SlideShare una empresa de Scribd logo
1 de 28
 
 
La palabra  termodinámica  proviene de los vocablos griegos  thermos   (calor) y  dynamis   (potencia), que describe los primeros esfuerzos por convertir el calor en potencia. Hoy día el mismo concepto abarca todos los aspectos de la energía y sus transformaciones, incluidas la producción de potencia, la refrigeración y las relaciones entre las propiedades de la materia. La termodinámica es la rama de la fisica que estudia la  energía , la transformación entre sus distintas manifestaciones, como el  calor , y su capacidad para producir un  trabajo . Está íntimamente relacionada con la mecánica estadistica de la cual se pueden derivar numerosas relaciones termodinámicas estudiando los sistemas físicos a nivel  macroscópico .
Obtener los conocimientos básicos de termodinámica y de transmisión de calor, base de la ingeniería química, con una visión panorámica de las aplicaciones y posibilidades tecnológicas de ésta materia, de forma que permita una eventual y opcional especialización posterior en este campo.  Así también, la idea de este cuestionario y de su contenido es acercarnos a los procesos en sí, y mediante ejemplos sencillos facilitarnos el aprendizaje de la materia. No se ha tratado de escribir unos apuntes que sustituyan a los muchos y buenos textos de Termodinámica ya existentes, sino de complementarlos, y hacerlo de forma esquemática. Ciertamente, se requerirán unos conocimientos matemáticos básicos, pero la termodinámica es una ciencia macroscópica y nosotros, no hay que olvidarlo, hablaremos de propiedades medibles.
 
