SlideShare una empresa de Scribd logo
1 de 24
CAPÍTULO I
CONSIDERACIONES BÁSICAS SOBRE LA RELACIÓN ENTRE
SUELO – AGUA- PLANTA1,2
Miguel A. Lugo López y Víctor A. Snyder
1.0 Introducción---------------------------------------------------------------------------------- 003
2.0 Procesos de determinantes del balance del agua del suelo
2.1 Intercepción ---------------------------------------------------------------------------- 004
2.2 Escorrentía ----------------------------------------------------------------------------- 004
2.3 Infiltración------------------------------------------------------------------------------ 005
2.4 Conductividad hidráulica------------------------------------------------------------- 007
2.5 Redistribución y percolación profunda --------------------------------------------- 011
2.6 Retención de agua disponible-------------------------------------------------------- 016
2.7 Evaporación ---------------------------------------------------------------------------- 018
2.8 Transpiración -------------------------------------------------------------------------- 019
3.0 Resumen-------------------------------------------------------------------------------------- 020
4.0 Bibliografía----------------------------------------------------------------------------------- 021
001
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
_______________
1
Este capítulo fue preparado para el libro “Manejo de Riego Por Goteo”. Autor: Dr.
Megh R. Goyal, Profesor en Ingeniería Agrícola y Biomédica, Universidad de Puerto
Rico – Recinto de Mayagüez, PO Box 5984, Mayagüez, Puerto Rico 00681-5984.
Para más detalles puede comunicarse por correo electrónico: m_goyal@ece.uprm.edu
ó visitar la página: http://www.ece.uprm.edu/~m_goyal/home.htm
002
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
1.0 INTRODUCCIÓN
El conocimiento de la relación de suelo - agua – planta es esencial para la
producción agrícola bajo riego. En el caso de uso de sistemas de riego por goteo este
conocimiento es particularmente importante en vista del alto costo inicial de las
instalaciones. Aún en áreas de mucha lluvia la escasez de agua puede limitar el desarrollo
de las plantas [40]. Esto puede atribuirse a una errática distribución de lluvia, a una alta
escorrentía o a una infiltración profunda en suelos con baja capacidad de retención de agua.
Por tal razón, la importancia del riego no se limita a regiones áridas y semiáridas.
Cada cultivo tiene requisitos de agua particulares y cada suelo tiene sus propiedades
que afectan en una forma u otra el suministro de agua a las plantas. La cantidad de agua en
el suelo a un tiempo dado es un valor sumamente dinámico, ya que es el resultado neto de
la cantidad recibida - ya sea por lluvia o por riego – menos las pérdidas por evaporación,
transpiración o infiltración profunda. La disponibilidad de esta agua para las plantas
depende a su vez del sistema de raíces presente y de propiedades hidráulicas del suelo tales
como porosidad, conductividad hidráulica y capacidad de retención de agua.
En este capítulo se resumen algunos principios básicos de la relación suelo – agua –
planta y se presentan resultados de investigación en torno a las propiedades hidráulicas de
los suelos de Puerto Rico.
2.0 PROCESOS DETERMINANTES DEL BALANCE DE AGUA DE SUELO
La suerte del agua aplicada al suelo ya sea por lluvia o por riego es determinada por
los procesos de intercepción, escorrentía, infiltración, redistribución y precolación
profunda, retención, evaporación y transpiración.
003
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
2.1 Intercepción
La intercepción se refiere al agua interceptada directamente por la cubierta vegetal.
Expresadas en términos de porcentaje de la lluvia total, las pérdidas por intercepción se
estima que fluctúan entre 15 y 20 % [11]. El porciento de intercepción será mayor en
aquellos casos donde la vegetación sea abundante y la cantidad de agua en cada aplicación
sea baja. El agua interceptada nunca llega al suelo ya que se evapora directamente de la
superficie de las plantas. En el caso de riego por goteo esta pérdida no ocurre ya que el agua
se aplica directamente al suelo.
2.2 Escorrentía
Los clásicos estudios realizados en Puerto Rico por Smith y Abruña [31] así como
Barnett et. al. [1] han demostrado que las pérdidas por escorrentía se reducen cuando la
tierra se labra cuidadosamente o se cubre con mantillo. La lluvia en terrenos en barbecho
aumenta la escorrentía y las probabilidades de mayor erosión. En muchos suelos,
frecuentemente acentuados por la diferenciación de sus horizontes, el agua se infiltra y
luego fluye en la superficie de contacto entre el suelo labrado y el subsuelo sin labrar y
eventualmente aflora más abajo. Si se han aplicado abonos a un suelo con esta condición la
escorrentía probablemente tendrá una alta concentración de minerales lo que conlleva
pérdidas en la inversión de abono y aumenta el peligro de contaminación ambiental. El
manejo del suelo es sumamente importante para minimizar la escorrentía. Esto se ilustra
con el trabajo de Smith y Abruña [31] que en suelo Múcara (Vertic Eutropets) observaron
que se duplicaron las pérdidas por escorrentía cuando se removió toda la cubierta vegetal
bajo los cafetos. Dos años después---cuando se dejó desarrollar esta vegetación---las
pérdidas por escorrentía se minimizaron.
004
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
2.3 Infiltración
La razón de infiltración se define como la cantidad de agua que penetra en el perfil
del suelo en un intervalo dado de tiempo. Entre las propiedades del suelo que afectan la
infiltración están la densidad aparente, la distribución de poros conforme a su tamaño, la
textura y la estabilidad de los agregados o unidades estructurales del suelo. El tiempo de
infiltración es sumamente importante. Al comenzar a infiltrar agua a través de la superficie
de un suelo relativamente seco, la razón de infiltración será alta inicialmente y luego
tenderá a disminuir gradualmente a un valor constante que estará cerca de la conductividad
hidráulica del suelo. El concepto de conductividad hidráulica se desarrollará en la siguiente
sección. Cuando se mide la razón de infiltración de un suelo, es importante incluir medidas
a largo tiempo cuando el proceso se haya estabilizado cerca de su valor constante. De lo
contrario, se obtendrán valores demasiado altos, lo cual podría resultar en errores de diseño
de sistemas de riego o drenaje.
En Puerto Rico se realizaron estudios sistemáticos entre 1945 y 1957 para obtener
información básica sobre la infiltración de los suelos [3,17]. En el cuadro 1, se resumen los
resultados. Los Oxisols, seguidos por los Mollisols y los Ultisols, tienen una infiltración
rápida. En el otro extremo, la infiltración de los Vertisols alcanza a tan solo 2% de la
infiltración media de los tres grupos anteriores. Lugo-López et. al. [18] analizaron los datos
de 740 pruebas de infiltración bajo condiciones de campo que muestran una tasa
descendente de infiltración después de la hora inicial. Encontraron correlaciones altamente
significativas entre las tasas de infiltración a la octava hora y las tasas anteriores a
intervalos de una hora. Debido a la correlación linear altamente significativa entre las tasas
de la tercera hora para predecir la infiltración bajo precipitación o riego prolongado.
05
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
Cuadro 1. Valores de infiltración.
Infiltración a la 8va. hora
Orden de Suelo
(cm/h)
Vertisols 0.2
Entisols 2.4
Inceptisols 2.8
Alfisols 2.8
Ultisols 7.5
Mollisols 8.4
Oxisols 8.6
Cuadro 2. Valores de conductividad hidráulica.
Suelo
Conductividad hidráulica
media (cm/h)
Aguirre (Udic Pellusterts) 0.14
Guánica (Udic Pellusterts) 0.11
Santa Isabel (Udic Pellusterts) 0.13
Fé (Paleustolic Chromusterts) 0.26
Jácana (Vertic Ustropepts) 0.08
San Antón (Cumulic Haplusolls) 0.56
Cuadro 3. Valores de conductividad hidráulica para diferentes profundidades.
Profundidad
(cm)
Conductividad
hidráulica
(cm/h)
Condición del Suelo
No compacto
(Densidad = 1.14 g/cc)
0-7.6 0.85
Compactado
(Densidad = 1.33 g/cc)
0-7.6 0.11
No compactado 10-18 0.23
Compactado 10-18 0.06
06
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
2.4 Conductividad Hidráulica
La conductividad hidráulica se puede definir como la velocidad de movimiento de
agua en el suelo cuando el agua es sometida a una fuerza neta igual a la gravedad [Esta
definición requiere que el potencial hidráulico se exprese en unidades de longitud, cabecera
hidráulica]. Es una propiedad del suelo que puede medirse con relativa facilidad en el
campo o en el laboratorio. En base a esta definición de conductividad hidráulica, podemos
decir que la velocidad de movimiento vertical de agua en un suelo, bajo condiciones donde
la fuerza principal que mueve el agua es la gravedad, será básicamente igual a la
conductividad hidráulica del suelo. La gravedad es la causa dominante de movimiento de
agua en dos situaciones muy importantes: 1) Infiltración a largo tiempo cuando el perfil
ha sido humedecido a bastante profundidad; y 2) Precolación profunda (redistribución) de
agua desde horizontes superficiales humedecidos a horizontes inferiores luego de haber
cesado la infiltración a través de la superficie del suelo. La primera situación se asume que
existe bajo emisoras de sistemas de riego al diseñar la distancia entre emisoras [6, 25] y la
segunda situación determina el tiempo y tensión de humedad a los cuales se considera que
un suelo ha llegado a capacidad de campo. La conductividad hidráulica es el parámetro
básico utilizado para predecir el comportamiento del suelo bajo estas condiciones.
La conductividad hidráulica del suelo no es un valor constante sino que depende de
la distribución de tamaño de poros del suelo y del contenido de agua del mismo. Cuando
todos los poros del suelo están saturados de agua, hablamos de la conductividad hidráulica
saturada (Ks) o permeabilidad del suelo. Si los poros del suelo están solos parcialmente
saturados con agua, hablamos de la conductividad hidráulica no saturada o conductividad
07
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
capilar del suelo. De aquí en adelante usaremos el termino “conductividad hidráulica” para
ambos casos, y entendiéndose que nos referimos a conductividad saturada en el caso de
suelo saturado y a conductividad capilar en el caso de suelo parcialmente saturado.
Lugo-López et. al. [21] midieron la conductividad hidráulica (saturada) en 23 tipos
de suelos del Valle de Lajas. Allí los suelos son generalmente muy profundos con un
contenido sumamente alto y casi uniforme de arcilla (en muchos casos mas del 50%, en
algunos mas del 80%) del tipo que se expanden y contraen, con una proporción de
microporos, muy baja estabilidad de agregados en el subsuelo (generalmente menos del 1%
cuado se mide por el método de Bryant et. al. [4]), muy baja conductividad hidráulica
saturada del subsuelo (a menudo con valores tan bajos como 0.002 cm/h), pero con un suelo
superficial de 30 a 60 cm de profundidad que permite un buen movimiento de agua [21]. El
cuadro 2 resume datos de conductividad hidráulica en el subsuelo (a veces hasta 160 cm de
profundidad). El movimiento lento de agua en todos estos subsuelos puede atribuirse a la
naturaleza y tamaño de los poros.
Aunque en todos los casos la porosidad total es alta, la mayoría de los poros son
muy pequeños según se desprende de un examen de los datos sobre retención de humedad,
que es alta aún cuando la humedad se acerca al porcentaje de marchitez permanente.
Además, las unidades estructurales del subsuelo son inestables [32] y se dispersan
rápidamente al humedecerse, obstruyendo así los poros.
En algunos suelos de la serie Guánica (Udic Pellusterts) el agua se mueve en los
primeros 60 cm del perfil a más de 2.5 cm/h; en algunos suelos de la serie Fé (Paleustolic
Chromusterts) se han obtenido valores de conductividad hidráulica sumamente altos en los
15 cm superiores del perfil del suelo.
08
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
