Print and Web Media, F & W Publi- cations, Incorporated. Lalonde, J.-F. & Efros, A. A. (2007), Using color compatibility for assessing image re- alism, in ‘Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on’, IEEE, pp. 1–8. Levin, A., Lischinski, D. & Weiss, Y. (2004), ‘Colorization using optimization’, ACM Trans. Graph. 23(3), 689–694. URL http: //doi.acm.org/10.1145/1015706.1015780.
  22. 22. REFERÊNCIAS 20 Li, C. & Chen, T. (2009), ‘Aesthetic visual qua- lity assessment of paintings’, Selected To- pics in Signal Processing, IEEE Journal of 3(2), 236–252. Liu, L., Chen, R., Wolf, L. & Cohen-Or, D. (2010), Optimizing photo composition, in ‘Computer Graphics Forum’, Vol. 29, Wiley Online Library, pp. 469–478. Luan, Q., Wen, F., Cohen-Or, D., Liang, L., Xu, Y.-Q. & Shum, H.-Y. (2007), Na- tural image colorization, in ‘Proceedings of the 18th Eurographics conference on Rende- ring Techniques’, Eurographics Association, pp. 309–320. Luo, Y. & Tang, X. (2008a), Photo and video quality evaluation: Focusing on the subject, in ‘Computer Vision–ECCV 2008’, Springer, pp. 386–399. Luo, Y. & Tang, X. (2008b), Photo and video quality evaluation: Focusing on the subject, in ‘Computer Vision–ECCV 2008’, Springer, pp. 386–399. Matsuda, Y. (1995), Color Design, Asakura Shoten (in Japanese), Tokio, Japan. Meier, B. J. (1988), Ace: a color expert system for user interface design, in ‘Proceedings of the 1st annual ACM SIGGRAPH symposium on User Interface Software’, UIST ’88, ACM, New York, NY, USA, pp. 117–128. URL http: //doi.acm.org/10.1145/62402.62424. Moon, P. & Spencer, D. E. (1944), ‘Geome- tric formulation of classical color harmony’, JOSA 34(1), 46–50. Morovic, J. & Luo, M. R. (2001), ‘The Fun- damentals of Gamut Mapping: A Survey’, pp. 283–290. Morse, B. S., Thornton, D., Xia, Q. & Uibel, J. (2007), Image-based color schemes, in ‘Image Processing, 2007. ICIP 2007. IEEE Interna- tional Conference on’, Vol. 3, IEEE, pp. III– 497. Munsell, A. H. (1969), A grammar of color: a basic treatise on the color system, Van Nos- trand Reinhold Co. Nack, F., Manniesing, A. & Hardman, L. (2003), Colour picking: the pecking prder of form and function, in ‘Proceedings of the eleventh ACM international conference on Multimedia’, MULTIMEDIA ’03, ACM, New York, NY, USA, pp. 279–282. URL http: //doi.acm.org/10.1145/957013.957071. Obrador, P. (2006), Automatic color scheme picker for document templates based on image analysis and dual problem, in ‘Electro- nic Imaging 2006’, International Society for Optics and Photonics, pp. 607609–607609. O’Donovan, P., Agarwala, A. & Hertzmann, A. (2011), Color compatibility from large data- sets, in ‘ACM SIGGRAPH 2011 papers’, SIG- GRAPH ’11, ACM, New York, NY, USA, pp. 63:1–63:12. URL http://doi.acm.org/ 10.1145/1964921.1964958. Ostwald, W. & Birren, F. (1969), The Color Primer, Van Nostrand Reinhold Company, New York, USA. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1992), Numerical Recipes in C: The Art of Scientific Compu- ting, 2nd ed., Cambridge University Press, New York, NY, USA. Rasche, K., Geist, R. & Westall, J. (2005), ‘Re- coloring images for gamuts of lower dimen- sion’, Computer Graphics Forum 24(3), 423– 432. URL http://dx.doi.org/10.1111/j. 1467-8659.2005.00867.x. Reinhard, E., Ashikhmin, M., Gooch, B. & Shirley, P. (2001), ‘Color transfer
