SlideShare uma empresa Scribd logo
1 de 11
Baixar para ler offline
27
Química Geral
Classificação da Matéria
 Substâncias: a classificação das diferentes substâncias é feita
de acordo com sua composição.
Substância pura: apresenta propriedades químicas e físicas
próprias. As substâncias puras podem ser classificadas em:
a) Substâncias Simples: é aquela formada por apenas um ele-
mento químico. Exemplo: Gás oxigênio (O2), Gás ozônio (O3),
Sódio metálico (Na).
b) Substâncias compostas: são aquelas formadas por dois ou
mais elementos químicos. Exemplo: Água (H2O), Ácido sulfúrico
(H2SO4).
 Misturas: São formadas por duas ou mais substâncias, cada
uma delas sendo denominada componente. Exemplo: o ar que
respiramos é formado por uma mistura de gases (nitrogênio,
oxigênio, argônio, gás carbônico).
Tipos de Misturas: De acordo com o aspecto visual de uma
mistura, ou seja, pelo número de fases as misturas são classifica-
das em:
a) Mistura homogênea: apresenta uma única fase. Exemplo: soro
caseiro, álcool hidratado.
Obs.: Todas as misturas de quaisquer gases são sempre homo-
gêneas.
b) Mistura heterogênea: apresenta pelo menos duas fases.
Exemplo: água e óleo, água com gás.
Estados Físicos da Matéria
A matéria é constituída de pequenas partículas e, dependendo
do grau de agregação entre elas, pode ser encontrada em três
estados físicos: sólido, líquido e gasoso.
Mudança de Estado Físico:
Obs.: a vaporização pode ser classificada em ebulição, calefação
ou evaporação.
Diagramas de Mudança de Estado Físico
1) Substância pura: a temperatura não varia durante as mudan-
ças de estado físico. Apresenta ponto de fusão e ponto de ebuli-
ção constantes.
Ex.: água pura - PF = 0ºC PE = 100ºC
2) Mistura comum: a temperatura vária durante as mudanças de
estado físico. Não apresenta PF e PE constantes.
Ex.: mistura de água e açúcar.
3) Mistura eutética: a temperatura permanece constante durante
a fusão. Não tem PE constante.
Ex.: solda (Pb = 37% e Sn = 63%)
4) Mistura azeotrópica: a temperatura permanece constante
durante a ebulição. Não tem PF constante.
Ex.: álcool hidratado (4% de água e 96% de etanol)
Processos de Separação de Misturas
A fim de se obter substâncias puras são utilizados métodos de separação de misturas. Os tipos de separação são:
a) Decantação: processo utilizado para separar uma mistura heterogênea. Pode ser:
 Mistura heterogênea: líquido e sólido.
Exemplo: água e areia.
 Mistura heterogênea: líquido e liquido.
Exemplo: água e óleo.
28
b) Filtração: processo utilizado para separar substâncias em misturas heterogêneas envolvendo
sólidos e líquidos.
c) Destilação: processo utilizado para separar uma mistura homogênea. Pode ser:
 Destilação Simples: mistura homogênea entre sólido e líquido. Ex.: água e sal.
 Destilação Fracionada: mistura homogênea entre líquidos. Ex.: água e álcool.
29
Tipos de Fenômenos:
a) Fenômenos físicos: é todo aquele em que não há destruição
ou formação de substâncias. Nesses fenômenos, a forma, o
tamanho, a aparência e o estado físico podem mudar, porém a
constituição da substância não sofre alterações. Ex.: as mudanças
de estado físico.
b) Fenômenos químicos: é toda transformação em que há
destruição de moléculas e formação de novas espécies químicas.
Quando ocorre um fenômeno químico, uma o mais substâncias se
transformam e dão origem a novas substâncias, logo podemos
dizer que ocorreu uma reação química. Exemplo: queima de
materiais.
ESTRUTURA ATÔMICA
CARACTERÍSTICAS DO ÁTOMO
* Número Atômico (Z) : é o número de prótons presentes no
núcleo de um átomo.
Z = P
Obs.: átomos neutros e- = p
ÍONS: excesso de carga
Carga positiva – cátions ( perde elétrons)
Carga negativa – ânions ( ganha elétrons)
* Número de Massa (A): é a soma do número de prótons e de
nêutrons.
A = Z + n
Obs.: n = A – Z
Representação geral: z XA
Semelhanças Atômicas
Z A p n e
Isótopos =  =  =
Isóbaros  =   
Isótonos    = 
Isoeletrônicos: Átomos ou íons com nº e =
ELETROSFERA
7 níveis (camadas)
K L M N O P Q
2 8 18 32 32 18 2 ou 8
qtdade máxima de e-
4 subníveis
s p d f
2 6 10 14
qtdade máxima de e-
NÚMEROS QUÂNTICOS
São os nº que caracterizam um elétron.
 Número quântico principal (n): está relacionado com o
nível de energia do elétron.
n = 1,2,3,4,5,6 ou 7
 Número quântico secundário (l): está relacionado ao
subnível de energia do elétron.
Subnível s p d f
Valores de l 0 1 2 3
 Número quântico magnético (m): está relacionado à
região de máxima probabilidade de se encontrar o elétron,
denominada orbital.
s2
0
p6
-1 0 +1
d10
-2 -1 0 +1 +2
f14
-3 –2 –1 0 +1 +2 +3
 Número quântico spin (s): está relacionado à rotação do
elétron.
s = -1/2 s = +1/2
Obs.: cada orbital suporta no máximo 2 elétrons de spins contrá-
rios
Obs.: elétron celibatário (elétron desemparelhado)
Tabela Periódica
Na tabela, os elementos estão arranjados horizontalmente,
em seqüência numérica, de acordo com seus números atômicos,
resultando o aparecimento de sete linhas horizontais (ou perío-
dos).
Elementos Químicos: Os elementos químicos são representados
por letras maiúsculas ou uma letra maiúscula seguida de uma
letra minúscula.
Os Símbolos são de origem latina:
Português Latim Símbolo
Sódio Natrium Na
Potássio Kalium K
Enxofre Sulphur S
Fósforo Phosphurus P
Ouro Aurum Au
30
Períodos ou Séries: São as filas horizontais da tabela periódica. São em número de 7 e indicam o número de níveis ou camadas preen-
chidas com elétrons.
Famílias ou Grupos: São as colunas verticais da Tabela Periódica. Em um Grupo ou Família, encontram-se elementos com propriedades
químicas semelhantes. Para os Elementos Representativos, o nº do Grupo representa o nº de elétrons da última camada (camada de
valência).
Observações sobre a tabela:
1 -São elementos líquidos: Hg e Br;
2 -São Gases: He, Ne, Ar, Kr, Xe, Rn, Cl, N, O, F, H;
3 -Os demais são sólidos;
4 -Chamam-se cisurânicos os elementos artificiais de Z menor
que 92 (urânio): Astato (At); Tecnécio (Tc); Promécio (Pm)
5 -Chamam-se transurânicos os elementos artificiais de Z maior
que 92: são todos artificiais;
6 -Elementos radioativos: Do bismuto (83Bi) em diante, todos os
elementos conhecidos são naturalmente radioativos.
Propriedades Periódicas
- Raio e Eletropositividade
- Afinidade eletrônica
- Energia de ionização
- Eletronegatividade*
* gases nobres não apresentam eletronegatividade
Diagrama de Linus Pauling
Ligação química: É a força de atração suficientemente forte entre os átomos a fim de mantê-los unidos.
Valência: Capacidade de combinação dos átomos.
Regra do octeto: Os átomos, ao se unirem, procuram perder ou ganhar elétrons na última camada até atingirem a configuração eletrô-
nica de um gás nobre.
Ligações Interatômicas
Ligação Iônica Covalente Metálica
Elementos
Ligantes
Metais e ametais.
Metais e hidrogênio.
Grande diferença de eletro-
negatividade.
Ametais e ametais.
Ametais e hidrogênio.
Hidrogênio e hidrogênio.
Pequena diferença de eletro-
negatividade.
Metais
Alta eletropositividade
Como ocorre a
ligação
Transferência de elétrons dos
metais (que formam cátions)
para os ametais (que formam
ânions). Cátions e ânions
sofrem atração elétrica.
Compartilhamento de pares
de elétrons de valência atra-
vés da formação de orbitais
moleculares.
Liberação parcial dos
elétrons mais externos,
formando uma estrutura
de cátions envoltos pelos
elétrons parcialmente
liberados.
Unidade
formadora
Cristal iônico, representado
pelo íon-fórmula ou fórmula
mínima (mínimo de cátions e
ânions necessários para que a
soma das cargas elétricas
seja zero).
Moléculas, representadas pela
fórmula molecular ou cristal
covalente (macro-molécula),
representada pela reestrutura
mínima seguida do índice n.
Cristal metálico, represen-
tado pelo símbolo do
elemento.
Classificação Periódica
31
Exemplo
importante
Cristal iônico de cloreto de
sódio.
íon-fórmula: NaCl.
Molécula de água.
Fórmula molecular: H2O
Cristal covalente de diamante.
Representação: Cn(s)
Cristal metálico de alumínio.
Representação: Al(s)
Ligações Interatômicas
Definição e Ocorrência
Forças de
Van der
Waals
São forças de natureza elétrica de intensidade fraca. Uma
das principais forças são as dispersões de London, ou seja,
interações que ocorrem entre moléculas apolares e átomos
de gases nobres quando, por um motivo qualquer, ocorre
uma assimetria na nuvem eletrônica de uma molécula ou
átomo, gerando um dipolo que induz as demais moléculas
ou átomos a também formarem dipolos. Na fase sólida,
formam cristais moleculares. He(l), Ne(l), CO2(S), Br2(l), I2(s)
Dipolo
Permanente
Forças de natureza elétrica, que ocorrem entre moléculas
polares, de modo que a extremidade negativa do dipolo de
uma molécula se aproxime da extremidade positiva do
dipolo de outra molécula. Na fase sólida, orienta a posição
de cada molécula no espaço, formando os cristais dipolares.
HBr, HCl, HI, H2S, PH3
As forças intermolecu-
lares são as que man-
têm a coesão das
moléculas ou partículas
que compõem uma
substância. Na prática,
as forças intermolecula-
res podem atuar em
conjunto e a interação
entre as moléculas é
calculada pela soma dos
diversos tipos de forças
intermoleculares atuan-
tes. Por exemplo, na
água a principal força
de interação molecular
são as pontes de
hidrogênio, embora
também haja interações
do tipo dipolo perma-
nente.
Pontes de
hidrogênio
Forças de natureza elétrico do tipo dipolo permanente,
porém bem mais intensas. Ocorrem quando a molécula
possui hidrogênio ligado a um elemento muito eletronegati-
vo: flúor F, oxigênio O ou nitrogênio N, de modo que o
hidrogênio de uma molécula estabelece uma ponte (ligação)
com o átomo muito eletronegativo de outra molécula. H2O,
HF, NH3
Número de Oxidação (Nox)
É o número que designa a carga elétrica real ou aparente de
