SlideShare una empresa de Scribd logo
1 de 37
MOVIMIENTO ARMÓNICO SIMPLE Y MOVIMIENTO ONDULATORIO Física 2º Bachillerato Carmen Peña IES. Altaír Getafe
MOVIMIENTO ARMÓNICO SIMPLE    Un sistema constituye un  oscilador armónico  cuando <<oscila>> entre dos puntos A 1  y A 2  equidistantes, situados a ambos lados de la posición de equilibrio    Al acercarse   al punto de equilibrio , el cuerpo  aumenta su velocidad , pasando por él, a la velocidad máxima    Al alejarse  del punto de equilibrio,  va disminuyendo su velocidad , de forma que en los extremos se detiene y cambia el sentido del movimiento, a la velocidad máxima A A A  2 A  1 Posición de equilibrio
x 1 x 2 x = A cos (  t+  0 )    La ecuación de un m.v.a.s. se obtiene a partir de la proyección de un movimiento circular sobre una recta - Si la proyección se realiza sobre el eje x, resulta: x = A cos (  t+  0 ) - Si la proyección se realiza sobre el eje y, resulta: y = A sen (  t+  0 )    Elongación x:  Distancia en un instante dado al punto de equilibrio    Amplitud A:  Elongación máxima.  El valor de x varía entre   A  y  +A     Fase    :  Describe el movimiento angular en el punto P     Fase inicial   0 :  Determina la elongación inicial: x 0  = x  (t = 0) = A cos   0   P 0  o    A    A P P’ A A    A    A P o P’  t 2 +  0    t 1 +  0
   El período  es el tiempo que tarda en repetirse una posición en dicho movimiento. Se mide en segundos (s)    Los movimientos que se repiten en intervalos de tiempos iguales se denominan  periódicos    Dado que: cos    = cos (   +  2  )  x = A cos   t = A cos (  t +  2  )     El m.v.a.s.  se repite cada período :     La frecuencia  es la inversa del período e indica el número de veces que se repite una posición en cada segundo. Se mide en  (s -1 ) o Hertzios (Hz)    La frecuencia angular o pulsación  se mide en  (radianes/segundo) x 1 P o A    +  2   P’    A    A
   Derivando la ecuación general del m.v.a.s.,  x = A cos (  t   +    0 )  resulta: sen 2   + cos 2   = 1      Como  x = A cos (  t+  0 )     x 2  = A 2  cos 2  (  t+  0 )     La velocidad es máxima cuando x = 0  V máx  = A      Dependiendo de la fase inicial, la función que define este movimiento puede ser un seno o un coseno sen (  t+  0 ) =  El columpio se detiene en los extremos. En el centro alcanza su máxima velocidad     La ecuación más general del m.v.a.s. : x = A cos (  t+  0 )
   Derivando  la ecuación de la velocidad:  v =   A    sen (  t +   0 )  resulta: Como  x = A cos (  t +   0 ) v =0 a =0 a =0 v =0 a =   2  x     El valor máximo  se alcanza en los extremos, en los que x =    A     a máx  =   2  A  Es proporcional a la elongación, máxima en los extremos y nula en el centro X=A t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 X=0 X=  A a >0 x >0 v >0 a <0 x >0 a <0 x >0 v <0 a <0 x =0 v <0 x <0 v <0 a >0 x <0 v >0 a >0 x =0 v >0 x <0
   Según la ley de Hooke: F =    kx    Por la segunda ley de Newton: F = m a =    m   2  x  k =    m   2      Si  x = 0     F = 0   (no aparecen fuerzas)    Si el móvil se encuentra fuera de la posición de equilibrio, la fuerza que actúa sobre él está dirigida desde el punto en que se encuentra a la posición de equilibrio    La fuerza tiene el  sentido contrario al desplazamiento O x x
   Aplicando la definición de energía cinética:     Por las relaciones trigonométricas:     Si x = 0     energía cinética máxima
   Por tratarse de fuerzas centrales:     Integrando entre dos posiciones A y B: dE p  =    F dx = kx dx    Para cada posición , la E p  es de la forma:    Es máxima  cuando  cos (  t +   0 )  =    1
   La energía total que tiene el oscilador armónico en cada instante  es la suma de la energía cinética y potencial    Sacando factor común:     Simplificando:  E = E p  + E c   En el oscilador armónico, la energía mecánica permanece constante en cualquier instante
EL  PÉNDULO  SIMPLE  COMO  OSCILADOR  ARMÓNICO    Consiste en un  hilo inextensible   de masa despreciable  suspendida de un extremo; del otro pende un cuerpo de masa  m  considerado  puntual Eje Y: T – P y  = m a n Eje X: P x  = m a x     – mg sen    = m a x     Puede considerarse como un m.a.s.  si la separación de A del punto de equilibrio es tan pequeña como para  despreciar la curvatura de la trayectoria a x  = – g        Para  ángulos pequeños , sen    =        Simplificando resulta: – g sen    = a x    Sustituyendo el ángulo por el arco:    L = x   m y P= mg  T  P y = mg cos   L x P x  = – mg sen  
   Cuando el péndulo está parado  en uno de los extremos de su trayectoria ,  toda la energía almacenada es E p  = mgh    Al pasar por el punto más bajo  de su trayec-toria,  toda la energía almacenada es E C    La suma de ambas  indica el valor de su energía en cualquier punto intermedio de su trayectoria    La  relación  entre su altura máxima y la velocidad es: h
AMORTIGUAMIENTO En movimientos reales intervienen fuerzas de rozamiento, lo que origina una  pérdida de energía mecánica  que se transforma en calor, la pérdida de energía mecánica en el sistema va disminuyendo la amplitud de la oscilación hasta que se para, entonces se dice que es una oscilación amortiguada   El amortiguamiento se debe a la resistencia del aire y al rozamiento interno del sistema . RESONANCIA Para evitar la amortiguación hay que aportar continuamente energía al sistema que vibra, pero esta energía debe llegar con la misma frecuencia que vibra el sistema. Dos sistemas se dice que entran en resonancia cuando vibran con la misma frecuencia. Para que haya resonancia hay que comunicarle al sistema energía con la misma frecuencia que está vibrando, de esta forma se logra un gran aumento de la amplitud de oscilación .   Por resonancia se puede llegar a aumentar tanto la amplitud de oscilación de un sistema que este puede incluso llegar a romperse, como cuando por ejemplo un sonido determinado rompe una copa de cristal.
MOVIMIENTO  ONDULATORIO    Al desplazar un trozo del muelle  en sentido longitudinal  y soltarlo, se produce una oscilación que se propaga a todas las partes del muelle comenzando a oscilar    Si en una cuerda tensa horizontal, se hace vibrar uno de sus extremos, la altura de ese punto  varía periódicamente    Un movimiento ondulatorio  es la propagación de una perturbación  de alguna magnitud física a través del espacio. Se suele denominar  onda  a la propia perturbación    El movimiento ondulatorio  no transporta materia , lo que se propaga es la perturbación    Las partículas del medio alcanzadas por ésta,  vibran alrededor de su posición de equilibrio En un movimiento ondulatorio no hay transporte de materia, pero sí hay transporte de energía y de momento lineal