Un Ingeniero Químico es un profesional con una sólida preparación en química, física e ingeniería, capaz de participar en la solución de problemas como: el control de la contaminación, manejo y preservación de recursos naturales, uso eficiente de la energía y elaboración de productos que requieran una transformación física o química.   Además de ser el responsable de vigilar el correcto funcionamiento, la dirección de producción y el control de calidad de la Industria Química. Seleccionando la materia prima, el proceso químico, el equipo y accesorios de acuerdo al proceso, realizando los cálculos necesarios, atendiendo a los costos, facilidades de adquisición, eficiencia de operación y mantenimiento. Aplicando sus conocimientos en cualquier industria química, investigando y desarrollando nuevos equipos de proceso o nuevos productos químicos.    Su actividad se realiza principalmente en la industria química, petroquímica, farmacéutica, plásticas, cementos, siderúrgica de alimentos, textiles, papeleras, azucarera, abonos y fertilizantes entre muchas otras.  
Es decir, el Ingeniero Químico se debe enfrentar a una amplia gama de problemas. Entre los cuales se encuentra la determinación de las condiciones de equilibrio para la transferencia de especies químicas entre fases, así como el cálculo de los requerimientos de calor y trabajo para procesos físicos y químicos.   Las composiciones de cada fase en equilibrio son muy diferentes, y es precisamente esta diferencia la que nos permite separar mezclas por destilación, extracción, absorción, etc. Generalmente los conocimientos de termodinámica que un alumno adquiere en su licenciatura le permiten realizar correlaciones o predicciones sencillas del Equilibrio Líquido-Vapor.     Otro de los problemas más habituales para el Ingeniero Químico es el diseño y análisis de sistemas térmicos. Base de este diseño es el análisis energético, que combina los balances de materia y energía junto con el segundo principio de la termodinámica. Y es en la industria petroquímica que se hace  evidente la importancia del desarrollo de sistemas térmicos que hagan un uso efectivo de los recursos energéticos no renovables como petróleo, gas natural, carbón, etc.     Sabiendo, entonces que la termodinámica es la ciencia que comprende el estudio de las transformaciones de energía y las relaciones entre las diferentes propiedades físicas de las sustancias que sufren estas transformaciones, se concluye que en cualquier actividad de la Ingeniería está implícita la termodinámica.  
Los equipos instalados en una planta química llevan a efecto los procesos industriales y el diseño de los equipos aplicados para ello es muy importante, así como el control del funcionamiento óptimo de ellos y todo el proceso integrador y el control en la aplicación de la energía necesaria para que ello se lleve efecto. La importancia que tienen estos puntos para: el gerente de la planta, los dueños de dicha planta , los ingenieros, el personal que labora en ella y los habitantes donde está instalada  Los dueños de las planta,  es importante el diseño de los equipos ya que en ocasiones puede parecer costosa la adquisición de nueva y mejor maquinaria; deben tomar en cuenta que estas cuentas y cubren con una mayor amplitud las necesidades imperantes, tales como una mayor rapidez del proceso, un uso menor de energía, entre otras cosas. El Gerente,  Debe estar informado del buen desempeño de todo el complejo operativo mecánico- humano; así como determinar y atender las anormalidades o incidencias que ocurriesen, de ser necesario si así la índole lo ameritara.
Los Habitantes  que vive en zonas periféricas a una planta química (ingenio azucarero, planta generadora de electricidad, refinería, fabricas siderúrgicas).  Es fundamental tener conocimiento de las características de los procesos que estas se llevan a cabo. De la materia prima que consumirán, cuáles son los mecanismos de mantenimiento, limpieza y desarrollo, qué agentes tóxicos utilizan (de haberlos) y hacia a dónde se dirigen o depositan todos los residuos.   Para el personal que labora en ella  el proceso industrial debe contar con un desarrollo y un funcionamiento óptimo, el manejo del equipo industrial debe de ser lo más simple y sencillo que se pueda, de ser posible ofrecer al operador la posibilidad de realizar múltiples tareas realizando ejecuciones simple o relativamente simples. Para los ingenieros,  Los equipos de una planta química  que llevan a cabo procesos industriales mediante los cuales emplean la materia para transformarla o producir energía; El óptimo funcionamiento y control de estos equipos está dada en gran medida por su diseño. La importancia para un ingeniero químico de mantener estos puntos cubiertos en su totalidad, estriba en que al cumplirse de manera adecuada, se mantiene el control de factores determinantes tales como; el control del flujo de energía que se aplica al proceso, manejando de esta manera la energía total aplicada.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Se denomina  sistema termodinámico  o simplemente  sistema   a toda aquella  cantidad de materia o aquella región en el espacio elegida para su estudio   limitada por una superficie llamada  frontera , abstracta o real (también conocidas como  fija  o  móvil   respectivamente). Cuando la  frontera   que limita el sistema es real, se conoce como  pared .  Observe que la frontera es la superficie de contacto compartida tanto por el sistema como por los  alrededores ,  medio ambiente  o  vecindad ,  es decir, todo aquello que queda fuera del sistema. Así, el sistema más su entorno se denomina  universo .  Cada sistema puede ser, a su vez, subsistema de otro mayor, o, también, estar él mismo dividido en subsistemas.   Un sistema queda especificado cuando se conoce su  naturaleza   fisicoquímica , las  propiedades de las paredes   que separan los diferentes subsistemas y la pared que separa todo el sistema del entorno. Si la composición química y las propiedades físicas locales (entendidas como propiedades intensivas macroscópicas) de un sistema son iguales en todos los puntos del mismo, el sistema es  homogéneo   y se dice entonces que consta de una sola  fase . Cuando el sistema está compuesto de varios subsistemas homogéneos o fases, se dice que es  heterogéneo .   
Finalmente, un sistema puede interactuar o no con su entorno. Las interacciones entre diferentes sistemas termodinámicos, que se denominan  contactos termodinámicos , están condicionadas tanto por la naturaleza de los sistemas como por el tipo de paredes separadoras. Cuando no existe ningún contacto termodinámico entre el sistema y el entorno, se dice que el sistema es  aislado ,  en este caso, no puede intercambiar ni masa ni energía con el entorno.   Por ejemplo:  Considérese un dispositivo conformado por un émbolo y un cilindro. Supongamos que nos interesa saber qué le sucede al gas encerrado cuando se calienta. Puesto que centramos nuestra atención en el gas, éste es nuestro sistema, las superficies interiores del émbolo y el cilindro forman la frontera (la superficie interna del émbolo, en este caso) puede moverse. Todo lo que queda fuera del gas, incluso el émbolo y el cilindro, constituyen los alrededores.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
A su vez, el estado de un sistema se describe por medio de sus propiedades. Pero no es necesario especificar todas las propiedades para fijar un estado. Una vez que se especifica un número suficiente de propiedades, el resto de ellas asume ciertos valores de manera automática. El número de propiedades que se requieren para fijar el estado de un sistema está dado por el  Postulado de estado:    “ El estado de un sistema compresible simple se especifica completamente por dos propiedades intensivas independientes El postulado de estado requiere que las dos propiedades específicas sean  independientes  para fijar el estado. Y son independientes si una de ellas varía en tanto que la otra se mantiene constante, La temperatura y el volumen específico, por ejemplo, siempre son propiedades independientes en sistemas de una sola fase, pero son dependientes en sistemas multifase. A nivel del mar (P= 1 atm), el agua hierve a 100 °C, pero en la cima de una montaña, donde la presión es menor, el agua hierve a una temperatura más baja. Esto es, T=  f (P) durante un proceso de cambio de fase, por lo que la temperatura y la presión no son suficientes para fijar el estado de un sistema bifásico
[object Object],[object Object],[object Object],[object Object]
A grandes rasgos los  s istemas cerrados  son aquellos que pueden intercambiar energía, aunque no materia, con los alrededores. Los s istemas abiertos  son aquellos que pueden intercambiar materia y energía, y finalmente se conocen como  sistemas aislados  a todo sistema que incapaz de poder intercambiar materia o energía .
Por ejemplo:  Un clásico sistema abierto, se considera al calentador de agua, pues se requiere determinar cuánto calor se debe transferir al agua que está en el tanque para suministrar un flujo permanente de agua caliente. Puesto que saldrá agua caliente del tanque y será sustituida por agua fría, no conviene elegir una masa fija como sistema para el análisis. En su lugar, es posible concentrarse en el volumen formado por las superficies interiores del tanque y considerar los flujos de agua caliente y fría como la masa que sale y entra al volumen control. En este caso la superficie interior del tanque forma la  superficie de control , y la masa cruza la superficie de control en dos posiciones.
La parte del sistema que interacciona con el sistema se le conoce como vecindad. Las interacciones entre el sistema con sus alrededores esta caracterizada por los intercambios de energía y masa, en sus diversas formas,  la energía puede intercambiarse por medios mecánicos o no mecánicos, esto es por procesos de calentamiento o enfriamiento
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
1. Unidad de longitud:  metro  (m) La definición original del metro fue establecida en 1889, y estaba basada en un prototipo de platino-iridio, el cual todavía es conservado en Sèvres, Francia. Esta definición fue reemplazada en 1960 por una en términos de la longitud de onda de una radiación emitida por el isótopo Kr-86. Posteriormente, en 1983 se adoptó la siguiente definición, la que aumenta la precisión en la realización de la unidad de longitud:    El metro es la longitud de la trayectoria recorrida por la luz en el vacío durante un lapso de 1/299 792 458 de segundo .         
  2. Unidad de masa: kilogramo  (kg) La masa es la medida de la inercia de un cuerpo. Aunque es frecuente que se defina como la cantidad de materia contenida en un cuerpo, esta última definición es incompleta. En el Sistema Internacional de Unidades se mide en kilogramos. En 1889 se estableció el prototipo internacional del kilogramo, declarándose que:  El kilogramo es la masa del prototipo. El prototipo está hecho con una aleación de platino-iridio y es conservado en el Bureau Internacional de Pesos y Medidas en Sèvres, Francia.  3. Unidad de tiempo:  segundo  (s) Originalmente se definió el segundo como 1/86 400 de un año medio solar. En 1967 se adoptó la actual definición:  El segundo es la duración de 9 192 631 770 períodos de la radiación correspondiente a la transición entre dos niveles hiperfinos del estado base del átomo cesio-13.   
4. Unidad de corriente eléctrica: ampere (A)   La actual definición fue establecida en 1948:  El ampere es la corriente eléctrica que, circulando en 2 conductores rectos, paralelos, de longitud infinita y colocados a 1 m en el vacío, produce entre ellos una fuerza de  2 x 10 -7  N m -1 .   5. Unidad de temperatura termodinámica: kelvin (K)  En 1967 se definió la unidad de temperatura termodinámica T, La misma unidad es empleada para expresar intervalos o diferencias de temperaturas:  El kelvin es la fracción 1/273,16 de la temperatura termodinámica (definida) correspondiente al punto triple del agua.  
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Unidades SI (Sistema Internacional) Cantidad física Nombre de la unidad Símbolo longitud metro m masa kilogramo kg tiempo segundo s temperatura termodinámica kelvin K corriente eléctrica ampere A cantidad de sustancia mol mol intensidad luminosa candela cd
Las  cantidades físicas  son aquellas que combinados con números representan una magnitud.           1.  Unidades   Fundamentales : masa, tiempo, longitud, intensidad de corriente, luminosa, cantidad de sustancia, temperatura. (Kg, s, m, A, cd, mol, K). 2.  Unidades   Derivadas : volumen, fuerza, densidad, trabajo, etc… (m 3 , N = kg m s -2 , Kg m -3 , J = N m). 3.  Magnitud física : como toda medición consiste en atribuir un valor numérico cuantitativo a alguna propiedad de un cuerpo (Ej.: la longitud o el área); pueden cuantificarse por comparación con un patrón o con partes de un patrón.
Magnitud Unidad del SI Expresión en otras unidades Expresió en unidades básicas nombre símbolo ángulo plano radián rad    m·m -1 ==1 frecuencia hertz Hz    s -1   fuerza newton N    kg·m·s -2 presión, tensión pascal Pa  N/m 2 m -1 ·kg·s -2 energía, trabajo, cantidad de calor joule J  N·m m 2 ·kg·s -2 potencia, flujo radiante watt W  J/s m 2 ·kg·s -3 diferencia de potencial eléctrico, fuerza electromotriz volt V  W/A m 2 ·kg·s -3 ·A -1 capacitancia farad F  C/V m -2 ·kg -1 ·s 4 ·A 2 resistencia eléctrica ohm W  V/A m 2 ·kg·s -3 ·A -2 carga eléctrica coulomb C  F·V A·s conductancia eléctrica siemens S  A/V m -2 ·kg -1 ·s 3 ·A 2 flujo magnético weber Wb  V·s m 2 ·kg·s -2 ·A -1
Factor Prefijo símbolo 10 1   deca   da 10 2   hecto   h 10 3   kilo   k 10 6   mega   M 10 9   giga   G 10 12   tera   T 10 15   peta   P 10 18   exa   E 10 21   zetta   Z 10 24   yotta   Y Factor Prefijo símbolo 10 -1   deci   d 10 -2   centi   c 10 -3   mili   m 10 -6   micro   µ 10 -9   nano   n 10 -12   pico   p 10 -15   femto   f 10 -18   atto   a 10 -21   zepto   z 10 -24   yocto   y

