SlideShare uma empresa Scribd logo
1 de 4
Baixar para ler offline
757 Glider Kit
Educational Product
Teachers
and Students
Grades 5-12
National Aeronautics and
Space Administration
EP-1997-03-357-HQ
A Boeing 757-200 (B-757) was acquired in 1994 by the
National Aeronautics and Space Administration (NASA)
for aeronautical research. Given the call sign NASA 557,
this aircraft is used for conducting research on increasing
aircraft safety, operating efficiency, and compatibility with
future air traffic management systems, benefiting the U.S.
aviation industry and commercial airline customers. Part of
the Transport Research Facilities (TRF) project, this twin-
engine commercial aircraft was modified extensively to
create a “flying laboratory.” Most of the seats were
removed to make room for a large test area capable of
carrying over 5100 kg (10,700 lb) of experiment
equipment. It is outfitted with electronics for extremely
precise instrumentation and data gathering capabilities, and
a flexible interior configuration allows future upgrades to
be incorporated. The B-757 is continuing the work begun
by NASA’s Boeing 737-100, which has been in service for
over 20 years. The B-757 retains the experimental approach
of the B-737, but offers newer technology and improved
capability. “Airborne Trailblazer” by Lane Wallace is an
excellent history of NASA’s B-737 research aircraft.
<see: http://www.dfrc.nasa.gov/History/Publications/SP-4216/>
One of the basic working philosophies of the TRF project is
the concept of “simulation to flight.” The main objective is
to develop technical or operational concepts (e.g.,
electronic cockpit displays, flight management systems,
airborne windshear detection sensors) and take them from
ground-based simulation testing to flight testing in an easy
and straightforward manner. The TRF project includes the
B-757 aircraft as well as several ground-based simulators
and a Research Systems Integration Laboratory (RSIL).
Increasing the effectiveness of conducting experiments
from simulation to flight will better meet the needs for
bringing advances in safety, operations, and capacity into
the ever-changing national airspace system. The NASA 557
will be maintained and flown by NASA’s Langley
Research Center (LARC) in Hampton, VA. Listed below
are some experiments that have used the NASA 557.
ELECTROMAGNETIC EFFECTS (EME)
The NASA 557 was used to conduct several experiments to
determine the effects of High Intensity Radiated Fields on
aircraft electronics, which is important research for aircraft
safety and navigation systems. A database was produced
for use in validating advanced analytical tools. NASA, the
Navy, and the Air Force conducted static tests at LARC to
characterize the electromagnetic environment in and around
a large transport aircraft. Flight tests were conducted in the
vicinity of radar transmitters at Wallops Flight Center in
Virginia, and in close proximity to radio transmitters in
North Carolina. Data collected during both types of tests
are being analyzed. The results will be used to improve
the reliability of digital electronics and to reduce their
certification costs for use on civil transports.
GLOBAL POSITIONING SYSTEM (GPS) USE FOR
ALL-WEATHER LANDINGS
The aviation industry is investigating the use of differential
GPS concepts for precision landings in bad weather to
improve the safety and reliability of air travel. The GPS is
a constellation of 24 satellites used to determine aircraft
position anywhere on or near the Earth. When a ground-
based GPS receiver is used to provide a “differential”
correction signal, an aircraft’s position can be determined
within a foot or two. Boeing partnered with NASA to
examine GPS Landing System concepts and evaluate their
accuracy, integrity, and continuity of function in automatic
landings of airplanes. The team tested several prototype
GPS Landing System concepts using NASA 557 during
226 automatic approaches and landings. The data obtained
is being used to validate GPS Landing System simulations
and to define system certification requirements.
SUBSONIC AIRCRAFT: CONTRAIL AND CLOUD
EFFECTS SPECIAL STUDY (SUCCESS)
NASA is studying the environmental impact of aircraft
emissions upon the atmosphere. The SUCCESS project
began as an investigation into the radiative properties of
cirrus clouds, how cirrus clouds are formed, and the effects
of subsonic aircraft on cloud formation (subsonic means
slower than the speed of sound, which is 330 m/sec [1,088
ft/sec] at 0°C [32°F] at sea level). NASA 557 was used to
generate engine exhaust for the experiment. High-sulfur
fuel was used in the engine of one wing, and low-sulfur
fuel was used in the engine of the other wing. A NASA
DC-8 aircraft followed the B-757, taking data on the sulfuric
acid and soot content of jet engine exhaust by measuring
gas and particle samples emitted from the engines, while a
NASA ER-2 aircraft took infra-red images from above.
Research on this project is still in progress. <For photos
and other information on the SUCCESS project, start with:
http://cloud1.arc.nasa.gov/espo/success/aircraft.html>
FLIGHT CHECK: Check out the following NASA and
Boeing sites and related aeronautic sites on the Internet:
http://www.aero.hq.nasa.gov/hpcontent/edu.html
This site links to education materials from each NASA
Aeronautics Center, other interesting locations, and to
NASA Aeronautics’ main homepage.
http://www.boeing.com/757.html
http://quest.arc.nasa.gov
http://www.db.erau.edu/www_virtual_lib/aviation.html
http://observe.ivv.nasa.gov
http://www.nasm.edu/GALLERIES/GAL109/