- Ondas mecánicas o elásticas : transportan energía mecánica y necesitan un medio material para propagarse, no se pueden propagar en el vacío. Por ejemplo las ondas en una cuerda, las ondas en la superficie del agua, las ondas sonoras, es decir el sonido, las ondas sísmicas. Son debidas a la vibración del medio en que se propagan. - Ondas electromagnéticas  : no necesitan medio material para propagarse, se pueden propagar en el vacío, transportan energía electromagnética y son el resultado de la interferencia entre campos eléctricos y magnéticos variables perpendiculares entre si, la variación de estos campos produce una emisión de energía que es la radiación electromagnética. Por ejemplo la luz  Según el tipo de energía que se propaga se clasifican en: CLASIFICACIÓN DE ONDAS - Unidimensionales : en línea por ejemplo una cuerda o un muelle vibrando. - Bidimensionales  en un plano, por ejemplo agua oscilando en la superficie de un estanque. - Tridimensionales  en todo el espacio por ejemplo el sonido o la luz. Según sea la propagación de la energía se clasifican en: Planas  si el frente de ondas es plano como las ondas que se producen al sacudir un mantel,  circulares  si es  circular como las ondas en la superficie de un estanque y  esféricas  si el frente es esférico como la luz o el sonido. Según la forma del frente de ondas se clasifican en:
Según la dirección de propagación se clasifican en:    La dirección de propagación es perpendicular a la dirección en que tiene lugar la perturbación    La dirección de propagación coincide con la dirección de la perturbación El sonido, las ondas sísmicas P y las que se propagan en un muelle, son ondas longitudinales Las ondas en una cuerda, las ondas electromagnéticas y las ondas sísmicas S, son ondas transversales TRANSVERSALES LONGITUDINALES
Ondas armónicas. Función de onda    Una onda armónica es la  propagación de una perturbación  originada por un  m.v.a.s.    Su forma se corresponde con una  función armónica  (seno o coseno)    Los puntos que en un instante tiene elongación máxima se denominan  vientres    Aquellos que tienen elongación nula se denominan  nodos    La función de onda  es la ecuación que describe un movimiento ondulatorio    El tiempo que tarda la perturbación en llegar a un punto P del eje situado a una distancia x p  del foco O es t’ = x p  / v    La ecuación de onda o función de onda es :  y o x  A -A   P x p nodo vientre    La elongación  del punto O en cualquier instante t es:  y 0  (t) =  A sen   t  siendo    = 2 
   También denominado  período (T)  es el intervalo de tiempo que transcurre entre dos estados idénticos y sucesivos de la perturbación en un punto     Coincide con el período del m.v.a.s. del foco de la perturbación     Si se tiene un punto P a una distancia x del foco vibrante, la función de onda para x constante es:   (x, t) =   (t).  La elongación de P solo depende de t     Al colocar una pantalla con una rendija perpendicular a la cuerda, lo que equivale a hacer x constante, se observa como el punto P describe un m.v.a.s.  P  Pantalla Rendija 
   La longitud de onda (  ) es el intervalo de longitud entre dos puntos sucesivos que se encuentran en idéntico estado de perturbación  amplitud   (A)   frecuencia   (  )  que es la inversa del período período   (T) velocidad de propagación   (v)    Características de una onda :  longitud de onda   (  )  o período espacial    = vT
Diferencias de fase: Para un mismo instante t  la diferencia de fase entre dos puntos de la onda situados respecto al origen a  las distancias x1 y x2 será   1=wt-kx1 y   2=wt-kx2  luego:  2-  1=(wt-kx2)-(wt-kx1)=wt-kx2-wt+kx1= k(x1-x2)   =k.  x Un mismo punto de la onda en dos instantes diferentes estará en diferentes estados de vibración, diferente fase:  1=wt1-kx y   2=wt2-kx luego   2-  1=(wt2-kx)-(wt1-kx)=wt2-kx-wt1+kx= w(t1-t2)   =w.  t    La frecuencia angular o pulsación es:     La ecuación de ondas es:     El número de ondas es:     El término  (  t – kx) = se denomina  fase de la onda   Están en fase  los puntos con  idéntico estado de perturbación . La distancia entre ellos es igual a un número entero de longitudes de onda o a un  número par de semilongitudes de onda Están en oposición de fase  los puntos que distan un  número impar de semilongitudes de onda
DOBLE PERIODICIDAD DEL MOVIMIENTO ONDULATORIO El movimiento ondulatorio armónico es periódico respecto al espacio y al tiempo. Respecto al tiempo:  para un tiempo nT donde n es un número entero y T es el periodo vamos a comprobar si se repite el movimiento   Respecto al espacio:  ocurre lo mismo si recorre un espacio n   donde n es un número entero y    es la longitud de onda Y=A.sen(wt-kx)  pero también se puede expresar como : para un tiempo t+nT queda:  pero como sabemos que por trigonometría sen  =sen(  +2  ) y es lógico ya que al dar una oscilación completa vuelve a estar como estaba y entonces la ecuación vuelve a ser la misma:   igual que antes se trata de una oscilación completa y la ecuación queda igual que al principio
INTENSIDAD DE UNA ONDA    Una onda  transporta energía  desde el foco emisor al medio. Para caracterizar la propagación de la energía por la onda se define la magnitud denominada intensidad     La  intensidad de una onda  en un punto es la energía que pasa en cada unidad de tiempo por la unidad de superficie situada perpendicularmente a la dirección de propagación     La intensidad  es una potencia por unidad de superficie La energía de vibración es directamente proporcional al cuadrado de la frecuencia de oscilación y al cuadrado de la amplitud de la onda .    La unidad de intensidad es  W m -2
Absorción    Se llama  amortiguación  a la disminución de la amplitud de una onda.     Una onda se amortigua a medida que avanza, por dos causas:  la absorción  del medio y  la atenuación  con la distancia    Se llama  amortiguación  a la disminución de la amplitud de una onda.     La disminución de la intensidad de la onda se traduce en una  disminución de la amplitud : siendo    el coeficiente de absorción    Las intensidades son proporcionales a los cuadrados de las amplitudes, por tanto: El tipo de material con que se revisten las paredes de las salas de audición musical, condiciona la cantidad de sonido que se recibe, ya que absorben de diferente grado las ondas sonoras
Atenuación    Cuando el foco es puntual se producen ondas esféricas cuyo frente se propaga en todas direcciones del espacio    Este fenómeno se produce aunque no haya disipación de energía al medio, se debe a que al avanzar la onda las partículas puestas en vibración aumentan por lo que la energía se reparte para más partículas y les toca menos cantidad a cada una, lo que hace que la amplitud de la onda disminuya.     La intensidad de la onda esférica en el punto B 1  que dista r 1  del foco emisor F es:     Y en el punto B 2  que dista r 2  del foco emisor F :     Por tanto, F B 2 B 1 r 1 r 2
SONIDO    La  intensidad sonora  es la cantidad de sensación auditiva que produce un sonido    Según su  sonoridad , los sonidos se perciben como  fuertes o débiles INTENSIDAD Onda mecánica, longitudinal y tridimensional O A t Para una misma frecuencia, a mayor intensidad, mayor amplitud de onda sonora A 1 A 2 fuerte débil
TONO    Los de  mayor frecuencia  se perciben como  agudos  , y los de menor, como graves    Permite distinguir entre sonidos  graves y agudos , y está relacionado con la frecuencia A t O grave agudo La frecuencia es igual al número de compresiones y dilataciones que tienen lugar en un punto del medio cada segundo    T 1 T 2
TIMBRE    Permite al oído humano  distinguir entre dos notas iguales  emitidas por distintos instrumentos    Ningún foco emisor, ejecuta una vibración armónica pura , sino una vibración armónica de frecuencia determinada (  ) acompañada de un conjunto de vibraciones de frecuencias múltiplos de la fundamental, 2   , 3   , ... denominados  armónicos t A O violín clarinete