um átomo em função da diferença de eletronegatividade entre ele
e seus ligantes.
Regras
 Substância simples = 0
 Íon simples = carga de íon
 A soma dos Nox de todos os átomos da molécula = 0
 Metais alcalinos e a Ag = + 1
 Metais alcalinos-terrosos e o Zn = +2
 Alumínio, Bismuto e Boro = +3
 Silício = +4
 Fluor = -1
 Halogênios em qualquer halogeneto = - 1
 Oxigênio: normal = -2
peróxidos= -1
superóxidos= -½
fluoretos= +1 e +2
 Hidrogênio: normal= +1
hidretos iônicos = -1
 Nox  +7 a -7
CaCOCaCO33
--22+2+2
+4+4 --66+2+2 = 0= 0
+4+4+4+4 FeFe22SS33OO1212
--22+3+3
+18+18 --2424+6+6 = 0= 0
+6+6+6+6
FeFe22(SO(SO44))33
NHNH44
++
+1+1
+4+4--33 = +1= +1
--33--33
Principais Cátions
Monovalentes Bivalentes Trivalentes
H+
Ag+
Mg2+
Fe2+
Al3+
Au3+
Li+
Cu+
Ca2+
Mn2+
Bi3+
Fe3+
Na+
Au+
Sr2+
Pb2+
Co3+
Sb3+
K+
NH4
+
Ba2+
Sn2+
Cr3+
As3+
Rb+
H3O+
Ra2+
Pt2+
Ni3+
B3+
Cs+
Zn2+
Cu2+
Co2+
Ni2+
Cd2+
Tetravalentes Pentavalentes
Pt4+
Sn4+
Pb4+
Mn4+
As5+
Sb5+
Principais ânions
Monovalentes Bivalentes
F-
fluoreto O2-
óxido
Cl-
cloreto O2
2-
peróxido
Br-
brometo S2-
sulfeto
I-
iodeto SO3
2-
sulfito
ClO-
hipoclorito SO4
2-
sulfato
ClO2
-
clorito S2O3
2-
tiossulfato
ClO3
-
clorato CO3
2-
carbonato
CIO4
-
perclorato C2O4
2-
oxalato
NO2
-
nitrito SiO3
2-
metassilicato
NO3
-
nitrato SiF6
2-
fluorsilicato
CN-
cianeto HPO3
2-
fosfito
OCN-
cianato CrO4
2-
cromato
SNC-
tiocianato Cr2O7
2-
dicromato
PO3
-
metafosfato MnO4
2-
manganato
H2PO2
-
hipofosfito MnO3
2-
manganito
AlO2
-
aluminato SnO2
2-
estanito
MnO4
-
permanganato SnO3
2-
estanato
OH-
hidróxido PbO2
2-
plumbito
H-
hidreto PbO3
2-
plumbato
ZnO2
2-
zincato
S2O6
2-
hipossulfato
S2O7
2-
pirossulfato
Trivalentes Tetravalentes
PO4
3-
fosfato P2O7
4-
pirofosfato
AsO3
3-
arsenito P2O6
4-
hipofosfato
AsO4
3-
arseniato SiO4
4-
silicato
SbO3
3-
antimonito Fe(CN)6
4-
ferrocianeto
SbO4
3-
antimoniato
BO3
3-
borato
Fe(CN)6
3-
ferricianeto
32
Funções Inorgânicas: Veja o quadro que resume as principais funções inorgânicas
Função Definição e Exemplos Propriedades
Ácidos:
Conceito de
Arrhenius
São soluções aquosas iônicas que possu-
em como único cátion o hidrônio H3O+,
formado pela reação entre a água e
determinados compostos covalentes.
Exemplos: HCl(aq), H2SO4(aq), H3PO4(aq)
Conduzem corrente elétrica, possuem
sabor azedo e mantêm incolor uma
solução de fenolftaleína.
Bases:
Conceito de
Arrhenius
São compostos capazes de se dissocia-
rem na água liberando íons, mesmo que
muito poucos, dos quais o único ânion é
o hidróxido OH1-
Exemplos: NaOH, Ca(OH)2, Al(OH)3
Só conduzem corrente elétrica as
bases de metais das famílias 1 e 2.
Possuem sabor adstringente e mudam
a cor de uma solução de fenolftaleína
para vermelho.
Sais
São compostos capazes de se dissocia-
rem na água liberando íons, mesmo que
muito poucos, dos quais pelo menos um
cátion é diferente de H3O+
e pelo menos
um ânion é dirente de OH1-
.
Exemplos: NaCl, NaHCO3, Mg(OH)Cl
Só os sais predominantemente iônicos
conduzem corrente elétrica, na fase
líquida ou em solução aquosa. Possu-
em sabor salgado e mantêm ou
mudam a cor de uma solução de
fenolftaleína conforme o caráter ácido
ou básico.
Óxidos
São compostos binários (formados por
dois elementos), onde o oxigênio é o
elemento mais eletronegativo e apresen-
ta NOX= 2-.
Exemplos: CO2, CaO, Al2O3
Os óxidos de caráter iônico conduzem
corrente elétrica na fase líquida. Com
exceção do CO, NO e NO2, que são
neutros, podem manter ou mudar a
cor de uma solução de fenolftaleína
conforme reajam com a água forman-
do ácido ou base.
Peróxidos
São compostos binários formandos pelo
oxigênio ligado a metais da família 1 ou
2 prata ou zinco, onde o oxigênio apre-
senta NOX = 1-.
Exemplos: H2O2, Na2O2, ZnO2
O H2O2 é molecular e se decompõem
em meio básico em O2 e H2O. os
demais são iônicos, reagem com água
produzindo base e H2O2 e com ácido
produzindo sal e H2O2.
Superóxidos
São compostos binários formandos pelo
oxigênio e metais das famílias 1 ou 2, onde
o oxigênio apresenta NOX médio 1/2-
Exemplos: Na2O4, K2O4, CaO4
São extremamente instáveis. Reagem
com água produzindo base, H2O2 e O2.
Reagem com ácido, produzindo sal,
H2O2 e O2.
Hidretos
São compostos que possuem o hidrogê-
nio como elemento mais eletronegativo.
Exemplos: NaH, MgH2, LiAlH4
Os hidretos metálicos são instáveis e
reagem com água de modo violento
produzindo base e H2. Os hidretos
moleculares são estáveis e tóxicos.
Características Gerais dos Ácidos
Característica Definição Exemplos
Nomenclatura
Ácido + nome do ânion com terminação:
trocada de eto para ídrico
trocada de ito para oso
trocada de ato para ico
H2S(aq): ácido sulfídrico
H2SO3(aq): ácido sufuroso
H2SO4(aq): ácido sulfúrico
Presença de
oxigênio
Oxiácidos possuem oxigênio na fórmula.
Hidrácidos não possuem oxigênio
HClO3(aq), H3PO4(aq), HNO3(aq)
HCl(aq), HCN(aq), H2S(aq)
Grau de
ionização
Fortes:  > 50% ou R > ou = 2
Semifortes: 5% < ou =  < ou = 50% ou R < 2
Fracos:  < 5% ou R < 2
Onde R = y - x para HxEzOy
Fortes: HCl(aq), HI(aq),
H2SO4(aq).
Semifortes: HF, H3PO4
Fracos: HCN, H3BO3
Ponto de
ebulição
Ponto de ebulição alto: ácidos fixos
Ponto de ebulição baixo: ácidos voláteis
H2SO4(aq) (340°C) e H3PO4(aq)
(213°C)
HCl(aq) (-85°C), HCN(aq)
(26°C)
Características Gerais das Bases
Definição Exemplos
Nomenclatura Hidróxido + de + nome do cátion
NaOH: hidróxido de sódios
Fe(OH)2: hidróxido de ferro II
Fe(OH)3: hidróxido de ferro III
Solubilidade
em água
São solúveis as bases de metais alcalinos e de
amônios. As bases de metais alcalino-terrosos
são pouco solúveis e as demais são pratica-
mente insolúveis.
NaOH: 0,95 (mol/L)2
Ca(OH)2: 1,3 . 10-6
(mol/L)3
Fe(OH)3: 6,0 . 10-38
(mol/L)4
Força ou grau
de dissocia-
ção
São fortes as bases de metais alcalinos.
Semifortes as bases de metais alcalino-
terrosos.
As demais bases são fracas.
O hidróxido de amônio é instável
Fortes: LiOH, NaOH, KOH
Semifortes: Mg(OH)2, Ca(OH)2
Fracas: AgOH, Zn(OH)2, Al(OH)3
<NH4OH(aq)>  NH3(g) + H2O(l)
33
Características Gerais dos Sais
Característica Definição Exemplos
Nomenclatura
Nome do(s) ânion(s) + de + nome(s) do(s)
cátion(s)
MgBr2: brometo de magnésio
Caráter em
solução aquo-
sa
O caráter do sal depende do cátion e do
ânion dos quais ele é formado. Sabendo que
o cátion do sal vem da base e o ânion do sal
vem do ácido, temos:
Sal ácido: cátion de base fraca e ânion de
ácido forte
Sal básico: cátion de base forte e ânion de
ácido fraco
Sal Neutro: cátion de base forte e ânion
de ácido forte ou cátion de base fraca e ânion
de ácido fraco
Sal ácido: Al2(SO4)3. sulfato de
alumínio
Sal básico: NaHCO3, bicarbona-
to de sódio ou carbonato
"ácido" de sódio
Sal Neutro: NaCl, cloreto de
sódio
Solubilidade
em água
De modo geral são solúveis os sais que
contêm cátion de metal alcalino, metal
alcalino-terroso e amônio, e também os sais
que contêm ânion nitrato, e halogenetos
(com exceção dos halogenetos de Ag1+
, Pb2+
e Cu1+
). Os demais são poucos soluveis ou
praticamente insolúveis.
Solúvel: NaCl, KNO3, MgSO4
Pouco Solúvel: PbCl2, CaSO4
Quase insolúvel: BiS, Ba3(PO4)2
Características gerais dos Óxidos
Característica Óxidos Iônicos Óxidos Covalentes Exemplos
Nomenclatura
óxido + de + nome
do cátion
Óxido + de + prefixo
de quantidade +
nome do elemento
Na2O: óxido de sódio
CuO: óxido de cobre II
CO2 dióxido de (mono)carbono
SO3: trióxido de (mono)enxofre
Caráter básico ácido (anidridos)
Na2O e CuO são básicos
CO2 e SO2 são ácidos
Reações
Reagem com água
produzindo base e
reagem com ácido
produzindo sal e
água
Reagem com água
produzindo ácido e
reagem com base
produzindo sal e
água
Na2O(s) + H2O(l)  2NaOH(aq)
CO2(g) + H2O(l)  H2CO3(aq)
SO3(g) + 2KOH  K2SO4(aq) +
H2O(l)
Além dos óxidos descritos, temos:
Óxidos neutros: Não possuem caráter ácido nem básico. São
todos covalentes: Ex: CO, NO e N2O. O gás N2O e conhecido
como gás hilariante, pois ao ser inalado produz uma sensação de
euforia.
Óxidos anfóteros: reagem com água formando base, reagem com
base como se fossem ácido formando sal e água e reagem com
ácido com se fossem bases, formando sal e água. São formados
por elementos de eletronegatividade média, que podem ser
metais ou semimetais.
Classificação das Reações Químicas
Equação química: É a representação gráfica e abreviada da
reação química.
2H2 + ½ O2  2H2O
reagentes produtos
(1° membro) (2° membro)
Equação iônica: É a equação química em que aparecem íons,
além de átomos e moléculas.
H+
+ OH-
 H2O
 Reação de Síntese ou Adição
CaO+H2O  Ca(OH)2
 Reação de Análise ou Decomposição
H2O2  H2O + O2
 Pirólise: calor
 Fotólise: luz
 Eletrólise: eletricidade
 Reação de Deslocamento ou Simples Troca
Fe + 2HCl  FeCl2 + H2
 Reação de Dupla Troca ou Dupla Substituição
NaCl + AgNO3  AgCl + NaNO3
Reações de óxi-redução
- aumenta o nox: oxidação (perde elétrons)
- diminui o nox: redução (ganha elétrons)
- agente oxidante: substância onde encontra-se o elemento que
reduz
- agente redutor: substância onde encontra-se o elemento que
oxida
Relações de Massa
1 Mol --- M --- 6,02x1023
entidades químicas
1 Mol --- 22,4 L (CNTP)
Estequiometria
- Lei de Lavoisier: a reação deve estar sempre balanceada.
- Pureza e Rendimento: valores teóricos equivalem a 100%
Soluções: São misturas de duas ou mais substâncias que
apresentam aspecto uniforme. As soluções são sistemas homo-
gêneos formados por uma ou mais substâncias dissolvidas (solu-
to) em outra substância em maior proporção na mistura (solven-
te).
Aspectos quantitativos das Soluções
massa da
solução
=
massa do
soluto
+
massa do
solvente
m = m1 + m2
Unidades de Concentração
1) Concentração comum (C)
1m
C
V
 Unidades: g/L, g/mL, g/cm3
, g.L-1
Obs.: 1 L = 1000 mL = 1000 cm3
2) Densidade (d)
m
d
V
 Unidades: g/L, g/mL
3) Título e porcentagem em massa (τ ou T)
1
1 2
m
T
m m