http://www.hq.nasa.gov/office/codef/education/index.html
757 Glider Kit
FOCUS: The glider challenges focus on the Science as Inquiry standards. Students are given the opportunity to use
scientific methods and develop the ability to think and act in ways associated with research design and inquiry, including
asking questions, planning and conducting investigations, using appropriate tools and techniques to gather data, thinking
critically and logically about relationships between evidence and explanations, constructing and analyzing alternative
explanations, and communicating scientific arguments and results.
CHALLENGES: The challenges investigate design parameters of the glider -- wing, tail, and nose. The aerodynamic forces
of lift, drag, and weight are explored. Each glider challenge calls for students to develop abilities to identify and state a
problem, design a solution, implement a solution, and evaluate the solution. Extensions to the challenges are offered for
further mathematic and scientific explorations and investigations.
GLIDER CHALLENGE EVENTS
DIRECTIONS: Divide class into flight squadrons (3 to 4 students per squadron). Have each student construct a 757 glider
and write their name on the wing. Present glider challenges to squadrons. Explain to students the object of each event and
how it is scored. Extra points can be obtained by completing a glider extension activity. Students should be encouraged to
conduct some experimentation (i.e., add weight; reshape wing or tail) on their gliders in order to maximize the performance
for the different objectives of each challenge. Rotate squadrons through the challenges keeping score on a squadron’s
scoresheet. Debrief afterwards to discuss glider designs, experimentations, and outcomes.
CHALLENGE #1 -- Spot Landing
Set-up: Tape off a large circle, 7 meters in diameter. Create a bull’s-eye ring with 3 circles, equally spaced from each other,
inside the circle (5, 3, and 1 meter). Label circles (A, B, C, D) with A being the center ring. Give a point value to each
circle with A being the largest point value and D being the smallest point value. Indicate the launching zone with another
piece of masking tape 4 meters from the edge of outer circle. (You may wish to try a glider unmodified to see how far it can
go and use the distance as a baseline for making adjustments.)
Playing rules: Object is to make modifications to the glider to improve its performance with the goal of launching the
glider towards the circle and touching down inside circle A (the bull’s-eye).
Scoring: Points are determined by the spot the glider first “touches down” in the target area, not where it finally comes to
rest. After each squadron member has landed their glider and determined the point score, the squadron’s combined points are
entered on the score sheet.
Extensions: (1) Find the average for the squadron and enter on score sheet. (2) Try to land with a “downwind” -- a three-
speed fan (using low, medium or high speed) located directly behind the launch zone. Discuss the performance changes.
With a given windspeed (low, medium or high), calculate the increased distance needed to land. (3) Repeat Extension 2, but
instead have the glider land “upwind.” After completing Extensions 2 and 3 answer the question: Which way would pilots
rather land an airplane, downwind or upwind? Why?
CHALLENGE #2 -- Launch and Land
Materials needed: 1 standard rubber band (10 cm) per student, 1 balance scale (metric) per squadron, 1 meter stick, paper
clips
Set-up: Establish a launch zone on a tabletop. Tape the meter stick to the edge of the table. Have students hook one end of
rubber band to the glider’s nose, at Tab D, and the other end to the front of the meter stick. Have students pull glider back to
the 20 cm mark on the meter stick and release. Measure distance from launch table to touch down point.
Playing rules: Object is to manipulate glider’s weight and, operating under “powered” flight, achieve the greatest distance
from the launch zone.
Scoring: Add together each squadron member’s distance from launch zone to touch down.
Extensions: (1) Find the mean, median, and mode for the squadron. (2) Vary the length which the rubber band is pulled back
on the meter stick (e.g., 10 cm, 25 cm, 40 cm) while holding the glider’s weight constant. Conduct several trials at each
length. What impact does this have on performance? (3) Vary the glider’s weight (number of paper clips) on different parts
of the plane, wing, nose, tail, or body. Using constant thrust, conduct several trials, recording weight, weight location,
and distance flown. What impact does weight have on performance? (4) Determine the weight to thrust ratio for your
glider’s best performance. Compare with other squadrons. What can you conclude about glider performance?
757
Assembly Instructions
Read carefully before assembly.
Tail
section
1. Cut out all parts with scissors.
2. Cut all dashed lines (black and
white).
3. Fold plane body in half.
4. Fold A inward to B. Now fold B
into plane section. This adds
weight to the front of the plane.
5. Insert C into slot (dashed
line cut at bottom of B).
6. Fold tail section and slide it into
slot in back of plane until it locks
into place (secure with tape so it
stays in place).
7. Bend front and back "wings" to
form glider.
8. Fold D inward. Tape the nose
(at D) of the airplane and add
paperclip.
YOU ARE NOW READY TO
FLY YOUR 757!
Event Scoresheet
Score
Total Score
Event #1 - Precision Landing
Event #2 - Launch and Land
Event #3 - Student Determined
Squadron Members:
1.
2.
3.
4.
757
NASA
NASA
C
B
A
D
D
757 Glider Kit
Boeing 757 200