  23. 23. REFERÊNCIAS 21 between images’, IEEE Comput. Graph. Appl. 21(5), 34–41. URL http://dx.doi.org/10. 1109/38.946629. Sato, Y. & Tajima, J. (1995), A color scheme supporting method in a color design system, in ‘SPIE’, Vol. 2411, pp. 25–33. Sauvaget, C. & Boyer, V. (2010), Harmonic co- lorization using proportion contrast, in ‘Pro- ceedings of the 7th International Conference on Computer Graphics, Virtual Reality, Vi- sualisation and Interaction in Africa’, ACM, pp. 63–69. Sawant, N. & Mitra, N. (2008), Color har- monization for videos, in ‘Computer Vision, Graphics Image Processing, 2008. ICVGIP ’08. Sixth Indian Conference on’, pp. 576– 582. Shapira, L., Shamir, A. & Cohen-Or, D. (2009), Image appearance exploration by model- based navigation, in ‘Computer Graphics Forum’, Vol. 28, Wiley Online Library, pp. 629–638. Sun, M., Sun, Q. & Xu, X. (2009), Color har- mony based on fitting functions, in ‘Infor- mation Technology and Applications, 2009. IFITA’09. International Forum on’, Vol. 1, IEEE, pp. 165–167. Sunkavalli, K., Johnson, M. K., Matusik, W. & Pfister, H. (2010), ‘Multi-scale image har- monization’, ACM Transactions on Graphics (TOG) 29(4), 125. Tanaka, G., Suetake, N. & Uchino, E. (2010), ‘Color transfer based on normalized cumula- tive hue histograms.’, JACIII 14(2), 185–192. Tang, Z., Miao, Z. & Wan, Y. (2010), Image composition with color harmonization, in ‘Image and Vision Computing New Zea- land (IVCNZ), 2010 25th International Con- ference of’, pp. 1–8. Tang, Z., Miao, Z., Wan, Y. & Jesse, F. F. (2011a), ‘Colour harmonisation for images and videos via two-level graph cut’, Image Processing, IET 5(7), 630–643. Tang, Z., Miao, Z., Wan, Y. & Wang, Z. (2011b), ‘Color harmonization for images’, Journal of Electronic Imaging 20(2), 023001–023001. Tokumaru, M., Muranaka, N. & Imanishi, S. (2002), Color design support system consi- dering color harmony, in ‘Fuzzy Systems, 2002. FUZZ-IEEE’02. Proceedings of the 2002 IEEE International Conference on’, Vol. 1, pp. 378–383. von Goethe, J. W. (1971), Goethe’s Color The- ory. Translated by Rupprecht Matthei, Van Nostrand Reinhold Co., New York, USA. Wang, C., Zhang, R. & Deng, F. (2009), ‘Image composition with color harmonization’, Chi- nese Optics Letters 7(6), 483–485. Wang, L. & Mueller, K. (2008), Harmonic co- lormaps for volume visualization, in ‘Procee- dings of the Fifth Eurographics/IEEE VGTC conference on Point-Based Graphics’, Euro- graphics Association, pp. 33–39. Wang, X., Jia, J., Liao, H. & Cai, L. (2012), Image colorization with an affective word, in ‘Computational Visual Media’, Springer, pp. 51–58. Welsh, T., Ashikhmin, M. & Mueller, K. (2002), ‘Transferring color to greyscale ima- ges’, ACM Trans. Graph. 21(3), 277–280. URL http://doi.acm.org/10.1145/566654. 566576. Westland, S., Laycock, K., Cheung, V., Henry, P. & Mahyar, F. (2012), ‘Colour harmony’, JAIC-Journal of the International Colour As- sociation. Zajonc, A. G. (1976), ‘Goethe’s theory of color and scientific intuition’, American Journal of Physics 44, 327.