En los suelos llanos de Coamo, Bonnet y Lugo-López [2] obtuvieron valores de
0.20 a 0.48 cm/h para los suelos de Coamo (Typic Argiustolls), Jacana (Vertic Ustropets) y
Amelia (Typic Haplustalfs) que indican que la conductividad hidráulica saturada es lenta.
En los suelos Descalabrado (Lithic Vertic Ustropepts) la conductividad hidráulica fue
moderadamente lenta (0.56-1.4 cm/h).
En los suelos de la isla de Vieques la conductividad hidráulica varía marcadamente
de rápida en las capas superiores hasta muy lenta a los 60 cm de profundidad [13]. Las
reducciones son dramáticas: de 124.4 a 3.5 cm/h e suelo Guayama arcilloso (Lithic
Haplustalfs) y de más de 30 a menos de 0.5 cm/h en un suelo de la serie de Vieques (Typic
Ustropets).
El manejo del suelo puede ejercer un efecto marcado sobre la conductividad
hidráulica. Lugo-López y Acevedo [12] documentaron la relación entre la compactación de
un suelo Vayas (Typic Fluvaquents) atribuíble al tránsito de tractores y la conductividad
hidráulica saturada del suelo es dada en el cuadro 3.
En ambas profundidades se obtuvo una reducción de 4-8 veces en la conductividad
hidráulica saturada, lo cual ilustra el peligro de restricción de movimiento de agua como
consecuencia de la compactación en suelos arcillosos.
Rivadeneira [28] estudió los cambios en propiedades hidráulicas de la capa arable
en un suelo Coto (Typic Eutrustox) como función del tiempo después de labranza. La
conductividad hidráulica saturada varió desde 45 cm/h a las 11 semanas luego de arar, hasta
10 cm/h a las 50 semanas. El suelo sin arar mantuvo una conductividad de
aproximadamente 2 cm/h durante todo el periodo del experimento, lo cual indica un efecto
del arado aún 50 semanas después de arar.
09
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
La conductividad hidráulica disminuye drásticamente al disminuir el contenido de
agua del suelo. Esto se debe a que, al irse vaciando los poros más grandes del suelo, los
únicos poros capaces de transmitir agua son los poros pequeños que aún contienen agua.
Para efectos prácticos, los poros grandes llenos de aire se comportan como si hubiesen sido
sellados con un material impermeable. Wolf y Drosdoff [36] determinaron la conductividad
hidráulica no-saturada en varios horizontes de los suelos Humatas (Ultisol arcilloso) y
Bayamón (Oxisol arenoso) como función del contenido de agua del suelo. La conductividad
hidráulica, expresada en función de la tensión de agua del suelo, es presentada en la figura
1. La conductividad del suelo Bayamón arenoso disminuyó desde 40 cm/h cerca del punto
de saturación del suelo (tensión de humedad = 0) hasta solamente 0.1 cm/h a una tensión de
humedad de 0.08 bares. Esto indica que la conductividad hidráulica disminuyó más de 100
veces con un cambio muy pequeño de tensión de humedad. Todos los horizontes del suelo
hasta una profundidad de 120 cm mostraron un comportamiento similar. El suelo Humatas
arcilloso mostró una mayor diferenciación entre horizontes que el suelo Bayamón arenoso.
Se observa en la figura 1 que mientras más cerca de la superficie, más aguda es la
disminución de conductividad hidráulica al aumentar la tensión de humedad. Este
fenómeno probablemente se debe a la presencia de una mayor proporción de poros grandes
en los horizontes superficiales del suelo asociado a un mayor contenido de materia
orgánica. Estos poros grandes quedan vacíos a tensiones muy cerca de cero, causando una
disminución correspondiente en conductividad hidráulica.
La disminución tan marcada en conductividad hidráulica a tensiones bajas en suelos
con una alta proporción de poros grandes (suelos arenosos o muy bien estructurados)
provee la explicación de porqué estos suelos llegan a capacidad de campo a tensiones de
010
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
0.1 bares o menores. A tales tensiones, la conductividad hidráulica es tan baja que el
movimiento vertical de agua prácticamente cesa, correspondiendo este punto a la capacidad
de campo del suelo.
2.5 Redistribución y precolación profunda
Luego de haber cesado la infiltración, empieza a ocurrir el desagüe de los horizontes
superiores humedecidos durante la infiltración. El agua perdida es retenida por horizontes
inferiores más secos (redistribución), o pasa del pérfil a formar parte de las aguas
subterráneas (precolación profunda). La velocidad de redistribución o precolación es
básicamente una función de la conductividad hidráulica. Al principio, cuando el suelo
contiene mucha agua, la conductividad hidráulica es alta y la velocidad de percolación será
alta. Al pasar el tiempo e irse desaguando el suelo, la conductividad hidráulica y
correspondiente la velocidad de percolación irán disminuyendo. El proceso continuará hasta
que la conductividad hidráulica sea tan baja que la velocidad de desagüe es prácticamente
cero. Wolf y Drosdoff [36] estudiaron el desagüe de los suelos Humatas y Bayamón a los
cuales se alude en la figura 1. La metodología consistió en instalar tensiómetros a varias
profundidades y darle seguimiento a los cambios en la tensión del agua luego del riego. Los
resultados se representan en las figuras 2a y 2b en forma de gráficas de tensión de agua
como función del tiempo para cada horizonte. Se observa que todos los horizontes del suelo
de Bayamón arenoso y en los horizontes de 7.5-30 y 30-60 cm del suelo Humatas arcilloso,
arcilloso, la tensión de agua aumenta rápidamente al principio y luego tiende a estabilizarse
en un valor relativamente constante antes de las 24 horas. Una comparación con la figura 1
indica que estos horizontes son aquellos cuyas conductividades hidráulicas disminuyen
rápidamente al aumentar la tensión de humedad.
011
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
Figura 1. Conductividad hidráulica como función de tensión de humedad a varias
profundidades en los suelos de Bayamón y Humatas [Adaptado de Wolf y Drosdoff, 1974].
012
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
Los horizontes 60-90 cm y 90-120 cm del suelo Humatas, sin embargo muestran un
aumento gradual de tensión de humedad durante un mayor periodo de tiempo. Una
comparación con la figura 1, muestra que estos horizontes son precisamente cuya
conductividad hidráulica disminuye solo gradualmente al aumentar la tensión de humedad.
Estas comparaciones indican la íntima relación que existe entre la conductividad hidráulica
y las propiedades de desagüe del suelo.
Aún cuando la velocidad de desagüe de un suelo tiende a disminuir marcadamente 1
ó 2 días luego de haber cesado la infiltración, no debe interpretarse que el desagüe es
insignificante a este tiempo. Los datos de Wolf y Drosdoff [36] indicaron que aún a los 6
días después del riego en un suelo Bayamón arenoso, la precolación estaba ocurriendo a
razón de 1 mm/día. Esto representa alrededor del 20% de la pérdida diaria de agua por
evapotranspiración. De otra parte, en un suelo Humatas arcilloso se encontró que la
precolación ocurría a razón de aproximadamente 0.5 mm/día a los 3 días luego de
descontinuarse el riego. Obviamente el tipo de suelo desempeña un rol importante en las
propiedades de desagüe.
Comúnmente se asume que el límite superior de retención de agua de un suelo
(capacidad de campo) 2 ó 3 días después del riego corresponde el agua retenida por el
mismo a 0.33 bares de tensión de humedad. Sin embargo, Wolf y Drosdoff [36]
encontraron que a los 3 días después del riego las tensiones en los suelos Humatas (Tepic
Tropohumults), Tropohumults), Catalina (Tropeptic Haplorthox), Torres (Plinthic
Palehumults), y Bayamón (Typic Haplorthox) sólo alcanzaban niveles entre 0.02 y 0.05
bares.
013
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
Figura 2a. Cambios en tensión de humedad a varias profundidades como función del
tiempo después de riego en el suelo Bayamón, [Adaptado de Wolf y Drosdoff, 1974].
014
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
Figura 2b. Cambios en tensión de humedad a varias profundidades como función del
tiempo después de riego en el suelo Humatas, [Adaptado de Wolf y Drosdoff, 1974].
015
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
Recomendaron que la capacidad de campo se estableciera a 0.07 (1/15) bares para
el suelo de Bayamón arenoso y a 0.08 (1/12) bares para los suelos arcillosos Humatas,
Catalina y Torres.
2.6 Retención de agua disponible
El agua disponible para las plantas se considera ser la cantidad retenida entre la
capacidad de campo y el porcentaje de marchitez permanente (15 bares).
Tradicionalmente la fracción disponible se ha determinado asumiendo que la
capacidad de campo del suelo corresponde al agua retenida a 0.33 bares de tensión de
humedad. Existe una gran cantidad de datos sobre esta fracción en los suelos de Puerto
Rico [30], algunos de los cuales son presentados en la figura 3. Se puede observar que
existe una variedad enorme en la cantidad de agua disponible retenida por los diferentes
suelos. En general, los Vertisols aparentan retener la mayor cantidad de agua disponible,
entre 10-20% por volumen en casi todos los casos. Los Mollisols, Inceptisols, Alfisols y
Ultisols retienen entre 9-15% y los Oxisols entre 3-10%.
Según se observa en la figura 3, la disponibilidad de agua tiende a aumentar con el
contenido de arcilla hasta aproximadamente 40-50% de arcilla y luego se reduce cuando la
arcilla sobrepasa el 40-50%. Lugo-López [9] informó resultados similares. Debe tomarse en
cuenta, sin embargo, que los suelos más arcillosos en la figura 3 son Oxisols los cuales se
caracterizan por el predominio de óxidos de hierro y aluminio y minerales de tipo 1:1 en la
fracción arcillosa. Es probable que no solo la cantidad sino también el tipo de arcilla
desempeñe un rol importante en la disponibilidad del agua.
Según se mencionó anteriormente, la capacidad de campo de suelos arenosos o muy
bien estructurados tiende a ocurrir a tensiones de humedad 1/10 bares ó a aún a menores.
016
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
Figura 3. Agua retenida entre 0.33 y 15 bares de tensión de humedad, expresada en
función de contenido de arcilla para suelos de Puerto Rico [Adaptado de Soil Survey,
1967].
017
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
Por esta razón, la capacidad de retención de agua disponible en estos suelos es mayor
que la cantidad estimada a base de una capacidad de campo de 1/3 bares como en la
figura 3.
Datos limitados en Ultisols y Vertisols de Puerto Rico [32, 36] indican que el agua
retenida entre 1/3- 15 bares constituya alrededor del 80-90% del agua retenida entre 1/10-
15 bares. En Oxisols y suelos muy arenosos esta fracción puede estar entre 40-75% [28,36].
Estos resultados indican que un estimado de agua disponible usando 1/3 bares como
capacidad de campo podría errar tanto como 25-60% por debajo del valor real en Oxisols y
suelos arenosos. El error probablemente será menor en el caso de los Ultisols, Alfisols,
Millisols, Inceptisols y Vertisols, siempre y cuando la fracción arenosa no sea demasiado
alta.
La materia orgánica y la densidad aparente de los suelos desempeñan un rol muy
importante en la disponibilidad de agua en los mismos, ya que afectan la distribución de los
tamaños de poros en el suelo. En aquellos sistemas de producción donde se requiere
maximizar la capacidad de retención de agua del suelo (como por ejemplo en caso de
escasez o ausencia temporera de agua de riego) es importante el manejo apropiado de la
materia orgánica del suelo y la minimización de la compactación. Pérez-Escolar y Lugo-
López [27] encontraron que el tamaño de agregados del suelo afectaba el contenido de agua
disponible. Los agregados más gruesos retienen menor cantidad de agua disponible; los más
finos, mayor cantidad.
2.7 Evaporación
Luego de un periodo de lluvia o riego parte del agua aplicada se pierde por
evaporación directa a través de la superficie del suelo. La cantidad de agua pérdida, en
018
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
términos de porciento de la cantidad de agua aplicada, depende de la magnitud y frecuencia