Mais conteúdo relacionado

Semelhante a Boeing 757 200

Experimental study of magnus effect over an aircraft wing
Experimental study of magnus effect over an aircraft wingExperimental study of magnus effect over an aircraft wing
Experimental study of magnus effect over an aircraft wingeSAT Journals
 
ARIES NASA Langley S Airborne Research Facility
ARIES  NASA Langley S Airborne Research FacilityARIES  NASA Langley S Airborne Research Facility
ARIES NASA Langley S Airborne Research FacilityKimberly Pulley
 
Flight design report only.pdf
Flight design report only.pdfFlight design report only.pdf
Flight design report only.pdfbkbk37
 
NART FINAL group poster Slide Presentation-1
NART FINAL group poster Slide Presentation-1NART FINAL group poster Slide Presentation-1
NART FINAL group poster Slide Presentation-1Faye Clawson
 
Orbital Report
Orbital ReportOrbital Report
Orbital ReportRay Parker
 
Introduction to STEM for the Boys and Girls Club
Introduction to STEM for the Boys and Girls ClubIntroduction to STEM for the Boys and Girls Club
Introduction to STEM for the Boys and Girls ClubDan Hrehov PE
 
Technical Memorandum
Technical MemorandumTechnical Memorandum
Technical MemorandumLucas Gargano
 
Airships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason RhodesAirships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason RhodesAdvanced-Concepts-Team
 
SENIOR PROJECT FINAL REPORT
SENIOR PROJECT FINAL REPORTSENIOR PROJECT FINAL REPORT
SENIOR PROJECT FINAL REPORTDwight Nava
 
Charger Rocket Works PDR: 2009-2010
Charger Rocket Works PDR: 2009-2010Charger Rocket Works PDR: 2009-2010
Charger Rocket Works PDR: 2009-2010Seiya Shimizu
 
Numerical Simulation Over Flat-Disk Aerospike at Mach 6
Numerical Simulation Over Flat-Disk Aerospike at Mach 6Numerical Simulation Over Flat-Disk Aerospike at Mach 6
Numerical Simulation Over Flat-Disk Aerospike at Mach 6Abhishek Jain
 
University of Toronto_Carl Pigeon_Aerospace Education
University of Toronto_Carl Pigeon_Aerospace EducationUniversity of Toronto_Carl Pigeon_Aerospace Education
University of Toronto_Carl Pigeon_Aerospace EducationCarl Pigeon
 

Semelhante a Boeing 757 200 (20)

Final Paper
Final PaperFinal Paper
Final Paper
 
Bauldree - FINAL VERSION
Bauldree - FINAL VERSIONBauldree - FINAL VERSION
Bauldree - FINAL VERSION
 
Experimental study of magnus effect over an aircraft wing
Experimental study of magnus effect over an aircraft wingExperimental study of magnus effect over an aircraft wing
Experimental study of magnus effect over an aircraft wing
 
ARIES NASA Langley S Airborne Research Facility
ARIES  NASA Langley S Airborne Research FacilityARIES  NASA Langley S Airborne Research Facility
ARIES NASA Langley S Airborne Research Facility
 
Flight design report only.pdf
Flight design report only.pdfFlight design report only.pdf
Flight design report only.pdf
 
NART FINAL group poster Slide Presentation-1
NART FINAL group poster Slide Presentation-1NART FINAL group poster Slide Presentation-1
NART FINAL group poster Slide Presentation-1
 
Williams eric paper_mec_e200
Williams eric paper_mec_e200Williams eric paper_mec_e200
Williams eric paper_mec_e200
 