SENSACIÓN SONORA. ESCALA DECIBÉLICA    La  intensidad sonora  depende de la onda y de su frecuencia. Se mide en dB en la escala decibélica (escala logarítmica)    El nivel de intensidad sonora    se define como: Intensidad sonora de algunos sonidos habituales Intensidad sonora en dB Fuente sonora en W m  2 Murmullo de hojas 10  10 20 Susurros a 5 m 10  9 30 Casa tranquila 10  8 40 Calle con tráfico intenso 10  5 70 Oficina tranquila 10  7 50 Voz humana a 1 m 10  6 60 Respiración normal 10  11 Apenas audible 10 Fábrica  10  4 80 Ferrocarril 10  2 100 Despegue de un reactor 10 2 140 Grandes altavoces a 2 m Umbral de dolor 10  120 10  12 0 Umbral de audición
SUPERPOSICIÓN DE ONDAS. PRINCIPIO DE SUPERPOSICIÓN    Cuando  n  movimientos ondulatorios, descritos cada uno de ellos por su ecuación de ondas     i , inciden simultáneamente en un punto,  la función de onda resultante   es la suma de las funciones de onda  de cada uno de ellos:    Permite calcular la función de onda resultante  cuando varios movimientos ondulatorios coinciden al mismo tiempo en un punto, pero conlleva la dificultad de sumar funciones trigonométricas en el caso de las ondas armónicas. Para salvar este inconveniente, Fresnel elaboró un método denominado  construcción de Fresnel  que permite tratar las ondas como vectores Este proceso de adición matemática de funciones de onda armónicas, se denomina superposición    =   1  +   2  + ... +   n  =   i   Representación de un vector y de una función de onda como un vector    A
   Los fenómenos de interferencia ocurren cuando un punto del espacio  es alcanzado simultánea-mente por dos o más ondas    Aunque las funciones de onda se sumen,  sus efectos físicos no son aditivos , lo que da lugar a los fenómenos de interferencia    La suma de varias perturbaciones en un punto  puede dar como resultado una perturbación nula    Como la función de onda    depende de la posición  x  y del tiempo  t , los fenómenos de interferencias pueden estudiarse en el espacio o en el tiempo Si sometemos una cuerda a dos sacudidas, una por cada extremo, se van a propagar en sentido contrario y cada perturbación se moverá una independientemente de la otra.  Cuando las dos perturbaciones se cruzan el resultado es la interferencia y cuando se separan cada un sigue independientemente con su forma inicial. Interferencias en la superficie del agua Ejemplo:  luz + luz = oscuridad
La intensidad es máxima en los puntos cuya diferencia de distancias a los focos es igual a un número entero de longitudes de onda Interferencia constructiva Interferencia destructiva La intensidad es mínima en los puntos cuya diferencia de distancias a los focos es igual a un número impar de longitudes de onda INTERFERENCIA EN FASE INTERFERENCIA EN OPOSICIÓN DE FASE    El valor mínimo de la intensidad de onda I  se produce cuando cos    =   1; se tiene entonces una  interferencia destructiva . Para ello,    = (2 n   1)   , siendo n = 1, 2, 3, ... luego:    El valor máximo de la intensidad de onda I  se produce cuando cos    = 1; se tiene entonces una  interferencia constructiva . Para ello,    = 2n  , siendo n = 1, 2, 3, ... luego: 3) 1) 2) 4) 3) 1) 2) 4)
PRINCIPIO DE HUYGENS    Se denomina  frente de onda  a la superficie formada por todos los puntos que son alcanzados por una onda al mismo tiempo; en consecuencia, todos los puntos de un frente de onda tienen la misma fase    Las líneas perpendiculares al frente de onda en cada punto se llaman  rayos Frente plano Frente esférico Principio de Huygens . Cada punto de un frente de ondas se comporta como un foco emisor de ondas secundarias cuya envolvente constituye el nuevo frente de ondas Frente de onda plano Frente de onda esférico Frente de onda plano
DIFRACCIÓN    Un observador percibe la luz de un foco aunque no pueda verlo directamente, y oye los sonidos de un altavoz aunque se encuentre detrás de un obstáculo    Este fenómeno se denomina  difracción    La difracción de ondas se produce cuando la onda  se encuentra con un obstáculo cuyo tamaño es del mismo orden de magnitud que su longitud de onda.  El obstáculo puede ser una rendija, un borde recto, un disco, una abertura, etc; un conjunto de rendijas con una anchura adecuada se llama  red de difracción    Puede observarse la difracción de ondas en la superficie del agua si se disponen  dos estanques comunicados por una abertura ; al producir una pertur-bación en uno de ellos, se observa que al llegar a la abertura de separación se propaga por el segundo medio, de acuerdo con el principio de Huygens    La difracción de la luz no es apreciable a simple vista  porque los obstáculos deben ser muy pequeños (del orden de la longitud de onda de la luz: 400-700 nm) Difracción de ondas planas en la cubeta de ondas
EXPERIMENTO DE YOUNG El experimento de Young permitió estudiar el fenómeno de la difracción en el caso de la luz. Trabajó con dos rendijas u orificios muy pequeños que actúan como nuevos focos de ondas F1 y F2 observó las interferencias entre ambos focos en una pantalla. D=distancia entre las rendijas y la pantalla d=distancia entre las dos rendijas que es menor que la longitud de onda de la luz utilizada. Y=altura a la que se produce la interferencia en la pantalla respecto a la rendija inferior x 1 -x 2 =diferencia de caminos entre los dos rayos que interfieren: si observamos interferencia constructiva x 1 -x 2 =  si observamos interferencia destructiva x 1 -x 2 =  /2 Para valores de    muy pequeños tg  =sen  =   en radianes Viendo los triángulos que se forman :  Permite calcular la longitud de onda de la luz que se emplea ya que si por ejemplo en ese punto la interferencia es constructiva queda :  Si un fenómeno físico sufre difracción se puede asegurar que se propaga ondulatoriamente  Y  x 1 -x 2 d Rayo 1 Rayo 2 D pantalla
REFRACCIÓN DE ONDAS    La refracción de ondas consiste en el  cambio de dirección de propagación al pasar la onda de un medio a otro diferente . Si el medio no permite la transmisión de una onda a través de él, se dice que es un medio  opaco  para ese movimiento ondulatorio Refracción de un frente de ondas AA’ (Ley de Snell) Medio 1 Medio 2 A A’ Medio 1 Medio 2 A A’ B B’
REFLEXIÓN DE ONDAS    La reflexión de ondas es el  cambio de la dirección de propagación al incidir la onda en el límite de separación de dos medios diferentes ; después de la reflexión, la onda continua su propagación en el mismo medio    Como t A’B’  = t AB , siendo v la velocidad de propagación de las ondas, resulta:    Los triángulos AA’B’ y AA’B son iguales, y también lo serán los ángulos  y  A’ A N B’ B A A’
   El ángulo de incidencia y el ángulo de refracción están relacionados por: LEYES DE LA REFRACCIÓN LEYES DE LA REFLEXIÓN    La dirección de incidencia de la onda, la dirección de salida y la normal a la superficie de separación de ambos medios están en un mismo plano    El ángulo de incidencia es igual al ángulo de reflexión    La dirección de incidencia de las ondas, la dirección de salida y la normal a la superficie de separación de ambos medios están en un mismo plano Refracción en la cubeta de ondas