Ex.: O soro glicosado possui 5 g de glicose em 95 g de água.
Calcule o título e a porcentagem em massa.
34
T = 5 = 0,05 x 100 = 5 %
5+95
Obs.: Título ou porcentagem em volume
Ex.: o álcool é formado por 96 mL de etanol e 4 mL de água.
T = 96 = 0,96 x 100 = 96%
96 + 4
4) Molaridade ou Concentração molar ou Concentração
em mol/L (M)
M = m1
Mol x V(L)
Obs.: o volume deve ser necessariamente em Litros. Unidades:
mol/L ou M (molar)
Relações entre C, T, d, M
C = d x T = M x Mol
Obs.: C e d em g/L
TERMOQUÍMICA
É o estudo das quantidades de calor liberadas ou absorvidas
durante as reações químicas.
Exotérmicas: São as que liberam calor.
CH4(g) + 2O2(g) 
CO2(g) + 2H2O(l) + 212,8 Kcal/Mol
Endotérmicas: São as que absorvem calor.
Cl2(g)  2 Cl(g) - 57,9 Kcal/Mol
ECA = energia do complexo ativado
Hf = entalpia final
Hi = entalpia inicial
H = variação de entalpia
if HHH 
EA = energia de ativação  energia mínima que as moléculas
devem possuir ao se chocarem, para haver reação.
Estado padrão (convenção)
 Temperatura: 25°C ou 298 K
 Pressão: 1 atm ou 760 mmHg
 Estado físico: mais comum
 Forma alotrópica: mais estável
 Entalpia das substâncias simples: H = 0
Tipos de entalpia
Entalpia de
formação
H0
f
calor absorvido ou liberado na
formação de 1 mol de substância, a
partir das substâncias simples no
estado padrão.
Entalpia de
combustão
Hc
calor liberado na combustão total de
1 mol de substância no estado
padrão.
Entalpia de
neutralização
Hn
calor liberado na neutralização de 1
equivalente-grama de um ácido por
um equivalente-grama de uma base
no estado padrão
Energia de ligação
É a quantidade de calor absorvida na quebra de um mol
(6,02.1023
) de ligações no estado padrão. H>0
Lei de Hess
A quantidade de calor liberada ou absorvida numa reação
química depende dos estados inicial e final da reação.
CINÉTICA QUÍMICA
É o estudo da velocidade das reações químicas e dos fatores
que nela influem.
Velocidade média:
t
Vm