Orbital Report
Orbital ReportOrbital Report
Orbital Report
 
Introduction to STEM for the Boys and Girls Club
Introduction to STEM for the Boys and Girls ClubIntroduction to STEM for the Boys and Girls Club
Introduction to STEM for the Boys and Girls Club
 
FINAL PRESENTATION AERO 485
FINAL PRESENTATION AERO 485FINAL PRESENTATION AERO 485
FINAL PRESENTATION AERO 485
 
Man138048
Man138048Man138048
Man138048
 
Technical Memorandum
Technical MemorandumTechnical Memorandum
Technical Memorandum
 
Airships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason RhodesAirships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason Rhodes
 
SENIOR PROJECT FINAL REPORT
SENIOR PROJECT FINAL REPORTSENIOR PROJECT FINAL REPORT
SENIOR PROJECT FINAL REPORT
 
Charger Rocket Works PDR: 2009-2010
Charger Rocket Works PDR: 2009-2010Charger Rocket Works PDR: 2009-2010
Charger Rocket Works PDR: 2009-2010
 
Numerical Simulation Over Flat-Disk Aerospike at Mach 6
Numerical Simulation Over Flat-Disk Aerospike at Mach 6Numerical Simulation Over Flat-Disk Aerospike at Mach 6
Numerical Simulation Over Flat-Disk Aerospike at Mach 6
 
University of Toronto_Carl Pigeon_Aerospace Education
University of Toronto_Carl Pigeon_Aerospace EducationUniversity of Toronto_Carl Pigeon_Aerospace Education
University of Toronto_Carl Pigeon_Aerospace Education
 
1569909951 (2)
1569909951 (2)1569909951 (2)
1569909951 (2)
 
6%2E2017-2021
6%2E2017-20216%2E2017-2021
6%2E2017-2021
 
minor project
minor projectminor project
minor project
 

Último

Behind the Scenes The Life of Enzo Zelocchi, a Hollywood Film Producer.pdf
Behind the Scenes The Life of Enzo Zelocchi, a Hollywood Film Producer.pdfBehind the Scenes The Life of Enzo Zelocchi, a Hollywood Film Producer.pdf
Behind the Scenes The Life of Enzo Zelocchi, a Hollywood Film Producer.pdfEnzo Zelocchi Fan Page
 
Biswanath Byam Samiti Open Quiz 2022 by Qui9 Grand Finale
Biswanath Byam Samiti Open Quiz 2022 by Qui9 Grand FinaleBiswanath Byam Samiti Open Quiz 2022 by Qui9 Grand Finale
Biswanath Byam Samiti Open Quiz 2022 by Qui9 Grand FinaleQui9 (Ultimate Quizzing)
 
ECOLUXE pre-ESPYS Ultimate Sports Lounge 2024
ECOLUXE pre-ESPYS Ultimate Sports Lounge 2024ECOLUXE pre-ESPYS Ultimate Sports Lounge 2024
ECOLUXE pre-ESPYS Ultimate Sports Lounge 2024Durkin Entertainment LLC
 
Bald Philosopher, a story for entertainment.docx
Bald Philosopher, a story for entertainment.docxBald Philosopher, a story for entertainment.docx
Bald Philosopher, a story for entertainment.docxazuremorn
 
Statement Of Intent - - Copy.documentfile
Statement Of Intent - - Copy.documentfileStatement Of Intent - - Copy.documentfile
Statement Of Intent - - Copy.documentfilef4ssvxpz62
 
What Life Would Be Like From A Different Perspective (saltyvixenstories.com)
What Life Would Be Like From A Different Perspective (saltyvixenstories.com)What Life Would Be Like From A Different Perspective (saltyvixenstories.com)
What Life Would Be Like From A Different Perspective (saltyvixenstories.com)Salty Vixen Stories & More
 
A Spotlight on Darla Leigh Pittman Rodgers: Aaron Rodgers' Mother
A Spotlight on Darla Leigh Pittman Rodgers: Aaron Rodgers' MotherA Spotlight on Darla Leigh Pittman Rodgers: Aaron Rodgers' Mother
A Spotlight on Darla Leigh Pittman Rodgers: Aaron Rodgers' Motherget joys
 
NO1 Certified kala ilam Expert In Peshwar Kala Jadu Specialist In Peshwar Kal...
NO1 Certified kala ilam Expert In Peshwar Kala Jadu Specialist In Peshwar Kal...NO1 Certified kala ilam Expert In Peshwar Kala Jadu Specialist In Peshwar Kal...
NO1 Certified kala ilam Expert In Peshwar Kala Jadu Specialist In Peshwar Kal...Amil Baba Dawood bangali
 