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Presentación tema 2
Presentación tema 2Presentación tema 2
Presentación tema 2
 
Movimiento armónico simple
Movimiento armónico simple  Movimiento armónico simple
Movimiento armónico simple
 
Movimiento m.a.s
Movimiento m.a.sMovimiento m.a.s
Movimiento m.a.s
 
Mariangel
MariangelMariangel
Mariangel
 
Movimiento ondulatorio
Movimiento ondulatorioMovimiento ondulatorio
Movimiento ondulatorio
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
ondas
ondasondas
ondas
 
Cap3 movimiento armonico simple
Cap3 movimiento armonico simpleCap3 movimiento armonico simple
Cap3 movimiento armonico simple
 
Movimiento Armónico Simple (introducción)
Movimiento Armónico Simple (introducción)Movimiento Armónico Simple (introducción)
Movimiento Armónico Simple (introducción)
 
Vibraciones y ondas
Vibraciones y ondasVibraciones y ondas
Vibraciones y ondas
 
Ficha de trabajo_de_m.a.s__-_parte_i[1]
Ficha de trabajo_de_m.a.s__-_parte_i[1]Ficha de trabajo_de_m.a.s__-_parte_i[1]
Ficha de trabajo_de_m.a.s__-_parte_i[1]
 
E7 examen global
E7 examen globalE7 examen global
E7 examen global
 
Vibraciones mecánicas. Movimiento Armónico Simple.
Vibraciones mecánicas. Movimiento Armónico Simple. Vibraciones mecánicas. Movimiento Armónico Simple.
Vibraciones mecánicas. Movimiento Armónico Simple.
 
Ondas
Ondas Ondas
Ondas
 
Cap3 movimiento armonico simple 2
Cap3 movimiento armonico simple 2Cap3 movimiento armonico simple 2
Cap3 movimiento armonico simple 2
 
Movimiento ondulatorio
Movimiento ondulatorioMovimiento ondulatorio
Movimiento ondulatorio
 
movimiento armonico simple
movimiento armonico simplemovimiento armonico simple
movimiento armonico simple
 
Movimiento oscilatorio.pdf
Movimiento oscilatorio.pdfMovimiento oscilatorio.pdf
Movimiento oscilatorio.pdf
 
Ondas
OndasOndas
Ondas
 

Destacado (19)

Electricidad4
Electricidad4Electricidad4
Electricidad4
 
Eremu elektrikoa( Fisika BATX2)
Eremu elektrikoa( Fisika BATX2)Eremu elektrikoa( Fisika BATX2)
Eremu elektrikoa( Fisika BATX2)
 
Redox
RedoxRedox
Redox
 
Trabajoyenergia4
Trabajoyenergia4Trabajoyenergia4
Trabajoyenergia4
 
Cineticaquimica
CineticaquimicaCineticaquimica
Cineticaquimica
 
Opticafisicaygeometrica2
Opticafisicaygeometrica2Opticafisicaygeometrica2
Opticafisicaygeometrica2
 
Fisicacuanticayrelatividad
FisicacuanticayrelatividadFisicacuanticayrelatividad
Fisicacuanticayrelatividad
 
Organica2
Organica2Organica2
Organica2
 
Campoelectrostatico2
Campoelectrostatico2Campoelectrostatico2
Campoelectrostatico2
 
Fluidos
FluidosFluidos
Fluidos
 
Termoquimica
TermoquimicaTermoquimica
Termoquimica
 
Bloque 2 ondas
Bloque 2 ondasBloque 2 ondas
Bloque 2 ondas
 
Ondas estacionarias
Ondas estacionariasOndas estacionarias
Ondas estacionarias
 
Electromagnetismo
ElectromagnetismoElectromagnetismo
Electromagnetismo
 
Campo electrico
Campo electricoCampo electrico
Campo electrico
 
Electromagnetismo
ElectromagnetismoElectromagnetismo
Electromagnetismo
 
Electromagnetismo
ElectromagnetismoElectromagnetismo
Electromagnetismo
 
Campo eléctrico
Campo eléctricoCampo eléctrico
Campo eléctrico
 
CAMPO ELECTRICO
CAMPO ELECTRICOCAMPO ELECTRICO
CAMPO ELECTRICO
 

Similar a Armonicoyondas2

Similar a Armonicoyondas2 (20)