Fatores que influem na velocidade das reações: Temperatura,
Eletricidade, Estado físico, Pressão, Luz, Concentrações dos
reagentes
Catalisador: É a substância que aumenta a velocidade da reação,
sem ser consumida durante o processo.
O catalisador diminui a energia de ativação e não altera o H
da reação.
EQUILÍBRIOS QUÍMICOS
Reação reversível é aquela que se processa simultaneamente
nos dois sentidos.
aA + bB
 
 
2
1
V
V
cC + dD
V1 = velocidade da reação direta
V2 = velocidade da reação inversa
Constante de equilíbrio:
[B]b[A]a.
[D]d[C]c.
KC 
Kc = constante de equilíbrio em função das concentrações mola-
res
[ ] = concentrações molares no equilíbrio.
b
B
a
A
d
D
c
C
p
pp
p.p
K


Kp = constante de equilíbrio em função das pressões parciais
p = pressões parciais no equilíbrio
Deslocamento do equilíbrio
Concentração  A adição de uma substância desloca o equilíbrio
no sentido em que será consumida (lado oposto).
A retirada de uma substância desloca o equilíbrio no sentido em
que será refeita (mesmo lado).
Pressão  Um aumento de pressão desloca o equilíbrio no
sentido do menor volume. Uma diminuição de pressão desloca o
equilíbrio no sentido de maior volume.
Temperatura  Um aumento de temperatura desloca o equilíbrio
no sentido endotérmico. Uma diminuição da temperatura desloca
o equilíbrio no sentido exotérmico.
ESCALAS DE pH E pOH
[H+
] . [OH-
] = 10-14
[H+
] = [OH-
] solução neutra
[H+
] > [OH-
] solução ácida
[H+
] < [OH-
] solução básica
pH + pOH = 14
pH = 7 solução neutra
pH > 7 solução básica
pH < 7 solução ácida
ELETROQUÍMICA
35
Pilhas
Oxidação Redução
Ânodo Cátodo
Pólo negativo Pólo positivo
Corrosão Deposição
Elétrons migram da oxidação para a redução
- Representação oficial de uma pilha:
ânodo//cátodo
- Cálculo da voltagem:
∆E = ERed maior – ERed menor
Química Orgânica
Destilação Fracionada do Petróleo
Hibridação e geometria do Carbono
sp3
: 4 lig. simples (tetraédrica)
sp2
: 1 lig. dupla (trigonal plana)
sp: 1lig. tripla ou entre 2 duplas (linear)
Classificação de cadeias
Aberta (alifática ou acíclica):
Normal ou ramificada
Saturada ou insaturada
Homogênea ou heterogênea
Fechada (cíclica):
Alicíclica ou aromática
Alicíclica (sat. ou insat. e homog. ou hetg.)
Aromática (mononucleada ou polinucleada)
Funções Orgânicas
36
Isomeria plana
37
Isomeria espacial
Reações Orgânicas
* Esterificação
ácido carboxílico + álcool éster + água
* Oxidação de Álcool
álcool primário aldeído ácido carboxílico
álcool secundário cetona
álcool terciário não sofre oxidação
* Hidrogenação de alcenos e alcinos
Quebra de ligação dupla ou tripla e acréscimo de H2
Bioquímica
* Glicídios
oses (monossacarídeos): aldoses (glicose)
cetoses (frutose)
osídios: dissacarídeos (sacarose)
polissacarídeos (amido e celulose)
* Lipídios
- óleos: obtido a partir de ácido graxo insaturado
- gordura: obtida a partir de ácido graxo saturado

Mais conteúdo relacionado

Mais procurados

Pré-prova dos mais bagual Química POP
Pré-prova dos mais bagual Química POPPré-prova dos mais bagual Química POP
Pré-prova dos mais bagual Química POPRodrigo Oliveira
 
Simbolos químicos, unidades estruturais e iões cópia
Simbolos químicos, unidades estruturais e iões   cópiaSimbolos químicos, unidades estruturais e iões   cópia
Simbolos químicos, unidades estruturais e iões cópiaPaula Pinto
 
ligacoes quimicas
ligacoes quimicasligacoes quimicas
ligacoes quimicasnanasimao
 
Físico-química aula 1
Físico-química aula 1Físico-química aula 1
Físico-química aula 1Biomedicina_
 
Tópico 5 ligacoes quimicas parte 2
Tópico 5   ligacoes quimicas parte 2Tópico 5   ligacoes quimicas parte 2
Tópico 5 ligacoes quimicas parte 2estead2011
 
Unidade 05 - Introdução às Reações Orgânicas
Unidade 05 - Introdução às Reações OrgânicasUnidade 05 - Introdução às Reações Orgânicas
Unidade 05 - Introdução às Reações OrgânicasJosé Nunes da Silva Jr.
 
Folha 7 aula polaridade das moleculas
Folha 7 aula polaridade das moleculasFolha 7 aula polaridade das moleculas
Folha 7 aula polaridade das moleculasRikardo Coimbra
 
Polaridade das Ligações, Geometria Molecular e Força Molecular
Polaridade das Ligações, Geometria Molecular e Força MolecularPolaridade das Ligações, Geometria Molecular e Força Molecular
Polaridade das Ligações, Geometria Molecular e Força MolecularUniversidade Federal do Ceará
 
Ligacoes quimicas geometria
Ligacoes quimicas   geometriaLigacoes quimicas   geometria
Ligacoes quimicas geometriaRafael Milan
 
Hibridação sp sp2 e sp3
Hibridação sp sp2 e sp3Hibridação sp sp2 e sp3
Hibridação sp sp2 e sp3Pedro Kangombe
 
Geometria Molecular
Geometria MolecularGeometria Molecular
Geometria MolecularVictor Hugo
 

Mais procurados (20)

Unidade 02 - Análise Conformacional
Unidade 02 - Análise ConformacionalUnidade 02 - Análise Conformacional
Unidade 02 - Análise Conformacional
 
Unidade 01 Teoria Estrutural
Unidade 01   Teoria EstruturalUnidade 01   Teoria Estrutural
Unidade 01 Teoria Estrutural
 
Pré-prova dos mais bagual Química POP
Pré-prova dos mais bagual Química POPPré-prova dos mais bagual Química POP
Pré-prova dos mais bagual Química POP
 
Simbolos químicos, unidades estruturais e iões cópia
Simbolos químicos, unidades estruturais e iões   cópiaSimbolos químicos, unidades estruturais e iões   cópia
Simbolos químicos, unidades estruturais e iões cópia
 
ligacoes quimicas
ligacoes quimicasligacoes quimicas
ligacoes quimicas
 
Físico-química aula 1
Físico-química aula 1Físico-química aula 1
Físico-química aula 1
 
Tópico 5 ligacoes quimicas parte 2
Tópico 5   ligacoes quimicas parte 2Tópico 5   ligacoes quimicas parte 2
Tópico 5 ligacoes quimicas parte 2
 
Unidade 05 - Introdução às Reações Orgânicas
Unidade 05 - Introdução às Reações OrgânicasUnidade 05 - Introdução às Reações Orgânicas
Unidade 05 - Introdução às Reações Orgânicas
 
Unidade 04 - Ácidos e Bases
Unidade 04 - Ácidos e BasesUnidade 04 - Ácidos e Bases
Unidade 04 - Ácidos e Bases
 
Folha 7 aula polaridade das moleculas
Folha 7 aula polaridade das moleculasFolha 7 aula polaridade das moleculas
Folha 7 aula polaridade das moleculas
 
Tabela periodica
Tabela periodicaTabela periodica
Tabela periodica
 
Polaridade das Ligações, Geometria Molecular e Força Molecular
Polaridade das Ligações, Geometria Molecular e Força MolecularPolaridade das Ligações, Geometria Molecular e Força Molecular
Polaridade das Ligações, Geometria Molecular e Força Molecular
 
Ligações Covalenntes
Ligações CovalenntesLigações Covalenntes
Ligações Covalenntes
 
Ligacoes quimicas geometria
Ligacoes quimicas   geometriaLigacoes quimicas   geometria
Ligacoes quimicas geometria
 
Ligações químicas
Ligações químicasLigações químicas
Ligações químicas
 
Ligações Químicas
Ligações QuímicasLigações Químicas
Ligações Químicas
 
Hibridação sp sp2 e sp3
Hibridação sp sp2 e sp3Hibridação sp sp2 e sp3
Hibridação sp sp2 e sp3
 