Más contenido relacionado

La actualidad más candente

Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gasesdaszemog
 
Informe Ley de Boyle
Informe Ley de BoyleInforme Ley de Boyle
Informe Ley de BoyleRobert Roca
 
Vapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentadoVapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentadoDaniel Desmoctt
 
Ecuaciones de estado. Ejercicios resueltos
Ecuaciones de estado. Ejercicios resueltosEcuaciones de estado. Ejercicios resueltos
Ecuaciones de estado. Ejercicios resueltosDavid Escobar
 
Problemas resueltos de Cinetica Quimica
Problemas resueltos de Cinetica QuimicaProblemas resueltos de Cinetica Quimica
Problemas resueltos de Cinetica QuimicaJosé Miranda
 
EQUILIBRIO QUIMICO-LABORATORIO QIMICA II
EQUILIBRIO QUIMICO-LABORATORIO QIMICA IIEQUILIBRIO QUIMICO-LABORATORIO QIMICA II
EQUILIBRIO QUIMICO-LABORATORIO QIMICA IIRober Aparicio Lliuya
 
Van ness capitulo 3 orihuela contreras jose
Van ness capitulo 3 orihuela contreras joseVan ness capitulo 3 orihuela contreras jose
Van ness capitulo 3 orihuela contreras joseSoldado Aliado<3
 