de las aplicaciones de agua y la fracción expuesta de la superficie del suelo.
Aplicaciones leves y frecuentes de agua generalmente resultan en altas pérdidas de
agua por evaporación, inclusive en el caso de riego por goteo [25]. Doorenbos y Pruitt [7]
estiman que para una suelo totalmente descubierto, riego uniforme (toda la superficie
humedecida) y una evapotranspiración potencial de 5 mm/día, la pérdida de evaporación
por agua varía entre el 25% al 90% de la evapotranspiración potencial para intervalos de
riego de 20 días y 2 días, respectivamente.
La cantidad y tipo de cubierta del suelo puede modificar drásticamente la
evaporación bajo un régimen dado de aplicación de agua. Según se va desarrollando el
follaje de una cosecha, la sombra resultante disminuye la pérdida de agua por evaporación,
permitiendo así que una proporción del agua aplicada se pierda por transpiración a través
del sistema vascular de la planta aumentando así la eficiencia de utilización de agua. La
aplicación de mullas sobre la superficie del suelo puede ser muy efectivo para controlar la
evaporación. Vicente Chandler et. el. [33] evaluaron el efecto de mullas de hierba y pulpa
de café sobre el suministro de agua disponible bajo una siembra de café en un suelo Toa
(Fluventic Dystropepts). Encontraron que las mullas aumentaron la cantidad de agua
disponible entre 60 y 90% en comparación donde no se utilizó ningún tipo de mulla. Estas
mullas probablemente redujeron las pérdidas por evaporación y propiciaron la infiltración
de agua.
2.8 Transpiración
La transpiración se refiere a la evaporación de agua del suelo a través del sistema
vascular de la planta. El volumen de agua transpirada dependerá de muchos factores como
019
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
la demanda evapotranspirativa (evapotranspiración potencial), la etapa desarrollo del
cultivo y la cantidad de agua disponible del suelo de la zona de crecimiento de las raíces.
Para muchas cosechas, se ha encontrado que la transpiración comienza a disminuir y las
plantas comienzan a sufrir por falta de agua una vez que aproximadamente la mitad del
agua disponible del suelo en la zona de raíces haya sido extraída por la planta [7]. La
capacidad de retención de agua del suelo, pues, desempeña un rol clave en la determinación
de la frecuencia y cantidad de riego requerido para satisfacer las necesidades de agua de las
plantas.
3.0 RESUMEN
Para el diseño, implantación y operación de cualquier sistema de riego es esencial
familiarizarse con las condiciones del suelo y particularmente con lo que atañe a la relación
suelo-agua-planta.
Bajo las condiciones de demanda evapotranspirativa en Puerto Rico las pérdidas
atribuibles a la evaporación de la humedad del suelo pueden variar entre 25 al 90% de la
demanda evapotranspirativa dependiendo de la cubierta del suelo y la cantidad y frecuencia
de lluvia o riego. Se ha comprobado la eficacia del uso de mantillos para reducir la pérdida
por evaporación. Las pérdidas inevitables por intercepción de la vegetación (en caso de
lluvia o riego aéreo) se estima que fluctúan entre 5 y 20%. Esto no ocurre en el caso de
riego por goteo o riego por gravedad ya que el agua se aplica directamente al suelo.
Se ha demostrado que la escorrentía puede ser alta en terrenos sin protección
adecuada. Esta pérdidas se reducen notablemente cuando la tierra se labra cuidadosamente,
se cubre con mantillo o se usan mullas. En muchos casos al agua se infiltra y luego fluye en
la superficie de contacto entre el suelo y subsuelo y eventualmente aflora más abajo.
020
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
Los Oxisols, seguidos por los Mollisols y Ultisols tienen una infiltración rápida de
entre 7.5 y 8.6 cm/h luego de 8 horas de infiltración. En el otro extremo, la infiltración de
los Vertisols es de solo 0.2 cm/h. La rapidez de infiltración se reduce con el tiempo, pero
hay una correlación significativa entre las infiltraciones a los diferentes intervalos de
tiempo.
La conductividad capilar disminuye drásticamente al disminuir el contenido de agua
del suelo (o aumentar la tensión de humedad del suelo). Un aumento en tensión de
humedad de 0 a 1/10 bares puede resultar en una disminución de mas de 100 veces en la
conductividad capilar. Suelos con este comportamiento llegan a capacidad de campo a
tensiones de humedad de menos de 1/10 bares.
La capacidad de retención de agua disponible varía grandemente entre suelos,
siendo mayor en los Vertisols seguido por el grupo de los Inceptisols, Mollisols, Ultisols y
Alfisols y finalmente por los Oxisols. Los suelos arenosos tienden a tener una baja
capacidad de retención de agua independiente del orden a que pertenecen. La capacidad del
suelo para suministrar agua a las plantas se puede modificar mediante prácticas agrícolas
adecuadas.
4.0 BIBLIOGRAFIA
1. Barnett, A. P., Carreker, J. R., Abruña, F., Jackson, W. A. ,Dooley, A. E. and
Holladay. J.H. 1972. Soil and nutrient losses in runoff with selected cropping
treatments on tropical soils. Agron. J. 64: 391-5.
2. Bonnet, J. A. and Lugo-López, M. A. 1950. Soil studies in the projected Coamo
irrigation area. Univ. P.R. Agric. Exp. Sta. Bull. 88.
3. ____________ and ____________. 1952. The rate of infiltration of lateritic soils, J.
Agric. Univ. P.R. 36 (2): 161-6.
021
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
4. Bryant, J.A., Bendixen, T. W. and Slater, C. W. 1984. Measurement of water
stability of soils, Soil Sci. 65:341-5.
5. Colón, J. A. 1977. Climatología, En: Geovisión de Puerto Rico, (M.T.B. de
Galiñanes, Ed.),Editorial Universitaria, Río Piedras, P. R., pp. 47-104.
6. Dashberg, S. and E. Bresler. 1985. Drip Irrigation Manual. International Irritation
Information Center Publication No. 9. 95 pp.
7. Doorembos, J. and W. O. Pruitt. 1977. Crop Water Requirements. FAO Irrigation
and Drainage Paper No. 24. FAO, Rome. 144 pp.
8. Landrau, J. R., P. , Lugo-López, M. A. , Samuels, G. and Silva, S. 1954. Leaving
sugar cane trash undisturbed on a lateritic soil compares favorably with currently
used trash-disposal methods. J. Agric. Univ. P.R. 38 (1): 1-8.
9. Lugo-López, M. A. 1951. Functional relationship between moisture at several
equilibrium points and the clay content of soils. J. Agric. Univ. P.R. 35(2): 66-70.
10. _________________. 1952. Available water capacity of the surface layer of various
soils from the arid and semiarid region of Puerto Rico J. Agric. Univ. P.R. 36(2):
134-40.
11. _________________. 1953. Moisture relationship of Puerto Rican soils. Univ. P.R.
Agric. Exp. Sta. Tech. Paper 9.
12. _________________ and Acevedo, G. 1956. Effects of tractor traffic compaction on
the physical properties of an irrigated soil in southwestern Puerto Rico. J. Agric.
Univ. P.R. 51(4) : 235-44.
13. _________________, Bonnet, J. A. and García, J. 1958. The soils of the island of
Vieques, Univ. P.R. Agric. Exp. Sta. Bull. 108.
14. _________________, ________________, Hernández-Medina, E., Landrau J.R.,
P. and Samuel, G. 1954. Soil organic matter levels and crop yields in Puerto Rico.
Soil Sci. Soc. Amer. Proc. 18(4): 489-93.
15. _________________, Hernández-Medina, E., Cibes-Viadé, H. R. and Vicente-
Chandler, J. 1953. The Effect of filter-press cake on the physical and chemical
properties of soil, J. Agric. Univ. P.R. 37(3): 213-23.
16. ___________________,_____________________,___________________ and
________________. 1954. Influence of filter-press cake on pineapple yields and
soil properties. Soil. Sci. 78 (4) : 257-65.
022
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
17. Lugo-López, M. A., Juárez, Jr. , J., and Bonet. J. A. 1968. Relative infiltration of
Puerto Rican soils. J. Agric. Univ. P.R. 52(3). 233-40.
18. ______________, _______________ and Pérez-Escolar, R. 1970. Correlation
between the rate of water intake of tropical soils at hourly intervals to the 8th
hour, J.
Agric. Univ. P.R. 56(3): 570-5.
19. ______________, Landrau, J. R., P. and Samuel, G. 1952. The handling of sugar
cane trash II. Effects of various practices on soil properties. J. Agric. Univ. P.R.
36(3): 246-54.
20. ______________, Martínez, M. B. and Riera, A. R. 1952. Morphological and
physiochemical properties of various tropical soils from east central Puerto Rico. J.
Agric. Univ. P.R. 36(2): 167-78.
21. ______________ and Pérez Escolar, R. 1959. Hydraulic conductivity of subsoil of
Lajas Valley. J. Agric. Univ. P.R. 43(4): 273-7.
22. ______________, ________________, Acevedo, J. and Juárez, Jr. , J. 1959.
Nature and properties of mayor soils of Lajas Valley. Univ. P.R. Agric. Exp. Sta.
Bull. 149.
23. ______________, and Rivera, L. H. 1977. Updated taxonomic classification of the
soils of Puerto Rico. Univ. P.R. Agric. Exp. Sta. Bull. 258.
24. Martínez, M. B. and Lugo-López, M. A. 1953. Influence of subsoil shattering and
fertilization on sugarcane production and soil infiltration capacity, Soil. Sci. 75(4):
307-15.
25. Nakayama, F. S. and D. A. Bucks. 1986. Trickle irrigation and Crop Production.
Elsevier. 383 pp.
26. Nelson, L. B. and Muckenhirn, R. J. 1941. Field percolation rates of four Wisconsin
soils having different drainage characteristics. J. Am. Soc. Agron. 33 (11): 1028-36.
27. Pérez-Escolar, R. and Lugo-López, M. A. 1969. Availability of moisture in
aggregates of various sizes in a typical Ultisol of Puerto Rico. J. Agric. Univ. P.R.
53(2): 113-7.
28. Rivadeneira, C. 1982. Cambio en las propiedades físicas del suelo Coto en función
de métodos de preparación y su correlación con el desarrollo de la yautía. Tesis de
Maestría, Departamento de Agronomía y Suelos, Recinto Universitario de
Mayagüez, Mayagüez, P.R. 71 pp.
29. Samuels, G. , Lugo –López, M. A. , and Landrau, Jr. , P. 1952. Influence of the
handling of sugar cane trash on yields and soil properties. Soils. Sci. 74(3): 207-15.
023
Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta
30. Soil Survey Staff. 1967. Soil survey laboratory data and descriptions for some soils
of Puerto Rico and Virgin Islands. Soil Survey Investigation Report No. 12.
USDA-Soil Conservation Service. 191 pp.
31. Smith , R. M. and Abruña, F. 1955. Soil and water conservation research in Puerto
Rico, 1938 to 1957. Univ. P.R. Agric. Exp. Sta. Bull. 124.
32. Vázquez, R. 1961. Effects of irrigation at different growth stage, and of nitrogen
levels on corn yields in the Lajas Valley, P.R. J. Agric. Univ. P.R. 45: 85-105.
33. Vicente-Chandler, J. , Boneta, E., Abruña, F. , and Figarella, J. 1969. Effects of
clean and strip cultivation, and of mulching with grass, coffee pulp, and black
plastic, on yields of intensively of managed coffee in Puerto Rico. J. Agric. Univ.
P. R. 53(2): 124-31.
34. Wahab, A. , Talleyrand, H. and Lugo-López, M.A. 1976. Rooting depth, growth and
yield of corn as affected by soil-water availability in an Ultisol and an Oxisol. J.
Agric. Univ. P.R. 60(3): 316-28.
35. _________________, ______________________, and ___________________.
1976. Rooting depth, growth and yield of sorghum as affected by soil-water
availability in Ultisol and an Oxisol. J. Agric. Univ. P.R. 60(3): 329-35.
36. Wolf. J. M. and M. Drosdoff. 1974. Soil-water studies of Oxisols and Ultisols of
Puerto Rico. Cornell Agronomy Mimeo 74-22, Cornell University, Ithaca, N. Y.
37. Wolf J. M. and Drosdoff, M. 1976. Soil-water studies in Oxisols and Ultisosl in
Puerto Rico. I: Water movement. J. Agric. Univ. P.R. Agric. Exp. Sta. 60(3): 375-
85.
38. _________________, and ________________. 1976. Soil-water studies in Oxisol
and Ultisols of Puerto Rico. II: Moisture retention and availability. J. Agric. Univ.
P.R. 60(3): 386-94.
39. _________________, and ________________. 1976. Soil-water studies in Oxisol
and Ultisols of Puerto Rico III. Capillary conductivity. J. Agric. Univ. P.R. 60(4):
515-5.
40. _________________, _________________. Lugo-López, M.A. and Scott, T. W.
1978. Soil-water relationships in Oxisols and Ultisols of Puerto Rico and Brasil.
Paper presented at the Tropical Soils Workshop, Kingston, Jamaica.
024