Darly vargas
Darly vargasDarly vargas
Darly vargas
 
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SDINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
 
Trabajo y energía victor
Trabajo y energía victorTrabajo y energía victor
Trabajo y energía victor
 
Diapositivas de trabajo y nergia
Diapositivas de trabajo y nergiaDiapositivas de trabajo y nergia
Diapositivas de trabajo y nergia
 
Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234
 
Codificación en FOTRAN de los problemas del Capitulo 12 del libro Alonso Finn
Codificación en FOTRAN de los problemas del Capitulo 12 del libro Alonso FinnCodificación en FOTRAN de los problemas del Capitulo 12 del libro Alonso Finn
Codificación en FOTRAN de los problemas del Capitulo 12 del libro Alonso Finn
 
fisica
fisicafisica
fisica
 
Ondas mecanicas
Ondas mecanicas Ondas mecanicas
Ondas mecanicas
 
Movimiento Ondulatorio
Movimiento OndulatorioMovimiento Ondulatorio
Movimiento Ondulatorio
 
Ondas
OndasOndas
Ondas
 
Ondas
OndasOndas
Ondas
 
Blog fisica
Blog fisicaBlog fisica
Blog fisica
 
Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...
Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...
Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...
 
Brigitte moreno
Brigitte morenoBrigitte moreno
Brigitte moreno
 
Ondas
OndasOndas
Ondas
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Fisica gn
Fisica gnFisica gn
Fisica gn
 
Ondas 2013
Ondas 2013Ondas 2013
Ondas 2013
 
Ondas
OndasOndas
Ondas
 
Presentación Ondas.pptx
Presentación Ondas.pptxPresentación Ondas.pptx
Presentación Ondas.pptx
 

Más de lunaclara123

Más de lunaclara123 (19)

Fisicacuantica
FisicacuanticaFisicacuantica
Fisicacuantica
 
Electromagnetismo2
Electromagnetismo2Electromagnetismo2
Electromagnetismo2
 
Campogravitatorio2
Campogravitatorio2Campogravitatorio2
Campogravitatorio2
 
Campos
CamposCampos
Campos
 
Dinamicayenergia2
Dinamicayenergia2Dinamicayenergia2
Dinamicayenergia2
 
Tablaperiodica2
Tablaperiodica2Tablaperiodica2
Tablaperiodica2
 
Estructuradelamateria2
Estructuradelamateria2Estructuradelamateria2
Estructuradelamateria2
 
Estequiometria2
Estequiometria2Estequiometria2
Estequiometria2
 
Equilibrioquimico
EquilibrioquimicoEquilibrioquimico
Equilibrioquimico
 
Enlace2
Enlace2Enlace2
Enlace2
 
Acidobase
AcidobaseAcidobase
Acidobase
 
Acidobase
AcidobaseAcidobase
Acidobase
 
Dinamica4
Dinamica4Dinamica4
Dinamica4
 
Lamedida3
Lamedida3Lamedida3
Lamedida3
 
Modelosatomicostablaperiodicayenlace
ModelosatomicostablaperiodicayenlaceModelosatomicostablaperiodicayenlace
Modelosatomicostablaperiodicayenlace
 
Tablaperiodica1
Tablaperiodica1Tablaperiodica1
Tablaperiodica1
 
Estructuraatomica1
Estructuraatomica1Estructuraatomica1
Estructuraatomica1
 
Trabajoyenergia1
Trabajoyenergia1Trabajoyenergia1
Trabajoyenergia1
 
Disolucionesyestequiometria1
Disolucionesyestequiometria1Disolucionesyestequiometria1
Disolucionesyestequiometria1
 

Último

Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docxIII SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docxMaritza438836
 
05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdf05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdfRAMON EUSTAQUIO CARO BAYONA
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfssuser50d1252
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaLuis Minaya
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docxEDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docxLuisAndersonPachasto
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfssuser50d1252
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOMARIBEL DIAZ
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 

Último (20)

Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docxIII SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
III SEGUNDO CICLO PLAN DE TUTORÍA 2024.docx
 
05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdf05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdf
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docxEDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docx
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
recursos naturales america cuarto basico
recursos naturales america cuarto basicorecursos naturales america cuarto basico
recursos naturales america cuarto basico
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 