Cinética Química
Cinética QuímicaCinética Química
Cinética QuímicaLuis Seijo
 
Guia problemas-resueltos-cinetica-reactores
Guia problemas-resueltos-cinetica-reactoresGuia problemas-resueltos-cinetica-reactores
Guia problemas-resueltos-cinetica-reactoresRicky Castillo
 
Problemas selectos de fenomenos de transporte
Problemas selectos de fenomenos de transporteProblemas selectos de fenomenos de transporte
Problemas selectos de fenomenos de transporteAlberto Cristian
 
espontaneidad y equilibrio
espontaneidad y equilibrioespontaneidad y equilibrio
espontaneidad y equilibrioSergio Salcedo
 
Tema 1-sustancias-puras3
Tema 1-sustancias-puras3Tema 1-sustancias-puras3
Tema 1-sustancias-puras3Juan Hard Cruz
 
Coeficientes de actividad
Coeficientes de actividadCoeficientes de actividad
Coeficientes de actividadcruizgaray
 
Relaciones de propiedades termodinámicas, relaciones de Maxwell, ecuación d...
Relaciones de propiedades  termodinámicas, relaciones  de Maxwell, ecuación d...Relaciones de propiedades  termodinámicas, relaciones  de Maxwell, ecuación d...
Relaciones de propiedades termodinámicas, relaciones de Maxwell, ecuación d...Yanina C.J
 

La actualidad más candente (20)

Sesion 2 sustancia pura 2016
Sesion  2 sustancia pura 2016Sesion  2 sustancia pura 2016
Sesion 2 sustancia pura 2016
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gases
 
Informe Ley de Boyle
Informe Ley de BoyleInforme Ley de Boyle
Informe Ley de Boyle
 
Vapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentadoVapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentado
 
Ecuaciones de estado. Ejercicios resueltos
Ecuaciones de estado. Ejercicios resueltosEcuaciones de estado. Ejercicios resueltos
Ecuaciones de estado. Ejercicios resueltos
 
Problemas resueltos de Cinetica Quimica
Problemas resueltos de Cinetica QuimicaProblemas resueltos de Cinetica Quimica
Problemas resueltos de Cinetica Quimica
 
EQUILIBRIO QUIMICO-LABORATORIO QIMICA II
EQUILIBRIO QUIMICO-LABORATORIO QIMICA IIEQUILIBRIO QUIMICO-LABORATORIO QIMICA II
EQUILIBRIO QUIMICO-LABORATORIO QIMICA II
 
Interpolacion en tablas de termodinámica
Interpolacion en tablas de termodinámicaInterpolacion en tablas de termodinámica
Interpolacion en tablas de termodinámica
 
Van ness capitulo 3 orihuela contreras jose
Van ness capitulo 3 orihuela contreras joseVan ness capitulo 3 orihuela contreras jose
Van ness capitulo 3 orihuela contreras jose
 
Guía 8 de balance de masa y energía
Guía 8 de balance de masa y energíaGuía 8 de balance de masa y energía
Guía 8 de balance de masa y energía
 
Termodinamica ejercicios resueltos
Termodinamica ejercicios resueltosTermodinamica ejercicios resueltos
Termodinamica ejercicios resueltos
 
Balance de materia ejercicios
Balance de materia ejerciciosBalance de materia ejercicios
Balance de materia ejercicios
 
Cinética Química
Cinética QuímicaCinética Química
Cinética Química
 
Guia problemas-resueltos-cinetica-reactores
Guia problemas-resueltos-cinetica-reactoresGuia problemas-resueltos-cinetica-reactores
Guia problemas-resueltos-cinetica-reactores
 
Problemas selectos de fenomenos de transporte
Problemas selectos de fenomenos de transporteProblemas selectos de fenomenos de transporte
Problemas selectos de fenomenos de transporte
 
Entropía
EntropíaEntropía
Entropía
 
espontaneidad y equilibrio
espontaneidad y equilibrioespontaneidad y equilibrio
espontaneidad y equilibrio
 
Tema 1-sustancias-puras3
Tema 1-sustancias-puras3Tema 1-sustancias-puras3
Tema 1-sustancias-puras3
 
Coeficientes de actividad
Coeficientes de actividadCoeficientes de actividad
Coeficientes de actividad
 
Relaciones de propiedades termodinámicas, relaciones de Maxwell, ecuación d...
Relaciones de propiedades  termodinámicas, relaciones  de Maxwell, ecuación d...Relaciones de propiedades  termodinámicas, relaciones  de Maxwell, ecuación d...
Relaciones de propiedades termodinámicas, relaciones de Maxwell, ecuación d...
 

Destacado

Leyes de la termodinamica
Leyes de la termodinamicaLeyes de la termodinamica
Leyes de la termodinamicaslherrer
 
Termodinamica
TermodinamicaTermodinamica
TermodinamicaUNAM
 
Termodinamica
TermodinamicaTermodinamica
TermodinamicaCarolNav
 
leyes de la termodinamica (0,1 y 2
leyes de la termodinamica (0,1 y 2leyes de la termodinamica (0,1 y 2
leyes de la termodinamica (0,1 y 2Erick Ar Ag
 
Leyes de la Termodinámica
Leyes de la TermodinámicaLeyes de la Termodinámica
Leyes de la TermodinámicaEnrique Posada
 
Leyes de la termodinámica
Leyes de la termodinámicaLeyes de la termodinámica
Leyes de la termodinámicaIgnacio Espinoza
 

Destacado (7)