Más contenido relacionado

La actualidad más candente

Evaporación y sus metodos de calculo
Evaporación y sus metodos de calculoEvaporación y sus metodos de calculo
Evaporación y sus metodos de calculomjdugaro
 
Capitulo iii-evaporación-y-evapotranspiracion
Capitulo iii-evaporación-y-evapotranspiracionCapitulo iii-evaporación-y-evapotranspiracion
Capitulo iii-evaporación-y-evapotranspiracionArturo Roque Huacasi
 
Exposicion de evapotranspiracion
Exposicion de evapotranspiracionExposicion de evapotranspiracion
Exposicion de evapotranspiracionmarco nuñez
 
Evaporación y uso consuntivo
Evaporación y uso consuntivo Evaporación y uso consuntivo
Evaporación y uso consuntivo FERESCUDERON
 
6 evaporacion
6 evaporacion6 evaporacion
6 evaporacionhotii
 
Perdidas de agua por evaporacion (pgn6)
Perdidas de agua por evaporacion (pgn6)Perdidas de agua por evaporacion (pgn6)
Perdidas de agua por evaporacion (pgn6)Lorenzo Araya
 
Determinación de la evapotranspiracion por método del lisimetro y Método de H...
Determinación de la evapotranspiracion por método del lisimetro y Método de H...Determinación de la evapotranspiracion por método del lisimetro y Método de H...
Determinación de la evapotranspiracion por método del lisimetro y Método de H...abel tenorio urpis
 
Capitulo 1. evapotranspiracion (Eto)
Capitulo 1. evapotranspiracion (Eto)Capitulo 1. evapotranspiracion (Eto)
Capitulo 1. evapotranspiracion (Eto)Universidad de Cuenca
 
Clase 3 Demanda hídrica de los cultivos
Clase 3 Demanda hídrica de los cultivosClase 3 Demanda hídrica de los cultivos
Clase 3 Demanda hídrica de los cultivosMaria Jimenez
 
Programacion del riego con tensiometros
Programacion del riego con tensiometrosProgramacion del riego con tensiometros
Programacion del riego con tensiometrosShitoRyu64
 
Plantilla De Exposicion De Quimica Importancia Del Agu En El Suelo Final
Plantilla De Exposicion De Quimica Importancia Del Agu En El Suelo FinalPlantilla De Exposicion De Quimica Importancia Del Agu En El Suelo Final
Plantilla De Exposicion De Quimica Importancia Del Agu En El Suelo Finalmariluvalenzuela
 
Regimen hidrico laboratorio 5
Regimen hidrico laboratorio 5Regimen hidrico laboratorio 5
Regimen hidrico laboratorio 5Mairim Villanueva
 

La actualidad más candente (20)

Evaporación y sus metodos de calculo
Evaporación y sus metodos de calculoEvaporación y sus metodos de calculo
Evaporación y sus metodos de calculo
 
Capitulo iii-evaporación-y-evapotranspiracion
Capitulo iii-evaporación-y-evapotranspiracionCapitulo iii-evaporación-y-evapotranspiracion
Capitulo iii-evaporación-y-evapotranspiracion
 
Exposicion de evapotranspiracion
Exposicion de evapotranspiracionExposicion de evapotranspiracion
Exposicion de evapotranspiracion
 
Evaporacion
EvaporacionEvaporacion
Evaporacion
 
Evaporación y uso consuntivo
Evaporación y uso consuntivo Evaporación y uso consuntivo
Evaporación y uso consuntivo
 
6 evaporacion
6 evaporacion6 evaporacion
6 evaporacion
 
Perdidas de agua por evaporacion (pgn6)
Perdidas de agua por evaporacion (pgn6)Perdidas de agua por evaporacion (pgn6)
Perdidas de agua por evaporacion (pgn6)
 
Determinación de la evapotranspiracion por método del lisimetro y Método de H...
Determinación de la evapotranspiracion por método del lisimetro y Método de H...Determinación de la evapotranspiracion por método del lisimetro y Método de H...
Determinación de la evapotranspiracion por método del lisimetro y Método de H...
 
Capitulo 1. evapotranspiracion (Eto)
Capitulo 1. evapotranspiracion (Eto)Capitulo 1. evapotranspiracion (Eto)
Capitulo 1. evapotranspiracion (Eto)
 
Evapotranspiracion
EvapotranspiracionEvapotranspiracion
Evapotranspiracion
 
Evapotranspiracion
Evapotranspiracion Evapotranspiracion
Evapotranspiracion
 
Clase 3 Demanda hídrica de los cultivos
Clase 3 Demanda hídrica de los cultivosClase 3 Demanda hídrica de los cultivos
Clase 3 Demanda hídrica de los cultivos
 
Agua en el Suelo
Agua en el SueloAgua en el Suelo
Agua en el Suelo
 
Evapotranspiración de los cultivos
Evapotranspiración de los cultivosEvapotranspiración de los cultivos
Evapotranspiración de los cultivos
 
Programacion del riego con tensiometros
Programacion del riego con tensiometrosProgramacion del riego con tensiometros
Programacion del riego con tensiometros
 
Evapotranspiracion
EvapotranspiracionEvapotranspiracion
Evapotranspiracion
 
Plantilla De Exposicion De Quimica Importancia Del Agu En El Suelo Final
Plantilla De Exposicion De Quimica Importancia Del Agu En El Suelo FinalPlantilla De Exposicion De Quimica Importancia Del Agu En El Suelo Final
Plantilla De Exposicion De Quimica Importancia Del Agu En El Suelo Final
 
Agua del suelo 2015
Agua del suelo 2015Agua del suelo 2015
Agua del suelo 2015
 
Lisimetros riegos 1
Lisimetros  riegos 1Lisimetros  riegos 1
Lisimetros riegos 1
 
Regimen hidrico laboratorio 5
Regimen hidrico laboratorio 5Regimen hidrico laboratorio 5
Regimen hidrico laboratorio 5
 

Destacado

Diseño de riego por goteo
Diseño de riego por goteo Diseño de riego por goteo
Diseño de riego por goteo Ivan Sardon
 
Israel Cap107
Israel Cap107Israel Cap107
Israel Cap107GZ-Israel
 
Riego por goteo pps
Riego por goteo ppsRiego por goteo pps
Riego por goteo ppsIcanjayar
 
Todo sobre riego por goteo un sevilla
Todo sobre riego por goteo   un sevillaTodo sobre riego por goteo   un sevilla
Todo sobre riego por goteo un sevillaMiguel Martinez
 
Tema n° 04 problemas de medidas angulares
Tema n° 04 problemas de medidas angularesTema n° 04 problemas de medidas angulares
Tema n° 04 problemas de medidas angularesWilder Salazar
 
ANÁLISIS BENEFICIO COSTO DE TECNIFICACIÓN DE RIEGO DE GRAVEDAD A GOTEO
ANÁLISIS BENEFICIO COSTO DE TECNIFICACIÓN DE RIEGO DE GRAVEDAD A GOTEOANÁLISIS BENEFICIO COSTO DE TECNIFICACIÓN DE RIEGO DE GRAVEDAD A GOTEO
ANÁLISIS BENEFICIO COSTO DE TECNIFICACIÓN DE RIEGO DE GRAVEDAD A GOTEOSergio Iván Jiménez Jiménez
 
Siembra y cosecha de la caña de azúcar - Infografía 2011
Siembra y cosecha de la caña de azúcar - Infografía 2011Siembra y cosecha de la caña de azúcar - Infografía 2011
Siembra y cosecha de la caña de azúcar - Infografía 2011Miguel Arreátegui Rodríguez
 
El riego
El riego El riego
El riego SENA
 
"NUEVAS TENDENCIAS Y SOLUCIONES EN EL RIEGO POR GOTEO"
"NUEVAS TENDENCIAS Y SOLUCIONES EN EL RIEGO POR GOTEO""NUEVAS TENDENCIAS Y SOLUCIONES EN EL RIEGO POR GOTEO"
"NUEVAS TENDENCIAS Y SOLUCIONES EN EL RIEGO POR GOTEO"presslima
 
Presentacion apertura equipo haccp
Presentacion apertura equipo haccpPresentacion apertura equipo haccp
Presentacion apertura equipo haccpinocuidadtuman
 
Riego y drenaje de suelos agricolas
Riego y drenaje de suelos agricolasRiego y drenaje de suelos agricolas
Riego y drenaje de suelos agricolasestefy125
 
Operación y Mantenimiento riego por goteo
Operación y Mantenimiento riego por goteo Operación y Mantenimiento riego por goteo
Operación y Mantenimiento riego por goteo Ivan Sardon
 
Riego por goteo en el cultivo de maiz manejados con tics en sinaloa sustentab...
Riego por goteo en el cultivo de maiz manejados con tics en sinaloa sustentab...Riego por goteo en el cultivo de maiz manejados con tics en sinaloa sustentab...
Riego por goteo en el cultivo de maiz manejados con tics en sinaloa sustentab...Candido Mendoza Perez
 

Destacado (20)

Diseño de riego por goteo
Diseño de riego por goteo Diseño de riego por goteo
Diseño de riego por goteo
 
Goteros wr
Goteros wrGoteros wr
Goteros wr
 
Herbicidas en maíz
Herbicidas en maíz  Herbicidas en maíz
Herbicidas en maíz
 
Israel Cap107
Israel Cap107Israel Cap107
Israel Cap107
 
Caña para blog
Caña para blogCaña para blog
Caña para blog
 
Curso riego por goteo
Curso riego por goteoCurso riego por goteo
Curso riego por goteo
 
Riego por goteo pps
Riego por goteo ppsRiego por goteo pps
Riego por goteo pps
 
Todo sobre riego por goteo un sevilla
Todo sobre riego por goteo   un sevillaTodo sobre riego por goteo   un sevilla
Todo sobre riego por goteo un sevilla
 
Tema n° 04 problemas de medidas angulares
Tema n° 04 problemas de medidas angularesTema n° 04 problemas de medidas angulares
Tema n° 04 problemas de medidas angulares
 
SISTEMAS DE RIEGO
SISTEMAS DE RIEGOSISTEMAS DE RIEGO
SISTEMAS DE RIEGO
 
Sistema de riego por goteo
Sistema de riego por goteoSistema de riego por goteo
Sistema de riego por goteo
 