Geometria Molecular
Geometria MolecularGeometria Molecular
Geometria Molecular
 
Unidade 02 - Estereoquímica
Unidade 02 - EstereoquímicaUnidade 02 - Estereoquímica
Unidade 02 - Estereoquímica
 
Geometria molecular
Geometria molecularGeometria molecular
Geometria molecular
 

Semelhante a quimica

Química Ensino Médio tabela periódica.pdf
Química Ensino Médio tabela periódica.pdfQuímica Ensino Médio tabela periódica.pdf
Química Ensino Médio tabela periódica.pdfBernardo Werneck
 
Substâncias puras, misturas e sistemas.
Substâncias puras, misturas e sistemas.Substâncias puras, misturas e sistemas.
Substâncias puras, misturas e sistemas.Lara Lídia
 
Cien barros 9.3
Cien barros 9.3Cien barros 9.3
Cien barros 9.3bleckmouth
 
Resumo tabela periódica e propriedades periódicas
Resumo  tabela periódica e propriedades periódicasResumo  tabela periódica e propriedades periódicas
Resumo tabela periódica e propriedades periódicasProfª Alda Ernestina
 
Apostila de quimica geral
Apostila  de  quimica  geralApostila  de  quimica  geral
Apostila de quimica geralNeejacp
 
Íons e Elementos químicos
Íons e Elementos químicosÍons e Elementos químicos
Íons e Elementos químicosCarlos Priante
 
QUÍMICA ORGÂNICA TEÓRICA
QUÍMICA ORGÂNICA TEÓRICAQUÍMICA ORGÂNICA TEÓRICA
QUÍMICA ORGÂNICA TEÓRICAautonomo
 
"Somos Físicos" ÁTomos, Moléculas e Substâncias
"Somos Físicos" ÁTomos, Moléculas e Substâncias"Somos Físicos" ÁTomos, Moléculas e Substâncias
"Somos Físicos" ÁTomos, Moléculas e SubstânciasVania Lima "Somos Físicos"
 
Biomoléculas parte 1
Biomoléculas parte 1Biomoléculas parte 1
Biomoléculas parte 1Luis Ribeiro
 
3o ano-ensino-medio-ligacoes-quimicas exemplo
3o ano-ensino-medio-ligacoes-quimicas exemplo3o ano-ensino-medio-ligacoes-quimicas exemplo
3o ano-ensino-medio-ligacoes-quimicas exemploSimone Belorte de Andrade
 
Quimica tabela periodica
Quimica tabela periodicaQuimica tabela periodica
Quimica tabela periodicaEstude Mais
 

Semelhante a quimica (20)

Química Ensino Médio tabela periódica.pdf
Química Ensino Médio tabela periódica.pdfQuímica Ensino Médio tabela periódica.pdf
Química Ensino Médio tabela periódica.pdf
 
Substâncias puras, misturas e sistemas.
Substâncias puras, misturas e sistemas.Substâncias puras, misturas e sistemas.
Substâncias puras, misturas e sistemas.
 
Cien barros 9.3
Cien barros 9.3Cien barros 9.3
Cien barros 9.3
 
Reações Quimicas
Reações QuimicasReações Quimicas
Reações Quimicas
 
Ligações químicas
Ligações químicas Ligações químicas
Ligações químicas
 
Resumo tabela periódica e propriedades periódicas
Resumo  tabela periódica e propriedades periódicasResumo  tabela periódica e propriedades periódicas
Resumo tabela periódica e propriedades periódicas
 
Apostila de quimica geral
Apostila  de  quimica  geralApostila  de  quimica  geral
Apostila de quimica geral
 
Tabela PerióDica
Tabela PerióDicaTabela PerióDica
Tabela PerióDica
 
Atomística
AtomísticaAtomística
Atomística
 
Íons e Elementos químicos
Íons e Elementos químicosÍons e Elementos químicos
Íons e Elementos químicos
 
QUÍMICA ORGÂNICA TEÓRICA
QUÍMICA ORGÂNICA TEÓRICAQUÍMICA ORGÂNICA TEÓRICA
QUÍMICA ORGÂNICA TEÓRICA
 
"Somos Físicos" ÁTomos, Moléculas e Substâncias
"Somos Físicos" ÁTomos, Moléculas e Substâncias"Somos Físicos" ÁTomos, Moléculas e Substâncias
"Somos Físicos" ÁTomos, Moléculas e Substâncias
 
Biomoléculas parte 1
Biomoléculas parte 1Biomoléculas parte 1
Biomoléculas parte 1
 
Ligações Químicas.pptx
Ligações Químicas.pptxLigações Químicas.pptx
Ligações Químicas.pptx
 
005 estudo dos alcenos
005 estudo dos alcenos005 estudo dos alcenos
005 estudo dos alcenos
 
141645.pptx
141645.pptx141645.pptx
141645.pptx
 
3o ano-ensino-medio-ligacoes-quimicas exemplo
3o ano-ensino-medio-ligacoes-quimicas exemplo3o ano-ensino-medio-ligacoes-quimicas exemplo
3o ano-ensino-medio-ligacoes-quimicas exemplo
 
Tabela periodica resumo
Tabela periodica resumoTabela periodica resumo
Tabela periodica resumo
 
Quimica tabela periodica
Quimica tabela periodicaQuimica tabela periodica
Quimica tabela periodica
 
Substacncias puras-e-misturas-parte-1
Substacncias puras-e-misturas-parte-1Substacncias puras-e-misturas-parte-1
Substacncias puras-e-misturas-parte-1
 

Último

Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxacaciocarmo1
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdfProfGleide
 
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.HildegardeAngel
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...Martin M Flynn
 
Mapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdfMapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdfangelicass1
 
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdfDemetrio Ccesa Rayme
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfpaulafernandes540558
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPanandatss1
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfHenrique Pontes
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxDeyvidBriel
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024GleyceMoreiraXWeslle
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfIedaGoethe
 
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfPPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfAnaGonalves804156
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxLuizHenriquedeAlmeid6
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 anoAdelmaTorres2
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptAlineSilvaPotuk
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveaulasgege
 
O guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfO guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfErasmo Portavoz
 

Último (20)

Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptx
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
 
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
LIVRO A BELA BORBOLETA. Ziraldo e Zélio.
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
 
Mapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdfMapas Mentais - Português - Principais Tópicos.pdf
Mapas Mentais - Português - Principais Tópicos.pdf
 
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdf
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SP
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
 
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfPPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
 
O guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfO guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdf
 