Leyes de la termodinamica
Leyes de la termodinamicaLeyes de la termodinamica
Leyes de la termodinamica
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Leyes de la termodinámica
Leyes de la termodinámicaLeyes de la termodinámica
Leyes de la termodinámica
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
leyes de la termodinamica (0,1 y 2
leyes de la termodinamica (0,1 y 2leyes de la termodinamica (0,1 y 2
leyes de la termodinamica (0,1 y 2
 
Leyes de la Termodinámica
Leyes de la TermodinámicaLeyes de la Termodinámica
Leyes de la Termodinámica
 
Leyes de la termodinámica
Leyes de la termodinámicaLeyes de la termodinámica
Leyes de la termodinámica
 

Similar a Conceptos Básicos De TermodináMica

254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdfOsman Castro
 
Termodinamica revisar apuntes
Termodinamica revisar apuntesTermodinamica revisar apuntes
Termodinamica revisar apuntesAna Hernan
 
15termodinamica
15termodinamica15termodinamica
15termodinamicacsitorti
 
Examen final.termoeconomía monografia-2017
Examen final.termoeconomía monografia-2017Examen final.termoeconomía monografia-2017
Examen final.termoeconomía monografia-2017Teodolfo Enciso
 
Termodinamica partei
Termodinamica parteiTermodinamica partei
Termodinamica parteiElvira Ol
 
Termodinámica - Clase 01.pptx TERMODINAMISNO
Termodinámica - Clase 01.pptx TERMODINAMISNOTermodinámica - Clase 01.pptx TERMODINAMISNO
Termodinámica - Clase 01.pptx TERMODINAMISNOEladminLlanoz
 
Termodinámica y energía.pdfqqqqqqqqqqqqqq
Termodinámica y energía.pdfqqqqqqqqqqqqqqTermodinámica y energía.pdfqqqqqqqqqqqqqq
Termodinámica y energía.pdfqqqqqqqqqqqqqqPacoMedinaInfante
 
Introduccion Ingeniería de Reactores
Introduccion Ingeniería de ReactoresIntroduccion Ingeniería de Reactores
Introduccion Ingeniería de ReactoresCabrera Miguel
 
Ingeniería de las Reacciones Químicas
Ingeniería de las Reacciones QuímicasIngeniería de las Reacciones Químicas
Ingeniería de las Reacciones QuímicasMan Fenix
 
Diseño de reactores
Diseño de reactoresDiseño de reactores
Diseño de reactoresNeyla ASTILLA
 
0 b introduccion a balances de my e (1)
0 b introduccion a balances de  my e (1)0 b introduccion a balances de  my e (1)
0 b introduccion a balances de my e (1)JhonTerres
 

Similar a Conceptos Básicos De TermodináMica (20)

Ing quimica
Ing quimicaIng quimica
Ing quimica
 
Ingeniería de la Reacción Química
Ingeniería de la Reacción QuímicaIngeniería de la Reacción Química
Ingeniería de la Reacción Química
 
Cap1
Cap1Cap1
Cap1
 
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
 
1
11
1
 
Termodinamica revisar apuntes
Termodinamica revisar apuntesTermodinamica revisar apuntes
Termodinamica revisar apuntes
 
15termodinamica
15termodinamica15termodinamica
15termodinamica
 
15termodinamica
15termodinamica15termodinamica
15termodinamica
 
Examen final.termoeconomía monografia-2017
Examen final.termoeconomía monografia-2017Examen final.termoeconomía monografia-2017
Examen final.termoeconomía monografia-2017
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
15termodinamica
15termodinamica15termodinamica
15termodinamica
 
Termodinamica partei
Termodinamica parteiTermodinamica partei
Termodinamica partei
 
Termodinámica - Clase 01.pptx TERMODINAMISNO
Termodinámica - Clase 01.pptx TERMODINAMISNOTermodinámica - Clase 01.pptx TERMODINAMISNO
Termodinámica - Clase 01.pptx TERMODINAMISNO
 
Termodinámica y energía.pdfqqqqqqqqqqqqqq
Termodinámica y energía.pdfqqqqqqqqqqqqqqTermodinámica y energía.pdfqqqqqqqqqqqqqq
Termodinámica y energía.pdfqqqqqqqqqqqqqq
 
Introduccion
IntroduccionIntroduccion
Introduccion
 
Introduccion Ingeniería de Reactores
Introduccion Ingeniería de ReactoresIntroduccion Ingeniería de Reactores
Introduccion Ingeniería de Reactores
 
Ingeniería de las Reacciones Químicas
Ingeniería de las Reacciones QuímicasIngeniería de las Reacciones Químicas
Ingeniería de las Reacciones Químicas
 
Diseño de reactores
Diseño de reactoresDiseño de reactores
Diseño de reactores
 
0 b introduccion a balances de my e (1)
0 b introduccion a balances de  my e (1)0 b introduccion a balances de  my e (1)
0 b introduccion a balances de my e (1)
 

Más de Google

Control Emisiones Ingenio2009
Control Emisiones Ingenio2009Control Emisiones Ingenio2009
Control Emisiones Ingenio2009Google
 
La Ingeniería Química..Introducción
La Ingeniería Química..IntroducciónLa Ingeniería Química..Introducción
La Ingeniería Química..IntroducciónGoogle
 
Volumetria
VolumetriaVolumetria
VolumetriaGoogle
 
Soluciones Buffer
Soluciones BufferSoluciones Buffer
Soluciones BufferGoogle
 
Halogenuros De Alquilo
Halogenuros De AlquiloHalogenuros De Alquilo
Halogenuros De AlquiloGoogle
 