Exposicion ENCA 2009
Exposicion ENCA 2009Exposicion ENCA 2009
Exposicion ENCA 2009
 
ANÁLISIS BENEFICIO COSTO DE TECNIFICACIÓN DE RIEGO DE GRAVEDAD A GOTEO
ANÁLISIS BENEFICIO COSTO DE TECNIFICACIÓN DE RIEGO DE GRAVEDAD A GOTEOANÁLISIS BENEFICIO COSTO DE TECNIFICACIÓN DE RIEGO DE GRAVEDAD A GOTEO
ANÁLISIS BENEFICIO COSTO DE TECNIFICACIÓN DE RIEGO DE GRAVEDAD A GOTEO
 
Siembra y cosecha de la caña de azúcar - Infografía 2011
Siembra y cosecha de la caña de azúcar - Infografía 2011Siembra y cosecha de la caña de azúcar - Infografía 2011
Siembra y cosecha de la caña de azúcar - Infografía 2011
 
El riego
El riego El riego
El riego
 
"NUEVAS TENDENCIAS Y SOLUCIONES EN EL RIEGO POR GOTEO"
"NUEVAS TENDENCIAS Y SOLUCIONES EN EL RIEGO POR GOTEO""NUEVAS TENDENCIAS Y SOLUCIONES EN EL RIEGO POR GOTEO"
"NUEVAS TENDENCIAS Y SOLUCIONES EN EL RIEGO POR GOTEO"
 
Presentacion apertura equipo haccp
Presentacion apertura equipo haccpPresentacion apertura equipo haccp
Presentacion apertura equipo haccp
 
Riego y drenaje de suelos agricolas
Riego y drenaje de suelos agricolasRiego y drenaje de suelos agricolas
Riego y drenaje de suelos agricolas
 
Operación y Mantenimiento riego por goteo
Operación y Mantenimiento riego por goteo Operación y Mantenimiento riego por goteo
Operación y Mantenimiento riego por goteo
 
Riego por goteo en el cultivo de maiz manejados con tics en sinaloa sustentab...
Riego por goteo en el cultivo de maiz manejados con tics en sinaloa sustentab...Riego por goteo en el cultivo de maiz manejados con tics en sinaloa sustentab...
Riego por goteo en el cultivo de maiz manejados con tics en sinaloa sustentab...
 

Similar a Riego por-goteo-libro-cap 01 suelo1

011 drenaje en suelos agrícolas
011 drenaje en suelos agrícolas011 drenaje en suelos agrícolas
011 drenaje en suelos agrícolasJose Carrera
 
LA INFILTRACION EN EL CICLO HIDROLOGICO
LA INFILTRACION EN EL CICLO HIDROLOGICOLA INFILTRACION EN EL CICLO HIDROLOGICO
LA INFILTRACION EN EL CICLO HIDROLOGICOpsmpre14509752
 
Capitulo viii infiltracion y flujo de agua a traves del suelo
Capitulo viii infiltracion y flujo de agua a traves del sueloCapitulo viii infiltracion y flujo de agua a traves del suelo
Capitulo viii infiltracion y flujo de agua a traves del sueloPedroMendoza127
 
S07.s7 S08.s8. S09.s9 Infiltracion,Evaporación,evapotranspiración.ppt
S07.s7 S08.s8. S09.s9  Infiltracion,Evaporación,evapotranspiración.pptS07.s7 S08.s8. S09.s9  Infiltracion,Evaporación,evapotranspiración.ppt
S07.s7 S08.s8. S09.s9 Infiltracion,Evaporación,evapotranspiración.pptFabricioPareja
 
S07.s7 Infiltracion (1).ppt
S07.s7  Infiltracion (1).pptS07.s7  Infiltracion (1).ppt
S07.s7 Infiltracion (1).pptFabricioPareja
 
Escorrentia ii
Escorrentia iiEscorrentia ii
Escorrentia iiJuan Perez
 
Lluviaspresiondeporosysusefectos
LluviaspresiondeporosysusefectosLluviaspresiondeporosysusefectos
LluviaspresiondeporosysusefectosWill Guerra
 
Recarga Natural de Acuíferos y Recarga Artificial, Caso Río Seco - Perú
Recarga Natural de Acuíferos y Recarga Artificial, Caso Río Seco - PerúRecarga Natural de Acuíferos y Recarga Artificial, Caso Río Seco - Perú
Recarga Natural de Acuíferos y Recarga Artificial, Caso Río Seco - PerúCesar Rubin
 
EDAFOLOGIA_INFORME_PERMEABILIDAD_MariaHunacuni.docx
EDAFOLOGIA_INFORME_PERMEABILIDAD_MariaHunacuni.docxEDAFOLOGIA_INFORME_PERMEABILIDAD_MariaHunacuni.docx
EDAFOLOGIA_INFORME_PERMEABILIDAD_MariaHunacuni.docxheracliohirpanoca
 
Ingenieria sanitaria a4_capitulo_05_abastecimiento_de_agua_potable
Ingenieria sanitaria a4_capitulo_05_abastecimiento_de_agua_potableIngenieria sanitaria a4_capitulo_05_abastecimiento_de_agua_potable
Ingenieria sanitaria a4_capitulo_05_abastecimiento_de_agua_potableEduardo Arcadio Ayil Perez
 

Similar a Riego por-goteo-libro-cap 01 suelo1 (20)

Practico infiltracion
Practico infiltracionPractico infiltracion
Practico infiltracion
 
Tema_4.pdf
Tema_4.pdfTema_4.pdf
Tema_4.pdf
 
Infiltración
InfiltraciónInfiltración
Infiltración
 
011 drenaje en suelos agrícolas
011 drenaje en suelos agrícolas011 drenaje en suelos agrícolas
011 drenaje en suelos agrícolas
 
LA INFILTRACION EN EL CICLO HIDROLOGICO
LA INFILTRACION EN EL CICLO HIDROLOGICOLA INFILTRACION EN EL CICLO HIDROLOGICO
LA INFILTRACION EN EL CICLO HIDROLOGICO
 
Capitulo viii infiltracion y flujo de agua a traves del suelo
Capitulo viii infiltracion y flujo de agua a traves del sueloCapitulo viii infiltracion y flujo de agua a traves del suelo
Capitulo viii infiltracion y flujo de agua a traves del suelo
 
S07.s7 S08.s8. S09.s9 Infiltracion,Evaporación,evapotranspiración.ppt
S07.s7 S08.s8. S09.s9  Infiltracion,Evaporación,evapotranspiración.pptS07.s7 S08.s8. S09.s9  Infiltracion,Evaporación,evapotranspiración.ppt
S07.s7 S08.s8. S09.s9 Infiltracion,Evaporación,evapotranspiración.ppt
 
Filtrometro
FiltrometroFiltrometro
Filtrometro
 
Infiltración
InfiltraciónInfiltración
Infiltración
 
INFILTRACIÓN
INFILTRACIÓNINFILTRACIÓN
INFILTRACIÓN
 
S07.s7 Infiltracion (1).ppt
S07.s7  Infiltracion (1).pptS07.s7  Infiltracion (1).ppt
S07.s7 Infiltracion (1).ppt
 
Infiltracion
InfiltracionInfiltracion
Infiltracion
 
Escorrentia ii
Escorrentia iiEscorrentia ii
Escorrentia ii
 
Lluviaspresiondeporosysusefectos
LluviaspresiondeporosysusefectosLluviaspresiondeporosysusefectos
Lluviaspresiondeporosysusefectos
 
Cap 2 ciclo hidrologico
Cap  2 ciclo hidrologicoCap  2 ciclo hidrologico
Cap 2 ciclo hidrologico
 
El Agua en el suelo.pptx
El Agua en el suelo.pptxEl Agua en el suelo.pptx
El Agua en el suelo.pptx
 
CONDUCTIVIDAD DIFRÁULICA.pptx
CONDUCTIVIDAD DIFRÁULICA.pptxCONDUCTIVIDAD DIFRÁULICA.pptx
CONDUCTIVIDAD DIFRÁULICA.pptx
 
Recarga Natural de Acuíferos y Recarga Artificial, Caso Río Seco - Perú
Recarga Natural de Acuíferos y Recarga Artificial, Caso Río Seco - PerúRecarga Natural de Acuíferos y Recarga Artificial, Caso Río Seco - Perú
Recarga Natural de Acuíferos y Recarga Artificial, Caso Río Seco - Perú
 
EDAFOLOGIA_INFORME_PERMEABILIDAD_MariaHunacuni.docx
EDAFOLOGIA_INFORME_PERMEABILIDAD_MariaHunacuni.docxEDAFOLOGIA_INFORME_PERMEABILIDAD_MariaHunacuni.docx
EDAFOLOGIA_INFORME_PERMEABILIDAD_MariaHunacuni.docx
 
Ingenieria sanitaria a4_capitulo_05_abastecimiento_de_agua_potable
Ingenieria sanitaria a4_capitulo_05_abastecimiento_de_agua_potableIngenieria sanitaria a4_capitulo_05_abastecimiento_de_agua_potable
Ingenieria sanitaria a4_capitulo_05_abastecimiento_de_agua_potable
 

Más de Lizbeth Roxana Solorzano Quispe (8)

Resistencia de-materiales-marco-llanos-pdf
Resistencia de-materiales-marco-llanos-pdfResistencia de-materiales-marco-llanos-pdf
Resistencia de-materiales-marco-llanos-pdf
 
Libro introduccion a la hidraulica fluvial - arturo rocha
Libro   introduccion a la hidraulica fluvial - arturo rochaLibro   introduccion a la hidraulica fluvial - arturo rocha
Libro introduccion a la hidraulica fluvial - arturo rocha
 
Curso de hidráulica
Curso de hidráulicaCurso de hidráulica
Curso de hidráulica
 
Libro hidrologc3ada-r-villodas
Libro hidrologc3ada-r-villodasLibro hidrologc3ada-r-villodas
Libro hidrologc3ada-r-villodas
 
Libro diseno hidrologico_edicion_digital
Libro diseno hidrologico_edicion_digitalLibro diseno hidrologico_edicion_digital
Libro diseno hidrologico_edicion_digital
 
Libro básico sobre tecnología del concreto
Libro básico sobre tecnología del concretoLibro básico sobre tecnología del concreto
Libro básico sobre tecnología del concreto
 
Libro resistencia de materiales i (prácticas y exámenes usmp)
Libro resistencia de materiales i (prácticas y exámenes usmp)Libro resistencia de materiales i (prácticas y exámenes usmp)
Libro resistencia de materiales i (prácticas y exámenes usmp)
 