  24. 24. Figuras 1 Método de harmonização em ação. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 O Nascimento de Vênus e Composition VII. . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 O Sistema de Cores de Munsell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Círculo de cores (Farbkreis) - 1961 - Johannes Itten . . . . . . . . . . . . . . . . . . . . . 6 5 Gabaritos Harmônicos de Masataka Tokumaru . . . . . . . . . . . . . . . . . . . . . . . . 7 6 Nomenclatura para bordas dos setores circulares. . . . . . . . . . . . . . . . . . . . . . . 7 7 Escolha manual de agrupamentos harmônicos. . . . . . . . . . . . . . . . . . . . . . . . . 9 8 Visão geral do processo de harmonização de cores. . . . . . . . . . . . . . . . . . . . . . 9 9 Medidas de setores circulares - largura e comprimento de arco. . . . . . . . . . . . . . . 11 10 Deslocamento de cores e histogramas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 Ambiguidade no deslocamento de cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 Inerência de harmonia em imagens naturais. . . . . . . . . . . . . . . . . . . . . . . . . . 12 13 Cores em imagens naturais. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 14 Separação de planos de fundo e amplitude de resgate de características originais. . . 14 15 Conservação de áreas homogêneas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 16 Um exemplo de pré-harmonização: O rosto de Vênus. . . . . . . . . . . . . . . . . . . . . 16 17 Aplicação de diferentes gabaritos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 18 Uma ferramenta de auxílio a organização e estética de ambientes. . . . . . . . . . . . . 17 19 Color Harmonization Assistent - Visão da Interface . . . . . . . . . . . . . . . . . . . . 18 20 Barra de Harmonização - Visão da Interface . . . . . . . . . . . . . . . . . . . . . . . . . 18 22
  25. 25. Tabelas 1 Tabela de distâncias harmônicas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 23
  26. 26. Equações 1c Equação da borda mais próxima ETm(α)(p) : [ Equação 1 ] . . . . . . . . . . . . . . . . . . . . 7 2 Função de custo ou distância F(P, (m, α)) : [ Equação 2 ] . . . . . . . . . . . . . . . . . . . . 8 3a Função de minimização de orientação M(P, Tm) : [ Equação 3 ] . . . . . . . . . . . . . . . . . 8 4a Função de minimização global B(P) : [ Equação 4 ] . . . . . . . . . . . . . . . . . . . . . . . . 10 5b Função de deslocamento de cores Hshift(p) : [ Equação 5 ] . . . . . . . . . . . . . . . . . . . . 10 6 Função de ponderamento gaussiano Gσ(x, µ) : [ Equação 6 ] . . . . . . . . . . . . . . . . . . 11 7b Função de medida de arco L(s) e W(s): [ Equação 7 ] . . . . . . . . . . . . . . . . . . . . . . 11 24
  27. 27. A APÊNDICE 25 A Apêndice A.1 Estado da Arte em Harmonização de Cores Os estudos sobre a moderna teoria das cores e harmonização são relativamente recentes, datando do início do século XX, porém, o esforço de conceituação neste campo remonta à época dos primei- ros ensaios aristotélicos que concluiam que a cor era uma propriedade inerente aos objetos, assim como peso, material e textura. Desde então, vários mestres, de diferentes cernes influenciariam esse campo, o que nos mostra que os resultados em Harmonização são oriundos de diversas áreas de pesquisa, não existindo uma formulação fechada do problema, consequentemente também não existindo uma solução. O que existe atualmente são diversos métodos para resolver tarefas bem definidas, as quais são bastante especializadas e raramente podem ser generalizadas para várias aplicações. Na maioria dos casos de emprego das técnicas de Harmonização, os computadores são pré-programados para resolver uma tarefa em particular. Logo, podemos perceber que a Har- monização de Cores é um campo que se encontra ainda nos seus primórdios, sendo a grande maioria de suas soluções e abordagens, objeto de pesquisa. Esta pesquisa envolve toda uma gama de enfoques, desde aplicações bastante orientadas à solução de problemas práticos restritos, como o controle de qualidade de produção de protótipos através de inspeção automática até tentativas de modelagem de processos cognitivos visuais como eles ocorrem nos animais superiores, numa ten- tativa de elaborar modelos genéricos de percepção