Origenes Quimica En Mexico
Origenes Quimica En MexicoOrigenes Quimica En Mexico
Origenes Quimica En MexicoGoogle
 
Diagrama del átomo del Carbono
Diagrama del átomo del CarbonoDiagrama del átomo del Carbono
Diagrama del átomo del CarbonoGoogle
 

Más de Google (7)

Control Emisiones Ingenio2009
Control Emisiones Ingenio2009Control Emisiones Ingenio2009
Control Emisiones Ingenio2009
 
La Ingeniería Química..Introducción
La Ingeniería Química..IntroducciónLa Ingeniería Química..Introducción
La Ingeniería Química..Introducción
 
Volumetria
VolumetriaVolumetria
Volumetria
 
Soluciones Buffer
Soluciones BufferSoluciones Buffer
Soluciones Buffer
 
Halogenuros De Alquilo
Halogenuros De AlquiloHalogenuros De Alquilo
Halogenuros De Alquilo
 
Origenes Quimica En Mexico
Origenes Quimica En MexicoOrigenes Quimica En Mexico
Origenes Quimica En Mexico
 
Diagrama del átomo del Carbono
Diagrama del átomo del CarbonoDiagrama del átomo del Carbono
Diagrama del átomo del Carbono
 

Último

pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxLolaBunny11
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfJulian Lamprea
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...silviayucra2
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 

Último (10)

pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdf
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 