Armonicoyondas2

  • 1. MOVIMIENTO ARMÓNICO SIMPLE Y MOVIMIENTO ONDULATORIO Física 2º Bachillerato Carmen Peña IES. Altaír Getafe
  • 2. MOVIMIENTO ARMÓNICO SIMPLE  Un sistema constituye un oscilador armónico cuando <<oscila>> entre dos puntos A 1 y A 2 equidistantes, situados a ambos lados de la posición de equilibrio  Al acercarse al punto de equilibrio , el cuerpo aumenta su velocidad , pasando por él, a la velocidad máxima  Al alejarse del punto de equilibrio, va disminuyendo su velocidad , de forma que en los extremos se detiene y cambia el sentido del movimiento, a la velocidad máxima A A A 2 A 1 Posición de equilibrio
  • 3. x 1 x 2 x = A cos (  t+  0 )  La ecuación de un m.v.a.s. se obtiene a partir de la proyección de un movimiento circular sobre una recta - Si la proyección se realiza sobre el eje x, resulta: x = A cos (  t+  0 ) - Si la proyección se realiza sobre el eje y, resulta: y = A sen (  t+  0 )  Elongación x: Distancia en un instante dado al punto de equilibrio  Amplitud A: Elongación máxima. El valor de x varía entre  A y +A  Fase  : Describe el movimiento angular en el punto P  Fase inicial  0 : Determina la elongación inicial: x 0 = x (t = 0) = A cos  0 P 0  o  A  A P P’ A A  A  A P o P’  t 2 +  0  t 1 +  0
  • 4. El período es el tiempo que tarda en repetirse una posición en dicho movimiento. Se mide en segundos (s)  Los movimientos que se repiten en intervalos de tiempos iguales se denominan periódicos  Dado que: cos  = cos (  + 2  ) x = A cos  t = A cos (  t + 2  )  El m.v.a.s. se repite cada período :  La frecuencia es la inversa del período e indica el número de veces que se repite una posición en cada segundo. Se mide en (s -1 ) o Hertzios (Hz)  La frecuencia angular o pulsación se mide en (radianes/segundo) x 1 P o A  + 2   P’  A  A
  • 5. Derivando la ecuación general del m.v.a.s., x = A cos (  t +  0 ) resulta: sen 2  + cos 2  = 1   Como x = A cos (  t+  0 )  x 2 = A 2 cos 2 (  t+  0 )  La velocidad es máxima cuando x = 0 V máx = A   Dependiendo de la fase inicial, la función que define este movimiento puede ser un seno o un coseno sen (  t+  0 ) =  El columpio se detiene en los extremos. En el centro alcanza su máxima velocidad  La ecuación más general del m.v.a.s. : x = A cos (  t+  0 )
  • 6. Derivando la ecuación de la velocidad: v =  A  sen (  t +  0 ) resulta: Como x = A cos (  t +  0 ) v =0 a =0 a =0 v =0 a =  2 x  El valor máximo se alcanza en los extremos, en los que x =  A  a máx =  2 A Es proporcional a la elongación, máxima en los extremos y nula en el centro X=A t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 X=0 X=  A a >0 x >0 v >0 a <0 x >0 a <0 x >0 v <0 a <0 x =0 v <0 x <0 v <0 a >0 x <0 v >0 a >0 x =0 v >0 x <0
  • 7. Según la ley de Hooke: F =  kx  Por la segunda ley de Newton: F = m a =  m  2 x k =  m  2  Si x = 0  F = 0 (no aparecen fuerzas)  Si el móvil se encuentra fuera de la posición de equilibrio, la fuerza que actúa sobre él está dirigida desde el punto en que se encuentra a la posición de equilibrio  La fuerza tiene el sentido contrario al desplazamiento O x x
  • 8. Aplicando la definición de energía cinética:  Por las relaciones trigonométricas:  Si x = 0  energía cinética máxima
  • 9. Por tratarse de fuerzas centrales:  Integrando entre dos posiciones A y B: dE p =  F dx = kx dx  Para cada posición , la E p es de la forma:  Es máxima cuando cos (  t +  0 ) =  1
  • 10. La energía total que tiene el oscilador armónico en cada instante es la suma de la energía cinética y potencial  Sacando factor común:  Simplificando: E = E p + E c En el oscilador armónico, la energía mecánica permanece constante en cualquier instante
  • 11. EL PÉNDULO SIMPLE COMO OSCILADOR ARMÓNICO  Consiste en un hilo inextensible de masa despreciable suspendida de un extremo; del otro pende un cuerpo de masa m considerado puntual Eje Y: T – P y = m a n Eje X: P x = m a x  – mg sen  = m a x  Puede considerarse como un m.a.s. si la separación de A del punto de equilibrio es tan pequeña como para despreciar la curvatura de la trayectoria a x = – g   Para ángulos pequeños , sen  =   Simplificando resulta: – g sen  = a x  Sustituyendo el ángulo por el arco:  L = x  m y P= mg  T  P y = mg cos  L x P x = – mg sen 
  • 12. Cuando el péndulo está parado en uno de los extremos de su trayectoria , toda la energía almacenada es E p = mgh  Al pasar por el punto más bajo de su trayec-toria, toda la energía almacenada es E C  La suma de ambas indica el valor de su energía en cualquier punto intermedio de su trayectoria  La relación entre su altura máxima y la velocidad es: h
  • 13. AMORTIGUAMIENTO En movimientos reales intervienen fuerzas de rozamiento, lo que origina una pérdida de energía mecánica que se transforma en calor, la pérdida de energía mecánica en el sistema va disminuyendo la amplitud de la oscilación hasta que se para, entonces se dice que es una oscilación amortiguada El amortiguamiento se debe a la resistencia del aire y al rozamiento interno del sistema . RESONANCIA Para evitar la amortiguación hay que aportar continuamente energía al sistema que vibra, pero esta energía debe llegar con la misma frecuencia que vibra el sistema. Dos sistemas se dice que entran en resonancia cuando vibran con la misma frecuencia. Para que haya resonancia hay que comunicarle al sistema energía con la misma frecuencia que está vibrando, de esta forma se logra un gran aumento de la amplitud de oscilación . Por resonancia se puede llegar a aumentar tanto la amplitud de oscilación de un sistema que este puede incluso llegar a romperse, como cuando por ejemplo un sonido determinado rompe una copa de cristal.
  • 14. MOVIMIENTO ONDULATORIO  Al desplazar un trozo del muelle en sentido longitudinal y soltarlo, se produce una oscilación que se propaga a todas las partes del muelle comenzando a oscilar  Si en una cuerda tensa horizontal, se hace vibrar uno de sus extremos, la altura de ese punto varía periódicamente  Un movimiento ondulatorio es la propagación de una perturbación de alguna magnitud física a través del espacio. Se suele denominar onda a la propia perturbación  El movimiento ondulatorio no transporta materia , lo que se propaga es la perturbación  Las partículas del medio alcanzadas por ésta, vibran alrededor de su posición de equilibrio En un movimiento ondulatorio no hay transporte de materia, pero sí hay transporte de energía y de momento lineal
  • 15. - Ondas mecánicas o elásticas : transportan energía mecánica y necesitan un medio material para propagarse, no se pueden propagar en el vacío. Por ejemplo las ondas en una cuerda, las ondas en la superficie del agua, las ondas sonoras, es decir el sonido, las ondas sísmicas. Son debidas a la vibración del medio en que se propagan. - Ondas electromagnéticas : no necesitan medio material para propagarse, se pueden propagar en el vacío, transportan energía electromagnética y son el resultado de la interferencia entre campos eléctricos y magnéticos variables perpendiculares entre si, la variación de estos campos produce una emisión de energía que es la radiación electromagnética. Por ejemplo la luz Según el tipo de energía que se propaga se clasifican en: CLASIFICACIÓN DE ONDAS - Unidimensionales : en línea por ejemplo una cuerda o un muelle vibrando. - Bidimensionales en un plano, por ejemplo agua oscilando en la superficie de un estanque. - Tridimensionales en todo el espacio por ejemplo el sonido o la luz. Según sea la propagación de la energía se clasifican en: Planas si el frente de ondas es plano como las ondas que se producen al sacudir un mantel, circulares si es circular como las ondas en la superficie de un estanque y esféricas si el frente es esférico como la luz o el sonido. Según la forma del frente de ondas se clasifican en:
  • 16. Según la dirección de propagación se clasifican en:  La dirección de propagación es perpendicular a la dirección en que tiene lugar la perturbación  La dirección de propagación coincide con la dirección de la perturbación El sonido, las ondas sísmicas P y las que se propagan en un muelle, son ondas longitudinales Las ondas en una cuerda, las ondas electromagnéticas y las ondas sísmicas S, son ondas transversales TRANSVERSALES LONGITUDINALES
  • 17. Ondas armónicas. Función de onda  Una onda armónica es la propagación de una perturbación originada por un m.v.a.s.  Su forma se corresponde con una función armónica (seno o coseno)  Los puntos que en un instante tiene elongación máxima se denominan vientres  Aquellos que tienen elongación nula se denominan nodos  La función de onda es la ecuación que describe un movimiento ondulatorio  El tiempo que tarda la perturbación en llegar a un punto P del eje situado a una distancia x p del foco O es t’ = x p / v  La ecuación de onda o función de onda es : y o x  A -A   P x p nodo vientre  La elongación del punto O en cualquier instante t es: y 0 (t) = A sen  t siendo  = 2 
  • 18. También denominado período (T) es el intervalo de tiempo que transcurre entre dos estados idénticos y sucesivos de la perturbación en un punto  Coincide con el período del m.v.a.s. del foco de la perturbación  Si se tiene un punto P a una distancia x del foco vibrante, la función de onda para x constante es:  (x, t) =  (t). La elongación de P solo depende de t  Al colocar una pantalla con una rendija perpendicular a la cuerda, lo que equivale a hacer x constante, se observa como el punto P describe un m.v.a.s. P  Pantalla Rendija 
  • 19. La longitud de onda (  ) es el intervalo de longitud entre dos puntos sucesivos que se encuentran en idéntico estado de perturbación amplitud (A) frecuencia (  ) que es la inversa del período período (T) velocidad de propagación (v)  Características de una onda :  longitud de onda (  ) o período espacial  = vT
  • 20. Diferencias de fase: Para un mismo instante t la diferencia de fase entre dos puntos de la onda situados respecto al origen a las distancias x1 y x2 será  1=wt-kx1 y  2=wt-kx2 luego:  2-  1=(wt-kx2)-(wt-kx1)=wt-kx2-wt+kx1= k(x1-x2)  =k.  x Un mismo punto de la onda en dos instantes diferentes estará en diferentes estados de vibración, diferente fase:  1=wt1-kx y  2=wt2-kx luego  2-  1=(wt2-kx)-(wt1-kx)=wt2-kx-wt1+kx= w(t1-t2)  =w.  t  La frecuencia angular o pulsación es:  La ecuación de ondas es:  El número de ondas es:  El término (  t – kx) = se denomina fase de la onda Están en fase los puntos con idéntico estado de perturbación . La distancia entre ellos es igual a un número entero de longitudes de onda o a un número par de semilongitudes de onda Están en oposición de fase los puntos que distan un número impar de semilongitudes de onda
  • 21. DOBLE PERIODICIDAD DEL MOVIMIENTO ONDULATORIO El movimiento ondulatorio armónico es periódico respecto al espacio y al tiempo. Respecto al tiempo: para un tiempo nT donde n es un número entero y T es el periodo vamos a comprobar si se repite el movimiento Respecto al espacio: ocurre lo mismo si recorre un espacio n  donde n es un número entero y  es la longitud de onda Y=A.sen(wt-kx) pero también se puede expresar como : para un tiempo t+nT queda: pero como sabemos que por trigonometría sen  =sen(  +2  ) y es lógico ya que al dar una oscilación completa vuelve a estar como estaba y entonces la ecuación vuelve a ser la misma: igual que antes se trata de una oscilación completa y la ecuación queda igual que al principio
  • 22. INTENSIDAD DE UNA ONDA  Una onda transporta energía desde el foco emisor al medio. Para caracterizar la propagación de la energía por la onda se define la magnitud denominada intensidad  La intensidad de una onda en un punto es la energía que pasa en cada unidad de tiempo por la unidad de superficie situada perpendicularmente a la dirección de propagación  La intensidad es una potencia por unidad de superficie La energía de vibración es directamente proporcional al cuadrado de la frecuencia de oscilación y al cuadrado de la amplitud de la onda .  La unidad de intensidad es W m -2
  • 23. Absorción  Se llama amortiguación a la disminución de la amplitud de una onda.  Una onda se amortigua a medida que avanza, por dos causas: la absorción del medio y la atenuación con la distancia  Se llama amortiguación a la disminución de la amplitud de una onda.  La disminución de la intensidad de la onda se traduce en una disminución de la amplitud : siendo  el coeficiente de absorción  Las intensidades son proporcionales a los cuadrados de las amplitudes, por tanto: El tipo de material con que se revisten las paredes de las salas de audición musical, condiciona la cantidad de sonido que se recibe, ya que absorben de diferente grado las ondas sonoras
  • 24. Atenuación  Cuando el foco es puntual se producen ondas esféricas cuyo frente se propaga en todas direcciones del espacio  Este fenómeno se produce aunque no haya disipación de energía al medio, se debe a que al avanzar la onda las partículas puestas en vibración aumentan por lo que la energía se reparte para más partículas y les toca menos cantidad a cada una, lo que hace que la amplitud de la onda disminuya.  La intensidad de la onda esférica en el punto B 1 que dista r 1 del foco emisor F es:  Y en el punto B 2 que dista r 2 del foco emisor F :  Por tanto, F B 2 B 1 r 1 r 2
  • 25. SONIDO  La intensidad sonora es la cantidad de sensación auditiva que produce un sonido  Según su sonoridad , los sonidos se perciben como fuertes o débiles INTENSIDAD Onda mecánica, longitudinal y tridimensional O A t Para una misma frecuencia, a mayor intensidad, mayor amplitud de onda sonora A 1 A 2 fuerte débil
  • 26. TONO  Los de mayor frecuencia se perciben como agudos , y los de menor, como graves  Permite distinguir entre sonidos graves y agudos , y está relacionado con la frecuencia A t O grave agudo La frecuencia es igual al número de compresiones y dilataciones que tienen lugar en un punto del medio cada segundo    T 1 T 2
  • 27. TIMBRE  Permite al oído humano distinguir entre dos notas iguales emitidas por distintos instrumentos  Ningún foco emisor, ejecuta una vibración armónica pura , sino una vibración armónica de frecuencia determinada (  ) acompañada de un conjunto de vibraciones de frecuencias múltiplos de la fundamental, 2  , 3  , ... denominados armónicos t A O violín clarinete