quimica

  • 1. 27 Química Geral Classificação da Matéria  Substâncias: a classificação das diferentes substâncias é feita de acordo com sua composição. Substância pura: apresenta propriedades químicas e físicas próprias. As substâncias puras podem ser classificadas em: a) Substâncias Simples: é aquela formada por apenas um ele- mento químico. Exemplo: Gás oxigênio (O2), Gás ozônio (O3), Sódio metálico (Na). b) Substâncias compostas: são aquelas formadas por dois ou mais elementos químicos. Exemplo: Água (H2O), Ácido sulfúrico (H2SO4).  Misturas: São formadas por duas ou mais substâncias, cada uma delas sendo denominada componente. Exemplo: o ar que respiramos é formado por uma mistura de gases (nitrogênio, oxigênio, argônio, gás carbônico). Tipos de Misturas: De acordo com o aspecto visual de uma mistura, ou seja, pelo número de fases as misturas são classifica- das em: a) Mistura homogênea: apresenta uma única fase. Exemplo: soro caseiro, álcool hidratado. Obs.: Todas as misturas de quaisquer gases são sempre homo- gêneas. b) Mistura heterogênea: apresenta pelo menos duas fases. Exemplo: água e óleo, água com gás. Estados Físicos da Matéria A matéria é constituída de pequenas partículas e, dependendo do grau de agregação entre elas, pode ser encontrada em três estados físicos: sólido, líquido e gasoso. Mudança de Estado Físico: Obs.: a vaporização pode ser classificada em ebulição, calefação ou evaporação. Diagramas de Mudança de Estado Físico 1) Substância pura: a temperatura não varia durante as mudan- ças de estado físico. Apresenta ponto de fusão e ponto de ebuli- ção constantes. Ex.: água pura - PF = 0ºC PE = 100ºC 2) Mistura comum: a temperatura vária durante as mudanças de estado físico. Não apresenta PF e PE constantes. Ex.: mistura de água e açúcar. 3) Mistura eutética: a temperatura permanece constante durante a fusão. Não tem PE constante. Ex.: solda (Pb = 37% e Sn = 63%) 4) Mistura azeotrópica: a temperatura permanece constante durante a ebulição. Não tem PF constante. Ex.: álcool hidratado (4% de água e 96% de etanol) Processos de Separação de Misturas A fim de se obter substâncias puras são utilizados métodos de separação de misturas. Os tipos de separação são: a) Decantação: processo utilizado para separar uma mistura heterogênea. Pode ser:  Mistura heterogênea: líquido e sólido. Exemplo: água e areia.  Mistura heterogênea: líquido e liquido. Exemplo: água e óleo.
  • 2. 28 b) Filtração: processo utilizado para separar substâncias em misturas heterogêneas envolvendo sólidos e líquidos. c) Destilação: processo utilizado para separar uma mistura homogênea. Pode ser:  Destilação Simples: mistura homogênea entre sólido e líquido. Ex.: água e sal.  Destilação Fracionada: mistura homogênea entre líquidos. Ex.: água e álcool.
  • 3. 29 Tipos de Fenômenos: a) Fenômenos físicos: é todo aquele em que não há destruição ou formação de substâncias. Nesses fenômenos, a forma, o tamanho, a aparência e o estado físico podem mudar, porém a constituição da substância não sofre alterações. Ex.: as mudanças de estado físico. b) Fenômenos químicos: é toda transformação em que há destruição de moléculas e formação de novas espécies químicas. Quando ocorre um fenômeno químico, uma o mais substâncias se transformam e dão origem a novas substâncias, logo podemos dizer que ocorreu uma reação química. Exemplo: queima de materiais. ESTRUTURA ATÔMICA CARACTERÍSTICAS DO ÁTOMO * Número Atômico (Z) : é o número de prótons presentes no núcleo de um átomo. Z = P Obs.: átomos neutros e- = p ÍONS: excesso de carga Carga positiva – cátions ( perde elétrons) Carga negativa – ânions ( ganha elétrons) * Número de Massa (A): é a soma do número de prótons e de nêutrons. A = Z + n Obs.: n = A – Z Representação geral: z XA Semelhanças Atômicas Z A p n e Isótopos =  =  = Isóbaros  =    Isótonos    =  Isoeletrônicos: Átomos ou íons com nº e = ELETROSFERA 7 níveis (camadas) K L M N O P Q 2 8 18 32 32 18 2 ou 8 qtdade máxima de e- 4 subníveis s p d f 2 6 10 14 qtdade máxima de e- NÚMEROS QUÂNTICOS São os nº que caracterizam um elétron.  Número quântico principal (n): está relacionado com o nível de energia do elétron. n = 1,2,3,4,5,6 ou 7  Número quântico secundário (l): está relacionado ao subnível de energia do elétron. Subnível s p d f Valores de l 0 1 2 3  Número quântico magnético (m): está relacionado à região de máxima probabilidade de se encontrar o elétron, denominada orbital. s2 0 p6 -1 0 +1 d10 -2 -1 0 +1 +2 f14 -3 –2 –1 0 +1 +2 +3  Número quântico spin (s): está relacionado à rotação do elétron. s = -1/2 s = +1/2 Obs.: cada orbital suporta no máximo 2 elétrons de spins contrá- rios Obs.: elétron celibatário (elétron desemparelhado) Tabela Periódica Na tabela, os elementos estão arranjados horizontalmente, em seqüência numérica, de acordo com seus números atômicos, resultando o aparecimento de sete linhas horizontais (ou perío- dos). Elementos Químicos: Os elementos químicos são representados por letras maiúsculas ou uma letra maiúscula seguida de uma letra minúscula. Os Símbolos são de origem latina: Português Latim Símbolo Sódio Natrium Na Potássio Kalium K Enxofre Sulphur S Fósforo Phosphurus P Ouro Aurum Au
  • 4. 30 Períodos ou Séries: São as filas horizontais da tabela periódica. São em número de 7 e indicam o número de níveis ou camadas preen- chidas com elétrons. Famílias ou Grupos: São as colunas verticais da Tabela Periódica. Em um Grupo ou Família, encontram-se elementos com propriedades químicas semelhantes. Para os Elementos Representativos, o nº do Grupo representa o nº de elétrons da última camada (camada de valência). Observações sobre a tabela: 1 -São elementos líquidos: Hg e Br; 2 -São Gases: He, Ne, Ar, Kr, Xe, Rn, Cl, N, O, F, H; 3 -Os demais são sólidos; 4 -Chamam-se cisurânicos os elementos artificiais de Z menor que 92 (urânio): Astato (At); Tecnécio (Tc); Promécio (Pm) 5 -Chamam-se transurânicos os elementos artificiais de Z maior que 92: são todos artificiais; 6 -Elementos radioativos: Do bismuto (83Bi) em diante, todos os elementos conhecidos são naturalmente radioativos. Propriedades Periódicas - Raio e Eletropositividade - Afinidade eletrônica - Energia de ionização - Eletronegatividade* * gases nobres não apresentam eletronegatividade Diagrama de Linus Pauling Ligação química: É a força de atração suficientemente forte entre os átomos a fim de mantê-los unidos. Valência: Capacidade de combinação dos átomos. Regra do octeto: Os átomos, ao se unirem, procuram perder ou ganhar elétrons na última camada até atingirem a configuração eletrô- nica de um gás nobre. Ligações Interatômicas Ligação Iônica Covalente Metálica Elementos Ligantes Metais e ametais. Metais e hidrogênio. Grande diferença de eletro- negatividade. Ametais e ametais. Ametais e hidrogênio. Hidrogênio e hidrogênio. Pequena diferença de eletro- negatividade. Metais Alta eletropositividade Como ocorre a ligação Transferência de elétrons dos metais (que formam cátions) para os ametais (que formam ânions). Cátions e ânions sofrem atração elétrica. Compartilhamento de pares de elétrons de valência atra- vés da formação de orbitais moleculares. Liberação parcial dos elétrons mais externos, formando uma estrutura de cátions envoltos pelos elétrons parcialmente liberados. Unidade formadora Cristal iônico, representado pelo íon-fórmula ou fórmula mínima (mínimo de cátions e ânions necessários para que a soma das cargas elétricas seja zero). Moléculas, representadas pela fórmula molecular ou cristal covalente (macro-molécula), representada pela reestrutura mínima seguida do índice n. Cristal metálico, represen- tado pelo símbolo do elemento. Classificação Periódica