Conceptos Básicos De TermodináMica

  • 1.  
  • 2.  
  • 3. La palabra termodinámica proviene de los vocablos griegos thermos (calor) y dynamis (potencia), que describe los primeros esfuerzos por convertir el calor en potencia. Hoy día el mismo concepto abarca todos los aspectos de la energía y sus transformaciones, incluidas la producción de potencia, la refrigeración y las relaciones entre las propiedades de la materia. La termodinámica es la rama de la fisica que estudia la energía , la transformación entre sus distintas manifestaciones, como el calor , y su capacidad para producir un trabajo . Está íntimamente relacionada con la mecánica estadistica de la cual se pueden derivar numerosas relaciones termodinámicas estudiando los sistemas físicos a nivel macroscópico .
  • 4. Obtener los conocimientos básicos de termodinámica y de transmisión de calor, base de la ingeniería química, con una visión panorámica de las aplicaciones y posibilidades tecnológicas de ésta materia, de forma que permita una eventual y opcional especialización posterior en este campo. Así también, la idea de este cuestionario y de su contenido es acercarnos a los procesos en sí, y mediante ejemplos sencillos facilitarnos el aprendizaje de la materia. No se ha tratado de escribir unos apuntes que sustituyan a los muchos y buenos textos de Termodinámica ya existentes, sino de complementarlos, y hacerlo de forma esquemática. Ciertamente, se requerirán unos conocimientos matemáticos básicos, pero la termodinámica es una ciencia macroscópica y nosotros, no hay que olvidarlo, hablaremos de propiedades medibles.
  • 5.  
  • 6. Un Ingeniero Químico es un profesional con una sólida preparación en química, física e ingeniería, capaz de participar en la solución de problemas como: el control de la contaminación, manejo y preservación de recursos naturales, uso eficiente de la energía y elaboración de productos que requieran una transformación física o química.   Además de ser el responsable de vigilar el correcto funcionamiento, la dirección de producción y el control de calidad de la Industria Química. Seleccionando la materia prima, el proceso químico, el equipo y accesorios de acuerdo al proceso, realizando los cálculos necesarios, atendiendo a los costos, facilidades de adquisición, eficiencia de operación y mantenimiento. Aplicando sus conocimientos en cualquier industria química, investigando y desarrollando nuevos equipos de proceso o nuevos productos químicos.   Su actividad se realiza principalmente en la industria química, petroquímica, farmacéutica, plásticas, cementos, siderúrgica de alimentos, textiles, papeleras, azucarera, abonos y fertilizantes entre muchas otras.  
  • 7. Es decir, el Ingeniero Químico se debe enfrentar a una amplia gama de problemas. Entre los cuales se encuentra la determinación de las condiciones de equilibrio para la transferencia de especies químicas entre fases, así como el cálculo de los requerimientos de calor y trabajo para procesos físicos y químicos.   Las composiciones de cada fase en equilibrio son muy diferentes, y es precisamente esta diferencia la que nos permite separar mezclas por destilación, extracción, absorción, etc. Generalmente los conocimientos de termodinámica que un alumno adquiere en su licenciatura le permiten realizar correlaciones o predicciones sencillas del Equilibrio Líquido-Vapor.   Otro de los problemas más habituales para el Ingeniero Químico es el diseño y análisis de sistemas térmicos. Base de este diseño es el análisis energético, que combina los balances de materia y energía junto con el segundo principio de la termodinámica. Y es en la industria petroquímica que se hace evidente la importancia del desarrollo de sistemas térmicos que hagan un uso efectivo de los recursos energéticos no renovables como petróleo, gas natural, carbón, etc.     Sabiendo, entonces que la termodinámica es la ciencia que comprende el estudio de las transformaciones de energía y las relaciones entre las diferentes propiedades físicas de las sustancias que sufren estas transformaciones, se concluye que en cualquier actividad de la Ingeniería está implícita la termodinámica.  
  • 8. Los equipos instalados en una planta química llevan a efecto los procesos industriales y el diseño de los equipos aplicados para ello es muy importante, así como el control del funcionamiento óptimo de ellos y todo el proceso integrador y el control en la aplicación de la energía necesaria para que ello se lleve efecto. La importancia que tienen estos puntos para: el gerente de la planta, los dueños de dicha planta , los ingenieros, el personal que labora en ella y los habitantes donde está instalada Los dueños de las planta, es importante el diseño de los equipos ya que en ocasiones puede parecer costosa la adquisición de nueva y mejor maquinaria; deben tomar en cuenta que estas cuentas y cubren con una mayor amplitud las necesidades imperantes, tales como una mayor rapidez del proceso, un uso menor de energía, entre otras cosas. El Gerente, Debe estar informado del buen desempeño de todo el complejo operativo mecánico- humano; así como determinar y atender las anormalidades o incidencias que ocurriesen, de ser necesario si así la índole lo ameritara.
  • 9. Los Habitantes que vive en zonas periféricas a una planta química (ingenio azucarero, planta generadora de electricidad, refinería, fabricas siderúrgicas). Es fundamental tener conocimiento de las características de los procesos que estas se llevan a cabo. De la materia prima que consumirán, cuáles son los mecanismos de mantenimiento, limpieza y desarrollo, qué agentes tóxicos utilizan (de haberlos) y hacia a dónde se dirigen o depositan todos los residuos.   Para el personal que labora en ella el proceso industrial debe contar con un desarrollo y un funcionamiento óptimo, el manejo del equipo industrial debe de ser lo más simple y sencillo que se pueda, de ser posible ofrecer al operador la posibilidad de realizar múltiples tareas realizando ejecuciones simple o relativamente simples. Para los ingenieros, Los equipos de una planta química que llevan a cabo procesos industriales mediante los cuales emplean la materia para transformarla o producir energía; El óptimo funcionamiento y control de estos equipos está dada en gran medida por su diseño. La importancia para un ingeniero químico de mantener estos puntos cubiertos en su totalidad, estriba en que al cumplirse de manera adecuada, se mantiene el control de factores determinantes tales como; el control del flujo de energía que se aplica al proceso, manejando de esta manera la energía total aplicada.
  • 10.
  • 11. Se denomina sistema termodinámico o simplemente sistema a toda aquella cantidad de materia o aquella región en el espacio elegida para su estudio limitada por una superficie llamada frontera , abstracta o real (también conocidas como fija o móvil respectivamente). Cuando la frontera que limita el sistema es real, se conoce como pared . Observe que la frontera es la superficie de contacto compartida tanto por el sistema como por los alrededores , medio ambiente o vecindad , es decir, todo aquello que queda fuera del sistema. Así, el sistema más su entorno se denomina universo . Cada sistema puede ser, a su vez, subsistema de otro mayor, o, también, estar él mismo dividido en subsistemas.   Un sistema queda especificado cuando se conoce su naturaleza fisicoquímica , las propiedades de las paredes que separan los diferentes subsistemas y la pared que separa todo el sistema del entorno. Si la composición química y las propiedades físicas locales (entendidas como propiedades intensivas macroscópicas) de un sistema son iguales en todos los puntos del mismo, el sistema es homogéneo y se dice entonces que consta de una sola fase . Cuando el sistema está compuesto de varios subsistemas homogéneos o fases, se dice que es heterogéneo .  