THE MEDIC, A STORY for entertainment.docx
THE MEDIC, A STORY for entertainment.docxTHE MEDIC, A STORY for entertainment.docx
THE MEDIC, A STORY for entertainment.docxazuremorn
 
Princess Jahan's Tuition Classes, a story for entertainment
Princess Jahan's Tuition Classes, a story for entertainmentPrincess Jahan's Tuition Classes, a story for entertainment
Princess Jahan's Tuition Classes, a story for entertainmentazuremorn
 
Fight Scene Storyboard (Action/Adventure Animation)
Fight Scene Storyboard (Action/Adventure Animation)Fight Scene Storyboard (Action/Adventure Animation)
Fight Scene Storyboard (Action/Adventure Animation)finlaygoodall2
 
Taken Pilot Episode Story pitch Document
Taken Pilot Episode Story pitch DocumentTaken Pilot Episode Story pitch Document
Taken Pilot Episode Story pitch Documentf4ssvxpz62
 
Uk-NO1 Amil In Karachi Best Amil In Karachi Bangali Baba In Karachi Aamil In ...
Uk-NO1 Amil In Karachi Best Amil In Karachi Bangali Baba In Karachi Aamil In ...Uk-NO1 Amil In Karachi Best Amil In Karachi Bangali Baba In Karachi Aamil In ...
Uk-NO1 Amil In Karachi Best Amil In Karachi Bangali Baba In Karachi Aamil In ...Amil baba
 
NO1 Certified Black magic specialist,Expert in Pakistan Amil Baba kala ilam E...
NO1 Certified Black magic specialist,Expert in Pakistan Amil Baba kala ilam E...NO1 Certified Black magic specialist,Expert in Pakistan Amil Baba kala ilam E...
NO1 Certified Black magic specialist,Expert in Pakistan Amil Baba kala ilam E...Amil Baba Dawood bangali
 
Aesthetic Design Inspiration by Slidesgo.pptx
Aesthetic Design Inspiration by Slidesgo.pptxAesthetic Design Inspiration by Slidesgo.pptx
Aesthetic Design Inspiration by Slidesgo.pptxsayemalkadripial4
 
Flying Avocado Cat Cryptocurrency Created, Coded, Generated and Named by Grok...
Flying Avocado Cat Cryptocurrency Created, Coded, Generated and Named by Grok...Flying Avocado Cat Cryptocurrency Created, Coded, Generated and Named by Grok...
Flying Avocado Cat Cryptocurrency Created, Coded, Generated and Named by Grok...TeslaStakeHolder
 

Último (20)

Behind the Scenes The Life of Enzo Zelocchi, a Hollywood Film Producer.pdf
Behind the Scenes The Life of Enzo Zelocchi, a Hollywood Film Producer.pdfBehind the Scenes The Life of Enzo Zelocchi, a Hollywood Film Producer.pdf
Behind the Scenes The Life of Enzo Zelocchi, a Hollywood Film Producer.pdf
 
Moveable Feast_Travel-Lifestyle-Culture Quiz.pptx
Moveable Feast_Travel-Lifestyle-Culture Quiz.pptxMoveable Feast_Travel-Lifestyle-Culture Quiz.pptx
Moveable Feast_Travel-Lifestyle-Culture Quiz.pptx
 
Biswanath Byam Samiti Open Quiz 2022 by Qui9 Grand Finale
Biswanath Byam Samiti Open Quiz 2022 by Qui9 Grand FinaleBiswanath Byam Samiti Open Quiz 2022 by Qui9 Grand Finale
Biswanath Byam Samiti Open Quiz 2022 by Qui9 Grand Finale
 
ECOLUXE pre-ESPYS Ultimate Sports Lounge 2024
ECOLUXE pre-ESPYS Ultimate Sports Lounge 2024ECOLUXE pre-ESPYS Ultimate Sports Lounge 2024
ECOLUXE pre-ESPYS Ultimate Sports Lounge 2024
 
Bald Philosopher, a story for entertainment.docx
Bald Philosopher, a story for entertainment.docxBald Philosopher, a story for entertainment.docx
Bald Philosopher, a story for entertainment.docx
 
Statement Of Intent - - Copy.documentfile
Statement Of Intent - - Copy.documentfileStatement Of Intent - - Copy.documentfile
Statement Of Intent - - Copy.documentfile
 
S10_E06-Sincerely,The Friday Club- Prelims Farewell Quiz.pptx
S10_E06-Sincerely,The Friday Club- Prelims Farewell Quiz.pptxS10_E06-Sincerely,The Friday Club- Prelims Farewell Quiz.pptx
S10_E06-Sincerely,The Friday Club- Prelims Farewell Quiz.pptx
 