  • 28. SENSACIÓN SONORA. ESCALA DECIBÉLICA  La intensidad sonora depende de la onda y de su frecuencia. Se mide en dB en la escala decibélica (escala logarítmica)  El nivel de intensidad sonora  se define como: Intensidad sonora de algunos sonidos habituales Intensidad sonora en dB Fuente sonora en W m  2 Murmullo de hojas 10  10 20 Susurros a 5 m 10  9 30 Casa tranquila 10  8 40 Calle con tráfico intenso 10  5 70 Oficina tranquila 10  7 50 Voz humana a 1 m 10  6 60 Respiración normal 10  11 Apenas audible 10 Fábrica 10  4 80 Ferrocarril 10  2 100 Despegue de un reactor 10 2 140 Grandes altavoces a 2 m Umbral de dolor 10  120 10  12 0 Umbral de audición
  • 29. SUPERPOSICIÓN DE ONDAS. PRINCIPIO DE SUPERPOSICIÓN  Cuando n movimientos ondulatorios, descritos cada uno de ellos por su ecuación de ondas  i , inciden simultáneamente en un punto, la función de onda resultante es la suma de las funciones de onda de cada uno de ellos:  Permite calcular la función de onda resultante cuando varios movimientos ondulatorios coinciden al mismo tiempo en un punto, pero conlleva la dificultad de sumar funciones trigonométricas en el caso de las ondas armónicas. Para salvar este inconveniente, Fresnel elaboró un método denominado construcción de Fresnel que permite tratar las ondas como vectores Este proceso de adición matemática de funciones de onda armónicas, se denomina superposición  =  1 +  2 + ... +  n =  i Representación de un vector y de una función de onda como un vector    A
  • 30. Los fenómenos de interferencia ocurren cuando un punto del espacio es alcanzado simultánea-mente por dos o más ondas  Aunque las funciones de onda se sumen, sus efectos físicos no son aditivos , lo que da lugar a los fenómenos de interferencia  La suma de varias perturbaciones en un punto puede dar como resultado una perturbación nula  Como la función de onda  depende de la posición x y del tiempo t , los fenómenos de interferencias pueden estudiarse en el espacio o en el tiempo Si sometemos una cuerda a dos sacudidas, una por cada extremo, se van a propagar en sentido contrario y cada perturbación se moverá una independientemente de la otra. Cuando las dos perturbaciones se cruzan el resultado es la interferencia y cuando se separan cada un sigue independientemente con su forma inicial. Interferencias en la superficie del agua Ejemplo: luz + luz = oscuridad
  • 31. La intensidad es máxima en los puntos cuya diferencia de distancias a los focos es igual a un número entero de longitudes de onda Interferencia constructiva Interferencia destructiva La intensidad es mínima en los puntos cuya diferencia de distancias a los focos es igual a un número impar de longitudes de onda INTERFERENCIA EN FASE INTERFERENCIA EN OPOSICIÓN DE FASE  El valor mínimo de la intensidad de onda I se produce cuando cos  =  1; se tiene entonces una interferencia destructiva . Para ello,  = (2 n  1)  , siendo n = 1, 2, 3, ... luego:  El valor máximo de la intensidad de onda I se produce cuando cos  = 1; se tiene entonces una interferencia constructiva . Para ello,  = 2n  , siendo n = 1, 2, 3, ... luego: 3) 1) 2) 4) 3) 1) 2) 4)
  • 32. PRINCIPIO DE HUYGENS  Se denomina frente de onda a la superficie formada por todos los puntos que son alcanzados por una onda al mismo tiempo; en consecuencia, todos los puntos de un frente de onda tienen la misma fase  Las líneas perpendiculares al frente de onda en cada punto se llaman rayos Frente plano Frente esférico Principio de Huygens . Cada punto de un frente de ondas se comporta como un foco emisor de ondas secundarias cuya envolvente constituye el nuevo frente de ondas Frente de onda plano Frente de onda esférico Frente de onda plano
  • 33. DIFRACCIÓN  Un observador percibe la luz de un foco aunque no pueda verlo directamente, y oye los sonidos de un altavoz aunque se encuentre detrás de un obstáculo  Este fenómeno se denomina difracción  La difracción de ondas se produce cuando la onda se encuentra con un obstáculo cuyo tamaño es del mismo orden de magnitud que su longitud de onda. El obstáculo puede ser una rendija, un borde recto, un disco, una abertura, etc; un conjunto de rendijas con una anchura adecuada se llama red de difracción  Puede observarse la difracción de ondas en la superficie del agua si se disponen dos estanques comunicados por una abertura ; al producir una pertur-bación en uno de ellos, se observa que al llegar a la abertura de separación se propaga por el segundo medio, de acuerdo con el principio de Huygens  La difracción de la luz no es apreciable a simple vista porque los obstáculos deben ser muy pequeños (del orden de la longitud de onda de la luz: 400-700 nm) Difracción de ondas planas en la cubeta de ondas
  • 34. EXPERIMENTO DE YOUNG El experimento de Young permitió estudiar el fenómeno de la difracción en el caso de la luz. Trabajó con dos rendijas u orificios muy pequeños que actúan como nuevos focos de ondas F1 y F2 observó las interferencias entre ambos focos en una pantalla. D=distancia entre las rendijas y la pantalla d=distancia entre las dos rendijas que es menor que la longitud de onda de la luz utilizada. Y=altura a la que se produce la interferencia en la pantalla respecto a la rendija inferior x 1 -x 2 =diferencia de caminos entre los dos rayos que interfieren: si observamos interferencia constructiva x 1 -x 2 =  si observamos interferencia destructiva x 1 -x 2 =  /2 Para valores de  muy pequeños tg  =sen  =  en radianes Viendo los triángulos que se forman : Permite calcular la longitud de onda de la luz que se emplea ya que si por ejemplo en ese punto la interferencia es constructiva queda : Si un fenómeno físico sufre difracción se puede asegurar que se propaga ondulatoriamente Y  x 1 -x 2 d Rayo 1 Rayo 2 D pantalla
  • 35. REFRACCIÓN DE ONDAS  La refracción de ondas consiste en el cambio de dirección de propagación al pasar la onda de un medio a otro diferente . Si el medio no permite la transmisión de una onda a través de él, se dice que es un medio opaco para ese movimiento ondulatorio Refracción de un frente de ondas AA’ (Ley de Snell) Medio 1 Medio 2 A A’ Medio 1 Medio 2 A A’ B B’
  • 36. REFLEXIÓN DE ONDAS  La reflexión de ondas es el cambio de la dirección de propagación al incidir la onda en el límite de separación de dos medios diferentes ; después de la reflexión, la onda continua su propagación en el mismo medio  Como t A’B’ = t AB , siendo v la velocidad de propagación de las ondas, resulta:  Los triángulos AA’B’ y AA’B son iguales, y también lo serán los ángulos y A’ A N B’ B A A’
  • 37. El ángulo de incidencia y el ángulo de refracción están relacionados por: LEYES DE LA REFRACCIÓN LEYES DE LA REFLEXIÓN  La dirección de incidencia de la onda, la dirección de salida y la normal a la superficie de separación de ambos medios están en un mismo plano  El ángulo de incidencia es igual al ángulo de reflexión  La dirección de incidencia de las ondas, la dirección de salida y la normal a la superficie de separación de ambos medios están en un mismo plano Refracción en la cubeta de ondas