visual. Uma das características mais marcantes do estado da arte em Harmonização de Cores é que ainda não existe nenhum modelo genérico de percepção visual, matematicamente definido e fechado, passível de ser aplicado na prática. O nosso conhecimento de como funcionam os mecanismos de percepção visual nos animais tampouco é suficiente para que possamos aplicar algum mecanismo de “engenharia reversa”, utilizando por exemplo técnicas de redes neurais para modelar ou imitar a percepção visual biológica. O que ocorre na prática, é que, para resolvermos uma determinada tarefa de harmonização de imagens utilizamos um conjunto de algoritmos bastante específicos, que são respectivamente responsáveis por realizar subtarefas limitadas dentro do processo de harmonização. Esses algoritmos são di- vididos em grupos, como filtros de contraste, detectores de bordas, segmentadores, classificadores de texturas e assim por diante. Comumente resolvemos um problema encaixando um conjunto desses algoritmos uns atrás dos outros para chegarmos a um resultado que só funcionará para um conjunto de imagens com características muito específicas, deixando de funcionar para todas as outras. Para um iniciante desavisado essa realidade pode parecer bastante desanimadora, pois isso realmente esta a mundos de distância do “computador que vê e interpreta”. Esta limitação nos algoritmos e nos paradigmas de análise de imagens realmente impõe grandes limitações ao que pode ser realizado na prática com as técnicas atualmente disponíveis. Compreender essas limitações e conhecer formas de tirar o máximo de proveito do que atualmente há disponível é um aspecto muito importante a ser considerado por quem deseja enveredar-se por problemas cuja solução possivelmente envolva o uso de vários outros campos correlatos, tais como, Neurobiologia, Psicologia Comportamental, Ótica, Processamento de Imagens, Processamento de Sinais Multidi- mensionais, Visão Computacional, Otimização Estocástica e Inteligência Artificial. Enfim, caberá a interdisciplinaridade promover o avanço da área.
  28. 28. A APÊNDICE 26 A.2 Recursos na Internet Abaixo segue uma lista de recursos que poderão auxiliar ao leitor deste relatório, caso o mesmo se interesse em reproduzí-lo. Nesta lista constam endereços eletrônicos de repositórios de bibliotecas, ferramentas, artigos acadêmicos, entre vários objetos de apoio1 . • http://igl.ethz.ch/projects/color-harmonization/ - Color Harmonization • http://opencv.willowgarage.com/wiki/ - OpenCV • http://savannah.nongnu.org/projects/libcvd - libCVD • http://www.matrox.com - Matrox Image Library • http://www.ni.com/vision/ - NI Vision - National Instruments • http://picoforge.int-evry.fr/cgi-bin/twiki/view/Gpucv/Web/ - GpuCV • http://cimg.sourceforge.net/ - The CImg Library • http://openil.sourceforge.net/ - DevIL - Developer’s Image Library • http://vxl.sourceforge.net/ - VXL - The Vision-something-Libraries • http://www.nvidia.com/object/cuda_home_new.html - CUDA • http://camellia.sourceforge.net/ - Camellia Library • http://www.euresys.com - Open eVision - Image Analisys Tools • http://www.adaptive-vision.com - Adaptive Vision Library • http://www.commonvisionblox.com/ - Common Vision Blox • http://www.cs.cmu.edu/~cil/v-source.html - Computer Vision Software • http://www.mathworks.com/products - Image Processing Toolbox for MATLAB • http://sivp.sourceforge.net/ - Scilab Image and Video Processing Toolbox • http://siptoolbox.sourceforge.net/ - Scilab Image Processing toolbox • http://www.scilab.org/contrib/ - Scilab Former Toolbox Center • http://rsbweb.nih.gov/ij/ - ImageJ - Image Processing and Analisys in Java • http://cran.r-project.org/web/packages/biOps/index.html - biOps • http://www.imagemagick.org/Magick++/ - ImageMagick Magick++ API • http://www.boost.org/doc/libs/1_48_0/libs/gil/doc/index.html - GIL • http://www.imageprocessingplace.com/ - Image Processing Place • http://www.efg2.com/Lab/Library/ - Image Processing List • http://www.videoclarity.com/ - Understanding MOS, JND and PSNR. 1 Última visita realizada em 31 de Maio de 2013. O autor deste relatório não se responsabiliza pela disponibilidade destes recursos, cabendo o ônus ou o bônus de sua publicação inteiramente aos seus respectivos idealizadores.