  • 5. 31 Exemplo importante Cristal iônico de cloreto de sódio. íon-fórmula: NaCl. Molécula de água. Fórmula molecular: H2O Cristal covalente de diamante. Representação: Cn(s) Cristal metálico de alumínio. Representação: Al(s) Ligações Interatômicas Definição e Ocorrência Forças de Van der Waals São forças de natureza elétrica de intensidade fraca. Uma das principais forças são as dispersões de London, ou seja, interações que ocorrem entre moléculas apolares e átomos de gases nobres quando, por um motivo qualquer, ocorre uma assimetria na nuvem eletrônica de uma molécula ou átomo, gerando um dipolo que induz as demais moléculas ou átomos a também formarem dipolos. Na fase sólida, formam cristais moleculares. He(l), Ne(l), CO2(S), Br2(l), I2(s) Dipolo Permanente Forças de natureza elétrica, que ocorrem entre moléculas polares, de modo que a extremidade negativa do dipolo de uma molécula se aproxime da extremidade positiva do dipolo de outra molécula. Na fase sólida, orienta a posição de cada molécula no espaço, formando os cristais dipolares. HBr, HCl, HI, H2S, PH3 As forças intermolecu- lares são as que man- têm a coesão das moléculas ou partículas que compõem uma substância. Na prática, as forças intermolecula- res podem atuar em conjunto e a interação entre as moléculas é calculada pela soma dos diversos tipos de forças intermoleculares atuan- tes. Por exemplo, na água a principal força de interação molecular são as pontes de hidrogênio, embora também haja interações do tipo dipolo perma- nente. Pontes de hidrogênio Forças de natureza elétrico do tipo dipolo permanente, porém bem mais intensas. Ocorrem quando a molécula possui hidrogênio ligado a um elemento muito eletronegati- vo: flúor F, oxigênio O ou nitrogênio N, de modo que o hidrogênio de uma molécula estabelece uma ponte (ligação) com o átomo muito eletronegativo de outra molécula. H2O, HF, NH3 Número de Oxidação (Nox) É o número que designa a carga elétrica real ou aparente de um átomo em função da diferença de eletronegatividade entre ele e seus ligantes. Regras  Substância simples = 0  Íon simples = carga de íon  A soma dos Nox de todos os átomos da molécula = 0  Metais alcalinos e a Ag = + 1  Metais alcalinos-terrosos e o Zn = +2  Alumínio, Bismuto e Boro = +3  Silício = +4  Fluor = -1  Halogênios em qualquer halogeneto = - 1  Oxigênio: normal = -2 peróxidos= -1 superóxidos= -½ fluoretos= +1 e +2  Hidrogênio: normal= +1 hidretos iônicos = -1  Nox  +7 a -7 CaCOCaCO33 --22+2+2 +4+4 --66+2+2 = 0= 0 +4+4+4+4 FeFe22SS33OO1212 --22+3+3 +18+18 --2424+6+6 = 0= 0 +6+6+6+6 FeFe22(SO(SO44))33 NHNH44 ++ +1+1 +4+4--33 = +1= +1 --33--33 Principais Cátions Monovalentes Bivalentes Trivalentes H+ Ag+ Mg2+ Fe2+ Al3+ Au3+ Li+ Cu+ Ca2+ Mn2+ Bi3+ Fe3+ Na+ Au+ Sr2+ Pb2+ Co3+ Sb3+ K+ NH4 + Ba2+ Sn2+ Cr3+ As3+ Rb+ H3O+ Ra2+ Pt2+ Ni3+ B3+ Cs+ Zn2+ Cu2+ Co2+ Ni2+ Cd2+ Tetravalentes Pentavalentes Pt4+ Sn4+ Pb4+ Mn4+ As5+ Sb5+ Principais ânions Monovalentes Bivalentes F- fluoreto O2- óxido Cl- cloreto O2 2- peróxido Br- brometo S2- sulfeto I- iodeto SO3 2- sulfito ClO- hipoclorito SO4 2- sulfato ClO2 - clorito S2O3 2- tiossulfato ClO3 - clorato CO3 2- carbonato CIO4 - perclorato C2O4 2- oxalato NO2 - nitrito SiO3 2- metassilicato NO3 - nitrato SiF6 2- fluorsilicato CN- cianeto HPO3 2- fosfito OCN- cianato CrO4 2- cromato SNC- tiocianato Cr2O7 2- dicromato PO3 - metafosfato MnO4 2- manganato H2PO2 - hipofosfito MnO3 2- manganito AlO2 - aluminato SnO2 2- estanito MnO4 - permanganato SnO3 2- estanato OH- hidróxido PbO2 2- plumbito H- hidreto PbO3 2- plumbato ZnO2 2- zincato S2O6 2- hipossulfato S2O7 2- pirossulfato Trivalentes Tetravalentes PO4 3- fosfato P2O7 4- pirofosfato AsO3 3- arsenito P2O6 4- hipofosfato AsO4 3- arseniato SiO4 4- silicato SbO3 3- antimonito Fe(CN)6 4- ferrocianeto SbO4 3- antimoniato BO3 3- borato Fe(CN)6 3- ferricianeto
  • 6. 32 Funções Inorgânicas: Veja o quadro que resume as principais funções inorgânicas Função Definição e Exemplos Propriedades Ácidos: Conceito de Arrhenius São soluções aquosas iônicas que possu- em como único cátion o hidrônio H3O+, formado pela reação entre a água e determinados compostos covalentes. Exemplos: HCl(aq), H2SO4(aq), H3PO4(aq) Conduzem corrente elétrica, possuem sabor azedo e mantêm incolor uma solução de fenolftaleína. Bases: Conceito de Arrhenius São compostos capazes de se dissocia- rem na água liberando íons, mesmo que muito poucos, dos quais o único ânion é o hidróxido OH1- Exemplos: NaOH, Ca(OH)2, Al(OH)3 Só conduzem corrente elétrica as bases de metais das famílias 1 e 2. Possuem sabor adstringente e mudam a cor de uma solução de fenolftaleína para vermelho. Sais São compostos capazes de se dissocia- rem na água liberando íons, mesmo que muito poucos, dos quais pelo menos um cátion é diferente de H3O+ e pelo menos um ânion é dirente de OH1- . Exemplos: NaCl, NaHCO3, Mg(OH)Cl Só os sais predominantemente iônicos conduzem corrente elétrica, na fase líquida ou em solução aquosa. Possu- em sabor salgado e mantêm ou mudam a cor de uma solução de fenolftaleína conforme o caráter ácido ou básico. Óxidos São compostos binários (formados por dois elementos), onde o oxigênio é o elemento mais eletronegativo e apresen- ta NOX= 2-. Exemplos: CO2, CaO, Al2O3 Os óxidos de caráter iônico conduzem corrente elétrica na fase líquida. Com exceção do CO, NO e NO2, que são neutros, podem manter ou mudar a cor de uma solução de fenolftaleína conforme reajam com a água forman- do ácido ou base. Peróxidos São compostos binários formandos pelo oxigênio ligado a metais da família 1 ou 2 prata ou zinco, onde o oxigênio apre- senta NOX = 1-. Exemplos: H2O2, Na2O2, ZnO2 O H2O2 é molecular e se decompõem em meio básico em O2 e H2O. os demais são iônicos, reagem com água produzindo base e H2O2 e com ácido produzindo sal e H2O2. Superóxidos São compostos binários formandos pelo oxigênio e metais das famílias 1 ou 2, onde o oxigênio apresenta NOX médio 1/2- Exemplos: Na2O4, K2O4, CaO4 São extremamente instáveis. Reagem com água produzindo base, H2O2 e O2. Reagem com ácido, produzindo sal, H2O2 e O2. Hidretos São compostos que possuem o hidrogê- nio como elemento mais eletronegativo. Exemplos: NaH, MgH2, LiAlH4 Os hidretos metálicos são instáveis e reagem com água de modo violento produzindo base e H2. Os hidretos moleculares são estáveis e tóxicos. Características Gerais dos Ácidos Característica Definição Exemplos Nomenclatura Ácido + nome do ânion com terminação: trocada de eto para ídrico trocada de ito para oso trocada de ato para ico H2S(aq): ácido sulfídrico H2SO3(aq): ácido sufuroso H2SO4(aq): ácido sulfúrico Presença de oxigênio Oxiácidos possuem oxigênio na fórmula. Hidrácidos não possuem oxigênio HClO3(aq), H3PO4(aq), HNO3(aq) HCl(aq), HCN(aq), H2S(aq) Grau de ionização Fortes:  > 50% ou R > ou = 2 Semifortes: 5% < ou =  < ou = 50% ou R < 2 Fracos:  < 5% ou R < 2 Onde R = y - x para HxEzOy Fortes: HCl(aq), HI(aq), H2SO4(aq). Semifortes: HF, H3PO4 Fracos: HCN, H3BO3 Ponto de ebulição Ponto de ebulição alto: ácidos fixos Ponto de ebulição baixo: ácidos voláteis H2SO4(aq) (340°C) e H3PO4(aq) (213°C) HCl(aq) (-85°C), HCN(aq) (26°C) Características Gerais das Bases Definição Exemplos Nomenclatura Hidróxido + de + nome do cátion NaOH: hidróxido de sódios Fe(OH)2: hidróxido de ferro II Fe(OH)3: hidróxido de ferro III Solubilidade em água São solúveis as bases de metais alcalinos e de amônios. As bases de metais alcalino-terrosos são pouco solúveis e as demais são pratica- mente insolúveis. NaOH: 0,95 (mol/L)2 Ca(OH)2: 1,3 . 10-6 (mol/L)3 Fe(OH)3: 6,0 . 10-38 (mol/L)4 Força ou grau de dissocia- ção São fortes as bases de metais alcalinos. Semifortes as bases de metais alcalino- terrosos. As demais bases são fracas. O hidróxido de amônio é instável Fortes: LiOH, NaOH, KOH Semifortes: Mg(OH)2, Ca(OH)2 Fracas: AgOH, Zn(OH)2, Al(OH)3 <NH4OH(aq)>  NH3(g) + H2O(l)