What Life Would Be Like From A Different Perspective (saltyvixenstories.com)
What Life Would Be Like From A Different Perspective (saltyvixenstories.com)What Life Would Be Like From A Different Perspective (saltyvixenstories.com)
What Life Would Be Like From A Different Perspective (saltyvixenstories.com)
 
A Spotlight on Darla Leigh Pittman Rodgers: Aaron Rodgers' Mother
A Spotlight on Darla Leigh Pittman Rodgers: Aaron Rodgers' MotherA Spotlight on Darla Leigh Pittman Rodgers: Aaron Rodgers' Mother
A Spotlight on Darla Leigh Pittman Rodgers: Aaron Rodgers' Mother
 
NO1 Certified kala ilam Expert In Peshwar Kala Jadu Specialist In Peshwar Kal...
NO1 Certified kala ilam Expert In Peshwar Kala Jadu Specialist In Peshwar Kal...NO1 Certified kala ilam Expert In Peshwar Kala Jadu Specialist In Peshwar Kal...
NO1 Certified kala ilam Expert In Peshwar Kala Jadu Specialist In Peshwar Kal...
 
THE MEDIC, A STORY for entertainment.docx
THE MEDIC, A STORY for entertainment.docxTHE MEDIC, A STORY for entertainment.docx
THE MEDIC, A STORY for entertainment.docx
 
Princess Jahan's Tuition Classes, a story for entertainment
Princess Jahan's Tuition Classes, a story for entertainmentPrincess Jahan's Tuition Classes, a story for entertainment
Princess Jahan's Tuition Classes, a story for entertainment
 
Sincerely, The Friday Club - Farewell Quiz-Finals.pptx
Sincerely, The Friday Club - Farewell Quiz-Finals.pptxSincerely, The Friday Club - Farewell Quiz-Finals.pptx
Sincerely, The Friday Club - Farewell Quiz-Finals.pptx
 
Fight Scene Storyboard (Action/Adventure Animation)
Fight Scene Storyboard (Action/Adventure Animation)Fight Scene Storyboard (Action/Adventure Animation)
Fight Scene Storyboard (Action/Adventure Animation)
 
Taken Pilot Episode Story pitch Document
Taken Pilot Episode Story pitch DocumentTaken Pilot Episode Story pitch Document
Taken Pilot Episode Story pitch Document
 
S10_E02_How to Pimp Social Media 101.pptx
S10_E02_How to Pimp Social Media 101.pptxS10_E02_How to Pimp Social Media 101.pptx
S10_E02_How to Pimp Social Media 101.pptx
 
Uk-NO1 Amil In Karachi Best Amil In Karachi Bangali Baba In Karachi Aamil In ...
Uk-NO1 Amil In Karachi Best Amil In Karachi Bangali Baba In Karachi Aamil In ...Uk-NO1 Amil In Karachi Best Amil In Karachi Bangali Baba In Karachi Aamil In ...
Uk-NO1 Amil In Karachi Best Amil In Karachi Bangali Baba In Karachi Aamil In ...
 
NO1 Certified Black magic specialist,Expert in Pakistan Amil Baba kala ilam E...
NO1 Certified Black magic specialist,Expert in Pakistan Amil Baba kala ilam E...NO1 Certified Black magic specialist,Expert in Pakistan Amil Baba kala ilam E...
NO1 Certified Black magic specialist,Expert in Pakistan Amil Baba kala ilam E...
 
Aesthetic Design Inspiration by Slidesgo.pptx
Aesthetic Design Inspiration by Slidesgo.pptxAesthetic Design Inspiration by Slidesgo.pptx
Aesthetic Design Inspiration by Slidesgo.pptx
 
Flying Avocado Cat Cryptocurrency Created, Coded, Generated and Named by Grok...
Flying Avocado Cat Cryptocurrency Created, Coded, Generated and Named by Grok...Flying Avocado Cat Cryptocurrency Created, Coded, Generated and Named by Grok...
Flying Avocado Cat Cryptocurrency Created, Coded, Generated and Named by Grok...
 