  29. 29. B BIBLIOGRAFIA COMPLEMENTAR 27 B Bibliografia Complementar As referências bibliográficas complementares empregadas neste relatório foram divididas em duas categorias: Principal e Secundária. Deve-se observar, que a estrutura teórica deste relatório segue com uma reprodução dos resultados do artigo Color Harmonization, porém optamos por uma reprodução parcial, pois julgamos onerosos alguns recursos utilizados no artigo. Devido a esse fato substituímos, em uma primeira fase, tais recursos por técnicas notadamente menos onerosas. A reprodução total dos algoritmos constantes no artigo direcional serão deixados como trabalhos futuros, nos quais enfatizaremos o uso de várias técnicas de segmentação e vários núcleos de ponderação de deslocamento. Abaixo segue a lista de bibliografias complementares: B.1 Bibliografia Complementar Principal • David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach, First Edition,Prentice Hall, 2003; • R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall, New Jersey, 3 edition, 2008. • Aura Conci, Eduardo Azevedo e Fabiana R. Leta, Computação Gráfica: Processamento e Análise de Imagens Digitais, Vol. 2, Campus / Elsevier, 2007. • http://www.lcg.ufrj.br/Cursos/cos756/introducao-ao-processamento-de-imagens • http://www.lcg.ufrj.br/Cursos/COS-751 B.2 Bibliografia Complementar Secundária • E. R. Davies, Machine Vision, Third Edition: Theory, Algorithms, Practicalities (Signal Processing and its Applications), Thirth Edition, Mourgan Kaufmann, 2005; • Milan Sonka, Vaclav Hlavac, Roger Boyle, Image Processing, Analysis, and Machine Vision, Third Edition, CL-Engineering, 2007; • H. Pedrini and W. R. Schwartz. Análise de Imagens Digitais: princípios, algoritmos e aplicações. Thomson Learning, São Paulo, 2008. • Ogê Marques Filho e Hugo Vieira Neto. Processamento Digital de Imagens. Rio de Janeiro: Brasport, 1999. ISBN 8574520098. • Jonas Gomes and Luiz Velho. Fundamentos da Computação Gráfica, volume 1 of Série de Computação e Matemática. IMPA, 1st edition, 2008. • Stuart J. Russell and Peter Norvig. Artificial intelligence - a modern approach, 2nd ed., 2009. • David Marr: Vision - A Computational Investigation into the Human Representation and Processing of Visual Information, W.H.Freeman & Co.,1982
  30. 30. C RESULTADOS E AUTORIA 28 • John C. Russ: The Image Processing Handbook, CRC Press, 1995 • B.D.Ripley: Pattern Recognition and Neural Networks, Cambridge Univ. Press, 1996 • R.D.Boyle, R.C.Thomas: Computer Vision - A First Course, Blackwell Scientific, 1988 • Perker: Algorithms for Image Processing and Computer Vision • Torras: Computer Vision: Theory and Industrial Application • Haralick, Shapiro: Computer and Robot Vision, Volumes I & II, • Buxton: Computer Vision - EECV 96: fourth European Conf. of Computer Vision • Mundy: Geometry Invariance in Computer Vision • Brown: Real-time Computer Vision • Young: Handbook of Pattern Recoginition and Image Processing, Academic Press • Metaxas: Physics-Based Deformable Models • Hanan Samet: The Design and Analysis of Spatil Data Structures, Addison Wesley, 1989 • http://computacaografica.ic.uff.br/vol2.html • Image Processing On Line (http://www.ipol.org) • http://iris.sel.eesc.usp.br/wvc (Workshop de Visão Computacional) C Resultados e Autoria Os resultados expostos neste relatório são oriundos da ferramenta Color Harmonization Assis- tent (figuras 19 e 20). Tal ferramenta foi desenvolvida pelo autor deste relatório com o intuito de comprovar a aplicabilidade da técnica de recolorização baseada em agrupamentos harmônicos [Cohen-Or et al., 2006]. As figuras 5 e 11 foram integralmente retiradas do artigo Color Harmo- nization [Cohen-Or et al., 2006]. As figuras 6 e 9 foram integralmente confeccionadas para este relatório. D Ferramenta Desenvolvida A implementação do assistente de harmonização (figuras 19 e 20) utilizado neste relatório teve como base a linguagem C++. Para o desenvolvimento da interface gráfica do usuário utilizamos a biblioteca FLTK. Os módulos de leitura e escrita de imagens foram concebidos através do uso da biblioteca Magick++.

×