Vigas
VigasVigas
Vigas
 

Riego por-goteo-libro-cap 01 suelo1

  • 1. CAPÍTULO I CONSIDERACIONES BÁSICAS SOBRE LA RELACIÓN ENTRE SUELO – AGUA- PLANTA1,2 Miguel A. Lugo López y Víctor A. Snyder 1.0 Introducción---------------------------------------------------------------------------------- 003 2.0 Procesos de determinantes del balance del agua del suelo 2.1 Intercepción ---------------------------------------------------------------------------- 004 2.2 Escorrentía ----------------------------------------------------------------------------- 004 2.3 Infiltración------------------------------------------------------------------------------ 005 2.4 Conductividad hidráulica------------------------------------------------------------- 007 2.5 Redistribución y percolación profunda --------------------------------------------- 011 2.6 Retención de agua disponible-------------------------------------------------------- 016 2.7 Evaporación ---------------------------------------------------------------------------- 018 2.8 Transpiración -------------------------------------------------------------------------- 019 3.0 Resumen-------------------------------------------------------------------------------------- 020 4.0 Bibliografía----------------------------------------------------------------------------------- 021 001
  • 2. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta _______________ 1 Este capítulo fue preparado para el libro “Manejo de Riego Por Goteo”. Autor: Dr. Megh R. Goyal, Profesor en Ingeniería Agrícola y Biomédica, Universidad de Puerto Rico – Recinto de Mayagüez, PO Box 5984, Mayagüez, Puerto Rico 00681-5984. Para más detalles puede comunicarse por correo electrónico: m_goyal@ece.uprm.edu ó visitar la página: http://www.ece.uprm.edu/~m_goyal/home.htm 002
  • 3. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta 1.0 INTRODUCCIÓN El conocimiento de la relación de suelo - agua – planta es esencial para la producción agrícola bajo riego. En el caso de uso de sistemas de riego por goteo este conocimiento es particularmente importante en vista del alto costo inicial de las instalaciones. Aún en áreas de mucha lluvia la escasez de agua puede limitar el desarrollo de las plantas [40]. Esto puede atribuirse a una errática distribución de lluvia, a una alta escorrentía o a una infiltración profunda en suelos con baja capacidad de retención de agua. Por tal razón, la importancia del riego no se limita a regiones áridas y semiáridas. Cada cultivo tiene requisitos de agua particulares y cada suelo tiene sus propiedades que afectan en una forma u otra el suministro de agua a las plantas. La cantidad de agua en el suelo a un tiempo dado es un valor sumamente dinámico, ya que es el resultado neto de la cantidad recibida - ya sea por lluvia o por riego – menos las pérdidas por evaporación, transpiración o infiltración profunda. La disponibilidad de esta agua para las plantas depende a su vez del sistema de raíces presente y de propiedades hidráulicas del suelo tales como porosidad, conductividad hidráulica y capacidad de retención de agua. En este capítulo se resumen algunos principios básicos de la relación suelo – agua – planta y se presentan resultados de investigación en torno a las propiedades hidráulicas de los suelos de Puerto Rico. 2.0 PROCESOS DETERMINANTES DEL BALANCE DE AGUA DE SUELO La suerte del agua aplicada al suelo ya sea por lluvia o por riego es determinada por los procesos de intercepción, escorrentía, infiltración, redistribución y precolación profunda, retención, evaporación y transpiración. 003
  • 4. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta 2.1 Intercepción La intercepción se refiere al agua interceptada directamente por la cubierta vegetal. Expresadas en términos de porcentaje de la lluvia total, las pérdidas por intercepción se estima que fluctúan entre 15 y 20 % [11]. El porciento de intercepción será mayor en aquellos casos donde la vegetación sea abundante y la cantidad de agua en cada aplicación sea baja. El agua interceptada nunca llega al suelo ya que se evapora directamente de la superficie de las plantas. En el caso de riego por goteo esta pérdida no ocurre ya que el agua se aplica directamente al suelo. 2.2 Escorrentía Los clásicos estudios realizados en Puerto Rico por Smith y Abruña [31] así como Barnett et. al. [1] han demostrado que las pérdidas por escorrentía se reducen cuando la tierra se labra cuidadosamente o se cubre con mantillo. La lluvia en terrenos en barbecho aumenta la escorrentía y las probabilidades de mayor erosión. En muchos suelos, frecuentemente acentuados por la diferenciación de sus horizontes, el agua se infiltra y luego fluye en la superficie de contacto entre el suelo labrado y el subsuelo sin labrar y eventualmente aflora más abajo. Si se han aplicado abonos a un suelo con esta condición la escorrentía probablemente tendrá una alta concentración de minerales lo que conlleva pérdidas en la inversión de abono y aumenta el peligro de contaminación ambiental. El manejo del suelo es sumamente importante para minimizar la escorrentía. Esto se ilustra con el trabajo de Smith y Abruña [31] que en suelo Múcara (Vertic Eutropets) observaron que se duplicaron las pérdidas por escorrentía cuando se removió toda la cubierta vegetal bajo los cafetos. Dos años después---cuando se dejó desarrollar esta vegetación---las pérdidas por escorrentía se minimizaron. 004
  • 5. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta 2.3 Infiltración La razón de infiltración se define como la cantidad de agua que penetra en el perfil del suelo en un intervalo dado de tiempo. Entre las propiedades del suelo que afectan la infiltración están la densidad aparente, la distribución de poros conforme a su tamaño, la textura y la estabilidad de los agregados o unidades estructurales del suelo. El tiempo de infiltración es sumamente importante. Al comenzar a infiltrar agua a través de la superficie de un suelo relativamente seco, la razón de infiltración será alta inicialmente y luego tenderá a disminuir gradualmente a un valor constante que estará cerca de la conductividad hidráulica del suelo. El concepto de conductividad hidráulica se desarrollará en la siguiente sección. Cuando se mide la razón de infiltración de un suelo, es importante incluir medidas a largo tiempo cuando el proceso se haya estabilizado cerca de su valor constante. De lo contrario, se obtendrán valores demasiado altos, lo cual podría resultar en errores de diseño de sistemas de riego o drenaje. En Puerto Rico se realizaron estudios sistemáticos entre 1945 y 1957 para obtener información básica sobre la infiltración de los suelos [3,17]. En el cuadro 1, se resumen los resultados. Los Oxisols, seguidos por los Mollisols y los Ultisols, tienen una infiltración rápida. En el otro extremo, la infiltración de los Vertisols alcanza a tan solo 2% de la infiltración media de los tres grupos anteriores. Lugo-López et. al. [18] analizaron los datos de 740 pruebas de infiltración bajo condiciones de campo que muestran una tasa descendente de infiltración después de la hora inicial. Encontraron correlaciones altamente significativas entre las tasas de infiltración a la octava hora y las tasas anteriores a intervalos de una hora. Debido a la correlación linear altamente significativa entre las tasas de la tercera hora para predecir la infiltración bajo precipitación o riego prolongado. 05
  • 6. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta Cuadro 1. Valores de infiltración. Infiltración a la 8va. hora Orden de Suelo (cm/h) Vertisols 0.2 Entisols 2.4 Inceptisols 2.8 Alfisols 2.8 Ultisols 7.5 Mollisols 8.4 Oxisols 8.6 Cuadro 2. Valores de conductividad hidráulica. Suelo Conductividad hidráulica media (cm/h) Aguirre (Udic Pellusterts) 0.14 Guánica (Udic Pellusterts) 0.11 Santa Isabel (Udic Pellusterts) 0.13 Fé (Paleustolic Chromusterts) 0.26 Jácana (Vertic Ustropepts) 0.08 San Antón (Cumulic Haplusolls) 0.56 Cuadro 3. Valores de conductividad hidráulica para diferentes profundidades. Profundidad (cm) Conductividad hidráulica (cm/h) Condición del Suelo No compacto (Densidad = 1.14 g/cc) 0-7.6 0.85 Compactado (Densidad = 1.33 g/cc) 0-7.6 0.11 No compactado 10-18 0.23 Compactado 10-18 0.06 06
  • 7. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta 2.4 Conductividad Hidráulica La conductividad hidráulica se puede definir como la velocidad de movimiento de agua en el suelo cuando el agua es sometida a una fuerza neta igual a la gravedad [Esta definición requiere que el potencial hidráulico se exprese en unidades de longitud, cabecera hidráulica]. Es una propiedad del suelo que puede medirse con relativa facilidad en el campo o en el laboratorio. En base a esta definición de conductividad hidráulica, podemos decir que la velocidad de movimiento vertical de agua en un suelo, bajo condiciones donde la fuerza principal que mueve el agua es la gravedad, será básicamente igual a la conductividad hidráulica del suelo. La gravedad es la causa dominante de movimiento de agua en dos situaciones muy importantes: 1) Infiltración a largo tiempo cuando el perfil ha sido humedecido a bastante profundidad; y 2) Precolación profunda (redistribución) de agua desde horizontes superficiales humedecidos a horizontes inferiores luego de haber cesado la infiltración a través de la superficie del suelo. La primera situación se asume que existe bajo emisoras de sistemas de riego al diseñar la distancia entre emisoras [6, 25] y la segunda situación determina el tiempo y tensión de humedad a los cuales se considera que un suelo ha llegado a capacidad de campo. La conductividad hidráulica es el parámetro básico utilizado para predecir el comportamiento del suelo bajo estas condiciones. La conductividad hidráulica del suelo no es un valor constante sino que depende de la distribución de tamaño de poros del suelo y del contenido de agua del mismo. Cuando todos los poros del suelo están saturados de agua, hablamos de la conductividad hidráulica saturada (Ks) o permeabilidad del suelo. Si los poros del suelo están solos parcialmente saturados con agua, hablamos de la conductividad hidráulica no saturada o conductividad 07
  • 8. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta capilar del suelo. De aquí en adelante usaremos el termino “conductividad hidráulica” para ambos casos, y entendiéndose que nos referimos a conductividad saturada en el caso de suelo saturado y a conductividad capilar en el caso de suelo parcialmente saturado. Lugo-López et. al. [21] midieron la conductividad hidráulica (saturada) en 23 tipos de suelos del Valle de Lajas. Allí los suelos son generalmente muy profundos con un contenido sumamente alto y casi uniforme de arcilla (en muchos casos mas del 50%, en algunos mas del 80%) del tipo que se expanden y contraen, con una proporción de microporos, muy baja estabilidad de agregados en el subsuelo (generalmente menos del 1% cuado se mide por el método de Bryant et. al. [4]), muy baja conductividad hidráulica saturada del subsuelo (a menudo con valores tan bajos como 0.002 cm/h), pero con un suelo superficial de 30 a 60 cm de profundidad que permite un buen movimiento de agua [21]. El cuadro 2 resume datos de conductividad hidráulica en el subsuelo (a veces hasta 160 cm de profundidad). El movimiento lento de agua en todos estos subsuelos puede atribuirse a la naturaleza y tamaño de los poros. Aunque en todos los casos la porosidad total es alta, la mayoría de los poros son muy pequeños según se desprende de un examen de los datos sobre retención de humedad, que es alta aún cuando la humedad se acerca al porcentaje de marchitez permanente. Además, las unidades estructurales del subsuelo son inestables [32] y se dispersan rápidamente al humedecerse, obstruyendo así los poros. En algunos suelos de la serie Guánica (Udic Pellusterts) el agua se mueve en los primeros 60 cm del perfil a más de 2.5 cm/h; en algunos suelos de la serie Fé (Paleustolic Chromusterts) se han obtenido valores de conductividad hidráulica sumamente altos en los 15 cm superiores del perfil del suelo. 08