  • 7. 33 Características Gerais dos Sais Característica Definição Exemplos Nomenclatura Nome do(s) ânion(s) + de + nome(s) do(s) cátion(s) MgBr2: brometo de magnésio Caráter em solução aquo- sa O caráter do sal depende do cátion e do ânion dos quais ele é formado. Sabendo que o cátion do sal vem da base e o ânion do sal vem do ácido, temos: Sal ácido: cátion de base fraca e ânion de ácido forte Sal básico: cátion de base forte e ânion de ácido fraco Sal Neutro: cátion de base forte e ânion de ácido forte ou cátion de base fraca e ânion de ácido fraco Sal ácido: Al2(SO4)3. sulfato de alumínio Sal básico: NaHCO3, bicarbona- to de sódio ou carbonato "ácido" de sódio Sal Neutro: NaCl, cloreto de sódio Solubilidade em água De modo geral são solúveis os sais que contêm cátion de metal alcalino, metal alcalino-terroso e amônio, e também os sais que contêm ânion nitrato, e halogenetos (com exceção dos halogenetos de Ag1+ , Pb2+ e Cu1+ ). Os demais são poucos soluveis ou praticamente insolúveis. Solúvel: NaCl, KNO3, MgSO4 Pouco Solúvel: PbCl2, CaSO4 Quase insolúvel: BiS, Ba3(PO4)2 Características gerais dos Óxidos Característica Óxidos Iônicos Óxidos Covalentes Exemplos Nomenclatura óxido + de + nome do cátion Óxido + de + prefixo de quantidade + nome do elemento Na2O: óxido de sódio CuO: óxido de cobre II CO2 dióxido de (mono)carbono SO3: trióxido de (mono)enxofre Caráter básico ácido (anidridos) Na2O e CuO são básicos CO2 e SO2 são ácidos Reações Reagem com água produzindo base e reagem com ácido produzindo sal e água Reagem com água produzindo ácido e reagem com base produzindo sal e água Na2O(s) + H2O(l)  2NaOH(aq) CO2(g) + H2O(l)  H2CO3(aq) SO3(g) + 2KOH  K2SO4(aq) + H2O(l) Além dos óxidos descritos, temos: Óxidos neutros: Não possuem caráter ácido nem básico. São todos covalentes: Ex: CO, NO e N2O. O gás N2O e conhecido como gás hilariante, pois ao ser inalado produz uma sensação de euforia. Óxidos anfóteros: reagem com água formando base, reagem com base como se fossem ácido formando sal e água e reagem com ácido com se fossem bases, formando sal e água. São formados por elementos de eletronegatividade média, que podem ser metais ou semimetais. Classificação das Reações Químicas Equação química: É a representação gráfica e abreviada da reação química. 2H2 + ½ O2  2H2O reagentes produtos (1° membro) (2° membro) Equação iônica: É a equação química em que aparecem íons, além de átomos e moléculas. H+ + OH-  H2O  Reação de Síntese ou Adição CaO+H2O  Ca(OH)2  Reação de Análise ou Decomposição H2O2  H2O + O2  Pirólise: calor  Fotólise: luz  Eletrólise: eletricidade  Reação de Deslocamento ou Simples Troca Fe + 2HCl  FeCl2 + H2  Reação de Dupla Troca ou Dupla Substituição NaCl + AgNO3  AgCl + NaNO3 Reações de óxi-redução - aumenta o nox: oxidação (perde elétrons) - diminui o nox: redução (ganha elétrons) - agente oxidante: substância onde encontra-se o elemento que reduz - agente redutor: substância onde encontra-se o elemento que oxida Relações de Massa 1 Mol --- M --- 6,02x1023 entidades químicas 1 Mol --- 22,4 L (CNTP) Estequiometria - Lei de Lavoisier: a reação deve estar sempre balanceada. - Pureza e Rendimento: valores teóricos equivalem a 100% Soluções: São misturas de duas ou mais substâncias que apresentam aspecto uniforme. As soluções são sistemas homo- gêneos formados por uma ou mais substâncias dissolvidas (solu- to) em outra substância em maior proporção na mistura (solven- te). Aspectos quantitativos das Soluções massa da solução = massa do soluto + massa do solvente m = m1 + m2 Unidades de Concentração 1) Concentração comum (C) 1m C V  Unidades: g/L, g/mL, g/cm3 , g.L-1 Obs.: 1 L = 1000 mL = 1000 cm3 2) Densidade (d) m d V  Unidades: g/L, g/mL 3) Título e porcentagem em massa (τ ou T) 1 1 2 m T m m   Ex.: O soro glicosado possui 5 g de glicose em 95 g de água. Calcule o título e a porcentagem em massa.
  • 8. 34 T = 5 = 0,05 x 100 = 5 % 5+95 Obs.: Título ou porcentagem em volume Ex.: o álcool é formado por 96 mL de etanol e 4 mL de água. T = 96 = 0,96 x 100 = 96% 96 + 4 4) Molaridade ou Concentração molar ou Concentração em mol/L (M) M = m1 Mol x V(L) Obs.: o volume deve ser necessariamente em Litros. Unidades: mol/L ou M (molar) Relações entre C, T, d, M C = d x T = M x Mol Obs.: C e d em g/L TERMOQUÍMICA É o estudo das quantidades de calor liberadas ou absorvidas durante as reações químicas. Exotérmicas: São as que liberam calor. CH4(g) + 2O2(g)  CO2(g) + 2H2O(l) + 212,8 Kcal/Mol Endotérmicas: São as que absorvem calor. Cl2(g)  2 Cl(g) - 57,9 Kcal/Mol ECA = energia do complexo ativado Hf = entalpia final Hi = entalpia inicial H = variação de entalpia if HHH  EA = energia de ativação  energia mínima que as moléculas devem possuir ao se chocarem, para haver reação. Estado padrão (convenção)  Temperatura: 25°C ou 298 K  Pressão: 1 atm ou 760 mmHg  Estado físico: mais comum  Forma alotrópica: mais estável  Entalpia das substâncias simples: H = 0 Tipos de entalpia Entalpia de formação H0 f calor absorvido ou liberado na formação de 1 mol de substância, a partir das substâncias simples no estado padrão. Entalpia de combustão Hc calor liberado na combustão total de 1 mol de substância no estado padrão. Entalpia de neutralização Hn calor liberado na neutralização de 1 equivalente-grama de um ácido por um equivalente-grama de uma base no estado padrão Energia de ligação É a quantidade de calor absorvida na quebra de um mol (6,02.1023 ) de ligações no estado padrão. H>0 Lei de Hess A quantidade de calor liberada ou absorvida numa reação química depende dos estados inicial e final da reação. CINÉTICA QUÍMICA É o estudo da velocidade das reações químicas e dos fatores que nela influem. Velocidade média: t Vm       Fatores que influem na velocidade das reações: Temperatura, Eletricidade, Estado físico, Pressão, Luz, Concentrações dos reagentes Catalisador: É a substância que aumenta a velocidade da reação, sem ser consumida durante o processo. O catalisador diminui a energia de ativação e não altera o H da reação. EQUILÍBRIOS QUÍMICOS Reação reversível é aquela que se processa simultaneamente nos dois sentidos. aA + bB     2 1 V V cC + dD V1 = velocidade da reação direta V2 = velocidade da reação inversa Constante de equilíbrio: [B]b[A]a. [D]d[C]c. KC  Kc = constante de equilíbrio em função das concentrações mola- res [ ] = concentrações molares no equilíbrio. b B a A d D c C p pp p.p K   Kp = constante de equilíbrio em função das pressões parciais p = pressões parciais no equilíbrio Deslocamento do equilíbrio Concentração  A adição de uma substância desloca o equilíbrio no sentido em que será consumida (lado oposto). A retirada de uma substância desloca o equilíbrio no sentido em que será refeita (mesmo lado). Pressão  Um aumento de pressão desloca o equilíbrio no sentido do menor volume. Uma diminuição de pressão desloca o equilíbrio no sentido de maior volume. Temperatura  Um aumento de temperatura desloca o equilíbrio no sentido endotérmico. Uma diminuição da temperatura desloca o equilíbrio no sentido exotérmico. ESCALAS DE pH E pOH [H+ ] . [OH- ] = 10-14 [H+ ] = [OH- ] solução neutra [H+ ] > [OH- ] solução ácida [H+ ] < [OH- ] solução básica pH + pOH = 14 pH = 7 solução neutra pH > 7 solução básica pH < 7 solução ácida ELETROQUÍMICA
  • 9. 35 Pilhas Oxidação Redução Ânodo Cátodo Pólo negativo Pólo positivo Corrosão Deposição Elétrons migram da oxidação para a redução - Representação oficial de uma pilha: ânodo//cátodo - Cálculo da voltagem: ∆E = ERed maior – ERed menor Química Orgânica Destilação Fracionada do Petróleo Hibridação e geometria do Carbono sp3 : 4 lig. simples (tetraédrica) sp2 : 1 lig. dupla (trigonal plana) sp: 1lig. tripla ou entre 2 duplas (linear) Classificação de cadeias Aberta (alifática ou acíclica): Normal ou ramificada Saturada ou insaturada Homogênea ou heterogênea Fechada (cíclica): Alicíclica ou aromática Alicíclica (sat. ou insat. e homog. ou hetg.) Aromática (mononucleada ou polinucleada) Funções Orgânicas
  • 11. 37 Isomeria espacial Reações Orgânicas * Esterificação ácido carboxílico + álcool éster + água * Oxidação de Álcool álcool primário aldeído ácido carboxílico álcool secundário cetona álcool terciário não sofre oxidação * Hidrogenação de alcenos e alcinos Quebra de ligação dupla ou tripla e acréscimo de H2 Bioquímica * Glicídios oses (monossacarídeos): aldoses (glicose) cetoses (frutose) osídios: dissacarídeos (sacarose) polissacarídeos (amido e celulose) * Lipídios - óleos: obtido a partir de ácido graxo insaturado - gordura: obtida a partir de ácido graxo saturado