Boeing 757 200

  • 1. 757 Glider Kit Educational Product Teachers and Students Grades 5-12 National Aeronautics and Space Administration EP-1997-03-357-HQ A Boeing 757-200 (B-757) was acquired in 1994 by the National Aeronautics and Space Administration (NASA) for aeronautical research. Given the call sign NASA 557, this aircraft is used for conducting research on increasing aircraft safety, operating efficiency, and compatibility with future air traffic management systems, benefiting the U.S. aviation industry and commercial airline customers. Part of the Transport Research Facilities (TRF) project, this twin- engine commercial aircraft was modified extensively to create a “flying laboratory.” Most of the seats were removed to make room for a large test area capable of carrying over 5100 kg (10,700 lb) of experiment equipment. It is outfitted with electronics for extremely precise instrumentation and data gathering capabilities, and a flexible interior configuration allows future upgrades to be incorporated. The B-757 is continuing the work begun by NASA’s Boeing 737-100, which has been in service for over 20 years. The B-757 retains the experimental approach of the B-737, but offers newer technology and improved capability. “Airborne Trailblazer” by Lane Wallace is an excellent history of NASA’s B-737 research aircraft. <see: http://www.dfrc.nasa.gov/History/Publications/SP-4216/> One of the basic working philosophies of the TRF project is the concept of “simulation to flight.” The main objective is to develop technical or operational concepts (e.g., electronic cockpit displays, flight management systems, airborne windshear detection sensors) and take them from ground-based simulation testing to flight testing in an easy and straightforward manner. The TRF project includes the B-757 aircraft as well as several ground-based simulators and a Research Systems Integration Laboratory (RSIL). Increasing the effectiveness of conducting experiments from simulation to flight will better meet the needs for bringing advances in safety, operations, and capacity into the ever-changing national airspace system. The NASA 557 will be maintained and flown by NASA’s Langley Research Center (LARC) in Hampton, VA. Listed below are some experiments that have used the NASA 557. ELECTROMAGNETIC EFFECTS (EME) The NASA 557 was used to conduct several experiments to determine the effects of High Intensity Radiated Fields on aircraft electronics, which is important research for aircraft safety and navigation systems. A database was produced for use in validating advanced analytical tools. NASA, the Navy, and the Air Force conducted static tests at LARC to characterize the electromagnetic environment in and around a large transport aircraft. Flight tests were conducted in the vicinity of radar transmitters at Wallops Flight Center in Virginia, and in close proximity to radio transmitters in North Carolina. Data collected during both types of tests are being analyzed. The results will be used to improve the reliability of digital electronics and to reduce their certification costs for use on civil transports. GLOBAL POSITIONING SYSTEM (GPS) USE FOR ALL-WEATHER LANDINGS The aviation industry is investigating the use of differential GPS concepts for precision landings in bad weather to improve the safety and reliability of air travel. The GPS is a constellation of 24 satellites used to determine aircraft position anywhere on or near the Earth. When a ground- based GPS receiver is used to provide a “differential” correction signal, an aircraft’s position can be determined within a foot or two. Boeing partnered with NASA to examine GPS Landing System concepts and evaluate their accuracy, integrity, and continuity of function in automatic landings of airplanes. The team tested several prototype GPS Landing System concepts using NASA 557 during 226 automatic approaches and landings. The data obtained is being used to validate GPS Landing System simulations and to define system certification requirements. SUBSONIC AIRCRAFT: CONTRAIL AND CLOUD EFFECTS SPECIAL STUDY (SUCCESS) NASA is studying the environmental impact of aircraft emissions upon the atmosphere. The SUCCESS project began as an investigation into the radiative properties of cirrus clouds, how cirrus clouds are formed, and the effects of subsonic aircraft on cloud formation (subsonic means slower than the speed of sound, which is 330 m/sec [1,088 ft/sec] at 0°C [32°F] at sea level). NASA 557 was used to generate engine exhaust for the experiment. High-sulfur fuel was used in the engine of one wing, and low-sulfur fuel was used in the engine of the other wing. A NASA DC-8 aircraft followed the B-757, taking data on the sulfuric acid and soot content of jet engine exhaust by measuring gas and particle samples emitted from the engines, while a NASA ER-2 aircraft took infra-red images from above. Research on this project is still in progress. <For photos and other information on the SUCCESS project, start with: http://cloud1.arc.nasa.gov/espo/success/aircraft.html> FLIGHT CHECK: Check out the following NASA and Boeing sites and related aeronautic sites on the Internet: http://www.aero.hq.nasa.gov/hpcontent/edu.html This site links to education materials from each NASA Aeronautics Center, other interesting locations, and to NASA Aeronautics’ main homepage. http://www.boeing.com/757.html http://quest.arc.nasa.gov http://www.db.erau.edu/www_virtual_lib/aviation.html http://observe.ivv.nasa.gov http://www.nasm.edu/GALLERIES/GAL109/ http://www.hq.nasa.gov/office/codef/education/index.html