  • 9. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta En los suelos llanos de Coamo, Bonnet y Lugo-López [2] obtuvieron valores de 0.20 a 0.48 cm/h para los suelos de Coamo (Typic Argiustolls), Jacana (Vertic Ustropets) y Amelia (Typic Haplustalfs) que indican que la conductividad hidráulica saturada es lenta. En los suelos Descalabrado (Lithic Vertic Ustropepts) la conductividad hidráulica fue moderadamente lenta (0.56-1.4 cm/h). En los suelos de la isla de Vieques la conductividad hidráulica varía marcadamente de rápida en las capas superiores hasta muy lenta a los 60 cm de profundidad [13]. Las reducciones son dramáticas: de 124.4 a 3.5 cm/h e suelo Guayama arcilloso (Lithic Haplustalfs) y de más de 30 a menos de 0.5 cm/h en un suelo de la serie de Vieques (Typic Ustropets). El manejo del suelo puede ejercer un efecto marcado sobre la conductividad hidráulica. Lugo-López y Acevedo [12] documentaron la relación entre la compactación de un suelo Vayas (Typic Fluvaquents) atribuíble al tránsito de tractores y la conductividad hidráulica saturada del suelo es dada en el cuadro 3. En ambas profundidades se obtuvo una reducción de 4-8 veces en la conductividad hidráulica saturada, lo cual ilustra el peligro de restricción de movimiento de agua como consecuencia de la compactación en suelos arcillosos. Rivadeneira [28] estudió los cambios en propiedades hidráulicas de la capa arable en un suelo Coto (Typic Eutrustox) como función del tiempo después de labranza. La conductividad hidráulica saturada varió desde 45 cm/h a las 11 semanas luego de arar, hasta 10 cm/h a las 50 semanas. El suelo sin arar mantuvo una conductividad de aproximadamente 2 cm/h durante todo el periodo del experimento, lo cual indica un efecto del arado aún 50 semanas después de arar. 09
  • 10. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta La conductividad hidráulica disminuye drásticamente al disminuir el contenido de agua del suelo. Esto se debe a que, al irse vaciando los poros más grandes del suelo, los únicos poros capaces de transmitir agua son los poros pequeños que aún contienen agua. Para efectos prácticos, los poros grandes llenos de aire se comportan como si hubiesen sido sellados con un material impermeable. Wolf y Drosdoff [36] determinaron la conductividad hidráulica no-saturada en varios horizontes de los suelos Humatas (Ultisol arcilloso) y Bayamón (Oxisol arenoso) como función del contenido de agua del suelo. La conductividad hidráulica, expresada en función de la tensión de agua del suelo, es presentada en la figura 1. La conductividad del suelo Bayamón arenoso disminuyó desde 40 cm/h cerca del punto de saturación del suelo (tensión de humedad = 0) hasta solamente 0.1 cm/h a una tensión de humedad de 0.08 bares. Esto indica que la conductividad hidráulica disminuyó más de 100 veces con un cambio muy pequeño de tensión de humedad. Todos los horizontes del suelo hasta una profundidad de 120 cm mostraron un comportamiento similar. El suelo Humatas arcilloso mostró una mayor diferenciación entre horizontes que el suelo Bayamón arenoso. Se observa en la figura 1 que mientras más cerca de la superficie, más aguda es la disminución de conductividad hidráulica al aumentar la tensión de humedad. Este fenómeno probablemente se debe a la presencia de una mayor proporción de poros grandes en los horizontes superficiales del suelo asociado a un mayor contenido de materia orgánica. Estos poros grandes quedan vacíos a tensiones muy cerca de cero, causando una disminución correspondiente en conductividad hidráulica. La disminución tan marcada en conductividad hidráulica a tensiones bajas en suelos con una alta proporción de poros grandes (suelos arenosos o muy bien estructurados) provee la explicación de porqué estos suelos llegan a capacidad de campo a tensiones de 010
  • 11. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta 0.1 bares o menores. A tales tensiones, la conductividad hidráulica es tan baja que el movimiento vertical de agua prácticamente cesa, correspondiendo este punto a la capacidad de campo del suelo. 2.5 Redistribución y precolación profunda Luego de haber cesado la infiltración, empieza a ocurrir el desagüe de los horizontes superiores humedecidos durante la infiltración. El agua perdida es retenida por horizontes inferiores más secos (redistribución), o pasa del pérfil a formar parte de las aguas subterráneas (precolación profunda). La velocidad de redistribución o precolación es básicamente una función de la conductividad hidráulica. Al principio, cuando el suelo contiene mucha agua, la conductividad hidráulica es alta y la velocidad de percolación será alta. Al pasar el tiempo e irse desaguando el suelo, la conductividad hidráulica y correspondiente la velocidad de percolación irán disminuyendo. El proceso continuará hasta que la conductividad hidráulica sea tan baja que la velocidad de desagüe es prácticamente cero. Wolf y Drosdoff [36] estudiaron el desagüe de los suelos Humatas y Bayamón a los cuales se alude en la figura 1. La metodología consistió en instalar tensiómetros a varias profundidades y darle seguimiento a los cambios en la tensión del agua luego del riego. Los resultados se representan en las figuras 2a y 2b en forma de gráficas de tensión de agua como función del tiempo para cada horizonte. Se observa que todos los horizontes del suelo de Bayamón arenoso y en los horizontes de 7.5-30 y 30-60 cm del suelo Humatas arcilloso, arcilloso, la tensión de agua aumenta rápidamente al principio y luego tiende a estabilizarse en un valor relativamente constante antes de las 24 horas. Una comparación con la figura 1 indica que estos horizontes son aquellos cuyas conductividades hidráulicas disminuyen rápidamente al aumentar la tensión de humedad. 011
  • 12. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta Figura 1. Conductividad hidráulica como función de tensión de humedad a varias profundidades en los suelos de Bayamón y Humatas [Adaptado de Wolf y Drosdoff, 1974]. 012
  • 13. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta Los horizontes 60-90 cm y 90-120 cm del suelo Humatas, sin embargo muestran un aumento gradual de tensión de humedad durante un mayor periodo de tiempo. Una comparación con la figura 1, muestra que estos horizontes son precisamente cuya conductividad hidráulica disminuye solo gradualmente al aumentar la tensión de humedad. Estas comparaciones indican la íntima relación que existe entre la conductividad hidráulica y las propiedades de desagüe del suelo. Aún cuando la velocidad de desagüe de un suelo tiende a disminuir marcadamente 1 ó 2 días luego de haber cesado la infiltración, no debe interpretarse que el desagüe es insignificante a este tiempo. Los datos de Wolf y Drosdoff [36] indicaron que aún a los 6 días después del riego en un suelo Bayamón arenoso, la precolación estaba ocurriendo a razón de 1 mm/día. Esto representa alrededor del 20% de la pérdida diaria de agua por evapotranspiración. De otra parte, en un suelo Humatas arcilloso se encontró que la precolación ocurría a razón de aproximadamente 0.5 mm/día a los 3 días luego de descontinuarse el riego. Obviamente el tipo de suelo desempeña un rol importante en las propiedades de desagüe. Comúnmente se asume que el límite superior de retención de agua de un suelo (capacidad de campo) 2 ó 3 días después del riego corresponde el agua retenida por el mismo a 0.33 bares de tensión de humedad. Sin embargo, Wolf y Drosdoff [36] encontraron que a los 3 días después del riego las tensiones en los suelos Humatas (Tepic Tropohumults), Tropohumults), Catalina (Tropeptic Haplorthox), Torres (Plinthic Palehumults), y Bayamón (Typic Haplorthox) sólo alcanzaban niveles entre 0.02 y 0.05 bares. 013
  • 14. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta Figura 2a. Cambios en tensión de humedad a varias profundidades como función del tiempo después de riego en el suelo Bayamón, [Adaptado de Wolf y Drosdoff, 1974]. 014
  • 15. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta Figura 2b. Cambios en tensión de humedad a varias profundidades como función del tiempo después de riego en el suelo Humatas, [Adaptado de Wolf y Drosdoff, 1974]. 015
  • 16. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta Recomendaron que la capacidad de campo se estableciera a 0.07 (1/15) bares para el suelo de Bayamón arenoso y a 0.08 (1/12) bares para los suelos arcillosos Humatas, Catalina y Torres. 2.6 Retención de agua disponible El agua disponible para las plantas se considera ser la cantidad retenida entre la capacidad de campo y el porcentaje de marchitez permanente (15 bares). Tradicionalmente la fracción disponible se ha determinado asumiendo que la capacidad de campo del suelo corresponde al agua retenida a 0.33 bares de tensión de humedad. Existe una gran cantidad de datos sobre esta fracción en los suelos de Puerto Rico [30], algunos de los cuales son presentados en la figura 3. Se puede observar que existe una variedad enorme en la cantidad de agua disponible retenida por los diferentes suelos. En general, los Vertisols aparentan retener la mayor cantidad de agua disponible, entre 10-20% por volumen en casi todos los casos. Los Mollisols, Inceptisols, Alfisols y Ultisols retienen entre 9-15% y los Oxisols entre 3-10%. Según se observa en la figura 3, la disponibilidad de agua tiende a aumentar con el contenido de arcilla hasta aproximadamente 40-50% de arcilla y luego se reduce cuando la arcilla sobrepasa el 40-50%. Lugo-López [9] informó resultados similares. Debe tomarse en cuenta, sin embargo, que los suelos más arcillosos en la figura 3 son Oxisols los cuales se caracterizan por el predominio de óxidos de hierro y aluminio y minerales de tipo 1:1 en la fracción arcillosa. Es probable que no solo la cantidad sino también el tipo de arcilla desempeñe un rol importante en la disponibilidad del agua. Según se mencionó anteriormente, la capacidad de campo de suelos arenosos o muy bien estructurados tiende a ocurrir a tensiones de humedad 1/10 bares ó a aún a menores. 016
  • 17. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta Figura 3. Agua retenida entre 0.33 y 15 bares de tensión de humedad, expresada en función de contenido de arcilla para suelos de Puerto Rico [Adaptado de Soil Survey, 1967]. 017
  • 18. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta Por esta razón, la capacidad de retención de agua disponible en estos suelos es mayor que la cantidad estimada a base de una capacidad de campo de 1/3 bares como en la figura 3. Datos limitados en Ultisols y Vertisols de Puerto Rico [32, 36] indican que el agua retenida entre 1/3- 15 bares constituya alrededor del 80-90% del agua retenida entre 1/10- 15 bares. En Oxisols y suelos muy arenosos esta fracción puede estar entre 40-75% [28,36]. Estos resultados indican que un estimado de agua disponible usando 1/3 bares como capacidad de campo podría errar tanto como 25-60% por debajo del valor real en Oxisols y suelos arenosos. El error probablemente será menor en el caso de los Ultisols, Alfisols, Millisols, Inceptisols y Vertisols, siempre y cuando la fracción arenosa no sea demasiado alta. La materia orgánica y la densidad aparente de los suelos desempeñan un rol muy importante en la disponibilidad de agua en los mismos, ya que afectan la distribución de los tamaños de poros en el suelo. En aquellos sistemas de producción donde se requiere maximizar la capacidad de retención de agua del suelo (como por ejemplo en caso de escasez o ausencia temporera de agua de riego) es importante el manejo apropiado de la materia orgánica del suelo y la minimización de la compactación. Pérez-Escolar y Lugo- López [27] encontraron que el tamaño de agregados del suelo afectaba el contenido de agua disponible. Los agregados más gruesos retienen menor cantidad de agua disponible; los más finos, mayor cantidad. 2.7 Evaporación Luego de un periodo de lluvia o riego parte del agua aplicada se pierde por evaporación directa a través de la superficie del suelo. La cantidad de agua pérdida, en 018