  • 12. Finalmente, un sistema puede interactuar o no con su entorno. Las interacciones entre diferentes sistemas termodinámicos, que se denominan contactos termodinámicos , están condicionadas tanto por la naturaleza de los sistemas como por el tipo de paredes separadoras. Cuando no existe ningún contacto termodinámico entre el sistema y el entorno, se dice que el sistema es aislado , en este caso, no puede intercambiar ni masa ni energía con el entorno.   Por ejemplo: Considérese un dispositivo conformado por un émbolo y un cilindro. Supongamos que nos interesa saber qué le sucede al gas encerrado cuando se calienta. Puesto que centramos nuestra atención en el gas, éste es nuestro sistema, las superficies interiores del émbolo y el cilindro forman la frontera (la superficie interna del émbolo, en este caso) puede moverse. Todo lo que queda fuera del gas, incluso el émbolo y el cilindro, constituyen los alrededores.
  • 13.
  • 14. A su vez, el estado de un sistema se describe por medio de sus propiedades. Pero no es necesario especificar todas las propiedades para fijar un estado. Una vez que se especifica un número suficiente de propiedades, el resto de ellas asume ciertos valores de manera automática. El número de propiedades que se requieren para fijar el estado de un sistema está dado por el Postulado de estado:   “ El estado de un sistema compresible simple se especifica completamente por dos propiedades intensivas independientes El postulado de estado requiere que las dos propiedades específicas sean independientes para fijar el estado. Y son independientes si una de ellas varía en tanto que la otra se mantiene constante, La temperatura y el volumen específico, por ejemplo, siempre son propiedades independientes en sistemas de una sola fase, pero son dependientes en sistemas multifase. A nivel del mar (P= 1 atm), el agua hierve a 100 °C, pero en la cima de una montaña, donde la presión es menor, el agua hierve a una temperatura más baja. Esto es, T= f (P) durante un proceso de cambio de fase, por lo que la temperatura y la presión no son suficientes para fijar el estado de un sistema bifásico
  • 15.
  • 16. A grandes rasgos los s istemas cerrados son aquellos que pueden intercambiar energía, aunque no materia, con los alrededores. Los s istemas abiertos son aquellos que pueden intercambiar materia y energía, y finalmente se conocen como sistemas aislados a todo sistema que incapaz de poder intercambiar materia o energía .
  • 17. Por ejemplo: Un clásico sistema abierto, se considera al calentador de agua, pues se requiere determinar cuánto calor se debe transferir al agua que está en el tanque para suministrar un flujo permanente de agua caliente. Puesto que saldrá agua caliente del tanque y será sustituida por agua fría, no conviene elegir una masa fija como sistema para el análisis. En su lugar, es posible concentrarse en el volumen formado por las superficies interiores del tanque y considerar los flujos de agua caliente y fría como la masa que sale y entra al volumen control. En este caso la superficie interior del tanque forma la superficie de control , y la masa cruza la superficie de control en dos posiciones.
  • 18. La parte del sistema que interacciona con el sistema se le conoce como vecindad. Las interacciones entre el sistema con sus alrededores esta caracterizada por los intercambios de energía y masa, en sus diversas formas, la energía puede intercambiarse por medios mecánicos o no mecánicos, esto es por procesos de calentamiento o enfriamiento
  • 19.
  • 20.
  • 21. 1. Unidad de longitud: metro (m) La definición original del metro fue establecida en 1889, y estaba basada en un prototipo de platino-iridio, el cual todavía es conservado en Sèvres, Francia. Esta definición fue reemplazada en 1960 por una en términos de la longitud de onda de una radiación emitida por el isótopo Kr-86. Posteriormente, en 1983 se adoptó la siguiente definición, la que aumenta la precisión en la realización de la unidad de longitud:   El metro es la longitud de la trayectoria recorrida por la luz en el vacío durante un lapso de 1/299 792 458 de segundo .        
  • 22.   2. Unidad de masa: kilogramo (kg) La masa es la medida de la inercia de un cuerpo. Aunque es frecuente que se defina como la cantidad de materia contenida en un cuerpo, esta última definición es incompleta. En el Sistema Internacional de Unidades se mide en kilogramos. En 1889 se estableció el prototipo internacional del kilogramo, declarándose que: El kilogramo es la masa del prototipo. El prototipo está hecho con una aleación de platino-iridio y es conservado en el Bureau Internacional de Pesos y Medidas en Sèvres, Francia. 3. Unidad de tiempo: segundo (s) Originalmente se definió el segundo como 1/86 400 de un año medio solar. En 1967 se adoptó la actual definición: El segundo es la duración de 9 192 631 770 períodos de la radiación correspondiente a la transición entre dos niveles hiperfinos del estado base del átomo cesio-13.  
  • 23. 4. Unidad de corriente eléctrica: ampere (A) La actual definición fue establecida en 1948: El ampere es la corriente eléctrica que, circulando en 2 conductores rectos, paralelos, de longitud infinita y colocados a 1 m en el vacío, produce entre ellos una fuerza de 2 x 10 -7 N m -1 .   5. Unidad de temperatura termodinámica: kelvin (K) En 1967 se definió la unidad de temperatura termodinámica T, La misma unidad es empleada para expresar intervalos o diferencias de temperaturas: El kelvin es la fracción 1/273,16 de la temperatura termodinámica (definida) correspondiente al punto triple del agua.  
  • 24.
  • 25. Unidades SI (Sistema Internacional) Cantidad física Nombre de la unidad Símbolo longitud metro m masa kilogramo kg tiempo segundo s temperatura termodinámica kelvin K corriente eléctrica ampere A cantidad de sustancia mol mol intensidad luminosa candela cd
  • 26. Las cantidades físicas son aquellas que combinados con números representan una magnitud.           1. Unidades Fundamentales : masa, tiempo, longitud, intensidad de corriente, luminosa, cantidad de sustancia, temperatura. (Kg, s, m, A, cd, mol, K). 2. Unidades Derivadas : volumen, fuerza, densidad, trabajo, etc… (m 3 , N = kg m s -2 , Kg m -3 , J = N m). 3. Magnitud física : como toda medición consiste en atribuir un valor numérico cuantitativo a alguna propiedad de un cuerpo (Ej.: la longitud o el área); pueden cuantificarse por comparación con un patrón o con partes de un patrón.
  • 27. Magnitud Unidad del SI Expresión en otras unidades Expresió en unidades básicas nombre símbolo ángulo plano radián rad   m·m -1 ==1 frecuencia hertz Hz   s -1 fuerza newton N   kg·m·s -2 presión, tensión pascal Pa N/m 2 m -1 ·kg·s -2 energía, trabajo, cantidad de calor joule J N·m m 2 ·kg·s -2 potencia, flujo radiante watt W J/s m 2 ·kg·s -3 diferencia de potencial eléctrico, fuerza electromotriz volt V W/A m 2 ·kg·s -3 ·A -1 capacitancia farad F C/V m -2 ·kg -1 ·s 4 ·A 2 resistencia eléctrica ohm W V/A m 2 ·kg·s -3 ·A -2 carga eléctrica coulomb C F·V A·s conductancia eléctrica siemens S A/V m -2 ·kg -1 ·s 3 ·A 2 flujo magnético weber Wb V·s m 2 ·kg·s -2 ·A -1
  • 28. Factor Prefijo símbolo 10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 mega M 10 9 giga G 10 12 tera T 10 15 peta P 10 18 exa E 10 21 zetta Z 10 24 yotta Y Factor Prefijo símbolo 10 -1 deci d 10 -2 centi c 10 -3 mili m 10 -6 micro µ 10 -9 nano n 10 -12 pico p 10 -15 femto f 10 -18 atto a 10 -21 zepto z 10 -24 yocto y