  • 2. 757 Glider Kit FOCUS: The glider challenges focus on the Science as Inquiry standards. Students are given the opportunity to use scientific methods and develop the ability to think and act in ways associated with research design and inquiry, including asking questions, planning and conducting investigations, using appropriate tools and techniques to gather data, thinking critically and logically about relationships between evidence and explanations, constructing and analyzing alternative explanations, and communicating scientific arguments and results. CHALLENGES: The challenges investigate design parameters of the glider -- wing, tail, and nose. The aerodynamic forces of lift, drag, and weight are explored. Each glider challenge calls for students to develop abilities to identify and state a problem, design a solution, implement a solution, and evaluate the solution. Extensions to the challenges are offered for further mathematic and scientific explorations and investigations. GLIDER CHALLENGE EVENTS DIRECTIONS: Divide class into flight squadrons (3 to 4 students per squadron). Have each student construct a 757 glider and write their name on the wing. Present glider challenges to squadrons. Explain to students the object of each event and how it is scored. Extra points can be obtained by completing a glider extension activity. Students should be encouraged to conduct some experimentation (i.e., add weight; reshape wing or tail) on their gliders in order to maximize the performance for the different objectives of each challenge. Rotate squadrons through the challenges keeping score on a squadron’s scoresheet. Debrief afterwards to discuss glider designs, experimentations, and outcomes. CHALLENGE #1 -- Spot Landing Set-up: Tape off a large circle, 7 meters in diameter. Create a bull’s-eye ring with 3 circles, equally spaced from each other, inside the circle (5, 3, and 1 meter). Label circles (A, B, C, D) with A being the center ring. Give a point value to each circle with A being the largest point value and D being the smallest point value. Indicate the launching zone with another piece of masking tape 4 meters from the edge of outer circle. (You may wish to try a glider unmodified to see how far it can go and use the distance as a baseline for making adjustments.) Playing rules: Object is to make modifications to the glider to improve its performance with the goal of launching the glider towards the circle and touching down inside circle A (the bull’s-eye). Scoring: Points are determined by the spot the glider first “touches down” in the target area, not where it finally comes to rest. After each squadron member has landed their glider and determined the point score, the squadron’s combined points are entered on the score sheet. Extensions: (1) Find the average for the squadron and enter on score sheet. (2) Try to land with a “downwind” -- a three- speed fan (using low, medium or high speed) located directly behind the launch zone. Discuss the performance changes. With a given windspeed (low, medium or high), calculate the increased distance needed to land. (3) Repeat Extension 2, but instead have the glider land “upwind.” After completing Extensions 2 and 3 answer the question: Which way would pilots rather land an airplane, downwind or upwind? Why? CHALLENGE #2 -- Launch and Land Materials needed: 1 standard rubber band (10 cm) per student, 1 balance scale (metric) per squadron, 1 meter stick, paper clips Set-up: Establish a launch zone on a tabletop. Tape the meter stick to the edge of the table. Have students hook one end of rubber band to the glider’s nose, at Tab D, and the other end to the front of the meter stick. Have students pull glider back to the 20 cm mark on the meter stick and release. Measure distance from launch table to touch down point. Playing rules: Object is to manipulate glider’s weight and, operating under “powered” flight, achieve the greatest distance from the launch zone. Scoring: Add together each squadron member’s distance from launch zone to touch down. Extensions: (1) Find the mean, median, and mode for the squadron. (2) Vary the length which the rubber band is pulled back on the meter stick (e.g., 10 cm, 25 cm, 40 cm) while holding the glider’s weight constant. Conduct several trials at each length. What impact does this have on performance? (3) Vary the glider’s weight (number of paper clips) on different parts of the plane, wing, nose, tail, or body. Using constant thrust, conduct several trials, recording weight, weight location, and distance flown. What impact does weight have on performance? (4) Determine the weight to thrust ratio for your glider’s best performance. Compare with other squadrons. What can you conclude about glider performance?
  • 3. 757 Assembly Instructions Read carefully before assembly. Tail section 1. Cut out all parts with scissors. 2. Cut all dashed lines (black and white). 3. Fold plane body in half. 4. Fold A inward to B. Now fold B into plane section. This adds weight to the front of the plane. 5. Insert C into slot (dashed line cut at bottom of B). 6. Fold tail section and slide it into slot in back of plane until it locks into place (secure with tape so it stays in place). 7. Bend front and back "wings" to form glider. 8. Fold D inward. Tape the nose (at D) of the airplane and add paperclip. YOU ARE NOW READY TO FLY YOUR 757! Event Scoresheet Score Total Score Event #1 - Precision Landing Event #2 - Launch and Land Event #3 - Student Determined Squadron Members: 1. 2. 3. 4. 757 NASA NASA C B A D D 757 Glider Kit