  • 19. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta términos de porciento de la cantidad de agua aplicada, depende de la magnitud y frecuencia de las aplicaciones de agua y la fracción expuesta de la superficie del suelo. Aplicaciones leves y frecuentes de agua generalmente resultan en altas pérdidas de agua por evaporación, inclusive en el caso de riego por goteo [25]. Doorenbos y Pruitt [7] estiman que para una suelo totalmente descubierto, riego uniforme (toda la superficie humedecida) y una evapotranspiración potencial de 5 mm/día, la pérdida de evaporación por agua varía entre el 25% al 90% de la evapotranspiración potencial para intervalos de riego de 20 días y 2 días, respectivamente. La cantidad y tipo de cubierta del suelo puede modificar drásticamente la evaporación bajo un régimen dado de aplicación de agua. Según se va desarrollando el follaje de una cosecha, la sombra resultante disminuye la pérdida de agua por evaporación, permitiendo así que una proporción del agua aplicada se pierda por transpiración a través del sistema vascular de la planta aumentando así la eficiencia de utilización de agua. La aplicación de mullas sobre la superficie del suelo puede ser muy efectivo para controlar la evaporación. Vicente Chandler et. el. [33] evaluaron el efecto de mullas de hierba y pulpa de café sobre el suministro de agua disponible bajo una siembra de café en un suelo Toa (Fluventic Dystropepts). Encontraron que las mullas aumentaron la cantidad de agua disponible entre 60 y 90% en comparación donde no se utilizó ningún tipo de mulla. Estas mullas probablemente redujeron las pérdidas por evaporación y propiciaron la infiltración de agua. 2.8 Transpiración La transpiración se refiere a la evaporación de agua del suelo a través del sistema vascular de la planta. El volumen de agua transpirada dependerá de muchos factores como 019
  • 20. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta la demanda evapotranspirativa (evapotranspiración potencial), la etapa desarrollo del cultivo y la cantidad de agua disponible del suelo de la zona de crecimiento de las raíces. Para muchas cosechas, se ha encontrado que la transpiración comienza a disminuir y las plantas comienzan a sufrir por falta de agua una vez que aproximadamente la mitad del agua disponible del suelo en la zona de raíces haya sido extraída por la planta [7]. La capacidad de retención de agua del suelo, pues, desempeña un rol clave en la determinación de la frecuencia y cantidad de riego requerido para satisfacer las necesidades de agua de las plantas. 3.0 RESUMEN Para el diseño, implantación y operación de cualquier sistema de riego es esencial familiarizarse con las condiciones del suelo y particularmente con lo que atañe a la relación suelo-agua-planta. Bajo las condiciones de demanda evapotranspirativa en Puerto Rico las pérdidas atribuibles a la evaporación de la humedad del suelo pueden variar entre 25 al 90% de la demanda evapotranspirativa dependiendo de la cubierta del suelo y la cantidad y frecuencia de lluvia o riego. Se ha comprobado la eficacia del uso de mantillos para reducir la pérdida por evaporación. Las pérdidas inevitables por intercepción de la vegetación (en caso de lluvia o riego aéreo) se estima que fluctúan entre 5 y 20%. Esto no ocurre en el caso de riego por goteo o riego por gravedad ya que el agua se aplica directamente al suelo. Se ha demostrado que la escorrentía puede ser alta en terrenos sin protección adecuada. Esta pérdidas se reducen notablemente cuando la tierra se labra cuidadosamente, se cubre con mantillo o se usan mullas. En muchos casos al agua se infiltra y luego fluye en la superficie de contacto entre el suelo y subsuelo y eventualmente aflora más abajo. 020
  • 21. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta Los Oxisols, seguidos por los Mollisols y Ultisols tienen una infiltración rápida de entre 7.5 y 8.6 cm/h luego de 8 horas de infiltración. En el otro extremo, la infiltración de los Vertisols es de solo 0.2 cm/h. La rapidez de infiltración se reduce con el tiempo, pero hay una correlación significativa entre las infiltraciones a los diferentes intervalos de tiempo. La conductividad capilar disminuye drásticamente al disminuir el contenido de agua del suelo (o aumentar la tensión de humedad del suelo). Un aumento en tensión de humedad de 0 a 1/10 bares puede resultar en una disminución de mas de 100 veces en la conductividad capilar. Suelos con este comportamiento llegan a capacidad de campo a tensiones de humedad de menos de 1/10 bares. La capacidad de retención de agua disponible varía grandemente entre suelos, siendo mayor en los Vertisols seguido por el grupo de los Inceptisols, Mollisols, Ultisols y Alfisols y finalmente por los Oxisols. Los suelos arenosos tienden a tener una baja capacidad de retención de agua independiente del orden a que pertenecen. La capacidad del suelo para suministrar agua a las plantas se puede modificar mediante prácticas agrícolas adecuadas. 4.0 BIBLIOGRAFIA 1. Barnett, A. P., Carreker, J. R., Abruña, F., Jackson, W. A. ,Dooley, A. E. and Holladay. J.H. 1972. Soil and nutrient losses in runoff with selected cropping treatments on tropical soils. Agron. J. 64: 391-5. 2. Bonnet, J. A. and Lugo-López, M. A. 1950. Soil studies in the projected Coamo irrigation area. Univ. P.R. Agric. Exp. Sta. Bull. 88. 3. ____________ and ____________. 1952. The rate of infiltration of lateritic soils, J. Agric. Univ. P.R. 36 (2): 161-6. 021
  • 22. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta 4. Bryant, J.A., Bendixen, T. W. and Slater, C. W. 1984. Measurement of water stability of soils, Soil Sci. 65:341-5. 5. Colón, J. A. 1977. Climatología, En: Geovisión de Puerto Rico, (M.T.B. de Galiñanes, Ed.),Editorial Universitaria, Río Piedras, P. R., pp. 47-104. 6. Dashberg, S. and E. Bresler. 1985. Drip Irrigation Manual. International Irritation Information Center Publication No. 9. 95 pp. 7. Doorembos, J. and W. O. Pruitt. 1977. Crop Water Requirements. FAO Irrigation and Drainage Paper No. 24. FAO, Rome. 144 pp. 8. Landrau, J. R., P. , Lugo-López, M. A. , Samuels, G. and Silva, S. 1954. Leaving sugar cane trash undisturbed on a lateritic soil compares favorably with currently used trash-disposal methods. J. Agric. Univ. P.R. 38 (1): 1-8. 9. Lugo-López, M. A. 1951. Functional relationship between moisture at several equilibrium points and the clay content of soils. J. Agric. Univ. P.R. 35(2): 66-70. 10. _________________. 1952. Available water capacity of the surface layer of various soils from the arid and semiarid region of Puerto Rico J. Agric. Univ. P.R. 36(2): 134-40. 11. _________________. 1953. Moisture relationship of Puerto Rican soils. Univ. P.R. Agric. Exp. Sta. Tech. Paper 9. 12. _________________ and Acevedo, G. 1956. Effects of tractor traffic compaction on the physical properties of an irrigated soil in southwestern Puerto Rico. J. Agric. Univ. P.R. 51(4) : 235-44. 13. _________________, Bonnet, J. A. and García, J. 1958. The soils of the island of Vieques, Univ. P.R. Agric. Exp. Sta. Bull. 108. 14. _________________, ________________, Hernández-Medina, E., Landrau J.R., P. and Samuel, G. 1954. Soil organic matter levels and crop yields in Puerto Rico. Soil Sci. Soc. Amer. Proc. 18(4): 489-93. 15. _________________, Hernández-Medina, E., Cibes-Viadé, H. R. and Vicente- Chandler, J. 1953. The Effect of filter-press cake on the physical and chemical properties of soil, J. Agric. Univ. P.R. 37(3): 213-23. 16. ___________________,_____________________,___________________ and ________________. 1954. Influence of filter-press cake on pineapple yields and soil properties. Soil. Sci. 78 (4) : 257-65. 022
  • 23. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta 17. Lugo-López, M. A., Juárez, Jr. , J., and Bonet. J. A. 1968. Relative infiltration of Puerto Rican soils. J. Agric. Univ. P.R. 52(3). 233-40. 18. ______________, _______________ and Pérez-Escolar, R. 1970. Correlation between the rate of water intake of tropical soils at hourly intervals to the 8th hour, J. Agric. Univ. P.R. 56(3): 570-5. 19. ______________, Landrau, J. R., P. and Samuel, G. 1952. The handling of sugar cane trash II. Effects of various practices on soil properties. J. Agric. Univ. P.R. 36(3): 246-54. 20. ______________, Martínez, M. B. and Riera, A. R. 1952. Morphological and physiochemical properties of various tropical soils from east central Puerto Rico. J. Agric. Univ. P.R. 36(2): 167-78. 21. ______________ and Pérez Escolar, R. 1959. Hydraulic conductivity of subsoil of Lajas Valley. J. Agric. Univ. P.R. 43(4): 273-7. 22. ______________, ________________, Acevedo, J. and Juárez, Jr. , J. 1959. Nature and properties of mayor soils of Lajas Valley. Univ. P.R. Agric. Exp. Sta. Bull. 149. 23. ______________, and Rivera, L. H. 1977. Updated taxonomic classification of the soils of Puerto Rico. Univ. P.R. Agric. Exp. Sta. Bull. 258. 24. Martínez, M. B. and Lugo-López, M. A. 1953. Influence of subsoil shattering and fertilization on sugarcane production and soil infiltration capacity, Soil. Sci. 75(4): 307-15. 25. Nakayama, F. S. and D. A. Bucks. 1986. Trickle irrigation and Crop Production. Elsevier. 383 pp. 26. Nelson, L. B. and Muckenhirn, R. J. 1941. Field percolation rates of four Wisconsin soils having different drainage characteristics. J. Am. Soc. Agron. 33 (11): 1028-36. 27. Pérez-Escolar, R. and Lugo-López, M. A. 1969. Availability of moisture in aggregates of various sizes in a typical Ultisol of Puerto Rico. J. Agric. Univ. P.R. 53(2): 113-7. 28. Rivadeneira, C. 1982. Cambio en las propiedades físicas del suelo Coto en función de métodos de preparación y su correlación con el desarrollo de la yautía. Tesis de Maestría, Departamento de Agronomía y Suelos, Recinto Universitario de Mayagüez, Mayagüez, P.R. 71 pp. 29. Samuels, G. , Lugo –López, M. A. , and Landrau, Jr. , P. 1952. Influence of the handling of sugar cane trash on yields and soil properties. Soils. Sci. 74(3): 207-15. 023
  • 24. Manejo de Riego Por Goteo Capítulo I: Relaciones Básicas para Suelo-Agua-Planta 30. Soil Survey Staff. 1967. Soil survey laboratory data and descriptions for some soils of Puerto Rico and Virgin Islands. Soil Survey Investigation Report No. 12. USDA-Soil Conservation Service. 191 pp. 31. Smith , R. M. and Abruña, F. 1955. Soil and water conservation research in Puerto Rico, 1938 to 1957. Univ. P.R. Agric. Exp. Sta. Bull. 124. 32. Vázquez, R. 1961. Effects of irrigation at different growth stage, and of nitrogen levels on corn yields in the Lajas Valley, P.R. J. Agric. Univ. P.R. 45: 85-105. 33. Vicente-Chandler, J. , Boneta, E., Abruña, F. , and Figarella, J. 1969. Effects of clean and strip cultivation, and of mulching with grass, coffee pulp, and black plastic, on yields of intensively of managed coffee in Puerto Rico. J. Agric. Univ. P. R. 53(2): 124-31. 34. Wahab, A. , Talleyrand, H. and Lugo-López, M.A. 1976. Rooting depth, growth and yield of corn as affected by soil-water availability in an Ultisol and an Oxisol. J. Agric. Univ. P.R. 60(3): 316-28. 35. _________________, ______________________, and ___________________. 1976. Rooting depth, growth and yield of sorghum as affected by soil-water availability in Ultisol and an Oxisol. J. Agric. Univ. P.R. 60(3): 329-35. 36. Wolf. J. M. and M. Drosdoff. 1974. Soil-water studies of Oxisols and Ultisols of Puerto Rico. Cornell Agronomy Mimeo 74-22, Cornell University, Ithaca, N. Y. 37. Wolf J. M. and Drosdoff, M. 1976. Soil-water studies in Oxisols and Ultisosl in Puerto Rico. I: Water movement. J. Agric. Univ. P.R. Agric. Exp. Sta. 60(3): 375- 85. 38. _________________, and ________________. 1976. Soil-water studies in Oxisol and Ultisols of Puerto Rico. II: Moisture retention and availability. J. Agric. Univ. P.R. 60(3): 386-94. 39. _________________, and ________________. 1976. Soil-water studies in Oxisol and Ultisols of Puerto Rico III. Capillary conductivity. J. Agric. Univ. P.R. 60(4): 515-5. 40. _________________, _________________. Lugo-López, M.A. and Scott, T. W. 1978. Soil-water relationships in Oxisols and Ultisols of Puerto Rico and Brasil. Paper presented at the Tropical Soils Workshop, Kingston, Jamaica. 024